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Abstract—The security of computers is at risk because of
information leaking through their power consumption. Attackers
can use advanced signal measurement and analysis to recover
sensitive data from this side channel.

To address this problem, this paper presents Maya, a simple
and effective defense against power side channels. The idea
is to use formal control to re-shape the power dissipated by
a computer in an application-transparent manner—preventing
attackers from learning any information about the applications
that are running. With formal control, a controller can reliably
keep power close to a desired target function even when runtime
conditions change unpredictably. By selecting the target function
intelligently, the controller can make power to follow any desired
shape, appearing to carry activity information which, in reality,
is unrelated to the application. Maya can be implemented in
privileged software, firmware, or simple hardware. In this paper,
we implement Maya on three machines using privileged threads
only, and show its effectiveness and ease of deployment. Maya
has already thwarted a newly-developed remote power attack.

Index Terms—power side channels, physical side channels,
security, obfuscation, control theory, machine learning.

I. INTRODUCTION

The physical signals of a computer, such as its power
consumption, temperature, and electromagnetic (EM) emissions,
are strongly correlated with the computer’s activity, and have
been exploited as potent side and covert channels. Through
these physical channels, attackers have been able to exfiltrate a
variety of information about the applications running, including
keystrokes and passwords [41], [76], location, browser and
camera activity [41], [47], [78], and encryption keys [39],
[42]. Many types of platforms have been successfully attacked
using these physical channels, including smartphones, personal
computers, cloud servers, multi-tenant datacenters, and home
appliances [22], [32], [37], [41], [44], [47], [76], [78], [84].

The methods used to acquire power signals have significantly
grown in number and stealth. Attackers use software techniques
such as reading counters (e.g., PLATYPUS [42]), estimating
power from unprivileged information, and analyzing code to
estimate energy consumption [1], [15], [17], [55], [81], [83].
Attackers can also use hardware methods such as direct probing,
antennas, indirect measurement by tapping electrical outlets
and power supply networks, and using trojan chips, FPGAs
and circuits [2], [26], [61], [63], [68], [75]. Since most of
these techniques simply collect measurements, they cause little
interference in the target computer and are hard to detect.

Recently, it has even been shown that the detailed power
activity of a computer can be measured from a different room

in a building, as long as the victim and the attacker computers
are connected to the same power delivery network [63]. The
attacker needs no physical access, and can measure power using
widely-available equipment. This approach greatly amplifies
the risk of leaking information through power signals.

Unfortunately, research on defenses against power side
channels has not kept pace. One limitation is that most
prior research on defenses has focused on encryption circuits
(e.g., [7], [20], [39], [60], [65], [79], [80]). In practice, there are
many attacks that are easy to mount, and which use system- or
chip-level power measurements to steal sensitive information
not related to encryption, like program activity, passwords and
browsing data [19], [22], [32], [41], [44], [47], [76], [78], [84].

Another limitation of many proposed defense techniques
is that they require new hardware and, hence, leave existing
computers in the field vulnerable. Finally, mechanisms such as
keeping constant power, inserting noise, or randomizing DVFS
levels are unsuccessful because they do not completely mask
application activity [41], [57], [63], [84].

An alternative approach is to modify each application
individually, so that its activity is not visible through physical
side channels [2]. However, this is a costly proposition.

Overall, there is an urgent need to develop effective defenses
against power side channels that do not rely on special hardware,
and which can be implemented as firmware or privileged
software in an application-transparent manner. It is relevant to
note that many common attacks that steal personal data like
keystrokes or browser activity, analyze signals by sampling at
intervals of several milliseconds or longer—suggesting that a
firmware or software defense is a good choice.

To address this problem, this paper proposes Maya, a new
defense technique that uses formal control [64] to intelligently
re-shape the power dissipated by a computer in an application-
transparent manner. When Maya is used, attackers cannot
extract sensitive data of the running applications from the power
signal. Maya’s controller changes a computer’s parameters to
reliably keep the computer’s power close to a given time-
varying target, even under unpredictable runtime conditions.
By setting this target intelligently, power can be shaped in any
desired form, appearing to carry activity information which, in
fact, is unrelated to the application. Such obfuscation removes
leakage through power and, in addition, through temperature
and EM signals, as they are related to power [13], [14], [44].

Maya can be implemented in privileged software, firmware,
or simple hardware, and relies on commonly-available actuators



to change power. These actuators are the DVFS level, which is
supported by nearly all mainstream processors [5], [10], [59],
[66], the injection of idle cycles to the execution [40], [69], and
a custom “balloon” application whose power consumption can
be increased on demand. In this paper, we implement Maya
on three machines using privileged threads.

Shao et al. [63] recently describe a covert-channel attack
across a building’s power network. Four victim computers
are connected to electrical power outlets. The attacker is also
connected to an electrical power outlet in another part the
building, at a distance of 90 feet, tapping on the same power
network. The attacker samples voltage with an oscilloscope
every 2µs and, over a period of 33 ms, is able to decode one
bit of information from the victims. Shao et al. then implement
Maya, deploy it with defense actions taken every 40 ms, and
show that Maya thwarts their covert channel.

In this paper, we introduce Maya and evaluate it against
machine learning-based attacks on three different machines, in
one case tapping an electrical power outlet, and show Maya’s
high effectiveness. The contributions of our work are:
1) Maya, a new defense technique against power side channels

using formal control to re-shape the power signal. It is the
first application of formal control to side-channel defense.

2) An implementation of Maya using only privileged software.
To our knowledge, this is the first defense against power
side channels that is readily-deployable and application-
transparent. It operates at millisecond-level sampling, and
thwarts power attacks without requiring physical access.

3) Evaluation of Maya against machine learning-based attacks.
The design of Maya’s formal controller is available in [54].1

II. BACKGROUND

A. Physical Side Channels

Physical side channels like power, temperature, and EM
emissions can be used to uncover many details about an
execution. Attackers have used these signals to infer the
characters typed by a user [41], to identify the running
application, the length of passwords on smartphones [76],
the browser activity on personal computers [18], to disrupt
operation in multi-tenant datacenters [33], and even to recover
encryption keys from a cryptosystem [38].

Physical side channels appear because, as semiconductor
devices switch, they consume dynamic power. The switching ac-
tivity varies with instructions, which leave distinct fingerprints
in the power trace [17], [41], [62], [70], [76]. Temperature and
EM emissions are related to the computer’s power, and leave
similarly-analyzable patterns [13], [14], [44].

