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Abstract

Smart cities are increasingly facing cyber-attacks due to the endeavors they have made in technological
advancements. The challenge for smart cities, that utilize complex digital networks to manage city systems and
services, is that any device that relies on internet connectivity to function is a potential cyber-attack victim.
Smart cities use smart sensors. Online Social Networks (OSNs) act as human sensors offering significant
contributions to the amount of data used in smart cities. OSNs can also be used as a coordination and
amplification platform for attacks. For instance, aggressors can increase the impact of an attack by causing
panic in an area by promoting attacks using OSNs. Public data can help aggressors to determine the best timing
for attacks, scheduling attacks, and then using OSNs to coordinate attacks on smart city infrastructure. This
convergence of the cyber and physical worlds is known as cybernetics. Quantitative socio-technical methods
such as deviant cyber flash mob detection (DCFM) and focal structure analysis (FSA) can provide
reconnaissance capabilities that enable cities to look beyond internal data and identify threats based on active
events. Assessment of powerful actors using DCFM detection methods can help to identify and prevent attacks.
Groups of powerful hackers can be identified through FSA which is a model that uses a degree centrality method
at the node-level and spectral modularity at group-level to measure the power of a focal structure (a subset of
the network). DCFM and FSA models can help cyber-security experts by providing a better picture of the threat
which will help to plan a better response.
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1. Introduction

Transformation to smarter cities presents many challenges for researchers and engineers as they face new
procedures, data management platforms, and operations. Building new and efficient smart systems open the
door for many new issues such as privacy, security, big data coming from various sensors, public and private
services, and social systems. Although these systems are being transformed into smart systems by connecting
them to the internet A.K.A. the Internet of Things (IoT), it still needs more cybersecurity enhancements.

The critical infrastructure of smart cities should have monitoring capabilities for optimizing security
methods, reducing vulnerability, increasing reliability. This will enhance the transportation systems, the
security of smart power grids and various energy systems such as: petroleum refineries, health, and food
systems. Such monitoring systems require data collection, real-time processing, analysis, and decision-making
capabilities.

Today, various industries have services that monitor many malicious activities and threats, such as hackers
who try to access crucial department databases to steal information or damage a provided service. In recent
years, many malicious cyber activities across the world have been reported to cause enormous damage to
various critical smart systems [1].



In this research, we are considering the massive growth of social media platforms in the recent years such
as Twitter, Facebook, YouTube, and WeChat, and how many social applications must work with significant
amounts of personal and public data. People use these tools to share information, opinions, and activities with
their relatives, friends and other cultural organizations. However, in the last few years, the use of these platforms
was changed by a few radical organizations. Malicious actors misused social media to amplify and share
terrorist activities and malicious threats, information dissemination, propagating radical behaviors, spreading
fake news, and conducting cyber-attacks on public and private online smart infrastructure networks [2].

Quantitative methods have been applied to help to analyze the complex social networks in recent years.
Some of the most common approaches to quantitative network analysis use measures such centrality and
modularity to help define network structure and model the networks. Node-based community detection
algorithms using the degree centrality method [3], [4] and group-based community detection algorithms using
the modularity method [5], [6], are considered in our research and presented in section 2. However, merely
considering these two community detection categories alone, lacks the depth and insight into the most
influential aggressors and network links that would maximize the damage to a smart city infrastructure grid.
Therefore, we propose a mixed model, developing the node-level measure which considers the individual’s
centrality value, and then spectral modularity (group-level) is employed to measure the groups’ influence at the
Network-Level. The resultant model is a Bi-Level centrality-modularity maximization model called Focal
Structure Analysis (FSA). These focal structures (sub network or sub graphs) are the hidden intensive groups
that can influence maximum number of users in the network.

The contributions from the model in this research considers the shortcomings in the regular community
detection algorithms, where the node-based methods cannot identify these groups, and the group-based method
cannot cluster intensive small groups. We are proposing a mix of the node and group-based community
detection algorithms, whereby we create a model consisting of two major sections: the bi-level optimization
section, and the deviant cyber flash mob detection method. Other supplementary sections are also used to help
in clustering the network. Finally, the model utilizes small real-world metrics to identify FSA sets and then
evaluate them using the deviant cyber flash mob detection (DCFM) method to determine if the aggressors’ and
sets can influence the entire network.

