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5 ABSTRACT: Molecular simulations with atomistic or coarse-
6 grained force fields are a powerful approach for understanding and
7 predicting the self-assembly phase behavior of complex molecules.
8 Amphiphiles, block oligomers, and block polymers can form
9 mesophases with different ordered morphologies describing the
10 spatial distribution of the blocks, but entirely amorphous nature for
11 local packing and chain conformation. Screening block oligomer
12 chemistry and architecture through molecular simulations to find
13 promising candidates for functional materials is aided by effective
14 and straightforward morphology identification techniques. Captur-
15 ing 3-dimensional periodic structures, such as ordered network
16 morphologies, is hampered by the requirement that the number of
17 molecules in the simulated system and the shape of the periodic simulation box need to be commensurate with those of the resulting
18 network phase. Common strategies for structure identification include structure factors and order parameters, but these fail to
19 identify imperfect structures in simulations with incorrect system sizes. Building upon pioneering work by DeFever et al. [Chem. Sci.
20 2019, 10, 7503−7515] who implemented a PointNet (i.e., a neural network designed for computer vision applications using point
21 clouds) to detect local structure in simulations of single-bead particles and water molecules, we present a PointNet for detection of
22 nonlocal ordered morphologies of complex block oligomers. Our PointNet was trained using atomic coordinates from molecular
23 dynamics simulation trajectories and synthetic point clouds for ordered network morphologies that were absent from previous
24 simulations. In contrast to prior work on simple molecules, we observe that large point clouds with 1000 or more points are needed
25 for the more complex block oligomers. The trained PointNet model achieves an accuracy as high as 0.99 for globally ordered
26 morphologies formed by linear diblock, linear triblock, and 3-arm and 4-arm star-block oligomers, and it also allows for the discovery
27 of emerging ordered patterns from nonequilibrium systems.

28 ■ INTRODUCTION

29 Self-assembling amphiphiles, block oligomers, and block
30 polymers that contain chemically distinct segments can form
31 a wide variety of structures across length scales from a few to
32 hundreds of nanometers. Depending on the self-assembled
33 morphologies and domain sizes, these classes of materials can
34 be targeted to numerous application including templates for
35 nanopatterning,1−4 transport membranes,5−8 drug delivery,9,10

36 and photonics.11,12 To accelerate material design and
37 discovery, molecular simulations can be used to efficiently
38 screen over molecular structures and provide detailed micro-
39 scopic-level insights. In our recent studies,13−15 molecular
40 dynamics (MD) simulations using transferable force fields16−18

41 were performed to study the phase behavior of a class of block
42 oligomers with thermotropic liquid crystallinity. Multiple
43 mesophases were observed with domain sizes smaller than 4
44 nm, including lamellar (LAM), hexagonally packed cylinder
45 (HPC), hexagonally perforated lamellar (HPL), body-centered

f1 46 cubic (BCC), and disordered states (DIS) (see Figure 1).

47Although missing from our previous simulations, 3-dimen-
48sional network structures (NET), which are often observed
49over narrow composition windows in self-assembling soft
50materials, are of increasing interest due to their inter-
51penetrating domains that enable independent tuning of
52orthogonal properties in a single material.19 Further exploring
53the design space of these block oligomers could facilitate the
54computational discovery of NET-forming materials, as well as
55systems with larger NET composition windows.
56In molecular simulations, equilibrium mesophases can be
57inferred from spatial information including atomic positions
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58 and identities, which allows for quantitative analysis that can
59 bridge with macroscopic observations. One common techni-
60 que is to compute the structure factor,20−22 and the
61 morphology can be determined from the relative peak
62 positions and intensities. Importantly, the structure can be
63 readily compared with experimental scattering patterns.
64 However, in molecular simulations, the system dimensions
65 have to be delicately selected to match integer multiples of the
66 unit cell of the equilibrium structure.23 When the system size is
67 chosen incorrectly, the system may adopt a distorted,
68 thermodynamically unstable structure in comparison to the
69 infinite system. In principle, the incommensurability effects can
70 be ameliorated by using a very large system size but, beyond
71 simple coarse-grained models, such simulations are unafford-
72 able even with current computing hardware. For morphologies
73 that are anisotropic in one or two dimensions (e.g., LAM and
74 HPC), the commensurability issues can be accommodated by
75 using anisotropic orthorhombic simulation boxes that allow
76 independent fluctuations of the three dimensions.24,25 For 3-
77 dimensional periodic structures, selecting the system param-
78 eters is nontrivial, since the exact stable morphology and the
79 corresponding unit cell dimensions are not known a priori. In
80 our previous work, there have been successes in achieving
81 stable 3-dimensional periodic structures including BCC and
82 HPL15 by tuning the number of molecules after an initial guess
83 of the equilibrium morphology from the imperfect structures
84 resulting from arbitrary system sizes. Similarly, the system size
85 for the A4B(B8)3 miktoarm tetrablock oligomer is tuned here
86 to yield a stable BCC morphology instead of disordered
87 micelles.13 However, such a human-based initial guess from
88 emergent NET structures can be far less accurate, due to the
89 existence of many possible NET geometries. Therefore, it is
90 beneficial to predict the likely stable structure of a NET
91 candidate system before fine-tuning the system size. The