1) Signal Measurement: Attackers can capture physical
signals in many ways, most of which are non-intrusive. For
example, like PLATYPUS [42], attackers can use a malicious
application that reads unprivileged hardware and OS counters
for power or temperature [4], [44], [58]. In cloud systems, an
application can use the thermal coupling between cores to infer
the temperature or power profile of a co-located application

1Maya’s source code is hosted at https://github.com/mayadefense/maya.

using its own counters [44]. When power/thermal counters are
unavailable, attackers can estimate power from OS metrics like
utilization or from code analysis [55]. Malicious smart-batteries
are another source of energy counters [41].

Power can also be measured by tapping AC electricity
outlets [29], [30], power distribution units (PDUs) [32], and
public USB charging booths [78]. If proximity to the victim is
possible, low-cost infrared thermometers and antennas can be
used to read temperature and EM emissions respectively [24],
[25]. With direct access to the computer, attackers can use
multimeters or oscilloscopes [39]. Such high-end equipment is
usually necessary to extract encryption keys.

Trojan hardware such as chips, co-processors, FPGAs, and
other IP modules that are co-located with the target chip
can also surreptitiously measure the target’s chip-level power
or temperature [26], [61], [75], [85]. Cloud systems share
FPGAs across processors and accelerators, and can be exploited
for remote power measurement [26], [67], [85]. In multicore
systems, the hierarchical power management policies can be
abused to act as power covert channels between cores [37].

A computer’s power activity can even be measured by an
attacker hooked to an AC electrical power outlet connected to
the same power delivery network, from a different location in
a large building [63]. The attacker needs no physical access,
and can use existing commercial equipment.

2) Signal Analysis: To extract sensitive information from
signals, attackers can apply machine learning (neural networks),
signal processing, and statistical analysis techniques [16], [41],
[76]. Such techniques can identify information-carrying patterns
in the signal, like its phase behavior and peak locations over
time, and its frequency spectrum after a Fourier transform.

To extract encryption keys, attackers either use simple power
analysis (SPA) on a single trace [24], or differential power
analysis (DPA) over thousands of traces [39], [84].

The timescale over which the signals are analyzed is
determined by the information that attackers seek and the
available measurement channels. Most attacks steal information
like the identity of the running applications, keystrokes, or
browser data, and are performed with samples at intervals of
milliseconds or more [41], [76], [78]. These are the timescales
that this paper focuses on. For cryptographic keys, it is typically
necessary to record and analyze signals with samples at
intervals of a few microseconds or less [39].

B. State-of-the-Art Defenses

Prior defenses against power side-channel attacks have
mostly focused on encryption circuits. They try to mask activity
information by keeping physical signals at constant levels or by
adding noise [7], [20], [39], [60], [65], [79], [80]. Unfortunately,
all of these defenses need new hardware and, hence, cannot
protect existing systems in the field.

Some of these defenses have additional limitations. For
example, adding noise [7] or randomizing DVFS in the encryp-
tion circuits is easily countered by averaging multiple signal
samples [57]. Furthermore, some of these circuit defenses first
measure the encryption circuit’s power and then change their



own activity to keep the overall power constant. Unfortunately,
since the defense reacts only after observing the power changes,
these defenses cannot fully hide application activity [20].

It is possible to implement software versions of these
defenses to protect against information leaking through chip-
level or system-level power signals. However, as we will show
later, these software schemes also have limitations.

An alternative strategy is to modify applications so that they
do not leak information through physical signals [2]. This is
possible for a few critical applications (e.g., OpenSSL) but
is impractical for the rest—like browsers, video or camera
applications. To our knowledge, there are no defenses that can
be readily used in existing machines in the field against power
side channels in an application-transparent manner.

C. Formal Control Techniques

Using formal control [64], one can design a controller K that
manages a system S (i.e., a computer) as shown in Figure 1.
The system has outputs y (e.g., the power consumed) and
configurable inputs u (e.g., the DVFS level). We want the
outputs to be kept close to the output target functions r. The
controller reads the deviations of the outputs from their targets
(∆y = r − y), and sets the inputs appropriately.
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Fig. 1: Control loop.

The controller is a hardware or software state machine
characterized by a state vector, x(T ), which evolves over time
T . At a given time, it generates the system inputs u(T ) by
reading the output deviations ∆y(T ), and advances its state to
x(T + 1):

x(T + 1) = A× x(T ) +B × ∆y(T )

u(T ) = C × x(T ) +D × ∆y(T )
x(0) = 0 (1)

A, B, C, and D are matrices that encode the controller.
Designers specify multiple parameters in the control sys-

tem [64]. They include the maximum bounds on the deviations
of the outputs from their targets, the magnitude of the
unmodeled effects that the controller must be tolerant of (i.e.,
the uncertainty guardband), and the relative priority of changing
the different inputs (i.e., the input weights) [53]. With these
parameters, controller design is automated [27], [51].

III. THREAT MODEL

We consider power side-channel attacks that perform signal
analysis at the timescale of milliseconds, and which use
pattern recognition techniques such as machine learning, signal
processing, and statistics to analyze the signal. Such attacks
do not need physical access and can use widely-available
commercial equipment. These attacks can steal information
like the identity of the running applications, the keystrokes
typed, and the browser data accessed. This threat model covers
the majority of attacks [16], [17], [26], [33], [34], [37], [41],

[44], [47], [63], [76], [78] described in Section II-A1, except for
those attacks identifying encryption keys [2], [24], [25], [38],
[85]. The latter attacks are harder to mount, and typically need
more detailed knowledge of the cryptosystem being attacked.

We assume that attackers can know the algorithm used by
Maya to reshape the computer’s power. They can run Maya’s
algorithm and see its impact on the time-domain and frequency-
domain behavior of applications. Using these observations, they
can develop machine learning models to adapt to the defense
and try to defeat it.

Finally, we assume that the firmware or privileged software
that implements the control system for reshaping power
is uncompromised. In a software implementation, the OS
scheduler and DVFS interfaces need to be uncompromised.

IV. OBFUSCATING POWER WITH CONTROL

We propose that a computer system defend itself against
power attacks by distorting its power consumption. Unfor-
tunately, this is hard to perform successfully because simple
distortions like adding noise can be removed by attackers using
signal processing. This is especially the case if, as we assume
in this paper, the attacker knows the defense algorithm used to
distort the signal. Indeed, past approaches have been unable to
provide a solution to this problem. In this paper, we propose
the new approach of using formal control to re-shape power.
In the following, we describe the architecture of Maya, the
rationale behind using formal control, and the generation of
effective distortions.

