
This paper is included in the Proceedings of the

17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

Understanding, Detecting and Localizing
Partial Failures in Large System Software

Chang Lou, Peng Huang, and Scott Smith, Johns Hopkins University

https://www.usenix.org/conference/nsdi20/presentation/lou

Understanding, Detecting and Localizing Partial Failures

in Large System Software

Chang Lou

Johns Hopkins University

Peng Huang

Johns Hopkins University

Scott Smith

Johns Hopkins University

Abstract

Partial failures occur frequently in cloud systems and can

cause serious damage including inconsistency and data loss.

Unfortunately, these failures are not well understood. Nor

can they be effectively detected. In this paper, we first study

100 real-world partial failures from five mature systems to

understand their characteristics. We find that these failures are

caused by a variety of defects that require the unique condi-

tions of the production environment to be triggered. Manually

writing effective detectors to systematically detect such fail-

ures is both time-consuming and error-prone. We thus propose

OmegaGen, a static analysis tool that automatically generates

customized watchdogs for a given program by using a novel

program reduction technique. We have successfully applied

OmegaGen to six large distributed systems. In evaluating 22

real-world partial failure cases in these systems, the generated

watchdogs can detect 20 cases with a median detection time

of 4.2 seconds, and pinpoint the failure scope for 18 cases.

The generated watchdogs also expose an unknown, confirmed

partial failure bug in the latest version of ZooKeeper.

1 Introduction

It is elusive to build large software that never fails. Designers

of robust systems therefore must devise runtime mechanisms

that proactively check whether a program is still functioning

properly, and react if not. Many of these mechanisms are built

with a simple assumption that when a program fails, it fails

completely via crash, abort, or network disconnection.

This assumption, however, does not reflect the complex

failure semantics exhibited in modern cloud infrastructure.

A typical cloud software program consists of tens of mod-

ules, hundreds of dynamic threads, and tens of thousands

of functions for handling different requests, running various

background tasks, applying layers of optimizations, etc. Not

surprisingly, such a program in practice can experience par-

tial failures, where some, but not all, of its functionalities are

broken. For example, for a data node process in a modern

distributed file system, a partial failure could occur when a

rebalancer thread within this process can no longer distribute

unbalanced blocks to other remote data node processes, even

though this process is still alive. Or, a block receiver daemon

in this data node process silently exits, so the blocks are no

longer persisted to disk. These partial failures are not a latent

problem that operators can ignore; they can cause serious

damage including inconsistency, “zombie” behavior and data

loss. Indeed, partial failures are behind many catastrophic

real-world outages [1, 17, 39, 51, 52, 55, 66, 85, 86]. For ex-

ample, Microsoft Office 365 mail service suffered an 8-hour

outage because an anti-virus engine module of the mail server

was stuck in identifying some suspicious message [39].

When a partial failure occurs, it often takes a long time

to detect the incident. In contrast, a process suffering a total

failure can be quickly identified, restarted or repaired by exist-

ing mechanisms, thus limiting the failure impact. Worse still,

partial failures cause mysterious symptoms that are incredibly

difficult to debug [78], e.g., create() requests time out but

write() requests still work. In a production ZooKeeper out-

age due to the leader failing partially [86], even after an alert

was triggered, the leader logs contained few clues about what

went wrong. It took the developer significant time to localize

the fault within the problematic leader process (Figure 1).

Before pinpointing the failure, a simple restart of the leader

process was fruitless (the symptom quickly re-appeared).

Both practitioners and the research community have called

attention to this gap. For example, the Cassandra developers

adopted the more advanced accrual failure detector [73], but

still conclude that its current design “has very little ability

to effectively do something non-trivial to deal with partial

failures” [13]. Prabhakaran et al. analyze partial failure spe-

cific to disks [88]. Huang et al. discuss the gray failure [76]

challenge in cloud infrastructure. The overall characteristics

of software partial failures, however, are not well understood.

In this paper, we first seek to answer the question, how do

partial failures manifest in modern systems? To shed some

light on this, we conducted a study (Section 2) of 100 real-

world partial failure cases from five large-scale, open-source

systems. We find that nearly half (48%) of the studied failures

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 559

public class SyncRequestProcessor {

 public void serializeNode(OutputArchive oa, ...) {

 DataNode node = getNode(pathString);

 if (node == null)

 return;

 String children[] = null;

 synchronized (node) {

 scount++;

 oa.writeRecord(node, "node");

 children = node.getChildren();

 }

 path.append('/');

 for (String child : children) {

 path.append(child);

 serializeNode(oa, path); //serialize children

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

blocked for a long time

Figure 1: A production ZooKeeper outage due to partial failure [86].

cause certain software-specific functionality to be stuck. In

addition, the majority (71%) of the studied failures are trig-

gered by unique conditions in a production environment, e.g.,

bad input, scheduling, resource contention, flaky disks, or a

faulty remote process. Because these failures impact inter-

nal features such as compaction and persistence, they can be

unobservable to external detectors or probes.

How to systematically detect and localize partial failures at

runtime? Practitioners currently rely on running ad-hoc health

checks (e.g., send an HTTP request every few seconds and

check its response status [3, 42]). But such health checks are

too shallow to expose a wide class of failures. The state-of-the-

art research work in this area is Panorama [75], which converts

various requestors of a target process into observers to report

gray failures of this process. This approach is limited by

what requestors can observe externally. Also, these observers

cannot localize a detected failure within the faulty process.

We propose a novel approach to construct effective partial

failure detectors through program reduction. Given a program

P, our basic idea is to derive from P a reduced but represen-

tative version W as a detector module and periodically test

W in production to expose various potential failures in P. We

call W an intrinsic watchdog. This approach offers two main

benefits. First, as the watchdog is derived from and “imitates”

the main program, it can more accurately reflect the main

program’s status compared to the existing stateless heartbeats,

shallow health checks or external observers. Second, reduc-

tion makes the watchdog succinct and helps localize faults.

Manually applying the reduction approach on large soft-

ware is both time-consuming and error-prone for developers.

To ease this burden, we design a tool, OmegaGen, that stati-

cally analyzes the source code of a given program and gener-

ates customized intrinsic watchdogs for the target program.

Our insight for realizing program reduction in OmegaGen

is that W ’s goal is solely to detect and localize runtime errors;

therefore, it does not need to recreate the full details of P’s

business logic. For example, if P invokes write() in a tight

loop, for checking purposes, a W with one write() may be

sufficient to expose a fault. In addition, while it is tempting

to check all kinds of faults, given the limited resources, W

should focus on checking faults manifestable only in a produc-

tion environment. Logical errors that deterministically lead

to wrong results (e.g., incorrect sorting) should be the focus

of offline unit testing. Take Figure 1 as an example. In check-

ing the SyncRequestProcessor, W need not check most of the

instructions in function serializeNode, e.g., lines 3–6 and 8.

While there might be a slim chance these instructions would

also fail in production, repeatedly checking them would yield

diminishing returns for the limited resource budget.

Accurately distinguishing logically-deterministic faults and

production-dependent faults in general is difficult. OmegaGen

uses heuristics to analyze how “vulnerable” an instruction is

based on whether the instruction performs some I/O, resource

allocation, async wait, etc. So since line 9 of Figure 1 per-

forms a write, it would be assessed as vulnerable and tested

in W . It is unrealistic to expect W to always include the fail-

ure root cause instruction. Fortunately, a ballpark assessment

often suffices. For instance, even if we only assess that the

entire serializeNode function or its caller is vulnerable, and

periodically test it in W , W can still detect this partial failure.

Once the vulnerable instructions are selected, OmegaGen

will encapsulate them into checkers. OmegaGen’s second con-

tribution is providing several strong isolation mechanisms so

the watchdog checkers do not interfere with the main program.

For memory isolation, OmegaGen identifies the context for

a checker and generates context managers with hooks in the

main program which replicates contexts before using them

in checkers. OmegaGen removes side-effects from I/O opera-

tions through redirection and designs an idempotent wrapper

mechanism to safely test non-idempotent operations.

We have applied OmegaGen to six large (28K to 728K

SLOC) systems. OmegaGen automatically generates tens to

hundreds of watchdog checkers for these systems. To evaluate

the effectiveness of the generated watchdogs, we reproduced

22 real-world partial failures. Our watchdogs can detect 20

cases with a median detection time of 4.2 seconds and local-

ize the failure scope for 18 cases. In comparison, the best

manually written baseline detector can only detect 11 cases

and localize 8 cases. Through testing, our watchdogs exposed

a new, confirmed partial failure bug in the latest ZooKeeper.

2 Understanding Partial Failures

Partial failures are a well known problem. Gupta and Shute

report that partial failures occur much more commonly than to-

tal failures in the Google Ads infrastructure [70]. Researchers

studied partial disk faults [88] and slow hardware faults [68].

But how software fails partially is not well understood. In this

Section, we study real-world partial failures to gain insight

into this problem and to guide our solution design.

Scope We focus on partial failure at the process granularity.

This process could be standalone or one component in a large

service (e.g., a datanode in a storage service). Our studied

partial failure is with respect to a process deviating from the

functionalities it is supposed to provide per se, e.g., store and

560 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Software Lang. Cases Ver.s (Range) Date Range

ZooKeeper Java 20 17 (3.2.1–3.5.3) 12/01/2009–08/28/2018

Cassandra Java 20 19 (0.7.4–3.0.13) 04/22/2011–08/31/2017

HDFS Java 20 14 (0.20.1–3.1.0) 10/29/2009–08/06/2018

Apache C 20 16 (2.0.40–2.4.29) 08/02/2002–03/20/2018

Mesos C++ 20 11 (0.11.0–1.7.0) 04/08/2013–12/28/2018

Table 1: Studied software systems, the partial failure cases, and the

unique versions, version and date ranges these cases cover.

UE IB EH DD PB LE IL RL Other
0

5

10

15

P
e
rc
e
n
t

Apache
Cassandra
HDFS

Mesos
ZooKeeper

Figure 2: Root cause distribution. UE: uncaught error; IB: indefinite

blocking; EH: buggy error handling; DD: deadlock; PB: perfor-

mance bug; LE: logic error; IL: infinite loop; RL: resource leak.

balance data blocks, whether it is a service component or a

standalone server. We note that users may define a partial

failure at the service granularity (e.g., Google drive becomes

read-only), the underlying root cause of which could be either

some component crashing or failing partially.

Methodology We study five large, widely-used software sys-

tems (Table 1). They provide different services and are writ-

ten in different languages. To collect the study cases, we first

crawl all bug tickets tagged with critical priorities in the offi-

cial bug trackers. We then filter tickets from testing and ran-

domly sample the remaining failures tickets. To minimize bias

in the types of partial failures we study, we exhaustively ex-

amining each sampled case and manually determine whether

it is a complete failure (e.g., crash), and discard if so. In total,

we collected 100 failure cases (20 cases for each system).