92structure factor, in this case, can fail to detect any nonglobal
93features of the plausible but distorted structure. Another
94structure detection tool that can be used for molecular
95simulations is referred to as an ”order parameter”, which can be
96some mathematical quantity such as a “signature vector” as a
97function of atomic positions. The order parameter can tackle
98local structure recognition but can only distinguish among very
99few structures, and developing selective functional forms of
100order parameters can be challenging.26−29

101Machine learning methods based on deep neural networks
102have been widely employed in the prediction and design of
103atomistic and molecular systems.30,31 Neural networks are a
104class of mathematical models composed of multiple layers of
105neurons, where each neuron outputs a linear combination of
106the input from its previous layer followed by a nonlinear
107transformation. Although a shallow neural network with two
108layers is already sufficient to approximate any continuous
109function, increasing the number of layers introduces a
110hierarchy of representations of input data, which results in
111strong performance in various complex tasks and alleviates the
112need for feature engineering.32 Deep learning methods for
113molecular systems are commonly based on atomic coordinates
114as they directly represent the structure and geometry of the
115system. For example, neural network potentials for MD and
116Monte Carlo simulations typically take a series of symmetry
117functions over atomic coordinates as input.33,34 Pairwise
118distances have also been constructed as the features of neural
119networks for molecular structure generation to utilize rota-
120tional symmetry.35 Recently, DeFever et al. reported a deep
121learning method for identifying local crystal structures,
122mesophases, and hydrophilic surfaces from MD simulations
123for binary mixtures of single-bead particles and for multisite
124water models directly from particle coordinates.36 Their
125method was based on PointNet, a highly efficient and effective

Figure 1. Snapshots showing the periodic box from previous MD simulations13−15 for various block amphiphiles and their corresponding chemical
structures: (a) A6B12 and (b) A2B12A2 in the LAM phase, (c) B6A4B6 in the HPL phase (the second snapshot shows one perforated layer containing
O and H atoms); (d) A4B(B10)2 in the HPC phase, and (e) A4B(B8)3 in the BCC phase. Hydroxyl hydrogen and oxygen atoms are shown as white
and red spheres, respectively, and the alkyl tails as cyan lines.
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126 neural network architecture in computer vision applications for
127 point clouds,37 and utilized the coordinates of neighboring
128 particles within a local spherical region centered on one
129 particle.
130 Here, we also adopt the PointNet architecture for
131 morphology classification of self-assembled block oligomers
132 investigated by MD simulations.13−15 Apart from point clouds
133 consisting of sets of Cartesian coordinates, meshes and voxel
134 grids are also common representations of 3-dimensional spatial
135 data in computer vision. Meshes are the natural choice for
136 representing surfaces but, for the block oligomers investigated
137 here, the surfaces are locally very rough making identification
138 difficult. While voxel grids have been used for deep-learning-
139 based generation of crystal structures,38 they are computation-
140 ally inefficient for larger systems and introduce discretization
141 errors making the detected morphology potentially ambiguous.
142 The PointNet model developed here is trained on atomic
143 structures of different morphologies from a combination of
144 MD simulation frames and synthetic point clouds of NET
145 structures to address the scarcity of NET geometries
146 encountered in our previous simulations.