A. Maya Defense Architecture

Figure 2 shows the Maya architecture. Maya has a Mask
Generator, a Controller, and mechanisms or inputs to change
the power of a computer that is running an application. The
mask generator creates the target power function to mislead
attackers and communicates it to the controller. The controller
reads this target and the actual power consumed by the
computer as given by the sensors. Then, it actuates all the
inputs so that power is brought to the target.
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Fig. 2: High-level architecture of Maya.

The inputs that the controller actuates are the levels of
DVFS, the balloon task, and the idle activity. A balloon task is
one that performs power-consuming operations (e.g., floating-
point operations) in a tight, tunable loop. The balloon level
determines the number of power-consuming operations. The
idle activity level determines the percentage of processor cycles
in which the processor is forced into an idle state.

To understand the environment targeted by Maya, consider
Table I. The table shows two types of power side-channel
environments, which we call InScope and OutOfScope. Our
envisioned Maya design targets the InScope environment.



TABLE I: Two types of power side-channel environments.

Characteristic InScope OutOfScope

Attacks [16], [17], [26], [33], [34],
[37], [41], [44], [47], [63],
[76], [78]

[2], [24], [25], [38], [85]

Attacker’s
sensors

Counters, electrical line tap-
ping with oscilloscopes

High-frequency probes, on-
die trojan circuits

Signal analysis milliseconds ≤microseconds

Controller type Matrix-based controller in
firmware or privileged soft-
ware

Table-based controller in
hardware

Controller
response time

5–10µs ≈ 10 ns

Example actua-
tions

Change frequency and volt-
age, regulate balloon and
idle levels

Insert compute instructions
and bubbles in pipeline

Example uses Hide what application runs
or the keystrokes typed

Hide features of a crypto
algorithm

In InScope, attackers measure power with methods like
reading counters or tapping electrical power outlets, even with
oscilloscopes [63]. Since the signal analysis is at the granularity
of milliseconds, one can use typical matrix-based controllers as
described in Section II-C. They are implemented in firmware
or privileged software. The controller can respond in 5–10µs,
setting the DVFS level and regulating the balloon and idle
activity levels. This implementation can hide information like
the identity of the application running or the keystrokes typed.
This environment is the focus of this paper, and is relevant
because it is widely used.

Table I also shows the OutOfScope environment, which
would require a different design for Maya. Here, attackers
use better sensors, such as high-frequency probes, antennas,
or on-die trojan circuits, and perform signal analysis at the
micro- to nanosecond timescale. In this case, the controller has
to be fast, and hence, cannot use the matrix-based approach.
Instead, it has to use a table of pre-computed values from
which it quickly reads the action to be taken. This controller
must be implemented in hardware and have a response time of
no more than ≈10 ns. Possible actuators in this environment are
hardware modules that insert compute-intensive instructions
or bubbles into the pipeline. With such fast actuation, this
implementation could be used, e.g., to prevent information
leaking from crypto-algorithms. We do not consider this
environment in this paper.

B. Why Use Formal Control?

Formal control is necessary to reliably keep the computer’s
power close to the target power given by the mask generator.
To understand the importance of formal control, consider the
following scenario. We measure the power consumed by an
application at fixed timesteps pi, as shown in Figure 3a. To
prevent information leakage, we want to distort the trace into
a different, uncorrelated shape using the balloon application
and idle activity.

One way to mislead the attacker is to keep power consump-
tion at a constant level P (Figure 3b). To achieve this, we can
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Fig. 3: Example of a power trace for an application.

measure the difference between P and the actual power pi at
each timestep, and schedule a combination of balloon threads
and idle level based on P − pi.

Unfortunately, this approach is too simplistic to be effective.
It ignores that the application’s power itself changes. To see
why, consider Figure 3b. The original power trace is shown
with stars, and the resulting one is shown with circles. For
example, at the 0th timestep, a balloon thread is scheduled
based on P − p0. However, the power in the 1st timestep ends
up being p′1 rather than our target P , because the power of the
application itself has also gone up.

If this control algorithm is repeatedly applied, it will always
miss the target. We will obtain the trace in Figure 3b, where
the measured power is not close to the target, and in fact has
many features of the original trace.

An approach that uses control theory is able to get much
closer to the target power level. This is because the controller
makes more informed power changes at every interval, based on
history. To see why, we rewrite the equations of the controller’s
operation (Equation 1) slightly:

State(T + 1) = A× State(T ) +B × Error(T )

Action(T ) = C × State(T ) +D × Error(T )
(2)

The second equation shows that the action taken at time T (in
our case, regulating the balloon and idle activity) is a function
of the tracking error observed at time T (in our case, P − p0)
and the controller’s state. The state is an accumulation of the
controller’s experience in regulating the computer’s power. The
new state generated for the next timestep is determined by the
current state and error. The “accumulated experience” in the
state helps to get closer to the target.

Furthermore, the controller’s actions and state evolution are
influenced by the constant matrices A, B, C, and D, which
were generated when the controller was designed. That process
included running a set of training applications while scheduling
the balloon and idle threads and measuring the resulting power
changes. Hence, these matrices embed the intrinsic behavior
of the applications under these conditions.

Note also that the controller has the ability to change multiple
inputs at a time, which increases control accuracy. Overall,
with formal control, the outputs can be kept close to the targets
even when runtime behavior is unpredictable [64], which is
often the case with computers. Hence, with a formal controller,
the resulting power trace will be much closer to the target. If
the target signal function is chosen appropriately, the attacker
will be unable to obtain application information.
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Fig. 4: Examples of masks. In each case, the time-domain curve is at the top, and the frequency-domain one is at the bottom.

C. Generating Effective Targets (Masks)
The target power function (or mask) should be constructed

such that it can hide application activity effectively. Consider
what happens if the target is simply set to a constant. As
the application activity changes, any method to maintain the
computer’s power at a fixed level would have to first observe
power deviating from the target, and then set the inputs
accordingly. Hence, the output signal would have power activity
leaking at all change-points in the application.

On the other hand, choosing a random target power at every
timestep is not a good design either. The attacker could run
the application many times, and then use signal processing
techniques to remove the random noise. Then, the native change-
points in the application would stand out. Therefore, the targets
must be changed deliberately to hide such inadvertent leakage,
and this is the role of Maya’s mask generator.

An effective mask must hide information in both the time
domain and the frequency domain (i.e., after obtaining its FFT).
We postulate that such a mask must have three properties. First,
the mask should have several phases, each with a different
combination of mean and variance levels (e.g., Figure 4c top).