2.1 Findings

Finding 1: In all the five systems, partial failures appear

throughout release history (Table 1). 54%1 of them occur in

the most recent three years’ software releases.

Such a trend occurs in part because as software evolves,

new features and performance optimizations are added, which

complicates the failure semantics. For example, HDFS intro-

duced a short-circuit local reads feature [30] in version 0.23.

To implement this feature, a DomainSocketWatcher was added

that watches a set of Unix domain sockets and invokes a

callback when they become readable. But this new module

can accidentally exit in production and cause applications

performing short-circuit reads to hang [29].

Finding 2: The root causes of studied failures are diverse. The

top three (total 48%) root cause types are uncaught errors,

indefinite blocking, and buggy error handling (Figure 2).

Uncaught error means certain operation triggers some error

condition that is not expected by the software. As an exam-

1With sample size 100, the percents also represent the absolute numbers.

stuck slow zombie
omissiondenial corrup

t other
0

10

20

30

40

P
e
rc
e
n
t

Apache

Cassandra

HDFS

Mesos

ZooKeeper

Figure 3: Consequence of studied failures.

ple, the streaming session in Cassandra could hang when

the stream reader encounters errors other than IOException

like RuntimeException [6]. Indefinite blocking occurs when

some function call is blocked forever. In one case [27], the

EditLogTailer in a standby HDFS namenode made an RPC

rollEdits() to the active namenode; but this call was blocked

when the active namenode was frozen but not crashed, which

prevented the standby from becoming active. Buggy error han-

dling includes silently swallowing errors, empty handlers [93],

premature continuing, etc. Other common root causes include

deadlock, performance bugs, infinite loop and logic errors.

Finding 3: Nearly half (48%) of the partial failures cause

some functionality to be stuck.

Figure 3 shows the consequences of the studied failures.

Note that these failures are all partial. For the “stuck” fail-

ures, some software module like the socket watcher was not

making any progress; but the process was not completely un-

responsive, i.e., its heartbeat module can still respond in time.

It may also handle other requests like non-local reads.

Besides “stuck” cases, 17% of the partial failures causes

certain operation to take a long time to complete (the “slow”

category in Figure 3). These slow failures are not just inef-

ficiencies for optional optimization. Rather, they are severe

performance bugs that cause the affected feature to be barely

usable. In one case [5], after upgrading Cassandra 2.0.15 to

2.1.9, users found the read latency of the production cluster

increased from 6 ms/op to more than 100 ms/op.

Finding 4: In 13% of the studied cases, a module became a

“zombie” with undefined failure semantics.

This typically happens when the faulty module accidentally

exits its normal control loop or it continues to execute even

when it encounters some severe error that it cannot tolerate.

For example, an unexpected exception caused the ZooKeeper

listener module to accidentally exit its while loop so new

nodes could no longer join the cluster [46]. In another case,

the HDFS datanode continued even if the block pool failed to

initialize [26], which would trigger a NullPointerException

whenever it tried to do block reports.

Finding 5: 15% of the partial failures are silent (including

data loss, corruption, inconsistency, and wrong results).

They are usually hard to detect without detailed correctness

specifications. For example, when the Mesos agent garbage

collects old slave sandboxes, it could incorrectly wipe out the

persistent volume data [37]. In another case [38], the Apache

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 561

web server would “go haywire”, e.g., a request for a .js file

would receive a response of image/png, because the backend

connections are not properly closed in case of errors.

Finding 6: 71% of the failures are triggered by some specific

environment condition, input, or faults in other processes.

For example, a partial failure in ZooKeeper can only

be triggered when some corrupt message occurs in the

length field of a record [66]. Another partial failure in the

ZooKeeper leader would only occur when a connecting fol-

lower hangs [50], which prevents other followers from joining

the cluster. These partial failures are hard to be exposed by

pre-production testing and require mechanisms to detect at

runtime. Moreover, if a runtime detector uses a different setup

or checking input, it may not detect such failures.

Finding 7: The majority (68%) of the failures are “sticky”.

Sticky means the process will not recover from the faults

by itself. The faulty process needs to be restarted or repaired

to function again. In one case, a race condition caused an

unexpected RejectedExecutionException, which caused the

RPC server thread to silently exit its loop and stop listening

for connections [9]. This thread must be restarted to fix the

issue. For certain failures, some extra repair actions such as

fixing a file system inconsistency [25] are needed.

The remaining (32%) failures are “transient”, i.e., the

faulty modules could possibly recover after certain condition

changes, e.g., when the frozen namenode becomes respon-

sive [27]. However, these non-sticky failures already incurred

damage for a long time by then (15 minutes in one case [45]).

Finding 8: The median diagnosis time is 6 days and 5 hours.

For example, diagnosing a Cassandra failure [10] took the

developers almost two days. The root cause turned out to be

relatively simple: the MeteredFlusher module was blocked for

several minutes and affected other tasks. One common reason

for the long diagnosis time despite simple root causes is that

the confusing symptoms of the failures mislead the diagnosis

direction. Another common reason is the insufficient exposure

of runtime information in the faulty process. Users have to

enable debug logs, analyze heap, and/or instrument the code,

to identify what was happening during the production failure.

2.2 Implications

Overall, our study reveals that partial failure is a common

and severe problem in large software systems. Most of the

studied failures are production-dependent (finding 6), which

require runtime mechanisms to detect. Moreover, if a runtime

detector can localize a failure besides mere detection, it will

reduce the difficulty of offline diagnosis (finding 8). Existing

detectors such as heartbeats, probes [69], or observers [75] are

ineffective because they have little exposure to the affected

functionalities internal in a process (e.g., compaction).

One might conclude that the onus is on the developers to

add effective runtime checks in their code, such as a timer

check for the rollEdits() operation in the aforementioned

HDFS failure [27]. However, simply relying on developers

to anticipate and add defensive checks for every operation is

unrealistic. We need a systematic approach to help developers

construct software-specific runtime checkers.

It would be desirable to completely automate the construc-

tion of customized runtime checkers, but this is extremely

difficult in the general case given the diversity (finding 2)

of partial failures. Indeed, 15% of the studied failures are

silent, which require detailed correctness specifications to

catch. Fortunately, the majority of failures in our study vio-

late liveness (finding 3) or trigger explicit errors at certain

program points, which suggests that detectors can be automat-

ically constructed without deep semantic understanding.

3 Catching Partial Failures with Watchdogs

We consider a large server process π composed of many

smaller modules, providing a set of functionalities R, e.g.,

a datanode server with request listener, snapshot manager,

cache manager, etc. A failure detector is needed to monitor

the process for high availability. We target specifically partial

failures. We define a partial failure in a process π to be when

a fault does not crash π but causes safety or liveness violation

or severe slowness for some functionality R f (R. Besides de-

tecting a failure, we aim to localize the fault within the process

to facilitate subsequent troubleshooting and mitigation.

Guided by our study, we propose an intersection principle

for designing effective partial failure detectors—construct

customized checks that intersect with the execution of a mon-

itored process. The rationale is that partial failures typically

involve specific software feature and bad state; to expose such

failures, the detector need to exercise specific code regions

with carefully-chosen payloads. The checks in existing detec-

tors including heartbeat and HTTP tests are too generic and

too disjoint with the monitored process’ states and executions.

We advocate an intrinsic watchdog design (Figure 4) that

follows the above principle. An intrinsic watchdog is a ded-

icated monitoring extension for a process. This extension

regularly executes a set of checkers tailored to different mod-

ules. A watchdog driver manages the checker scheduling and

execution, and optionally applies a recovery action. The key

objective for detection is to let the watchdog experience simi-

lar faults as the main program. This is achieved through (a)

executing mimic-style checkers (b) using stateful payloads (c)

sharing execution environment of the monitored process.

Mimic Checkers. Current detectors use two types of check-

ers: probe checkers, which periodically invoke some APIs;

signal checkers, which monitor some health indicator. Both

are lightweight. But a probe checker can miss many failures

because a large program has numerous APIs and partial fail-

ures may be unobservable at the API level. A signal checker

is susceptible to environment noises and usually has poor

accuracy. Neither can localize a detected failure.

562 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

main

program

address space

watchdog

watchdog

hooks…

mimic checkers

Request
Listener

Snapshot
Manager

…

Replication
Engine

Contexts

driver

Compaction
Worker

states

= Failure alert

= Failed checker

= Saved context
= …

Report

Figure 4: An intrinsic watchdog example.

We propose a more powerful mimic-style checker. Such

checker selects some representative operations from each

module of the main program, imitates them, and detects errors.

This approach increases coverage of checking targets. And

because the checker exercises code logic similar to the main

program in production environment, it can accurately reflect

the monitored process’ status. In addition, a mimic checker

can pinpoint the faulty module and failing instruction.

Synchronized States. Exercising checkers requires payloads.

Existing detectors use synthetic input (e.g., fixed URLs [3]) or

a tiny portion of the program state (e.g., heartbeat variables)

as the payload. But triggering partial failures usually entails

specific input and program state (§2). The watchdog should

exercise its checkers with non-trivial state from the main

program for higher chance of exposing partial failures.

We introduce contexts in watchdogs. A context is bound

to each checker and holds all the arguments needed for the

checker execution. Contexts are synchronized with the pro-

gram state through hooks in the main program. When the

main program execution reaches a hook point, the hook uses

the current program state to update its context. The watchdog

driver will not execute a checker unless its context is ready.

Concurrent Execution. It is natural to insert checkers di-

rectly in the main program. However, in-place checking poses

an inherent tension—on the one hand, catching partial failures

requires adding comprehensive checkers; on the other hand,

partial failures only occur rarely, but more checkers would

slow down the main program in normal scenarios. In-place

checkers could also easily interfere with the main program

through modifying the program states or execution flow.

We advocate watchdog to run concurrently with the main

program. Concurrent execution allows checking to be de-

coupled so a watchdog can execute comprehensive checkers

without delaying the main program during normal executions.

Indeed, embedded systems domain has explored using concur-

rent watchdog co-processor for efficient error detection [84].

When a checker triggers some error, the watchdog also will

not unexpectedly alter the main program execution. The con-

current watchdog should still live in the same address space

to maximize mimic execution and expose similar issues, e.g.,

all checkers timed out when the process hits long GC pause.

4 Generating Watchdogs with OmegaGen

It is tedious to manually write effective watchdogs for large

programs, and it is challenging to get it right. Incautiously

written watchdogs can miss checking important functions,

alter the main execution, invoke dangerous operations, cor-

rupt program states, etc. a watchdog must also be updated as

the software evolves. To ease developers’ burden, we design

a tool, OmegaGen, which uses a novel program reduction

approach to automatically generate watchdogs described in

Section 3. The central challenge of OmegaGen is to ensure

the generated watchdog accurately reflects the main program

status without introducing significant overhead or side effects.