147 ■ METHODS
148 PointNet Architecture. In this work, the standard settings
149 of the classification network in PointNet37 are utilized (see

f2 150 Figure 2). The input point clouds are represented by N
151 Cartesian coordinates without additional features, but may
152 contain the positions of multiple beads taken from a given
153 block oligomer. The point clouds used here represent the
154 global structure of the system, but require a large number of
155 points. In contrast, the PointNet introduced by DeFever et
156 al.36 utilizes only a local region with a small number of points
157 for structure identification of single-site particles or water
158 molecules. Although not guaranteeing better performance, the
159 global point clouds used here are closer to the original
160 computer vision application.37

161In our approach, the input point clouds are then passed
162through the encoder consisting of a series of pointwise
163feedforward layers with 64, 64, 64, 128, and 1024 neurons with
164weights shared among all points. Since atomic coordinates are
165unordered, the network output should be invariant to the
166permutation of atoms, such as exchanging a pair of coordinates
167in the input. This is achieved in PointNet by applying a
168symmetric function operated on the high-dimensional point
169features produced from the pointwise network:

f g h hx x x x( , ... ,, ) ( ( ), ..., ( ))n n1 1{ } ≈ 170(1)

171where x1, ..., xn are input points from the point cloud, h
172represents the pointwise network for feature extraction, and g
173represents the symmetric function. The PointNet transforms
174the 3-dimensional Cartesian coordinates into a 1024-dimen-
175sional features space before performing max pooling. The max
176pooling layer then takes the largest value for all points along
177each dimension to give the global feature.37 The points for
178which the feature coordinates contribute to the global feature
179are picked as the “critical points” regardless of the input order.
180This also agrees with the physical intuition that the
181morphology of the system can be identified with the most
182important subset of atoms in the structure. Directly after the
183max pooling layer, two dense feedforward layers with 512 and
184256 neurons followed by a dropout layer with a 0.7 keep ratio
185are used to calculate class scores and to infer class labels from
186softmax probabilities.
187In the PointNet structure used for the present work, two
188spatial transformer networks (STNs) are applied before the
189first and the third feature extraction layer. The STNs take a
190similar structure as the main networks and comprise the same
191types of modules including feature extraction, max pooling, and
192fully connected layers. They are aimed at learning data-
193dependent rigid or affine transformation matrices to align the
194input (3 × 3) point sets and higher dimensional features (64 ×
19564) into a consistent orientation to further improve the

Figure 2. Data augmentation and the PointNet architecture. A random translation and a random rotation are applied on each point cloud, from
which N points are randomly selected and fed into the PointNet. The N points are passed through the encoder which contains point-wise
feedforward layers and spatial transformer networks (STN). The max-pooling layer performs permutation-invariant aggregations of the 1024-
dimensional point features, and the following feedforward network (512, 256 neurons) with dropout outputs predicts the scores for point cloud
classification.
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196 results.37 The PointNet implementation by DeFever et al.36

197 does not include such STNs. Because molecular systems are
198 less orientation-dependent than real-life objects, we also
199 evaluate the effectiveness of STNs in morphology detection
200 in this work.
201 Batch normalization and rectified linear unit (ReLU)
202 activation functions are applied throughout all fully connected
203 layers. We use the Adam optimizer39 with an initial learning
204 rate of 0.001, which is halved every 20 training epochs. The
205 exponential decay rates for the first and the second moment
206 are set to values of 0.9 and 0.999, respectively. The model is
207 implemented in PyTorch and trained on an NVIDIA Titan
208 RTX GPU.
209 Data Augmentation and Learning Formalism. We use
210 equilibrium trajectories obtained from NpT MD simulations of
211 diblock, symmetric triblock, miktoarm triblock, and miktoarm
212 tetrablock oligomers (for examples, see Figure 1). These
213 amphiphiles consist of oligo-ol blocks (Ax with 2 ≤ x ≤ 6
214 CHrOH repeat units, where r is 1 or 2) and linear alkyl blocks
215 (By with 6 ≤ y ≤ 12 CHs repeat units, where s is 2 or 3), and
216 they assemble into various morphologies including body-
217 centered cubic (BCC), hexagonally packed cylinders (HPC),
218 lamellar (LAM), hexagonally perforated lamellar (HPL) and
219 disordered (DIS).13−15 The simulation frames used for the
220 generation of the point clouds are selected from multiple
221 systems (see Table S2) spanning 15 different block oligomers