Second, the mask must have repetitive activity with varying
periodicity. This will create several peaks in the power signal’s
FFT (Figure 4d bottom). Applications naturally create peaks in
the FFT domain if they have loops. By introducing repetitive
activity, any natural peaks are overwritten and/or hidden.

Finally, the phase transitions must have different rates from
smooth to abrupt. As a consequence, the FFT of the mask is
spread over a range of frequencies (e.g., Figure 4e bottom). If
the mask has the above properties, the resulting power signal
will have many artificially-induced change-points that will erase
and/or hide the original ones.

We now examine generating a mask with the above properties
using standard signals. Table II lists some well-known signals,
showing whether the signal changes its mean and its variance
in the time domain, and if it creates spread and peaks in the
FFT (or frequency) domain. Figure 4 shows the signals.

A Constant mask (Figure 4a) has no change in either time
or frequency domain. As discussed earlier, perfectly constant

TABLE II: Some standard signals and what they change in the
time and frequency domains.

Time-domain Frequency-domain

Signal Mean Variance Spread Peaks

Constant – – – –
Uniformly Random Yes – Yes –
Gaussian Yes Yes Yes –
Sinusoid Yes Yes – Yes
Gaussian Sinusoid Yes Yes Yes Yes

power cannot be realized in practice. When a constant target
is used, information leaks at application change-points.

In a Uniformly Random mask (Figure 4b), a value is chosen
randomly from a range, and is used as a target for a random
duration. After this period, another value and duration are
selected, and the process repeats. This signal changes the mean
but not the variance in the time domain. In the frequency
domain, the signal is spread across a range but has no peaks.
This mask too is a bad choice, since any repeating activity in
the program would be hard to hide in the time domain.

The Gaussian mask (Figure 4c) is constructed by sampling
values from a Gaussian distribution whose mean and variance
are randomly changed over time. The resulting FFT is spread
over multiple frequencies, but does not have peaks.

The Sinusoid mask (Figure 4d) generates a sinusoid and
keeps changing the frequency, amplitude, and the offset
randomly with time. This signal changes the mean and variance
in the time domain. In the FFT, it has clear sharp peaks at
each of its sinusoid frequencies. However, there is no spread.
Consequently, the peaks can potentially be filtered out.

Finally, the Gaussian Sinusoid (Figure 4e) is the addition
of the previous two signals. This signal has all the properties
that we want (Table II): it changes the mean and variance in
the time domain, and has spread and peaks in the frequency
domain. Specifically, consider the FFT plots. The Gaussian
noise (Figure 4c) has a noisy spectrum that is spread across
a continuous range of values. In contrast, the Sinusoid signal
(Figure 4d) has sharp and tall peaks. Therefore, the combination
of the two signals (Figure 4e) results in a spectrum that has



peaks that are both large and spread across a range. This is
the mask that we propose.
Why Maya works: Maya works because it reshapes power
instead of adding noise. With the latter, the original and
distorted power signals differ only by noise, which can be
filtered. Instead, Maya specifies a varying target shape first,
and attains this power by actuating on the computer. So, the
distortions are not simply separable noise; they are made to
appear as carrying information. Attackers cannot isolate the
disortions even if they know Maya’s defense, as long as they
cannot reproduce the random numbers used by Maya.

V. IMPLEMENTATION ON THREE SYSTEMS

We implement Maya to protect the three different computers
listed in Table III. Sys1 is a consumer-class machine with
6 physical cores, each with 2-way SMT, totaling 12 logical
cores. Sys2 is a server with 2 sockets, each having 10 cores
of 2-way SMT, for a total of 40 logical cores. Sys3 is another
consumer-class machine with 4 physical cores, each with 2-way
SMT. On all systems, the architecture of Maya is the same
(Figure 2). We target the InScope attack environment of Table I.
The controller and mask generator run as privileged software.

TABLE III: Implementation platforms.

Name Configuration RAPL sensors

Sys1 Sandy Bridge (12 cores) + CentOS 7.6 Cores+L1+L2
Sys2 Sandy Bridge (40 cores) + CentOS 7.6 Packages
Sys3 Haswell (8 cores) + CentOS 7.7 Cores+L1+L2

The Maya controller measures the power used by the cores
plus L1 and L2 caches (Sys1 and Sys3), and by the two
packages (Sys2) using RAPL [49] every 20 ms. It actuates
three inputs: the DVFS level of all cores, the percentage of
idle activity, and the balloon power level. DVFS levels are
set through the cpufreq utility [12], and are 1.2-2.0 GHz
(Sys1), 1.2-2.6 GHz (Sys2), and 0.8-3.5 GHz (Sys3) with 0.1
GHz increments.

The idle activity level is changed using Intel’s powerclamp
driver interface [69], and can be 0%-48% in steps of 4%. The
powerclamp system launches as many kernel-level threads as
the number of cores. These threads repeatedly displace other
running threads and force the cores into idleness, until the
desired level of idleness is achieved.

We develop a simple balloon application that runs floating-
point operations in a loop. The percentage of the balloon
activity is set using a sysfs file and can be 0%-100% in
steps of 10%. The balloon application first spawns as many
threads as the total number of cores. Then, in the main loop,
the master thread configures each thread to run a loop of matrix
multiply operations for a few ms followed by sleep cycles. If
the desired power balloon level is high, the fraction of sleep
is low and vice-versa. One iteration of the main loop (read
level–run compute–sleep loop), takes ≈10 ms. The balloon
threads are created with OpenMP, and run with root priority.

Maya introduces performance overheads in the system.
The slowdown appears because the idle and balloon threads

interrupt and displace the application tasks. The controller and
mask generator, by themselves, are simple functions, and their
overheads are low. We discuss the overheads in Section VII-E.

There are multiple ways to reduce Maya’s overhead. One
approach is to selectively activate Maya only in sections of the
application where it is needed, similar to how power governors
can be invoked in Linux [12]. Another approach is to run
the application and power balloon threads on separate SMT
contexts to avoid context switch overhead. Yet another approach
is to implement Maya in firmware, to eliminate the software
calls to read and modulate power. Finally, one can implement
the power-burning circuits in hardware, to eliminate software
overheads. In this paper, we do not evaluate these approaches
and, hence, show Maya’s worst-case performance impact.

A. Designing the Controller

We design the controller using robust control [64]. For this,
we need to: (i) obtain a dynamic model of the computer
system used, and (ii) set three parameters of the controller
(Section II-C), namely input weights, uncertainty guardband,
and output deviation bounds [51], [53].