Overview and Target. OmegaGen takes the source code of

a program P as an input. It finds the long-running code re-

gions in P and then identifies instructions that may encounter

production-dependent issues using heuristics and optional,

user-provided annotations. OmegaGen encapsulates the vul-

nerable instructions into executable checkers and generates

watchdog W. It also inserts watchdog hooks in P to update

W’s contexts and packages a driver to execute W in P. Figure 5

shows an overview example of running OmegaGen.

As discussed in Section 2.2, it is difficult to automatically

generate detectors that can catch all types of partial failures.

Our approach targets partial failures that surface through ex-

plicit errors, blocking or slowness at certain instruction or

function in a program. The watchdogs OmegaGen generates

are particularly effective in catching partial failures in which

some module becomes stuck, very slow or a “zombie” (e.g.,

the HDFS DomainSocketWatcher thread accidentally exiting

and affecting short-circuit reads). They are in general inef-

fective on silent correctness errors (e.g., Apache web-server

incorrectly re-using stale connections).

4.1 Identify Long-running Methods

OmegaGen starts its static analysis by identifying long-

running code regions in a program (step ➊), because watch-

dogs only target checking code that is continuously executed.

Many code regions in a server program are only for one-shot

tasks such as database creation, and should be excluded from

watchdogs. Some tasks are also either periodically executed

such as snapshot or only activated under specific conditions.

We need to ensure the activation of generated watchdog is

aligned with the life span of its checking target in the main

program. Otherwise, it could report wrong detection results.

OmegaGen traverses each node in the program call graph.

For each node, it identifies potentially long-running loops in

the function body, e.g., while(true) or while(flag). Loops

with fixed iterations or that iterate over collections will be

skipped. OmegaGen then locates all the invocation instruc-

tions in the identified loop body. The invocation targets are

colored. Any methods invoked by a colored node are also

recursively colored. Besides loops, we also support coloring

periodic task methods scheduled through common libraries

like ExecutorService in Java concurrent package. Note that

this step may over-extract (e.g., an invocation under a condi-

tional). This is not an issue because the watchdog driver will

check context validity at runtime (§4.4).

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 563

public class SyncRequestProcessor {
 public void run() {
 while (running) {
 if (logCount > (snapCount / 2))
 zks.takeSnapshot();
 ...
 }
 }
}
public class DataTree {
 public void serializeNode(OutputArchive oa, ...) {
 ...
 String children[] = null;
 synchronized (node) {
 scount++;
 oa.writeRecord(node, "node");
 children = node.getChildren();
 }
 ...
 }
}

identify long-running region1

2 locate vulnerable operations

4 insert context hooks

3 reduce

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

3 reduce

+ ContextManger.serializeNode_reduced
_args_setter(oa, node);

(a) A module in main program

public class SyncRequestProcessor$Checker {
 public static void serializeNode_reduced(
 OutputArchive arg0, DataNode arg1) {
 arg0.writeRecord(arg1, "node");
 }
 public static void serializeNode_invoke() {
 Context ctx = ContextManger.
 serializeNode_reduced_context();
 if (ctx.status == READY) {
 OutputArchive arg0 = ctx.args_getter(0);
 DataNode arg1 = ctx.args_getter(1);
 serializeNode_reduced(arg0, arg1);
 }
 }
 public static void takeSnapshot_reduced() {
 serializeList_invoke();
 serializeNode_invoke();
 }
 public static Status checkTargetFunction0() {
 ...
 takeSnapshot_reduced();
 }
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

4 generate

context

factory

5 add fault signal checks

(b) Generated checker

Figure 5: Example of watchdog checker OmegaGen generated for a module in ZooKeeper.

A complication arises when a method has multiple call-

sites, some of which are colored while others are not. Whether

this method is long running or not depends on the specific

execution. Moreover, an identified long-running loop may

turn out to be short-lived in an actual run. To accurately cap-

ture the method life span and control the watchdog activation,

OmegaGen designs a predicate-based algorithm. A predicate

is a runtime property associated with a method which tracks

whether a call site of this method is in fact reached.

For an invocation target inside a potentially long-running

loop, a hook is inserted before the loop that sets its predicate

and another hook after the loop that unsets its predicate. A

callee of a potentially long-running method will have a predi-

cate set to be equal to this caller’s predicate. At runtime, the

predicates are assigned and evaluated that activates or deacti-

vates the associated watchdog. The predicate instrumentation

occurs after OmegaGen finishes the vulnerable operation anal-

ysis (§4.2) and program reduction (§4.3).

4.2 Locate Vulnerable Operations

OmegaGen then analyzes the identified long-running methods

and further narrows down the checking target candidates (step

➋). This is because even in those limited number of methods,

a watchdog cannot afford to check all of their operations. Our

study shows that the majority of partial failures are triggered

by unique environment conditions or workloads. This implies

that operations whose safety or liveness are heavily influenced

by its execution environment deserve particular attention. In

contrast, operations whose correctness is logically determinis-

tic (e.g., sorting), are better checked through offline testing or

in-place assertions. Continuously monitoring such operations

inside a watchdog would yield diminishing returns.

OmegaGen uses heuristics to determine for a given oper-

ation how vulnerable this operation is in its execution envi-

ronment. Currently, the heuristics consider operations that

perform synchronization, resource allocation, event polling,

async waiting, invocation with external input argument, file or

network I/O as highly vulnerable. OmegaGen identifies most

of them through standard library calls. Functions contain-

ing complex while loop conditions are considered vulnerable

due to potential infinite looping. Simple operations such as

arithmetic, assignments, and data structure field accesses are

tagged as not vulnerable. In the Figure 5a example, Omega-

Gen considers the oa.writeRecord to be highly vulnerable

because its body invokes several write calls. These heuristics

are informed by our study but can be customized through a

rule table configuration in OmegaGen. For example, we can

configure OmegaGen to consider functions with several ex-

ception signatures as vulnerable (i.e., potentially improperly

handled). We also allow developers to annotate a method with

a @vulnerable tag in the source code. OmegaGen will locate

calls to the annotated method and treat them as vulnerable.

Neither our heuristics nor human judgment can guarantee

that the vulnerable operation criteria are always sound and

complete. If OmegaGen incorrectly assesses a safe operation

as vulnerable, the main consequence is that the watchdog

would waste resources monitoring something unnecessarily.

Incorrectly assessing a vulnerable operation as risk-free is

more concerning. But one nice characteristic of vulnerable

operations is that they often propagate [67] – an instruction

that blocks indefinitely would also cause its enclosing func-

tion to block; and, an instruction that triggers some uncaught

error also propagates through the call stack. For example, in a

real-world partial failure in ZooKeeper [66], even if Omega-

Gen misses the exact vulnerable instruction readString, a

watchdog still has a chance to detect the partial failure if

dserialize or even pRequest is assessed to be vulnerable. On

the other hand, if a vulnerable operation is too high-level (e.g.,

main is considered vulnerable), error signals can be swallowed

internally and it would also make localizing faults hard.

4.3 Reduce Main Program

With the identified long-running methods and vulnerable op-

erations, OmegaGen performs a top-down program reduction

564 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(step ➌) starting from the entry point of long-running meth-

ods. For example, in Figure 5a, OmegaGen will try to reduce

the takeSnapshot function first. When walking the control

flow graph of a method to be reduced, if an instruction is

tagged as potentially vulnerable, it would be retained in the

reduced method. Otherwise, it would be excluded. For a call

instruction that is not tagged as vulnerable yet, it would be

temporarily retained and OmegaGen will recursively try to

reduce the target function. If eventually the body of a reduced

method is empty, i.e., no vulnerable operation exists, it will

be discarded. Any call instructions that call this discarded

method and were temporarily retained are also discarded.

The resulting reduced program not only contains all vulner-

able operations reachable from long-running methods but also

preserves the original structure, i.e., for a call chain f →֒ g →֒ h

in the main program, the reduced call chain is f’ →֒ g’ →֒ h’

This structure can help localize a reported issue. In addition,

when later a watchdog invokes a validator (§4.6), the structure

provides information on which validator to invoke.

If a type of vulnerable operation (e.g., the writeRecord call

in Figure 5a) is included multiple times in the reduced pro-

gram, it could be redundant in terms of exposing failures.

Therefore, OmegaGen will further reduce the vulnerable op-

erations based on whether they have been included already.

However, the same type of vulnerable operation may be in-

voked quite differently in different places, and only a par-

ticular invocation would trigger failure. If we are too ag-

gressive in reducing based on occurrences, we may miss

the fault-triggering invocation. So, by default OmegaGen

only performs intra-procedural occurrence reduction: mul-

tiple writeRecord calls will not occur within a single reduced

method but may occur across different reduced methods.

4.4 Encapsulate Reduced Program

OmegaGen will encapsulate the code snippets retained after

step ➌ into watchdogs. But these code snippets may not be

directly executable because of missing definitions or payloads.

For example, the reduced version of serializeNode in Fig-

ure 5a contains an operation oa.writeRecord(node, "node").

But oa and node are undefined. OmegaGen analyzes all the

arguments required for the execution of a reduced method.

For each undefined variable, OmegaGen adds a local variable

definition at the beginning of the reduced method. It further

generates a context factory that provides APIs to manage all

the arguments for the reduced method (step ➍). Before a vari-

able’s first usage in the reduced method, a getter call to the

context factory is added to retrieve the latest value at runtime.

To synchronize with the main program, OmegaGen inserts

hooks that call setter methods of the same context factory

in the (non-reduced) method in the original program at the

same point of access. The context hooks are further condi-

tioned on the long-running predicate for this method (§4.1).

When the watchdog driver executes a reduced method, it first

checks whether the context is ready and skips the execution

if the context is not ready. Together, context and predicate

control the activation of watchdog checkers—only when the

original program reaches the context hooks and the method

is truly long-running would the corresponding operation be

checked. For example, in the while loop of Figure 5a, if the

log count has not reached the snapshot threshold yet, the pred-

icate for takeSnapshot is true but the context for the reduced

serializeNode is not ready so the checking is skipped.

4.5 Add Checks to Catch Faults

After step ➍, the encapsulated reduced methods can be exe-

cuted in a watchdog. OmegaGen will then add checks for

the watchdog driver to catch the failure signals from the

execution of vulnerable operations in the reduced methods.

OmegaGen targets both liveness and safety violations. Live-

ness checks are relatively straightforward to add. OmegaGen

inserts a timer before running a checker. Setting good time-

outs for distributed systems is a well-known hard problem.

Prior work [82] argues that replacing end-to-end timeouts with

fine-grained timeouts for local operations makes the setting

less sensitive. We made similar observations and use a con-

servative timeout (default 4 seconds). Besides timeouts, the

watchdog driver also records the moving average of checker

execution latencies to detect potential slow faults.