Multiple case studies leveraged the two aforementioned approaches independently, such as Sen et al. [8],
utilized a greedy model on a Facebook network and concluded that Facebook was used to mobilize crowds in
2007 during the Egyptian Revolution [9]. The authors in [9] studied a Twitter network, where they identified a
small influential set of users who are responsible for the 2011 Saudi Arabia women's right to drive campaign
[9]. Alassad et al. [10] studied a network of commenters on YouTube that disseminated disinformation. He
used a decomposition optimization model to identify small influential sets of commenters responsible for
commenting on various videos.

For our practical implementation of this mixed-mode model that would extend to the smart city domain, we
consider an ISIS dataset provided in a study conducted by the International Centre for the Study of
Radicalization and Political Violence (ICSR) which shows a group of individuals who helped ISIS recruiters
to disseminate their propaganda on Twitter and other social media platforms [7]. This mixed-mode model was
also applied on a YouTube channel that was spreading fake news in the South China Sea [11].

1.1 Problem Statement

The aim of this study is to apply a non-traditional cybersecurity network approach to cluster and analyze
influential sets of social media users. These users are highly central disseminators who can amplify information
spread to a maximum number of individuals in the network. One of the big challenges that are facing network
scientists is to identify and suspend such hidden coordinating groups of malicious users in complex social
network. These focal structures of malicious users in the network can be influential and can disseminate their
radical or terrorist propaganda to threaten smart cities’ intelligent systems very effectively.

These sets of aggressors (focal structures) can coordinate attacks on various smart city infrastructures by
utilizing well-known social media platforms, for example, they can post directions, locations, and other
coordination activities on social media informing their followers. Since smart cities rely on internet services,
the government would not want to shut down internet service across the entire smart city network and risk
financial, economic, or security lose. The success of a deviant cyber flash mob targeting a smart city
infrastructure would likely have a crippling effect on the smart city. Identifying hidden influential groups and
suspending them without impacting the total infrastructure network is essential. In this research we use a
network of commenters who are posting radical directions on Twitter to paralyze infrastructure in smart cities.
These FSAs could be responsible for organizing multi-cyber-attacks to maximize the damages to the network,
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spread fake news and convince other nodes in the network to participate in or create their own cyber-attacks.
In this paper, we identify these malicious set of users, and then suspend them from their locations in the network
to stop their influence without taking down the remaining network.

The rest of the paper is organized as follows. Section 2 summarizes the data set and the research
methodology. Section 3, we apply the proposed model to the dataset collected and demonstrate the model
efficiency. Finally, we conclude with intended future work in section 4.

2 Methodology

The proposed model is designed to (1) overcome the shortcomings in regular community detection methods [4,
10], (2) advance the FSA model proposed by Sen et al. [9, 12], and (3) use the DCFM model developed by Al-
khateeb et al. [13] to identify a sets of powerful actors in complex social networks aiming to conduct deviant
acts that can damage smart cities' infrastructures.

2.1 Data Set

In this research, we collected data of a Twitter network consisting of 1,453 nodes and 1,487 edges. An initial
set of Twitter usernames were provided in a report published by the International Centre for the Study of
Radicalization and Political Violence (ICSR) in which they provided a list of individuals who help ISIS
disseminate their propaganda on Twitter and other social media platforms [16]. We crawled these usernames’
friends and followers then cross-intersected them with another dataset collected during three beheading events
conducted by ISIS in Egypt, Libya, and Palestine [17]. For the users in the resultant dataset, we calculated
control, interest, and power to estimate the power of each node (user) in the network. We built the
communication (retweets and mentions) network for these users then ran our model to determine the focal
structures within the network. These FSAs are ranked based on the sum of power for all users within that focal
structure.