222and, for all but one compound, two temperatures are included
223that represent one of the ordered morphologies and the DIS
224morphology. LAM, HPL, HPC, and BCC morphologies are
225represented by 10, 1, 2, and 1 systems, respectively, in the
226training set. For each morphology, 3000 point clouds for the
227minor component (the positions of O atoms) are extracted
228from frames across the different MD trajectories, with
229 f3examples illustrated in Figure 3.
230Due to the strict commensurability requirement for NET
231morphologies with crystallographic periodicity, our previous
232simulations on the specific class of self-assembling block
233oligomers did not yield any stable ordered NET structures. To
234train a model that can recognize common NET structures seen
235in other self-assembling systems, we generate synthetic data for
236point clouds representing minor components of double gyroid
237(DG), single gyroid (SG), double diamond (DD), and
238plumber’s nightmare (P) morphologies using the following
239criteria, respectively:

x y y z z x tsin( )cos( ) sin( )cos( ) sin( )cos( )| + + | > 240(2a)

x y y z z x tsin( )cos( ) sin( )cos( ) sin( )cos( )+ + > 241(2b)

x y z x y z

x y z x y z t

sin( )sin( )sin( ) sin( )cos( )cos( )

cos( )sin( )cos( ) cos( )cos( )sin( )

| +

+ + | > 242(2c)

Figure 3. (a) Examples for the point clouds of the minor component of the block oligomers retrieved from MD simulation trajectories (see Table
S1). (b) Generated point clouds and their corresponding surfaces for four ordered NET structures. To guide the eye, the point clouds are colored
from yellow to purple according to a point’s average values of its x, y, and z coordinates.
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x y z tcos( ) cos( ) cos( )+ + >243 (2d)

244 where x, y, and z are point coordinates for the minor
245 component, and t is an adjustable parameter to control the
246 volume fraction of the minor component. Values of t are
247 randomly selected within practical ranges to account for
248 variations in volume fraction for the self-assembled systems.
249 The t ranges are [0.9, 1.2], [0.6, 1.0], [0.6, 0.9], and [0.0, 0.4]
250 for DG, SG, DD, and P morphologies, respectively. Points are
251 uniformly sampled within these confined regions, and small
252 random displacements are added to account for local
253 composition fluctuations. Examples of the point clouds for
254 the NET morphologies are shown in Figure 3.
255 Before feeding the point clouds into the PointNet,
256 normalization and augmentation are applied on all raw point
257 clouds. First, each point cloud is min-max scaled such that |x|, |
258 y|, |z| ≤ 1. In addition to the permutation invariance achieved
259 by the PointNet structure, the model prediction should not
260 change with translation or rotation of a point cloud. Therefore,
261 a random translation vector [Δx, Δy, Δz]T is applied to all
262 points in a given cloud, which satisfies |Δx| ≤ Lx/2, |Δy| ≤ Ly/
263 2, |Δz| ≤ Lz/2, where Lx, Ly, and Lz are the lengths of the x, y,
264 and z dimensions for the orthorhombic simulation box. The
265 transformed coordinates are then wrapped into the original
266 bounding box using the periodic boundary conditions. A
267 spatially uniformly random rotation matrix, Mrot, is sub-
268 sequently applied on the wrapped coordinates. To ensure a
269 uniformly distributed rotation (see Figure S1), Mrot is obtained
270 from performing a random rotation about the vertical axis
271 followed by rotating the north pole to a random position,40

272 and can be described by

R
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276where R is a simple rotation matrix around the vertical axis, H
277is the Householder matrix, I is the identity matrix, and θ, ϕ,
278and z are randomly chosen azimuthal angle ([0, π]), polar
279angle ([0, 2π]), and radial distance ([0, 1]), respectively. The
280transformed points are again wrapped using the periodic
281boundary conditions.
282To train the PointNet, 3000 point clouds are selected for
283each of the nine morphologies obtained from the MD
284simulation trajectories and the generated NET structures.
285The data are split into training and test sets containing 80%
286and 20% of the data, respectively. A 5-fold cross-validation is
287performed to detect overfitting. After the data augmentation,
288the network is trained for 100 epochs with a batch size of 64
289point clouds. Depending on the chemical compound and the
290number of molecules used in the simulations (see Table S2)
291and the volume fraction for the generated NET morphologies,
292each point cloud representing the minor component contains
293on average 4500 points with a standard deviation of 1920
294points. For consistency of the input point cloud dimensions, a
295constant number of points ranging from 50 to 2000 is
296randomly drawn from each of the augmented point clouds. In
297addition to the standard workflow including random trans-
298lation and rotation in data augmentation, and STN in the
299PointNet, we also compare the performance when excluding
300random rotation and/or STN.