To detect safety violations, OmegaGen relies on the vulner-

able operations to emit explicit error signals (assertions, excep-

tions, and error codes) and installs handlers to capture them.

OmegaGen also captures runtime errors, e.g., null pointer

exception, out of memory errors, IllegalStateException.

Correctness violations are harder to check automatically

without understanding the semantics of the vulnerable opera-

tions. Fortunately such silent violations are not very common

in our studied cases (§2). Nevertheless, OmegaGen provides

a wd_assert API for developers to conveniently add seman-

tic checks. When OmegaGen analyzes the program, it will

treat wd_assert instructions as special vulnerable operations.

It performs similar checker encapsulation (§4.4) by analyzing

the context needed for such operations and generates checkers

containing the wd_assert instructions. The original wd_assert

in the main program will be rewritten as a no-op. In this way,

developers can leverage the OmegaGen framework to perform

concurrent expensive checks (e.g., if the hashes of new blocks

match their checksums) without blocking the main execution.

The watchdog driver records any detected error in a log file.

The reported error contains the timestamp, failure type and

symptom, failed checker, the corresponding main program

location that the failed checker is testing. backtrace, etc. The

watchdog driver also saves the context used by the failed

checker to ease subsequent offline troubleshooting.

4.6 Validate Impact of Caught Faults

An error reported by a watchdog checker could be transient or

tolerable. To reduce false alarms, the watchdog runs a valida-

tion task after detecting an error. The default validation is to

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 565

simply re-execute the checker and compare, which is effective

for transient errors. Validating tolerable errors requires testing

software features. Note that the validator is not for handling

errors but rather confirming impact. Writing such validation

tasks mainly involves invoking some entry functions, e.g.,

processRequest(req), which is straightforward.

OmegaGen provides skeletons of validation tasks, and cur-

rently relies on manual effort to fill out the skeletons. But

OmegaGen automates the decision of choosing which valida-

tion task to invoke based on which checker failed. Specifically,

for a filled validation task T that invokes a function f in the

main program, OmegaGen searches the generated reduced

program structure (§4.3) in topological order and tries to

find the first reduced method m’ that either matches f or any

method in the f’s callgraph. Then OmegaGen generates a

hashmap that maps all the checkers that are rooted under m’

to task T . At runtime, when an error is reported, the watchdog

driver checks the map to decide which validator to invoke.

4.7 Prevent Side Effects

Context Replication. To prevent the watchdog checkers from

accidentally modifying the main program’s states, OmegaGen

analyzes all the variables (context) referenced in a checker. It

generates a replication setter in the checker’s context manager,

which will replicate the context when invoked. The replication

ensures any modifications are contained in the watchdog’s

state. Using replicated contexts also avoids adding complex

synchronization to lock objects during checking. But blindly

replicating contexts will incur high overhead. We perform

immutability analysis [74, 77] on the watchdog contexts. If a

context is immutable, OmegaGen generates a reference setter

instead, which only holds a reference to the context source.

To further reduce context replication, we use a simple but

effective lazy copying approach that, instead of replicating

a context upon each set, delays the replication to only when

a getter needs it. To deal with potential inconsistency due to

lazy replication—e.g., the main program has modified the con-

text after the setter call—we associate a context with several

attributes: version, weak_ref (weak reference to the source

object), and hash (hash code for the value of the source ob-

ject). The lazy setter only sets these attributes but does not

replicate the context. Later when the getter is invoked, the

getter checks if the referent of weak_ref is not null. If so, it

further checks if the current hash code of the referent’s value

matches the recorded hash and skip replication if they do

not match (main program modified context). Besides the at-

tribute checks in getters, the watchdog driver will check if the

version attributes of each context in a vulnerable operation

match and skip the checking if the versions are inconsistent

(see further elaboration in Appendix A).

I/O Redirection and Idempotent Wrappers. Besides mem-

ory side effects; we also need to prevent I/O side effects. For

instance, if a vulnerable operation is writing to a snapshot

file, a watchdog could accidentally write to the same snapshot

file and affect subsequent executions of the main program.

OmegaGen adds I/O redirection capability in watchdogs to

address this issue: when OmegaGen generates the context

replication code, the replication procedure will check if the

context refers to a file-related resource, and if so the context

will be replicated with the file path changed to a watchdog

test file under the same directory path. Thus watchdogs would

experience similar issues such as degraded or faulty storage.

If the storage system being written to is internally load-

balanced (e.g., S3), however, the test file may get distributed

to a different environment and thus miss issues that only

affect the original file. This limitation can be addressed as

our write redirection is implemented in a cloning library,

so it is relatively easy to extend the logic of deciding the

redirection path there to consider the load-balancing policy (if

exposed). Besides, if the underlying storage system is layered

and complex like S3, it is perhaps better to apply OmegaGen

on that system to directly expose partial failures there.

For socket I/O, OmegaGen can perform similar redirection

to a special watchdog port if we know beforehand the remote

components are also OmegaGen-instrumented. Since this

assumption may not hold, OmegaGen by default rewrites the

watchdog’s socket I/O operation as a ping operation.

If the vulnerable operation is a read-type operation, redi-

rection to read from the watchdog special test file may not

help. We design an idempotent wrapper mechanism so that

both the main program and watchdog can invoke the wrapper

safely. If the main program invokes the wrapper first, it di-

rectly performs the actual read-type operation and caches the

result in a context. When the watchdog invokes the wrapper,

if the main program is in the critical section, it will wait until

the main program finishes, and then it gets the cached con-

text. In the normal scenario, the watchdog can use the data

from the read operation without performing the actual read.

In the faulty scenario, if the main program blocks indefinitely

in performing the read-type operation, the watchdog would

uncover the hang issue through the timeout of waiting in its

wrapper; a bad value from the read would also be captured by

the watchdog after retrieving it. For each vulnerable operation

of read-type, OmegaGen generates an idempotent wrapper

with the above property, replaces the main program’s original

call instruction to invocation of the wrapper, and places a call

instruction to the wrapper in the watchdog checker as well.

5 Implementation

We implemented OmegaGen in Java with 8,100 SLOC. Its

core components are built on top of the Soot [90] program

analysis framework, so it supports systems in Java bytecode.

OmegaGen does not rely on specific JDK features. The Soot

version we used can analyze bytecode up to Java 8. We lever-

age a cloning library [79] with around 400 SLOC of changes

to support our selective context replication and I/O redirec-

tion mechanisms. OmegaGen’s workflow consists of multiple

phases to analyze and instrument the program and generate

566 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ZK CS HF HB MR YN

SLOC 28K 102K 219K 728K 191K 229K

Methods 3,562 12,919 79,584 179,821 16,633 10,432

Table 2: Evaluated system software. ZK: ZooKeeper; CS: Cassan-

dra; HF: HDFS; HB: HBase; MR: MapReduce; YN: Yarn.

ZK CS HF HB MR YN

Watchdogs 96 190 174 358 161 88

Methods 118 464 482 795 371 222

Operations 488 2,112 3,416 9,557 6,116 752

Table 3: Number of watchdogs and checkers generated. Not all

watchdogs will be activated at runtime.

watchdogs. A single script automates the workflow and pack-

ages the watchdogs with the main program into a bundle.

6 Evaluation

We evaluate OmegaGen to answer several questions: (1) does

our approach work for large software? (2) can the generated

watchdogs detect and localize diverse forms of real-world

partial failures? (3) do the watchdogs provide strong isolation?

(4) do the watchdogs report false alarms? (5) what is the

runtime overhead to the main program? The experiments

were performed on a cluster of 10 cloud VMs. Each VM has

4 vCPUs at 2.3GHz, 16 GB memory, and 256 GB disk.

6.1 Generating Watchdogs

To evaluate whether our proposed technique can work for real-

world software, we evaluated OmegaGen on six large systems

(Table 2). We chose these systems because they are widely

used and representative, with codebases as large as 728K

SLOC to analyze. OmegaGen uses around 30 lines of default

rules for the vulnerable operation heuristics (most are types

of Java library methods) and an average of 10 system-specific

rules (e.g., special asynchronous wait patterns). OmegaGen

successfully generates watchdogs for all six systems.

Table 3 shows the total watchdogs generated. Each watch-

dog here means a root of reduced methods. Note that these

are static watchdogs. Only a subset of them will be activated

in production by the watchdog predicates and context hooks

(§4.1). We further evaluate how comprehensive the gener-

ated checkers are by measuring how many thread classes in

the software have at least one watchdog checker generated.

Figure 6 shows the results. OmegaGen achieves an average

coverage ratio of 60%. For the threads that do not have check-

ers, they are either not long-running (e.g., auxiliary tools) or

OmegaGen did not find vulnerable operations in them. In

general, OmegaGen may fail to generate good checkers for

modules that primarily perform computations or data struc-

ture manipulations. The generated checkers may still contain

some redundancy even after the reduction (§4.3).

6.2 Detecting Real-world Partial Failures

Failure Benchmark To evaluate the effectiveness of our

generated watchdogs, we collected and reproduced 22 real-

world partial failures in the six systems. Table 10 in the

ZK CS HF HB MR YN KK
0

25

50

75

100 Total threads

Threads w/ checkers

Figure 6: Thread-level coverage by generated watchdog checkers.

Detector Description

Client (Panorama [75]) instrument and monitor client responses

Probe (Falcon [82]) daemon thread in the process that periodically

invokes internal functions with synthetic requests

Signal script that scans logs and checks JMX [40] metrics

Resource daemon thread that monitors memory usage, disk

and I/O health, and active thread count

Table 4: Four types of baseline detectors we implemented.

appendix lists the case links and types. All of these failures

led to severe consequences. They involve sophisticated fault

injection and workload to trigger. It took us 1 week on average

to reproduce each failure. Seven cases are from our study in

Section 2. Others are new cases we did not study before.

Baseline Detectors The built-in detectors (heartbeat) in the

six systems cannot handle partial failures at all. We thus im-

plement four types of advanced detectors for comparison (Ta-

ble 4). The client checker is based on the observers in state-

of-the-art work, Panorama [75]. The probe checker presents

Falcon [82] app spies (which are also manually written in the

Falcon paper). When implementing the signal and resource

checkers, we follow the current best practices [15, 42] and

monitor signals recommended by practitioners [2, 31, 41, 43].

Methodology The watchdogs and baseline detectors are all

configured to run checks every second. When reproducing

each case, we record when the software reaches the failure

program point and when a detector first reports failure. The

detection time is the latter minus the former. For slow failures,

it is difficult to pick a precise start time. We set the start point

using criteria recommended by practitioners, e.g., when num-

ber of outstanding requests exceeds 10 for ZooKeeper [31].