2.2 Node-Level & Group level Measures

The first step in collecting the necessary measurements for the model after identifying the user network is to
calculate node-level power, degree centrality (node-level measurements) and the clustering coefficient (group-
level measurements). The power of each node is calculated using a collective action-based model developed
by Al-khateeb et. al [18,19]. The degree centrality method is utilized to measure a node’s sphere of influence
[4]. Fig. 1 shows the average degree centrality for all 53 FSA sets. In addition to degree centrality, the model
needs to consider the node’s neighbors’ friendship as well, to determine if the friends-of-friends are also his/her
friend. Hence, we used the clustering coefficient as shown in Fig.2 to determine if a node exhibits this behavior
or not [3, 4]. The final analysis uses not only the node’s degree centrality, but also the network power calculated
by the DCFM method.

The result of the two methods combined, i.e., the degree centrality and clustering coefficient, are ranked as
sets of active local communities consisting of highly central nodes that have active neighbors (can communicate
with each other). The measurements from these two methods will be exported to the Network-Level to measure
their ability to maximize the network’s sparsity or their communication to other aggressors’ groups.

2.3  Network-Level Analysis

The spectral modularity method [6], is used to measure the graph’s sparsity inheriting the nodes’ sets from the
Node-Level. The objective function as shown in the Network-Level in Fig 3, is to import sets from the previous
level and then find sets that can maximize the graph’s modularity value [10, 11]. The model is searching for
sets of groups that can produce the maximum number of aggressors in the network [5, 10, 11, 14].

These focal structures include the maximum number of influential nodes in the network who have the power
to convince other nodes in the network to participate in deviant actions, such as multi-cyber-attacks. Also, these
nodes can be part of other groups (other focal structures, and can supervise other nodes, control information
dissemination, and amplify their radical actions to other parts of the network.
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Fig. 1: FSA Sets’ average degree centrality values. Fig. 2: FSA Sets’ average clustering coefficient values.

24 FSA Evaluation and DCFM

Decomposition of the identified focal structures help to measure the sets characteristics from different points
of views as follows:

24.1 Small Real-World Network Metrics

Our model used two measures, namely degree centrality and clustering coefficient to determine its output. The
goal of the model is to find subsets in the network (called focal structures) that can maximize the average degree
centrality of each node and the average clustering coefficient of these central nodes (to measure the members’
connectivity within the sets). Fig 1 shows the identified focal structures (influential sets) average degree
centrality values while Fig 2 shows the interaction between these subsets nodes by utilizing the clustering
coefficient of the group.

24.2 DCFM Metrics

The DCFM phenomenon can be considered a form of a cyber-collective action that is defined as an action
aiming to improve a group’s conditions (such as, status or power). If we can identify those strong influential
groups organizing DCFM, we can design counter measures to stop the aggressors from attacking smart city
infrastructure. Previous work by Al-khateeb and Agarwal [13] developed a collective action based theoretical
model which identified factors to predict success or failure of a Deviant Cyber Flash Mob (DCFM).

In their model, the identified factors are — Utility (U) (the benefits an individual gain if the DCFM success
or fail), Interest (I) (how much interest an aggressor has based on the utility gained), Control (C) (how much
control the aggressor has on the outcome of the DCFM), and Power (P) (how powerful an aggressor is in the
group). In this study, we calculate the structural characteristics of our sample DCFM network and assess the
impact of these collective action measurements (i.e., I, C, and P) using our Focal Structure Analysis (FSA)
model.

3 Experimental Results

We applied our model to the ISIS Twitter network shown in Fig 4. The model identified the highly influential
sets of aggressors in the dataset that maximizes the graph sparsity, influences maximum number of individuals,
and includes members acting in different group as shown in Fig 5. Also, the interconnection between pairwise
focal structure reveals a spoke and hub communication structure, where a set conveys information to other
groups who then carry out operations as shown in Fig 5. The DCFM method calculated the sets’ power
(influence), whereby the more power they have the darker the sets’ color as shown in Fig 5.
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Fig. 3: Focal Structure Analysis (FSA) structure in Smart City, where social media is part of the smart city
structure. The model will import the data constructed from the social media platforms such as Twitter.