To develop the model, we use the System Identification [43]
modeling methodology. In this approach, we run a training set
of applications on the computer system and, during execution,
change the system inputs. We log the observed outputs and
the inputs. From this data, we construct a dynamic polynomial
model of the computer:

y(T ) = a1 × y(T − 1) + . . .+ am × y(T −m)+

b1 × u(T ) + . . .+ bn × u(T − n+ 1)
(3)

In this equation, y(T ) and u(T ) are the outputs and inputs,
respectively, at time T . This model describes the outputs at
any time T as a function of the m past outputs, and the current
and n-1 past inputs. The constants ai and bi are obtained by
least squares minimization from the experimental data [43].

We perform system identification by running two applications
from PARSEC 3.0 (swaptions and ferret) [9] and two from
SPLASH-2x (barnes and raytrace) [9] on Sys1. The models we
obtain have a dimension of 4 (i.e., m = n = 4 in Equation 3).
The system identification approach is a powerful way to capture
the relationship between the inputs and outputs.

The input weights are set depending on the relative overhead
of changing each input. In our system, all inputs have largely
similar actuating overheads. Hence, we set all the input weights
to 1. Next, we specify the uncertainty guardband by evaluating
several choices. For each uncertainty guardband choice, Matlab
tools [27] give the smallest output deviation bounds the
controller can provide. Based on insights from prior work [51],
[52], [53], we set the guardband to be 40%, which allows the
output deviation bounds for power to be within 10%.

With the model and these specifications, standard tools [27]
generate the A, B, C, and D matrices that encode the controller
(Section II-C). The controller’s dimension is 11, namely its
state vector in Equation 1 has 11 elements. The controller runs
every 20 ms; we set this duration based on the update rate of
RAPL sensors and the latencies to change inputs.



B. Mask Generator

As stated in Section IV-C, we use a gaussian sinusoid mask
(Figure 4e) to generate the targets. This signal is the sum of a
sinusoid and gaussian noise, and its value at any time T is:[

Offset+Amp× sin

(
2π × T

Freq

)]
+Noise(µ, σ) (4)

where the Offset, Amp, Freq, µ and σ parameters keep changing.
Each of these parameters is selected at random from a range of
values, subject to two constraints. First, the maximum power
target is always below the Thermal Design Power (TDP) of the
system. Second, the sinusoid’s frequency (Freq) cannot exceed
25 Hz because the power measurement rate itself is 50 Hz (from
the 20 ms sampling interval). The power measurement has to
be at least twice as fast as the sinusoid (Nyquist criteria).

Once a particular set of parameters is chosen, the mask
generator uses them for Nhold samples, after which the
parameters are updated again. Nhold itself varies randomly
between 6 to 120 samples.

VI. EVALUATION METHODOLOGY

A. Machine Learning-Based Power Attacks

We consider multiple common attacks based on machine
learning as listed in Table IV. These attacks try to identify
which application is running on the machine, which video
is being encoded, and what is the user’s browsing activity.
They are widely reported in prior work [18], [30], [41], [47],
[71], [76], [78]. The defense (i.e., Maya’s controller) samples
power at 20 ms intervals because RAPL provides reliable
measurements only at this timescale. The attacker also samples
power at 20 ms intervals except in Sys3 where, as we will see,
the sampling interval is 50 ms because the measurements are
taken from an AC power outlet cycling at 60 Hz.

TABLE IV: Machine learning-based power attacks.

Attacker’s goal Victim
computer

Signal-capturing
method

Detect running application Sys1 Counters
Identify video being encoded Sys2 Counters
Identify webpages visited Sys3 AC outlet power

1. Detecting the running application: This is a well-known
fundamental attack [30], [41], [71], [76]. Attackers capture
many power traces of the applications they want to identify and
build a machine learning classifier to recognize the application
running from a power trace. We launch this attack on Sys1
using unprivileged RAPL counters to measure power. As in
prior work, we assume that a malicious module installed by
the attacker captures these counters [41], [76].

We run applications from PARSEC 3.0 (blackscholes,
bodytrack, canneal, freqmine, raytrace, streamcluster, vips)
and SPLASH-2x (radiosity, volrend, water nsquared, and
water spatial) with native datasets and record 1,000 traces for
each application. From each trace, we extract multiple segments
of 15,000 RAPL measurements, and average the 5 consecutive

measurements in each segment to remove the effects of noise.
For accurate training, we quantize the power values into 10
levels and encode the traces in one-hot format. We use 60% of
the data we collect for training, 20% for validation, and report
the results for the remaining 20% test set.

For classification, we use a three-layer multilayer perceptron
(MLP) neural network. The network uses ReLU units for its
hidden layers and the output layer uses Logsoftmax.
2. Detecting video data: There is a video encoder that operates
on multiple videos, and the attacker’s goal is to identify the
video being encoded. This is also a common attack [41], [47],
[71], [76], [78]. We perform it on Sys2 targeting the FFmpeg
video encoder [23]. As with the previous attack, power signals
are captured through RAPL.

We take four common test videos saved in raw format:
tractor, riverbed, wind, and sunflower [74]. We transcode each
video using FFmpeg’s x264 compression for 200 runs and
record the power traces. From each trace, we obtain multiple
windows of 1,000 samples long, quantize the power values,
and use one hot encoding to train our MLP classifier.
3. Detecting webpages: This is a popular attack [18], [41],
[76], [78], and we set it up on Sys3. Unlike in the previous
attacks, we capture the power traces by measuring the power
from an AC electrical outlet. Figure 5 shows a picture of
our test platform. We tap the electrical outlet used by the
victim computer with wires connected to a multimeter. This
multimeter (Yokogawa WT310) passes its measurements into
another computer using a USB connection. This is a powerful
and stealthy attack because information is obtained by simply
rigging electrical outlets without installing any modules on the
victim. Since the frequency of AC is 60Hz (corresponding to
16.6 ms cycles), the multimeter collects the root mean square
(RMS) power samples every 50 ms (i.e., every 3 AC cycles).

Fig. 5: Tapping an AC electrical outlet.

We record 100 power traces when visiting the popular
websites google.com, ted.com, youtube.com, chase.com, iee-
explore.ieee.org/Xplore/home.jsp (IEEE Xplore), amazon.com
and paypal.com using the Google Chrome browser. Each trace
is nearly 15 seconds long. Unlike before, we use the signals’
FFT to train our MLP because browser activity has varying
rates of change in a short duration. The FFT captures it better.