301■ RESULTS AND DISCUSSION
302We examine the performance and robustness of the PointNet
303by training the network with the point clouds retrieved from
304MD simulations and the generated NET structures. These

Figure 4. Overall test accuracy, A, and test precision, P, recall, R, and F1 score for individual morphologies as functions of input point cloud size for
the models trained with (a) only random translation, (b) random translation and including STN in the PointNet, (c) random translation and
rotation, (d) random translation, rotation, and including STN in the PointNet. The original point clouds of the minor components contain 2000−
6000 points. Because of the finite size of the test set (600 point clouds per morphology), it is possible for recall, precision, and F1 score to reach a
value of exactly 1.0000. For the logarithmic plot, this value is replaced with log10 (1/6000) = −3.778.
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305 point clouds represent the spatial distribution of oxygen atoms,
306 part of the minor CHrOH block in the self-assembled systems
307 with a volume fraction less than 0.5. All point clouds supplied
308 to the PointNet contain equal number of points (Npoints)
309 sampled from the augmented point sets. Each point cloud is
310 labeled as one of nine different morphologies: BCC, DD, DG,

f4 311 DIS, HPC, HPL, LAM, P, and SG. Figure 4 shows the
312 evaluation metrics for morphology classification including test
313 accuracy, precision, recall, and F1 scores of the PointNet
314 models trained by four strategies: (A) only applying random
315 translation, (B) random translation and STN, (C) random
316 translation and rotation, (D) random translation and rotation
317 and STN. In each case, the model accuracy grows initially as
318 Npoints is increased, reaches a plateau with only small changes in
319 the accuracy, and then drops slightly when the number of
320 points is further increased. Confusion matrices for the four
321 strategies are given in Figures S2 to S5. For all four models, the
322 best performance is reached when 1000 or 1200 random
323 points are provided as input point clouds, that is, when on
324 average about 75% of the oxygen positions are not included in
325 the point clouds. This peak in accuracy likely reflects the 1024
326 dimensions before the max pooling layer in the PointNet, but
327 we also note that the average number of molecules in the
328 simulated systems is close to 1000. To obtain a more reliable
329 estimate of the accuracy of the models, we trained each model
330 10 times using different random seeds and randomly selected
331 configurations with 1024 points to form the training set data.
332 The numerical values of the average achieved accuracy and the

t1 333 corresponding 95% confidence interval are provided in Table
t1 334 1.

335 As can be seen in Figure 4, the accuracy generally starts to
336 exceed 90% when only 500 points are extracted, regardless of
337 the training approach, which corresponded to a nearly 90%
338 missing data ratio. This trend is in agreement with robustness
339 tests of the PointNet against input corruption presented in the
340 original paper37 for benchmarks with the ModelNet40 data
341 set,41 where an accuracy of 0.75 was reported when only 256
342 points were used (75% missing data ratio). Interestingly, the
343 robustness in the current study is significantly higher, which
344 may be attributed to two factors: (i) the larger number of
345 points in the training clouds (an average of 4500 vs 1024), and
346 (ii) the point clouds in this study containing atomic positions
347 that span the entire volume of the minority region instead of
348 only representing the surface as in the ModelNet data.
349 The PointNet is designed to discover perceptually
350 interesting points with the highest contribution to the max
351 pooled features.37 Given the max pooling dimension (see
352 Figure 2), up to 1024 points that contribute to the max pooling
353 layer can be selected as critical points from among the Npoints
354 points in a point cloud. Since a given point can take the largest
355 value in more than one max pooling dimension, the lower
356 bound for the number of unique critical points, Ncrit, is the size

357of the input point cloud, Npoints.
37 Figure S6 illustrates input

358point clouds with Npoints = 2000 and the corresponding critical
359points. Although we find Ncrit < 1024 < Npoints, the global shape
360features are not substantially changed even when most of the
361noncritical points are missing. Among the critical points
362contributing to the max-pooled features, only a small portion
363of points are close to domain interfaces, which also indicates
364that PointNet is potentially more robust to volumetric data
365than surface data. Indeed, initial tests generating point clouds
366only from the position of the center of the bond linking the
367oligo-ol and alkyl regions showed less promise than utilizing
368the locations of the oxygen atoms. Similarly, focusing on only
369the local environment of this center point yielded poor
370performance in particular for HPL and NET structures. That
371is, local fluctuations and feature size for the multibead
372oligomers investigated here necessitate a nonlocal PointNet.
373Besides the difference in the spatial distribution of points
374(surface vs volumetric), another major distinction between the
375point clouds from molecular simulations and those from real-
376world objects is periodicity. In most molecular simulations, 3-
377dimensional periodic boundary conditions are utilized to allow
378the finite system in the simulation box to better mimic bulk
379systems. Therefore, the classification model should give exactly
380the same label when a simulated system is shifted along, or
381rotated by any angles around an arbitrary vector. Examples of
382applying such operations to BCC and DG structures are shown
383in Figure 2, which is analogous to achieving equivalent
384morphologies from independent simulations under the same
385thermodynamic conditions.
386The STNs are designed to disentangle part deformations of
387the objects by aligning input data with affine transformations.42