Result Table 5 shows the results. Overall, the watchdogs

detected 20 out of the 22 cases with a median detection time

of 4.2 seconds. 12 of the detected cases are captured by the

default vulnerable operation rules. 8 are caught by system-

specific rules. In general, the watchdogs were effective for

liveness issues like deadlock, indefinite blocking as well as

safety issues that trigger explicit error signals or exceptions.

But they are less effective for silent correctness errors.

In comparison, as Table 5 shows, the best baseline detector

only detected 11 cases. Even the combination of all baseline

detectors detected only 14 cases. The client checkers missed

68% of the failures because these failures concern the internal

functionality or some optimizations that are not immediately

visible to clients. The signal checker is the most effective

among the baseline detectors, but it is also noisy (§6.6).

Case Studies ZK1 [45]: This is the running example in

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 567

ZK1 ZK2 ZK3 ZK4 CS1 CS2 CS3 CS4 HF1 HF2 HF3 HF4 HB1 HB2 HB3 HB4 HB5 MR1 MR2 MR3 MR4 YN1

Watch. 4.28 -5.89 3.00 41.19 -3.73 4.63 46.56 38.72 1.10 6.20 3.17 2.11 5.41 7.89 ✖ 0.80 5.89 1.01 4.07 1.46 4.68 ✖

Client ✖ 2.47 2.27 ✖ 441 ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 4.81 ✖ 6.62 ✖ ✖ ✖ ✖ 8.54 7.38

Probe ✖ ✖ ✖ ✖ 15.84 ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 4.71 ✖ 7.76 ✖ ✖ ✖ ✖ ✖ ✖

Signal 12.2 0.63 1.59 0.4 5.31 ✖ ✖ ✖ ✖ ✖ ✖ 0.77 0.619 ✖ 0.62 61.0 ✖ ✖ ✖ ✖ 0.60 1.16

Res. 5.33 0.56 0.72 17.17 209.5 ✖ -19.65 ✖ -3.13 ✖ ✖ 0.83 ✖ ✖ ✖ 0.60 ✖ ✖ ✖ ✖ ✖ ✖

Table 5: Detection times (in seconds) for the real-world cases in Table 10. ✖: undetected.

ZK1 ZK2 ZK3 ZK4 CS1 CS2 CS3 CS4 HF1 HF2 HF3 HF4 HB1 HB2 HB3 HB4 HB5 MR1 MR2 MR3 MR4 YN1

Watchdog ➸ ➸ ● ✻ ➸ ✻ ● ✻ ✻ ✺ ➸ ➸ ➸ ➸ n/a ➸ ✺ ➸ ➸ ✺ ➸ n/a

Client n/a ● ● n/a ● n/a n/a n/a n/a n/a n/a n/a n/a ● n/a ❍ n/a n/a n/a n/a ● ●

Probe n/a n/a n/a n/a ◗ n/a n/a n/a n/a n/a n/a n/a n/a ◗ n/a ◗ n/a n/a n/a n/a n/a n/a

Signal ● ➸ ● ● ➸ n/a n/a n/a n/a n/a n/a ➸ ➸ n/a ✺ ✺ n/a n/a n/a n/a ➸ ➸

Resource ● ● ● ● ● n/a ● n/a ● n/a n/a ● n/a n/a n/a ● n/a n/a n/a n/a n/a n/a

Table 6: Failure localization for the real-world cases in Table 10.➸: pinpoint the faulty instr. ✻: pinpoint the faulty function or data

structure. ✺: pinpoint a func in the faulty function’s call chain. ◗: pinpoint some entry function in the program, which is distant from the root

cause. ●: only pinpoint the faulty process. ❍: misleadingly pinpoint another innocent process. n/a: not applicable because failure is undetected.

the paper. A network issue caused a ZooKeeper remote

snapshot dumping operation to be blocked in a critical sec-

tion, which prevented update-type request processing threads

from proceeding (Figure 1). OmegaGen generates a checker

serializeNode_reduced, which exposed the issue in 4 s.

CS1 [7]: The Cassandra Commitlog executor accidentally

died due to a bad commit disk volume. This caused the

uncommitted writes to pile up, which in turn led to exten-

sive garbage collection and the process entering a zom-

bie status. The relevant watchdog OmegaGen generates is

CommitLogSegment_reduced. Interestingly, this case had nega-

tive detection time. This happens because the executor suc-

cessfully executed the faulty program point prior to the fail-

ure and set the watchdog context (log segment path). When

the checker was scheduled, the context was still valid so the

checker was activated and exposed the issue ahead of time.

HB5 [18]: Users observed some gigantic write-ahead-logs

(WALs) on their HBase cluster even when WAL rolling is en-

abled. This is because when a peer is previously removed, one

thread gets blocked for sending a shutdown request to a closed

executor. Unfortunately this procedure holds the same lock

ReplicationSourceManager#recordLog, which does the WAL

rolling (to truncate logs). Our generated watchdog mimics the

procedure of submitting request and waiting for completion,

and experienced the same stalling issue on closed executor.

CS4 [11]: Due to a severe performance bug in the Cassandra

compaction module, all the RangeTombstones ever created for

the partition that have expired would remain in memory until

the compaction completes. The compaction task would be

very slow when the workloads contain a lot of overwrites

to collections. The relevant checker OmegaGen generates is

SSTableWriter#append_reduced. After the tombstones piles

up, this checker reports a slow alert based on the dramatic

(10×) increase of moving average of operation latencies.

YN1 [44]: A new application (AM) was stuck after getting

allocated to a recently added NodeManager (NM). This was

caused by /etc/hosts on the ResourceManager (RM) not be-

ing updated, so this new NM was unresolvable when RM built

the service tokens. RM would retry forever and the AM would

keep getting allocated to the same NM. Our watchdogs failed

to detect the issue. The reason is that the faulty operation

buildTokenService() mainly creates some data structure, so

OmegaGen failed to consider it as vulnerable.

6.3 Localizing Partial Failure

Detection is only the first step. We further evaluate the lo-

calization effectiveness for the detected cases in Table 5. we

measure the distance between the error reporting location

and the faulty program point. We categorize the distance into

six levels of decreasing accuracy. Table 6 shows the result.

Watchdogs directly pinpoint the faulty instruction for 55%

(11/20) of the detected cases, which indicates the effective-

ness of our vulnerable operation heuristics. In case MR1 [35],

after noticing the symptom (reducer did not make progress for

a long time), it took the user more than two days of careful log

analysis and thread dumps to narrow down the cause. With

the watchdog error report, the fault was obvious.

For 35% (7/20) of detected cases, the watchdogs either

localize to some program point within the same function or

some function along the call chain, which can still signifi-

cantly ease troubleshooting. For example, in case HF2 [24],

the balancer was stuck in a loop in waitForMoveCompletion()

because isPendingQEmpty() will return false when no mover

threads are available. The generated watchdog did not pin-

point either place. But it caught the error through timeout in

executing a future.get() vulnerable operation in its checker

dispatchBlockMoves_reduced, which narrows down the issue.

In comparison, the client or resource detectors can only

pinpoint the faulty process. To narrow down the fault, users

must spend significant time analyzing logs and code. In case

HB4 [21], the client checker even blamed a wrong innocent

process, which would completely mislead the diagnosis. The

probe checker localizes failures to some internal functions in

the program. But these functions are still too high-level and

distant from the fault. The signal checker localizes 8 cases.

6.4 Fault-Injection Tests

To evaluate how the watchdogs may perform in real deploy-

ment, we conducted a random fault-injection experiment on

568 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ZK CS HF HB MR YN

watch. 0–0.73 0–1.2 0 0–0.39 0 0–0.31

watch_v. 0–0.01 0 0 0–0.07 0 0

probe 0 0 0 0 0 0

resource 0–3.4 0–6.3 0.05–3.5 0–3.72 0.33–0.67 0–6.1

signal 3.2–9.6 0 0–0.05 0–0.67 0 0

Table 7: False alarm ratios (%) of all detectors in the evaluated

six systems. Each cell reports the ratio range under three setups

(stable, loaded, tolerable). watch_v: watchdog with validators.

the latest ZooKeeper. In particular, we inject four types of

faults to the system: Infinite loop (modify loop condition to

force running forever); Arbitrary delay (inject 30 seconds de-

lay in some complex operations); System resource contention

(exhaust CPU/memory resource); I/O delay (inject 30 sec-

onds delay in file system or network). After that, we run a

series of workloads and operations (e.g., restart some server).

We successfully trigger 16 synthetic failures. Our generated

watchdogs can detect 13 out of the 16 triggered synthetic

failures with a median detection time of 6.1 seconds. The

watchdogs pinpoint the injected failure scope for 11 cases.

6.5 Discovering A New Partial Failure Bug

During our continuous testing, our watchdogs exposed a new

partial bug in the latest version (3.5.5) of ZooKeeper. We ob-

serve that our ZooKeeper cluster occasionally hangs and new

create requests time out while the admin tool still shows the

leader process is working. This symptom is similar to our stud-

ied bug ZK1. But that bug is already fixed in the latest version.

The issue is also non-deterministic. Our watchdogs report the

failure in 4.7 seconds. The watchdog log helps us pinpoint

the root cause for this puzzling failure. The log shows the

checker that reported the issue was serializeAcls_reduced.

We further inspected this function and found that the problem

was the server serializing the ACLCache inside a critical sec-

tion. When developers fixed the ZK1 bug, this similar flaw

was overlooked and recent refactoring of this class made the

flaw more problematic. We reported this new bug [49], which

has been confirmed by the developers and fixed.

6.6 Side Effects and False Alarms

We ran the watchdog-enhanced systems with extensive work-

loads and verified that the systems pass their own tests. We

also verified the integrity of the files and client responses by

comparing them with ones from the vanilla systems. If we

disable our side-effect prevention mechanisms (§4.7), how-

ever, the systems would experience noticeable anomalies, e.g.,

snapshots get corrupted, system crash; or, the main program

would hang because the watchdog read the data from a stream.

We further evaluate the false alarms of watchdogs and base-

line detectors under three setups: stable: runs fault-free for 12

hours with moderate workloads (§6.7); loaded: random node

restarts, every 3 minutes into the moderate workloads, switch

to aggressive workloads (3× number of clients and 5× request

sizes); tolerable: run with injected transient errors tolerable by

the system. Table 7 shows the results. The false alarm ratio is

ZK CS HF HB MR YN

Analysis 21 166 75 92 55 50

Generation 43 103 130 953 131 89

Table 8: OmegaGen watchdog generation time (sec).

ZK CS HF HB MR YN

Base 428.0 3174.9 90.6 387.1 45.0 45.0

w/ Watch. 399.8 3014.7 85.1 366.4 42.1 42.3

w/ Probe. 417.6 3128.2 89.4 374.3 44.9 44.9

w/ Resource. 424.8 3145.4 89.9 385.6 44.9 44.6

Table 9: System throughput (op/s) w/ different detectors.

calculated from total false failure reports divided by the total

number of check executions. Watchdogs did not report false

alarms in the stable setup. But during a loaded period, they

incur around 1% false alarms due to socket connection errors

or resource contention. These false alarms would disappear

once the transient faults are gone. With the validator mech-

anism (§4.6), the watchdog false alarm ratios (the watch_v

row) are significantly reduced. Among the baseline detectors,

we can see that even though signal checkers achieved better

detection, they incur high false alarms (3–10%).