B. Designs Compared

Since existing application-transparent defenses against power
attacks need new hardware (e.g., [20], [79]) and cannot be
tested on our machines, we build software defenses based on
them. Table V lists the designs that we implement and compare.
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Fig. 6: Confusion matrices for detecting the running application from power signals.

Baseline is a high performance insecure machine without any
noise or mask to obfuscate the application to an attacker. In
Noisy Baseline, each run of the application is executed with
new DVFS, idle activity, and balloon levels that are picked
randomly before the application starts, and kept fixed for the
duration of the whole execution.

TABLE V: Designs compared.

Design Description

Baseline High-perf. insecure system without added noise
Noisy Baseline Each run has a new DVFS, idle and balloon level
Random Inputs DVFS, idle, and balloon levels change randomly

at runtime
Maya Constant Maya (Figure 2) with a constant mask
Maya GS Maya with a Gaussian Sinusoid mask (Proposed)

Random Inputs changes the values of the DVFS, idle activity,
and balloon levels randomly at runtime. Once a set of values is
chosen, it is kept unchanged for a randomly selected duration,
after which another set of values is selected. This makes the
application’s power profile significantly noisy.

Maya Constant uses Maya’s formal controller but the power
target is a constant. Finally, Maya GS is our proposal that uses
the formal controller and a gaussian sinusoid mask generator.

We evaluate the security of the designs in Table V in an
environment where attackers adapt to each defense. Specifically,
attackers collect data to train their MLP classifier when the
victims run with their defense on (i.e., Random Inputs, Maya
Constant, or Maya GS). Then, they use their MLP to recognize
new obfuscated traces from the same defense.

VII. RESULTS

We first describe the effectiveness of the defenses. Then, we
consider attacks at higher frequency, discuss the effectiveness
of formal control, examine the defense overheads, and finally
show that Maya can protect against PLATYPUS.

A. Effectiveness of the Defenses

Detecting the running application: We show the effectiveness
of the attack on different defenses from Table V using confusion

matrices. A confusion matrix is a table where each row
corresponds to the true labels of the applications (0 to 10 for
the 11 applications) and each column has the fraction of the
signals classified as the predicted labels by the attacker’s MLP
classifier. The matrices are shown in Figure 6. For example,
the entry in the 0th row and 1st column gives the fraction of
the signals that had a true label of 0 and were classified as
application 1. The diagonal entries give the correct predictions,
and averaging all the diagonal entries gives the overall average
accuracy. Note that the random chance of correct classification
is ≈9%, as there are 11 applications. An accuracy around this
value indicates a classification failure.

Figure 6 shows the confusion matrices on the three main
defenses that we test. Entries with higher fractions are darker.
The average classification accuracy is 94% for Random Inputs,
62% for Maya Constant, and 14% for Maya GS. Random
Inputs fails because randomly changing the DVFS, idle, and
balloon levels does not hide the application’s inherent activity.
For example, changing DVFS has a different impact in compute
and memory bound phases of the application. The MLP catches
such differences.

Maya Constant manipulates the DVFS, idle, and balloon
levels to maintain constant power. It has better obfuscation
than Random Inputs, but is ultimately ineffective. As described
in Section IV-C, ensuring constant power is not realistic, as
information leaks at application change-points.

Finally, the attack on Maya GS has only 14% average
accuracy. This is close to the random chance prediction
accuracy of 9%. The difference occurs because the MLP’s
classification is biased towards a few labels (e.g., labels 9, 10).
This occurs sometimes when the MLP cannot find patterns to
learn in the training data. We verify this by training another
MLP to predict the running application based on the target
power mask generated by the mask generator. These power
target masks have no correlation with the application that runs,
and yet we see an accuracy of 12%.

Overall, Maya GS achieves excellent obfuscation. The
gaussian sinusoid mask and the formal controller thoroughly
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Fig. 7: Summary statistics of the average of 1,000 signals. The Y axis of each chart is drawn to a different scale.

hide any original patterns in the application with false activity.
Since Maya GS produces a different trace in each run, the
MLP cannot find any common pattern.
Detecting video data: Figure 8 shows the confusion matrices
for the video detection attacks. Here, the accuracy of random
chance classification is 25%, as we have four videos. The
average accuracy of the MLP attack is 72%, 90% and 24% for
Random Inputs, Maya Constant and Maya GS, respectively. As
with the previous attack, Random Inputs and Maya Constant
fail to obfuscate activity, and only Maya GS can hide activity.

The MLP has a lower accuracy against Random Inputs
than against Maya Constant. It cannot clearly distinguish
traces of video 1 (tractor) from video 2 (wind) with Random
Inputs. Originally, these videos have similar traces except for
a few peaks. The noise caused by Random Inputs results in
misclassification. In contrast, Maya Constant makes the peaks
more prominent because the signal is otherwise constant. Thus,
the MLP has a higher success rate with Maya Constant.
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Fig. 8: Confusion matrices for the video detection attacks.

Detecting browser data: We run this attack using FFT values
from AC outlet power traces. Here, the accuracy of random
chance classification is 14%, as we have seven webpages.
Figure 9 shows that the average accuracy of the MLP models
is 51% for Random Inputs, 40% for Maya Constant and 10%
for Maya GS. Websites like Google (0), Youtube (2), Chase
banking (3) and Amazon (5) are recognized even with Maya
Constant, thus endangering privacy. In contrast, Maya GS
achieves high obfuscation.

Overall, these attacks show that Maya GS is successful in
obfuscating power side channels. It resists attacks where the
attacker trains with thousands of signals generated from Maya.

B. Signal Statistics and Analysis

For more insights, we analyze the signals produced by the
defenses of Table V using signal summary statistics and change-
point analysis.
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Fig. 9: Confusion matrices for webpage detection.

Signal summary statistics: We perform the following analysis
for each defense. For each application, we collect all the
power traces produced by the defense across runs and average
them. Then, we examine the distribution of power values
in this averaged signal, and compare it to the distribution
of power values in other applications. An effective defense
would produce similar distributions in all applications, so the
applications are hard to distinguish.

Figure 7 shows the box plots of power values in the averaged
traces for Noisy Baseline, Random Inputs, Maya Constant, and
Maya GS. The averages are obtained from 1,000 raw traces
of each application. Each chart labels the applications on the
horizontal axis from 0 to 10. Each box includes the 25th to 75th

percentile values for the application. The line inside the box
is the median value. The whiskers of the box extend up to the
maximum and minimum. The dark-red ‘+’ markers represent
values detected statistically as outliers in the distribution. For
legibility, the Y axis on each chart is drawn to a different scale.