388While real-world objects subject to gravitational forces usually
389have a strongly preferred orientation in the direction parallel to
390the gravitational field, molecular systems in the absence of an
391aligning field may take any orientation. Given this difference in
392orientational preferences, it is interesting to compare the
393impact of random rotations and STNs on the model
394performance. As can be observed from the data presented in
395Figure 4 and Table 1, introducing STNs slightly reduces the
396highest accuracy from 0.973 to 0.957 when the point clouds
397are augmented only with random translations. Models A and B
398both incorrectly classify some of the DD structures as SG, as
399can be inferred from the low precision for SG and the low
400recall for DD. In contrast, the overall accuracy increases from
401model C to D (from 0.983 to 0.990 at Npoints = 1000) when
402STNs are applied along with point clouds that have undergone
403both translations and rotations. Precision and recall are now
404near-perfect for the SG structures, but about 2% of DD
405structures are classifieded as BCC in model C.
406The difference in model performance when applying random
407rotations and/or STNs can be understood using the orienta-
408tional distributions of the simulated and generated morphol-
409ogies. In the point cloud data set, all generated NET
410morphologies possess the same center and orientation, and
411multiple frames are taken from the same MD trajectory. When
412a stable ordered structure is formed in an MD simulation, then
413the overall structural orientation changes only very slowly; this
414results in correlation between samples in the data set, making
415the orientational distribution of the simulation samples highly
416nonuniform and multimodal due to different orientations
417encountered for different systems (see Figure S7). Due to the
418limited alignment capability of the STN originally designed for
419correcting slight rotations and perspective transformations,42 it

Table 1. Accuracy Obtained for Different Training
Strategies. The 95% Confidence Interval (CI) Is Estimated
from Training Each Model 10 Times

model strategy accuracy CI

A translation 0.973 0.010
B translation + STN 0.957 0.011
C translation + rotation 0.983 0.009
D translation + rotation + STN 0.990 0.005
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420 is only able to assist in classification of the model when the
421 orientational distribution of input data is well behaved.
422 Therefore, when comparing models A and B, application of
423 the STN converts a multipeaked orientational distribution
424 (resulting from an insufficiently diverse set of point clouds)
425 into a more uniform distribution (see Figure S7) that, in turn,
426 may introduce extra noise from structural distortion and lead
427 to lower accuracy. A comparison of the performance of models
428 B and C shows that randomly rotating the point clouds before
429 feeding into the PointNet tends to be more effective than
430 solely applying STNs, since the network was encouraged to
431 capture rotational invariance from the rotated point clouds. In
432 contrast, applying STNs for model D indeed enhances the
433 accuracy beyond applying only translations and rotations for
434 model C, and also leads to higher precision for classification of
435 DD and BCC structures with model D. This can be explained
436 by the effectiveness of STNs on a near-uniform orientational
437 distribution after random rotations are applied. In this case, the
438 STNs align the arbitrarily rotated point cloud onto one or a
439 few canonical orientations (see Figure S7), which stabilizes the
440 network and further improves the performance.
441 The block oligomer systems used as training sets contain
442 between 2000 and 6016 oxygen atoms with mean and median
443 of 4500 and 4000, respectively, and their polar blocks contain a
444 total of four or six oxygen atoms (see Table S2). Thus, it is
445 important to assess whether the trained PointNet models can
446 also be applied to block oligomers with larger numbers of
447 repeat units or to larger systems. To this extent, we performed
448 new simulations for four systems using the same force fields
449 and MD parameters as in prior work.13−15 Specifically, we
450 investigated 600-molecule systems for A10B20 and A8B(B18)2
451 (i.e., approximately doubling the number of A segments in the
452 block oligomers), and eight times larger systems for A2B8A2