6.7 Performance and Overhead

We first measure the performance of OmegaGen’s static anal-

ysis. Table 8 shows the results. For all but HBase, the whole

process takes less than 5 minutes. HBase takes 17 minutes to

generate watchdogs because of its large codebase.

We next measure the runtime overhead of enabling watch-

dogs and the baseline detectors. We used popular benchmarks

configured as follows: for ZK, we used an open-source bench-

mark [16] with 15 clients sending 15,000 requests (40% read);

for Cassandra, we used YCSB [61] with 40 clients sending

100,000 requests (50% read); for HDFS, we used built-in

benchmark NNBenchWithoutMR which creates and writes

100 files, each file has 160 blocks and each block is 1MB;

for HBase, we used YCSB with 40 clients sending 50,000 re-

quests (50% read); for MapReduce and Yarn, we used built-in

DFSIO benchmark which writes 400 10MB files.

Table 9 shows that the watchdogs incur 5.0%–6.6% over-

head on throughput. The main overhead comes from the

watchdog hooks rather than the concurrent checker execution.

The probe detectors are more lightweight, incurring 0.2%–

3.2% overhead. We also measure the latency impact. The

watchdogs incur 9.3%–12.2% overhead on average latency

and 8.3%–14.0% overhead on tail (99th percentile) latency.

But given the watchdog’s significant advantage in failure de-

tection and localization, we believe its higher overhead is jus-

tified. For a cloud infrastructure, operators could also choose

to activate watchdogs on a subset of the deployed nodes to

reduce the overhead while still achieving good coverage.

We measure the CPU usages of each system w/o and w/

watchdogs. The results are 57%→66% (ZK), 199%→212%

(CS), 33%→38% (HF), 36%→41% (HB), 5.6%→6.9% (MR),

1.5%→3% (YN). We also analyze the heap memory usages.

The median memory usages (in MiB) are 128→131 (ZK),

447→459 (CS), 165→178 (HF), 197→201 (HB), 152→166

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 569

(MR), 154→157 (YN). The increase is small because contexts

are only lazily replicated every checking interval, compared

to continuous object allocations in the main program.

6.8 Sensitivity

We evaluate the sensitivity of our default 4-sec timeout thresh-

old on detecting liveness issues with ZK1 [45] (stuck fail-

ure) and ZK4 [48] (slow failure). Under timeout threshold

100 ms, 300 ms, 500 ms, 1 s, 4 s, and 10 s, the detection times

for ZK1 are respectively 0.51 s, 0.61 s, 0.70 s, 1.32 s, 4.28 s,

and 12.09 s. The detection time generally decreases with

smaller timeout, but it is bounded by the checking interval.

With timeout of 100 ms, we observe 6 false positives in 5 min-

utes. For ZK4, when the timeout threshold is aggressive, the

slow fault can be detected without the moving average mech-

anism (§4.5), in particular with detection times of 61.65 s

(100 ms), 91.38 s (300 ms), 110.32 s (500 ms). Eventually the

resource leak exhausts all available memory before the watch-

dog exceeds more conservative thresholds.

7 Limitations

OmegaGen has several limitations we plan to address in fu-

ture work: (1) Our vulnerable operation analysis is heuristics-

based. This step can be improved through offline profiling

or dynamic adaptive selection. (2) Our generated watchdogs

are effective for liveness issues and common safety viola-

tions. But they are ineffective to catch silent semantic fail-

ures. We plan to leverage existing resources that contain se-

mantic hints such as test cases to derive runtime semantic

checks. (3) OmegaGen achieves memory isolation with static

analysis-assisted context replication. We will explore more

efficient solutions like copy-on-write when porting Omega-

Gen to C/C++ systems. (4) OmegaGen generates watchdogs

to report failures for individual process. One improvement

is to pair OmegaGen with failure detector overlays [89] so

the failure detector of one process could inspect another pro-

cess’ watchdogs. (5) Our watchdogs currently focus on fault

detection and localization but not recovery. We will integrate

microreboot [58] and ROC techniques [87].

8 Related Work

Partial failure has been discussed in multiple contexts. Arpaci-

Dusseau and Arpaci-Dusseau propose the fail-stutter fault

model [56]. Prabhakaran et al. analyze the fail-partial model

for disks [88]. Correia et al. propose the ASC fault model [62].

Huang et al. propose a definition for gray failure in cloud [76].

Gunawi et al. [68] studies the fail-slow performance faults in

hardware. Our study presented in Section 2 focuses on partial

failures in modern cloud software. A recent work analyzes

failures in cloud systems caused by network partitions [54].

Our work’s scope is at the process granularity. A network

partition may causes total failures to the partitioned processes

(disconnected from other processes). Besides, our work covers

much more diverse root causes beyond network issues.

Failure detection has been extensively studied [53, 59, 60,

63, 65, 71, 72, 80–82, 91]. But they primarily focus on detect-

ing fail-stop failures in distributed systems; partial failures

are beyond the scope of these detectors. Panorama [75] pro-

poses to leverage observability in a system to detect gray

failures [76]. While this approach can enhance failure detec-

tion, it assumes some external components happen to observe

the subtle failure behavior. These logical observers also can-

not isolate which part of the failing process is problematic,

making subsequent failure diagnosis time-consuming [32].

Watchdog timers are essential hardware components found

in embedded systems [57]. For general-purpose software,

watchdogs are more challenging to construct manually due

to the large size of the codebase and complex program logic.

Consequently, existing software using the watchdog con-

cept [4, 14] only designs watchdogs as shallow health checks

(e.g., http test) and a kill policy [42]. Our position paper [83]

advocates for the intrinsic watchdog abstraction and articu-

lates its design principles. OmegaGen provides the ability

to automatically generate comprehensive, customized watch-

dogs for a given program through static analysis.

Several works aim to generate software invariants or ease

runtime checking. Daikon [64] infers likely program invari-

ants from dynamic execution traces. PCHECK [92] uses pro-

gram slicing to extract configuration checks to detect latent

misconfiguration during initialization. OmegaGen is comple-

mentary to these efforts. We focus on synthesizing checkers

for monitoring long-running procedures of a program in pro-

duction by using a novel program reduction technique.

9 Conclusion

System software continues to become ever more complex.

This leads to a variety of partial failures that are not captured

by existing solutions. This work first presents a study of 100

real-world partial failures in popular system software to shed

light on the characteristics of such failures. We then present

OmegaGen, which takes a program reduction approach to gen-

erate watchdogs for detecting and localizing partial failures.

Evaluating OmegaGen on six large systems, it can generate

tens to hundreds of customized watchdogs for each system.

The generated watchdogs detect 20 out of 22 real-world par-

tial failures with a median detection time of 4.2 seconds, and

pinpoint the scope of failure for 18 cases; these results signifi-

cantly outperform the baseline detectors. Our watchdogs also

exposed a new partial failure in latest ZooKeeper.

Acknowledgments

We would like to thank the NSDI reviewers and our shepherd,

Aurojit Panda, for their valuable comments that improved the

paper. We thank Ziyan Wang for implementing the wd_assert

API support for OmegaGen. We are grateful to the generous

cloud research credits support from Azure, AWS and Google

Cloud Platform. This work was supported in part by funding

from NSF grants CNS-1755737 and CNS-1910133.

570 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Alibaba cloud reports IO hang error in north

China. https://equalocean.com/technology/

20190303-alibaba-cloud-reports-io-hang-error-in-north-china.

[2] Apache Cassandra: Some useful JMX met-

rics to monitor. https://medium.com/@foundev/

apache-cassandra-some-useful-jmx-metrics-to-monitor-7f1d3ede294a.

[3] Apache module mod_proxy_hcheck. https://httpd.apache.org/

docs/2.4/mod/mod_proxy_hcheck.html.

[4] Apache module mod_watchdog. https://httpd.apache.org/docs/2.

4/mod/mod_watchdog.html.

[5] Cassandra-10477: java.lang.AssertionError in Storage-

Proxy.submitHint. https://issues.apache.org/jira/browse/

CASSANDRA-10477.

[6] Cassandra-5229: streaming tasks hang in netstats. https://issues.

apache.org/jira/browse/CASSANDRA-5229.

[7] Cassandra-6364: Commit log executor dies and causes unflushed writes

to quickly accumulate. https://issues.apache.org/jira/browse/

CASSANDRA-6364.

[8] Cassandra-6415: Snapshot repair blocks forever if something happens

to the remote response. https://issues.apache.org/jira/browse/

CASSANDRA-6415.

[9] Cassandra-6788: Race condition silently kills thrift server. https:

//issues.apache.org/jira/browse/CASSANDRA-6788.

[10] Cassandra-8447: Nodes stuck in CMS GC cycle with very little traf-

fic when compaction is enabled. https://issues.apache.org/jira/

browse/CASSANDRA-8447.

[11] Cassandra-9486: LazilyCompactedRow accumulates all expired

RangeTombstones. https://issues.apache.org/jira/browse/

CASSANDRA-9486.

[12] Cassandra-9549: Memory leak in Ref.GlobalState due to pathological

ConcurrentLinkedQueue.remove behaviour. https://issues.apache.

org/jira/browse/CASSANDRA-9549.

[13] Cassandra: demystify failure detector, consider partial failure handling,

latency optimizations. https://issues.apache.org/jira/browse/

CASSANDRA-3927.

[14] Cloud computing patterns: Watchdog. http://www.

cloudcomputingpatterns.org/watchdog/.

[15] Consul health check. https://www.consul.io/docs/agent/checks.

html.

[16] Distributed database benchmark tester. https://github.com/etcd-io/

dbtester.

[17] GoCardless service outage on October

10th, 2017. https://gocardless.com/blog/

incident-review-api-and-dashboard-outage-on-10th-october.

[18] HBASE-16081: Removing peer in replication not gracefully finish-

ing blocks WAL rolling. https://issues.apache.org/jira/browse/

HBASE-16081.

[19] HBASE-16429: FSHLog deadlock if rollWriter called when ring

buffer filled with appends. https://issues.apache.org/jira/browse/

HBASE-16429.

[20] HBASE-18137: Empty WALs cause replication queue to get stuck.

https://issues.apache.org/jira/browse/HBASE-18137.

[21] HBASE-21357: Reader thread encounters out of memory error. https:

//issues.apache.org/jira/browse/HBASE-21357.

[22] HBASE-21464: Splitting blocked with meta NSRE during split trans-

action. https://issues.apache.org/jira/browse/HBASE-21464.