With Noisy Baseline (Figure 7a), the value distribution is
distinct for each application and acts like a fingerprint. In
Random Inputs (Figure 7b), the boxes shrink in size, but the
relative difference remains the same. With Maya Constant
(Figure 7c), the boxes shrink further (see the change in Y axis
scale) and the median values of applications become closer to
each other. However, the distribution is sufficiently different
for the attacker to identify each application.

Finally, with Maya GS (Figure 7d) the distributions are
near-identical (see the Y axis scale). The median values are
nearly the same because Maya GS produces a different trace
in each run that is uncorrelated with other runs. Moreover,
each run uses the whole range of allowed values. Therefore,
averaging traces cancels out the patterns. Hence, the median,
mean, variance, and the distribution of the samples are close,
indicating a high degree of obfuscation.
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Fig. 10: Average of 1,000 traces for blackscholes, bodytrack and water nsquared (labels 0, 1 and 9). The Y axis of each chart
is drawn to a different scale.
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Fig. 11: Change-point detection in blackscholes using traces over time. Figure 11(a) shows all four phases being detected.

As an example of the differences across applications, Fig-
ure 10 shows the averaged signals of blackscholes, bodytrack,
and water nsquared for all the defenses. Again, the Y axis for
each chart is drawn to a different scale. With Noisy Baseline and
Random Inputs, the applications have different, recognizable
patterns. With Noisy Baseline the differences are less visible
(see the Y axis scale) but still obvious. It is only with Maya GS
that the average traces are indistinguishable from each other.
This results in the highest degree of obfuscation.
Change-point Detection: This is a signal-processing technique
used to identify the times when the properties of a signal change.
The properties can be the signal mean, variance, edges, or
fourier coefficients. We use a standard change-point detection
algorithm [45] to identify the phases found in the re-shaped
signals. We present the highlights of this analysis using the
blackscholes application.

With Noisy Baseline (Figure 11a), four phases of the
application are clearly seen: (1) sequential, (2) parallel, (3)
sequential and (4) idleness after the application ends. The
difference between the phases is not too large, and there is some
noise because of interference with idle and balloon activity.
However, the algorithm detects the four major phases.

With Random Inputs, (Figure 11b), the profile is significantly
noisy. However, since the noise is random, the inherent
application activity is uniformly perturbed and hence, any
phases in the application are still visible. The change-point
detection algorithm identifies all the phases.

With Maya Constant (Figure 11c), the power profile is mostly
around 25 W because the mask is held constant at that value.
However, the algorithm can still recover all the phases. The
constant target cannot prevent activity from leaking at phase
transitions. There are sharp peaks at phase change points. The
FFT of the signal (not shown) also preserves such changes.

With Maya GS (Figure 11d), change-point analysis detects

many phases, but these are all artificial. The signal and its
FFT (not shown) are totally different from the original signal.
In fact, it is also impossible to infer when the application
completed. The application completed around 121 s, but the
signal shows no notable difference at that time.

We also used other signal processing techniques like dynamic
time warping (DTW) [48], using standard distributions to fit
data, and computing signal correlations. None of these methods
was able to identify the true information carrying patterns with
Maya GS.

C. Attacks at Higher Frequency

We repeat the running application detection attack on Sys1,
but reduce the attacker’s power sampling interval from 20 ms to
10, 5, and 2 ms. In all cases, the defense Maya samples power
at 20 ms. Figure 12 shows the average application detection
accuracy across the sample intervals. We see that the average
detection accuracy does not change much, and remains low
like in Figure 6c, even with the faster sampling by the attacker.
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Fig. 12: Accuracy of classifiers in the application detection
attack on Maya GS for different attacker sampling intervals.

Faster sampling does not improve detection accuracy in this
attack because the distinguishing patterns of the applications
(i.e., phases) occur at longer timescales than the sampling
intervals. Furthermore, even though Maya’s controller only
changes inputs every 20 ms, the idle and balloon threads are



always running, and add noise to the application. Finally, faster
sampling inherently has more noise, affecting detection.

D. Effectiveness of Formal Control

Figure 13 shows the distribution of power values in the
averaged signals as given by: (i) the gaussian sinusoid mask
generator (Figure 13a) and (ii) the actual power measured from
the computer (Figure 13b). The latter is the same as Figure 7d.
It can be seen that the formal controller is effective at making
the measured power appear close to the target mask. Indeed,
this accurate tracking is what makes Maya effectively re-shape
the system’s power and hide application activity.
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Fig. 13: Distribution of power values in the averaged signals.

E. Maya Overheads and Impact on Power and Performance

We examine the implementation overheads of Maya, and its
impact on the power and performance of applications.
Overheads of Maya: Maya runs as a software process that
wakes up at regular intervals to read the power sensors,
generate the next mask value, run the controller, and initiate
the actuations.

Generating the next mask value requires obtaining one
(pseudo) random number to sample from the gaussian dis-
tribution. However, when the properties of the gaussian and
sinusoid functions are changed (Equation 4), more random
numbers need to be generated. In our implementation, we use
the C++ STL library. In the worst case, getting all the required
random numbers takes about a µs. Optimized implementations
can generate the random numbers faster [31], [35].

Running the controller involves computing Equation 1 using
the difference between the target and the measured power values
to obtain the DVFS, idle, and balloon levels. The controller has
an 11-element state vector x(T ) (Equation 1). It can be shown
that running the controller needs ≈200 fixed-point operations,
which complete within 1µs. The controller needs less than
1 Kbyte of storage.

Maya needs few resources to operate, making it attractive
for firmware, software, or even hardware implementations. The
primary bottlenecks in our implementation are the sensing and
actuation latencies, which can reach a ms or more.
Impact on Application Power and Performance: We run
the PARSEC and SPLASH-2x applications on Sys1 with
the different defense designs and Baseline. Baseline runs
applications at the highest available frequency without inserting
idle or balloon threads. We measure power and execution time.

Figure 14 shows the power and execution time of all the
defense designs, normalized to that of the high-performance

Baseline. In Figure 14a, we see that the average power
consumed by the applications with Noisy Baseline, Random
Inputs, Maya Constant, and Maya GS is 30%, 31%, 11% and
29% lower than Baseline. The power with the defenses is
typically lower than in Baseline because all defenses use idle
threads and sometimes low DVFS values.
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Fig. 14: Power and execution time of the defense designs on
Sys1 relative to the high-performance insecure Baseline.