453 and A4B(B8)2 (8000 and 4000 molecules, respectively). In
454 both cases, the linear block oligomers assemble in LAM

f5 455 morphology, whereas the double-tailed oligomers assemble in

456 f5HPC morphology. Figure 5 and Figure S8 illustrate the
457performance of the four PointNet models. Despite that the
458total numbers of oxygen atoms for the A10B20 and A8B(B18)2
459systems fall within the range used for the training structures,
460the classification performance is quite poor when the 1000
461points are drawn randomly from the positions of all oxygen
462atoms; models A and C perform best for A10B20 and A8B(B18)2,
463respectively. That is, the PointNet models are confused when
464applied to larger block oligomers without pretreatment, and
465the number of oxygen atoms per oligomer appears to play a
466role. Thus, we tested pretreatments where only either four or
467three oxygen atoms in specific positions of the polar group are
468considered for selection of the point cloud. This pretreatment
469leads to a marked increase in performance. Model D classifies
470all 50 frames correctly for A10B20, and all but one frame
471correctly for A8B(B18)2. For the latter, however, models A and
472C classify all 50 frames correctly.
473Considering the systems with larger numbers of molecules,
474all four models without pretreatment indicate that A2B8A2 is
475likely a LAM morphology, but at least eight out of the 50
476frames are incorrectly assigned. For A4B(B8)2 with HPC
477morphology, models A, B, and D incorrectly indicate a
478preference for the DIS morphology, and model B points to
479either BCC or LAM. Despite that this A4B(B8)2 system
480contains half the number of oxygen atoms compared to the
481A2B8A2 system, the correct classification of the HPC
482morphology from a spatially sparse point cloud of 1000
483oxygen atoms (selected from a total of 16000 oxygen atoms)
484appears to be more challenging. Thus, a pretreatment is also
485needed for the larger system sizes. In this case, our
486pretreatment consists of selecting the 1000 oxygen atoms for
487the point cloud only from a subvolume that is one-eighth of
488the volume of the entire system but has the same orientation.
489Again, pretreatment vastly improves the classification perform-
490ance with models A and C giving the correct morphology for
491all 50 frames for both systems. Model D yields some

Figure 5. Stack plots of the predicted softmax classification probabilities obtained with models A, B, C, and D (top to bottom) for 50 frames taken
at 10 ns intervals during a 500 ns MD trajectory. Data in columns a−c are for a 600-molecule A10B20 system with 1000 oxygen atoms for the point
cloud selected at random from (a) all oxygen atoms, (b) only from oxygen atoms in positions 1, 4, 7, and 10 of the polar group, and (c) only from
oxygen atoms in positions 2, 5, and 8 of the polar group. Data in columns d and e are for a 8000-molecule system of the A2B8A2 block oligomer
with 1000 oxygen atoms for the point cloud selected at random from (d) all oxygen atoms and (e) only from oxygen atoms located in a subvolume
with linear dimensions of Lx/2, Ly/2, and Lz/2, where Lx, Ly, and Lz are the box lengths for the entire simulation box.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c02389
J. Phys. Chem. B XXXX, XXX, XXX−XXX

G

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.1c02389/suppl_file/jp1c02389_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.1c02389/suppl_file/jp1c02389_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.1c02389/suppl_file/jp1c02389_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.1c02389/suppl_file/jp1c02389_si_001.pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c02389?rel=cite-as&ref=PDF&jav=AM


492 misclassifications for both systems, and model B does not
493 assign a single frame correctly as HPC for the A4B(B8)2 system.
494 Since the subvolume by itself does not represent a periodic
495 structure, application of the STN appears to be problematic.
496 Although these pretreatment strategies allow for direct
497 application of the PointNet models, there is clearly a limit in
498 the number of repeat units and the system size that can be
499 successfully classified without retraining of the PointNet
500 models.
501 We also apply the models trained using the four strategies to
502 detect morphology changes encountered in a simulation
503 trajectory for a LAM-to-DIS transition. The simulated
504 compound, 1,2,11,12-dodecanetetrol (A2B8A2), forms a
505 thermotropic liquid crystal that self-assembles into the LAM
506 morphology at TSIM = 400 and 430 K.15 Here, an equilibrated
507 LAM structure is simulated in the isobaric−isothermal
508 ensemble for 10 ns at T = 430 K; at this point, a step increase
509 is applied to raise the kinetic temperature and the thermostat
510 temperature to 490 K (i.e., above the order−disorder
511 temperature, TODT), followed by another 30 ns at T = 490
512 K. One thousand frames (spaced at 40 ps intervals) taken from
513 the entire trajectory are used to generate point clouds for the
514 minor component and analyzed by the four models trained
515 only on equilibrium structures.
516 The time evolution of the predicted softmax scores is

f6 517 illustrated in Figure 6, for which each point cloud (Npoints =
518 1000) is classified as belonging to a particular morphology if