195 To understand the focal structures’ impact inside the network as shown in Fig 6, we employed two methods
196  as basis to make the evaluation. First, the Girvan-Neman modularity method [15], which returned a modularity
197  value of 0.645 and clustered 40 communities as shown in Fig 4. Second, Trajan et al. [16] found only one
198 weakly connected user in the network. These are the baseline network measurements for this collection of users
199  and their corresponding network structure.

200
Fig. 4: ISIS Twitter network clustered into 40 groups via  Fig. 5: Commenters are clustered into 54 influential sets.
modularity method. The darker the color, higher the influence.

201 Moreover, Fig 7, shows the top twenty influential aggressors and the count of FSA sets containing each

202 aggressor. Since we identified that very powerful actors appear in multiple network sets, it enables the



203 authorities to measure, predict, and allocate the influential aggressors’ active strategies, possible spots for
204  information dissemination, and cyber-attacks’ locations.
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Fig. 6: Sets' power measured by DCFM method. Fig. 7: Top 20 Influential aggressors measured by
DCFM.
206 Table 1 shows the top twenty influential sets of aggressors, where the impact of each set on the modularity

207 and connectivity were measured accordingly. We found that, each of these sets can maximize the graph
208  modularity value into the interval of [0.7-0.83], and they can maximize the graph sparsity from 40 groups into
209 [103-426] groups. This means that by removing the most influential users from the network, the clusters or
210 communities within the network lose their connection to other parts of the network. That is, by removing the
211 aggressors in any given FSA ID in Table 1, the overall network of users becomes isolated to other communities.

212 Table 1: Top 20 influential sets.
FSA ID Sum of Count of #of Weakly ~ Count of Max modularity FSA
power users conn. users comm. value allocation

5 1.86 42 408 426 0.83 19
2 1.7 41 401 423 0.82 13
7 1.58 21 287 313 0.78 9
49 1.53 47 256 280 0.81 15
9 1.52 21 268 290 0.78 9
54 1.52 130 278 300 0.82 20
8 1.5 21 330 352 0.8 13
6 1.47 11 273 298 0.76 9
39 1.41 13 241 268 0.75 12
50 1.4 49 261 286 0.78 15
1 1.37 19 270 292 0.77 7
52 1.36 54 230 254 0.8 19
37 1.25 13 145 175 0.72 5
3 1.22 7 165 189 0.7 5
35 0.91 12 161 187 0.74 8
47 0.87 32 73 103 0.72 10
46 0.83 25 161 190 0.73 8
53 0.81 76 115 142 0.76 20
30 0.78 9 131 191 0.71 4
36 0.77 12 174 198 0.72 5

213

214 In addition, based on Trajan et al. [16] the min-max numbers of weakly connected users caused by these

215 sets increase from one to an interval between [73-408] weakly connected users. Most importantly, we were able
216  to identify each FSA set’s attack locations by identifying how many FSA sets each aggressor appeared in, (as
217 shown in Fig. 7). proposing that each set of aggressors can attack multiple places at the same time. For example,
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FSA (5), the top influential set consisted of 42 aggressors, they can influence 408 individuals, are able to attack
19 different locations in the network and can divide the network into 426 other groups. Therefore, by removing
the users within this FSA (5), the network is divided into 426 communities vs 40 communities with FSA (5)
included, so aggressors would have to work harder to disseminate information across the network.

4 Conclusion and Discussion

In this research, we have studied social media cybersecurity risks at a network level using computational social
science techniques, where aggressors utilize Twitter platforms to perform cyber attacks. Considering the
shortcomings of regular community detection algorithms and taking a non-traditional cybersecurity approach,
the proposed bi-level model was able to identify hidden influential sets of aggressors in the network. The
proposed model was able to identify a spoke and hub communication structure, where a single influential FSA
set conveys information to other sets who can carry out deviant behaviors. Such focal structures are more
prevalent in terrorist networks.

Throughout this research, we were able to allocate the aggressors’ activities, track all their possible cyber-
attacks locations, provide an overview of the influential sets, and estimate the aggressors’ influence in the
network. Using this model could enhance and harden smart cities' strategies against cyber-attacks when they
originate from social media platforms by suspending any of those focal aggressors’ structures to prevent the
massive damages that can be caused to a smart cities critical foundation.
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