Figure 14b shows the normalized execution times. On
average, the execution times of Noisy Baseline, Random Inputs,
Maya Constant, and Maya GS are 100%, 127%, 124% and 47%
higher, respectively, than Baseline. Noisy Baseline and Random
Inputs are slow because of the continuous interference of the
idle and balloon threads with the application. Maya Constant
uses a single power target throughout execution, which is often
lower than the power at which Baseline runs. Therefore, the
execution time overhead of Maya Constant is high. Maya GS
has a relatively lower execution time overhead than the other
defenses because its execution uses a wide range of power
levels thanks to its many choices. Hence, it allows applications
to run steadily at high power occasionally. Note that, of all the
defenses, only Maya GS provides security.

We believe that the lower performance of Maya GS relative
to Baseline is acceptable given the high level of security
that it provides without needing any hardware support at
all. To reduce the overhead of Maya, secure applications can
selectively activate Maya only during sensitive sections of the
application [28]. Furthermore, Section V has discussed more
advanced ways to reduce Maya’s execution overhead.

It can be shown that the power and performance overheads
of the Sys2 and Sys3 designs are like those of Sys1. This shows
that Maya is robust across different machines.



Impact on Total Application Energy: Maya GS consumes
approximately the same total energy as Baseline: it consumes
29% lower power (Figure 14a) but the execution takes 47%
longer (Figure 14b). The resulting product of power and time
is similar to that of the original execution.

F. Defending against PLATYPUS-type Attacks

Initial results show that Maya can defend against an attack
like PLATYPUS [42]. In our experiments, we run tight loops
with mov, with xor, or with imul (multiply) instructions on
Baseline, while measuring the power. We repeat the experiments
200 times and compute the average power traces. As shown in
Figures 15a and 15c, the profiles of these three power traces
differ. Then, we enable Maya GS and regenerate the power
profiles. As shown in Figures 15b and 15d, the profiles of
the three power traces are now practically indistinguishable.
Hence, a defender can use Maya GS to hide the instruction
that is being executed, thwarting the attack. We will extend
this analysis in future work.
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Fig. 15: Maya GS is able to defend against PLATYPUS.

VIII. RELATED WORK

Attacks: Many attacks identify sensitive information from
physical signals using machine learning (ML)-based pattern
recognition [16]. Yan et al. recover the running application’s
identity and the number of keystrokes typed [76], by measuring
unprivileged power counters. Lifshits et al. identify browser,
camera and location activity, and the characters typed [41],
using measurements from a malicious battery. Chen et al.
recover Android app usage information from power signals [17].
Yang et al. show that compromised public USB charging booths
can recover the user’s browser activity [78]. Das et al. train
ML networks that identify encryption keys from multiple
target devices despite inter-device variations in their power
signals [21]. They also show that their ML-based key recovery
is faster and requires fewer traces than conventional correlation
power analysis (CPA).

Michalevsky et al. show that malicious smartphone appli-
cations can track the user’s location without GPS, by only

using unprivileged OS-level counters [47]. Conti et al. [19]
show that a laptop’s power signals can be used to identify the
laptop’s original user among other occasional users. Wei et al.
use power measurements to recover the input image processed
by an FPGA convolutional neural network accelerator with
only some information about the network’s structure [72].

Clark et al. [18] and Hlavacs et al. [30] identify the webpages
and virtual machine applications, respectively, using the server’s
electrical outlet power. Guri et al. exfiltrate data from air-
gapped power lines [29]. Shao et al. develop a covert channel
that uses the power delivery network to which a computer
is connected [63]. Khatamifard et al. build a power covert-
channel based on the hierarchical power management policies
in multicores [37].

Some attacks use trojan chips, circuits and FPGAs to measure
physical signals of co-located chips [26], [61], [68], [75], [85].
Cloud systems are offering FPGA platforms, and are vulnerable
to power analysis attacks [26], [67], [85]. Kocher et al. [39] give
a detailed overview of recovering encryption keys using SPA
and DPA when physical access to a cryptosystem is possible.
Attackers also use software analysis or modeling to estimate
power when direct measurement is difficult [1], [15], [76], [81],
[83]. Wei et al. show that several malware applications have
power signatures and use ML to detect them [73].

There are attacks that capture EM emissions using anten-
nas [2], [14], [24], [25], [36], [71]. Enev et al. find that
television content can be distinguished based on the EM
signatures of the television’s powersupply [22].

Islam et al. show the vulnerability of multi-tenant datacenters
to voltage, thermal and acoustic (from cooling devices) side-
channels [32]–[34] that arise due to activity variations. Masti et
al. develop a covert channel in multicores based on temperature
coupling between the cores [44].
Defenses: Trusted execution environments like Intel SGX [46]
or ARM Trustzone [6] do not contain physical signals [11],
[13], [42]. Therefore, several countermeasures against power
side channels have been proposed [3], [7], [20], [39], [56],
[60], [65], [77], [79], [80], [82], [84]. Their goal is primarily
to protect encryption circuits, and require new hardware.

Known defenses usually operate by either suppressing power
signal changes that arise due to changing activity [56], [60],
[65], [82], or adding noise to drown activity [39], [84], or
both [20]. A common approach to adding noise is to randomize
DVFS levels using special hardware [79], [80]. Avirneni and
Somani also propose new circuits for randomizing DVFS, but
change voltage and frequency independently [7].

Baddam and Zwolinski show that randomizing DVFS alone
is not a viable defense because attackers can identify clock
frequency changes through high-resolution power traces [8].
Yang et al. suggest randomly scheduling the encryption task
among the cores in a multicore [77], apart from randomly
setting the clock frequency and phase [77]. Real et al. show
that adding noise or empty activity can be filtered out, and is
ineffective [57].

A different approach is to temporarily cut-off a circuit from
the outside and run it with a small amount of energy stored



inside itself [3]. Alternatively, each application can be modified
so that its physical outputs do not carry sensitive information [2].
Finally, there are defenses that use adversarial ML [28], [50]
to exploit weaknesses in the ML-based attack classifiers. The
idea is to add perturbations to the power signals so that the
classifiers produce the incorrect result.

IX. CONCLUSIONS

This paper presented a simple and effective solution against
power side channels. The scheme, called Maya, uses for the
first time, formal control to distort, in an application-transparent
way, the power consumed by a computer—so that the attacker
cannot obtain information about the applications running. Maya
is very effective at obfuscating application activity, and has
already thwarted a newly-developed remote power attack.
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