[23] HDFS-11352: Potential deadlock in NN when failing over. https:

//issues.apache.org/jira/browse/HDFS-11352.

[24] HDFS-11377: Balancer hung due to no available mover threads. https:

//issues.apache.org/jira/browse/HDFS-11377.

[25] HDFS-12070: Failed block recovery leaves files open indefinitely

and at risk for data loss. https://issues.apache.org/jira/browse/

HDFS-12070.

[26] HDFS-2882: DN continues to start up, even if block pool fails to

initialize. https://issues.apache.org/jira/browse/HDFS-2882.

[27] HDFS-4176: EditLogTailer should call rollEdits with a timeout. https:

//issues.apache.org/jira/browse/HDFS-4176.

[28] HDFS-4233: NN keeps serving even after no journals started while

rolling edit. https://issues.apache.org/jira/browse/HDFS-4233.

[29] HDFS-8429: Error in DomainSocketWatcher causes others threads

to be stuck threads. https://issues.apache.org/jira/browse/

HDFS-8429.

[30] HDFS short-circuit local reads. https://hadoop.apache.

org/docs/stable/hadoop-project-dist/hadoop-hdfs/

ShortCircuitLocalReads.html.

[31] How to monitor Zookeeper. https://blog.serverdensity.com/

how-to-monitor-zookeeper/.

[32] Just say no to more end-to-end tests. https://testing.googleblog.

com/2015/04/just-say-no-to-more-end-to-end-tests.html.

[33] MapReduce-3634: Dispatchers in daemons get exceptions and

silently stop processing. https://issues.apache.org/jira/browse/

MAPREDUCE-3634.

[34] MapReduce-6190: Job stuck for hours because one of the mappers

never started up fully. https://issues.apache.org/jira/browse/

MAPREDUCE-6190.

[35] MapReduce-6351: Circular wait in handling errors causes reducer

to hang in copy phase. https://issues.apache.org/jira/browse/

MAPREDUCE-6351.

[36] MapReduce-6957: Shuffle hangs after a node manager connection

timeout. https://issues.apache.org/jira/browse/MAPREDUCE-6957.

[37] Mesos-8830: Agent gc on old slave sandboxes could empty persistent

volume data. https://issues.apache.org/jira/browse/MESOS-8830.

[38] mod_proxy_ajp: mixed up response after client connection abort.

https://bz.apache.org/bugzilla/show_bug.cgi?id=53727.

[39] Office 365 update on recent customer issues. https://blogs.office.

com/2012/11/13/update-on-recent-customer-issues/.

[40] Overview of the JMX technology. https://docs.oracle.com/javase/

tutorial/jmx/overview/index.html.

[41] Running ZooKeeper in production. https://docs.confluent.io/

current/zookeeper/deployment.html.

[42] Task health checking and generalized checks. http://mesos.apache.

org/documentation/latest/health-checks.

[43] Tuning a database cluster with the performance service.

https://docs.datastax.com/en/opscenter/6.1/opsc/online_help/

services/tuneClusterPerfService.html.

[44] Yarn-4254: Accepting unresolvable NM into cluster causes RM to retry

forever. https://issues.apache.org/jira/browse/YARN-4254.

[45] ZooKeeper-2201: Network issue causes cluster to hang due to

blocking I/O in synch. https://issues.apache.org/jira/browse/

ZOOKEEPER-2201.

[46] ZooKeeper-2319: UnresolvedAddressException cause the listener exit.

https://issues.apache.org/jira/browse/ZOOKEEPER-2319.

[47] ZooKeeper-2325: Data inconsistency when all snapshots empty or

missing. https://issues.apache.org/jira/browse/ZOOKEEPER-2325.

[48] ZooKeeper-3131: WatchManager resource leak. https://issues.

apache.org/jira/browse/ZOOKEEPER-3131.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 571

[49] ZooKeeper-3531: Synchronization on ACLCache cause cluster to hang.

https://issues.apache.org/jira/browse/ZOOKEEPER-3531.

[50] ZooKeeper-914: QuorumCnxManager blocks forever. https://issues.

apache.org/jira/browse/ZOOKEEPER-914.

[51] Twilio billing incident post-mortem: Breakdown, analysis and root

cause. https://bit.ly/2V8rurP, July 23, 2013.

[52] Google compute engine incident 17008. https://status.cloud.

google.com/incident/compute/17008, June 17, 2017.

[53] M. K. Aguilera and M. Walfish. No time for asynchrony. In Pro-

ceedings of the 12th Conference on Hot Topics in Operating Systems,

HotOS ’09, pages 3–3, Monte Verità, Switzerland, 2009.

[54] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany. An analysis

of network-partitioning failures in cloud systems. In Proceedings

of the 12th USENIX Conference on Operating Systems Design and

Implementation, OSDI ’18, page 51–68, Carlsbad, CA, USA, 2018.

[55] Amazon. AWS service outage on October 22nd, 2012. https://aws.

amazon.com/message/680342.

[56] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-stutter fault

tolerance. In Proceedings of the Eighth Workshop on Hot Topics in

Operating Systems, HotOS ’01, pages 33–. IEEE Computer Society,

2001.

[57] A. S. Berger. Embedded Systems Design: An Introduction to Processes,

Tools, and Techniques. CMP Books. Taylor & Francis, 2001.

[58] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Mi-

croreboot — a technique for cheap recovery. In Proceedings of the 6th

Conference on Symposium on Opearting Systems Design & Implemen-

tation, OSDI ’04, pages 31–44, San Francisco, CA, 2004.

[59] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable

distributed systems. J. ACM, 43(2):225–267, Mar. 1996.

[60] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of

failure detectors. IEEE Trans. Comput., 51(5):561–580, May 2002.

[61] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with ycsb. In Proceedings of the

1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154,

Indianapolis, Indiana, USA, 2010.

[62] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini. Practical hard-

ening of crash-tolerant systems. In Proceedings of the 2012 USENIX

Conference on Annual Technical Conference, USENIX ATC’12, pages

41–41, Boston, MA, 2012.

[63] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable weakly-consistent

infection-style process group membership protocol. In Proceedings

of the 2002 International Conference on Dependable Systems and

Networks, DSN ’02, pages 303–312. IEEE Computer Society, 2002.

[64] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically

discovering likely program invariants to support program evolution.

In Proceedings of the 21st International Conference on Software En-

gineering, ICSE ’99, pages 213–224, Los Angeles, California, USA,

1999.

[65] C. Fetzer. Perfect failure detection in timed asynchronous systems.

IEEE Trans. Comput., 52(2):99–112, Feb. 2003.

[66] E. Gilman. The discovery of Apache ZooKeeper’s

poison packet. https://www.pagerduty.com/blog/

the-discovery-of-apache-zookeepers-poison-packet, May 7,

2015.

[67] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H. Arpaci-

Dussea, and B. Liblit. EIO: Error handling is occasionally correct.

In Proceedings of the 6th USENIX Conference on File and Storage

Technologies, FAST ’08, pages 14:1–14:16, San Jose, California, 2008.

[68] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,

X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, G. Grider,

P. M. Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb,

P. Alvaro, H. B. Runesha, M. Hao, and H. Li. Fail-slow at scale:

Evidence of hardware performance faults in large production systems.

In Proceedings of the 16th USENIX Conference on File and Storage

Technologies, FAST’18, pages 1–14, Oakland, CA, USA, 2018.

[69] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,

V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh: A

large-scale system for data center network latency measurement and

analysis. In Proceedings of the 2015 ACM SIGCOMM Conference,

SIGCOMM ’15, pages 139–152, London, United Kingdom, 2015.

[70] A. Gupta and J. Shute. High-Availability at massive scale: Building

Google’s data infrastructure for Ads. In Proceedings of the 9th Interna-

tional Workshop on Business Intelligence for the Real Time Enterprise,

BIRTE ’15, 2015.

[71] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical

accountability for distributed systems. In Proceedings of Twenty-first

ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,

pages 175–188, Stevenson, Washington, USA, 2007.

[72] A. Haeberlen and P. Kuznetsov. The fault detection problem. In

Proceedings of the 13th International Conference on Principles of

Distributed Systems, OPODIS ’09, pages 99–114, Nîmes, France, 2009.

[73] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. The ϕ ac-

crual failure detector. In Proceedings of the 23rd IEEE International

Symposium on Reliable Distributed Systems, SRDS ’04, pages 66–78,

Florianópolis, Brazil, 2004.

[74] B. Holland, G. R. Santhanam, and S. Kothari. Transferring state-of-

the-art immutability analyses: Experimentation toolbox and accuracy

benchmark. In IEEE International Conference on Software Testing,

Verification and Validation, ICST ’17, pages 484–491, March 2017.

[75] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang. Capturing and

enhancing in situ system observability for failure detection. In 13th

USENIX Symposium on Operating Systems Design and Implementation,

OSDI ’18, pages 1–16, Carlsbad, CA, October 2018.

[76] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and

R. Yao. Gray failure: The Achilles’ heel of cloud-scale systems. In

Proceedings of the 16th Workshop on Hot Topics in Operating Systems,

HotOS XVI. ACM, May 2017.

[77] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst. Reim & ReImInfer:

Checking and inference of reference immutability and method purity. In

Proceedings of the ACM International Conference on Object Oriented

Programming Systems Languages and Applications, OOPSLA ’12,

pages 879–896, Tucson, Arizona, USA, 2012.

[78] D. King. Partial Failures are Worse Than To-

tal Failures. https://www.tildedave.com/2014/03/01/

application-failure-scenarios-with-cassandra.html, March

2014.

[79] K. Kougios. Java cloning library. https://github.com/kostaskougios/

cloning.

[80] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Improving

availability in distributed systems with failure informers. In Proceed-

ings of the 10th USENIX Conference on Networked Systems Design and

Implementation, NSDI ’13, pages 427–442, Lombard, IL, Apr. 2013.

[81] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Taming

uncertainty in distributed systems with help from the network. In

Proceedings of the Tenth European Conference on Computer Systems,

EuroSys ’15, pages 9:1–9:16, Bordeaux, France, 2015.

[82] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish.

Detecting failures in distributed systems with the Falcon spy network.

In Proceedings of the 23rd ACM Symposium on Operating Systems

Principles, SOSP ’11, pages 279–294, Cascais, Portugal, Oct. 2011.

572 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[83] C. Lou, P. Huang, and S. Smith. Comprehensive and efficient runtime

checking in system software through watchdogs. In Proceedings of

the Workshop on Hot Topics in Operating Systems, HotOS ’19, page

51–57, Bertinoro, Italy, 2019.

[84] A. Mahmood and E. J. McCluskey. Concurrent error detection using

watchdog processors – a survey. IEEE Transactions on Computers,

37(2):160–174, Feb 1988.