519the softmax probability for that morphology is greater than 0.5.
520Models A and C consistently yield LAM softmax scores close
521to unity for the initial 10 ns period below TODT. For the
522models involving STNs, model D yields a few frames with
523HPC and SG false positives, but otherwise LAM softmax
524scores close to unity. In contrast, model B consistently shows
525nonzero softmax scores for other morphologies (mainly DIS
526and P) and also periods of false positives for the P morphology.
527Models A, C, and D indicate softmax scores near unity for DIS
528during the final 13 ns of the trajectory (t > 27 ns). In contrast,
529model B recognizes DIS morphologies only later (t > 35 ns)
530and with softmax scores significantly smaller than unity.
531Since the training data do not contain any point clouds
532reflecting a “transition” phase, it is of interest to compare the
533model predictions for the transition period (10 to 27 ns). All
534four models yield a sudden change to either DIS or P
535morphology immediately after the step increase in temper-
536ature, presumably because the higher temperature is almost
537instantaneously reflected in a change in the local structure
538and/or interfacial roughness (e.g., buckling of the lamellae).
539During the transition period, models A, C, and D indicate a
540mixture of LAM, HPC, and DIS structures, whereas model B
541predicts high probability for the P morphology with softmax
542scores mostly above 0.9. Models A and D show fleeting
543reappearance of the LAM morphology at t ≈ 10, 20, and 25 ns.
544Overall, models C and D show strong preferences for HPC and
545DIS, respectively, during most of the transition period, whereas
546model A yields more similar fractions of HPC, LAM, and DIS.
547These morphology classications suggest that the transition
548from the LAM to the DIS phase is not instantaneous, but
549rather involves a process of disruption and final disintegration
550of the lamellar planes. For the A2B8A2 system, the DIS
551morphology is bicontinuous,15 and the local packing in the DIS
552phase exhibits similarities to disordered cylindrical micelles and
553the HPC phase. Furthermore, order−order transitions from
554LAM to gyroid to HPC can occur before reaching TODT, and
555are predicted by self-consistent mean field theory for coil−coil
556and rod−coil block polymers within certain volume-fraction
557ranges.43,44 Although PointNet classifications for the point
558clouds during the transition period are generalizations from
559models only trained on equilibrium structures, they provide
560additional support for the observation that STNs should not be
561included when the point clouds are not augmented by rotation
562(i.e., model B).

563■ CONCLUSION

564In this work, we train a deep neural network, PointNet, to
565identify morphologies of self-assembling block oligomers using
566points clouds taken from atomic coordinates of the minor
567component obtained by molecular simulations. To expand the
568scope of structure detection, we include synthetic point clouds
569of NET structures commonly observed for self-assembly of soft
570materials. The performances of the models trained using
571different strategies in performing data augmentation, building
572the PointNet architecture, and the number of points in the
573cloud are compared. A classification accuracy of 0.990 is
574achieved using 1000 coordinates (a missing data ratio of about
57575%, but close to the number of dimensions in the max
576pooling layer), applying random translations and rotations
577under periodic boundary conditions to the training data, and
578including spatial transformer networks in the PointNet. With
579judicious pretreatment, the PointNet models can also be

Figure 6. Stack plots of the predicted softmax classification
probabilities obtained with models A, B, C, and D (subgraphs a to
d) for 1000 frames taken at regular intervals during a 40 ns MD
trajectory for which the kinetic temperature is increased above TODT
at t = 10 ns (marked by yellow dashed line) to induce a LAM-to-DIS
transition. (e) Point clouds of the minor component sampled at 5 ns
(left), 20 ns (middle), and 35 ns (right).
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580 applied to oligomers with twice the number of repeat units and
581 an eight times larger system than included in the training set.
582 The generalization ability of the trained models is tested
583 using new point clouds from an MD trajectory sampling the
584 lamellar-to-disorder transition of a block oligomer. We
585 demonstrate that the PointNet models successfully predict
586 the initial and final equilibrium structures and reflect the phase
587 transition during intermediate time frames. The PointNet
588 models presented in this study are generalizable and potentially
589 transferable to discovering emerging structures of other shape-
590 filling amphiphiles and block oligomers in molecular
591 simulations and may guide the discovery of block oligomers
592 forming ordered NET morphologies.
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