[85] Microsoft. Details of the December 28th, 2012 Windows Azure storage

disruption in US south. https://bit.ly/2Iofhcz, January 16, 2013.

[86] D. Nadolny. Debugging distributed systems. In SREcon 2016, April 7-8

2016.

[87] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,

P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, and et al. Recovery

oriented computing (ROC): Motivation, definition, techniques,. Tech-

nical report, USA, 2002.

[88] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi,

A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON file systems.

In Proceedings of the Twentieth ACM Symposium on Operating Sys-

tems Principles, SOSP ’05, pages 206–220, Brighton, United Kingdom,

2005.

[89] L. Suresh, D. Malkhi, P. Gopalan, I. P. Carreiro, and Z. Lokhandwala.

Stable and consistent membership at scale with Rapid. In Proceedings

of the 2018 USENIX Annual Technical Conference, USENIX ATC ’18,

page 387–399, Boston, MA, USA, 2018.

[90] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.

Soot - a java bytecode optimization framework. In Proceedings of the

1999 Conference of the Centre for Advanced Studies on Collaborative

Research, CASCON ’99, pages 13–. IBM Press, 1999.

[91] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure

detection service. In Proceedings of the IFIP International Conference

on Distributed Systems Platforms and Open Distributed Processing,

Middleware ’98, pages 55–70, The Lake District, United Kingdom,

1998.

[92] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy. Early

detection of configuration errors to reduce failure damage. In Proceed-

ings of the 12th USENIX Conference on Operating Systems Design and

Implementation, OSDI’16, pages 619–634, Savannah, GA, USA, 2016.

[93] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U.

Jain, and M. Stumm. Simple testing can prevent most critical failures:

An analysis of production failures in distributed data-intensive systems.

In Proceedings of the 11th USENIX Conference on Operating Systems

Design and Implementation, OSDI’14, pages 249–265, Broomfield,

CO, 2014.

Appendix A Additional Clarifications

Consistency under Lazy Replication Section 4.7 describes

that we associate a context with three attributes (version,

weak_ref, and hash) to deal with potential inconsistency due

to the lazy replication optimization. Here, we give a concrete

example to clarify how potential inconsistency could arise and

how it is addressed. With lazy replication (essentially “copy-

on-get”), a context may be modified or even invalidated after

the context setter call; if this occurs, the getter will replicate a

different context value. For example,

Main Program Watchdog Checker

------------------------------ ---------------------------

void foo() { void foo_reduced_invoke() {

foo_reduced_args_setter(oa);

write(oa);

Id. Root Cause Conseq. Sticky? Study?

ZK1 [45] Bad Synch. Stuck No Yes

ZK2 [66] Uncaught Error Zombie Yes Yes

ZK3 [47] Logic Error Inconsist. Yes No

ZK4 [48] Resource Leak Slow Yes Yes

CS1 [7] Uncaught Error Zombie Yes Yes

CS2 [8] Indefinite Blocking Stuck No Yes

CS3 [12] Resource Leak Slow Yes No

CS4 [11] Performance Bug Slow Yes No

HF1 [29] Uncaught Error Stuck Yes Yes

HF2 [24] Indefinite Blocking Stuck No Yes

HF3 [23] Deadlock Stuck Yes No

HF4 [28] Uncaught Error Data Loss Yes No

HB1 [20] Infinite Loop Stuck Yes No

HB2 [19] Deadlock Stuck Yes No

HB3 [22] Logic Error Stuck Yes No

HB4 [21] Uncaught Error Denial Yes No

HB5 [18] Indefinite Blocking Silent Yes No

MR1 [35] Deadlock Stuck Yes No

MR2 [34] Infinite Loop Stuck Yes No

MR3 [36] Improper Err Handling Stuck Yes No

MR4 [33] Uncaught Error Zombie Yes No

YN1 [44] Improper Err Handling Stuck Yes No

Table 10: 22 real-world partial failures reproduced for evalua-

tion. ZK: ZooKeeper; CS: Cassandra; HF: HDFS; HB: HBase; MR:

MapReduce; YN: Yarn. Sticky?: whether the failure persists forever.

Study?: whether the failure is from the studied cases in Section 2.

oa.append("test");

<--- oa = foo_reduced_ctx.args_getter(0);

}

By the time the context getter is invoked in the checker, oa

may already be invalidated (garbage collected). But since

the getter will check the weak_ref attribute, it will find out

the fact that the context is invalid (weak_ref returns null)

and hence not replicate. If oa is still valid, the context getter

will further check the hash code of the current value and

skip replication if it does not match the recorded hash. This

approach is lightweight. But it assumes the hash code contract

of Java objects being honored in a program. If this is not

the case, e.g., oa’s hash code is the same regardless of its

content, inconsistency (getter replicates a modified context)

could arise. Such inconsistency may or may not cause an issue

for the checker. For the above example, the checker’s write

may write "xxxtest" instead of "xxx" to the watchdog test

file, which is still fine. But if another vulnerable operation has

a special invariant on "xxx", the inconsistency will lead to a

false alarm at runtime. Our low false alarm rates during the

12-hour experiment period suggest that hash code contract

violation is generally not a major concern for mature software.

Another consistency scenario to consider is when a checker

uses some vulnerable operation that requires multiple context

arguments. Since the context retrieval is asynchronous under

the lazy replication optimization, a race condition could occur

while a getter is retrieving all the arguments. For example,

Main Program Watchdog Checker

----------------------------------- ---------------------------

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 573

P 1

1

1

input stream

2 3 4 5 …

WD

wrapper

check

(a) Idempotent wrapper for readRecord

P

1

2 3 4 5

WD

time

1

4

check check

wrapper 1 3 42

(b) Invoking wrapper in normal scenario

P

1WD

time

1

check

wrapper 1

2 2

hang
corrupt

2 X

timeout

check

2

2

check

(c) Invoking wrapper in faulty scenario

Figure 7: Illustration of idempotent wrapper

// called in a loop

synchronized void foo() { void foo_reduced_invoke() {

<--- arg0 = foo_reduced_ctx.args_getter(0);

...

foo_reduced_args_setter(oa, node);

oa.writeRecord(node);

<--- arg1 = foo_reduced_ctx.args_getter(1);

}

After the getter retrieves oa, the second argument (node) is up-

dated before the getter retrieves it. In this case, both arguments

are valid and match their recorded hash attributes. However,

they are mixed from two invocations of foo(). We address this

inconsistency scenario with the version attributes. A checker

will compare if the version attributes of all the contexts it

needs are the same before invoking the checked operation,

and skip the checking if the versions are inconsistent.

Appendix B Implementation Details

Idempotent Wrapper Section 4.7 describes our idempotent

wrapper mechanism that allows watchdogs to safely invoke

non-idempotent operations, especially read-type operations.

We further elaborate the details for this mechanism here.

The basic idea is to have both the watchdog and main pro-

gram invoke the wrapper instead of the original operation in

a coordinated fashion. The wrapper distinguishes whether the

call is from main program or the watchdog. Take a vulnerable

operation readRecord as an example. In the fault-free scenario,

the main program performs the actual readRecord like normal;

the watchdog checker would get a cached value. In a faulty

scenario, the main program may get stuck in readRecord; the

watchdog would be blocked outside the critical section of

the wrapper so it can detect the hang without performing the

actual readRecord. Figure 7 illustrates both scenarios.

OmegaGen automatically generates idempotent wrappers

for all read-type vulnerable operations. OmegaGen first lo-

cates all statements that invoke a read operation in the main

program. It extracts the stream objects from these statements.

A wrapper is generated for each type of stream object. The

watchdog driver maintains a map between the stream objects

and the wrapper instances. For the wrapper to later perform

the actual operation, OmegaGen assigns a distinct operation

number for each read-type method in the stream class, and gen-

erates a dispatcher that calls the method based on the op num-

ber. Then, OmegaGen replaces the original invocation with

a call to the watchdog driver’s wrapper entry point using the

ZK CS HF HB MR YN

Disk Base 3.97 6.04 88.26 1.50 0.10 0.05

(MB/s) w/ WD 4.04 6.12 89.02 1.53 0.10 0.05

Network Base 997 2,884 27 993 1.3 1.5

(KB/s) w/ WD 1,031 2,915 28 1,048 1.7 1.8

Table 11: Average disk and network I/O usages of the base sys-

tems and w/ watchdogs.

stream object, operation number, and caller source as the argu-

ments. For example, buf = istream.read(); in the main program

would be replaced with buf = WatchdogDriver.readHelp(istream, 1,

0); where 1 is the op number for read and 0 means the wrapper

is called from the main program.

The other steps in the checker construction for the read-type

operations are similar to other types of vulnerable operations.

The key difference is that OmegaGen will generate a self-

contained checker for the wrapped operation instead of the

operation. It particular, the checker OmegaGen generates will

contain a call instruction to the proper wrapper using source

1 (from watchdog) as the argument.

Appendix C Supplementary Evaluation

Semantic Check API Our experiments in Section 6 did not

use semantic checks, wd_assert (§4.5), to avoid biased results.

But we did test using wd_assert on a hard case ZK3. Although

the watchdog OmegaGen automatically generates detected

this case, it is because the failure-triggering condition (bad

disk) also affected some other vulnerable I/O operations in

the watchdog. We wrote a wd_assert to check if the on-disk

transaction records are far behind in-memory records:

wd_assert(lastProcessedZxid <= (new

ZKDatabase(txnLogFactory)).loadDataBase()+MISS_TXN_THRESHOLD);

OmegaGen handles the tedious details by automatically ex-

tracting the necessary context, encapsulating a watchdog

checker, and removing this expensive statement from the main

program. The resulted semantic checker can detect the failure

within 2 seconds and pinpoint the issue.

I/O Usage Overhead We measured the disk I/O usages (us-

ing iotop) and network I/O usage (using nethogs) for the six

systems with and without watchdogs under the same setup

as our overhead experiment in Section 6.7. Table 11 shows

the results. We can see the I/O usage increase incurred by the

watchdogs is small (a median of 1.6% for disk I/O and 4.4%

for network I/O).

574 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Understanding Partial Failures
	Findings
	Implications

	Catching Partial Failures with Watchdogs
	Generating Watchdogs with OmegaGen
	Identify Long-running Methods
	Locate Vulnerable Operations
	Reduce Main Program
	Encapsulate Reduced Program
	Add Checks to Catch Faults
	Validate Impact of Caught Faults
	Prevent Side Effects

	Implementation
	Evaluation
	Generating Watchdogs
	Detecting Real-world Partial Failures
	Localizing Partial Failure
	Fault-Injection Tests
	Discovering A New Partial Failure Bug
	Side Effects and False Alarms
	Performance and Overhead
	Sensitivity

	Limitations
	Related Work
	Conclusion
	Additional Clarifications
	Implementation Details
	Supplementary Evaluation

