
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

BlockSci: Design and applications of a
blockchain analysis platform

Harry Kalodner, Malte Möser, and Kevin Lee, Princeton University;
Steven Goldfeder, Cornell Tech; Martin Plattner, University of Innsbruck;

Alishah Chator, Johns Hopkins University; Arvind Narayanan, Princeton University

https://www.usenix.org/conference/usenixsecurity20/presentation/kalodner

BlockSci: Design and applications of a blockchain
analysis platform

Harry Kalodner∗

Princeton University
Malte Möser∗

Princeton University
Kevin Lee

Princeton University
Steven Goldfeder

Cornell Tech

Martin Plattner
University of Innsbruck

Alishah Chator
Johns Hopkins University

Arvind Narayanan
Princeton University

Abstract
Analysis of blockchain data is useful for both scientific re-
search and commercial applications. We present BlockSci,
an open-source software platform for blockchain analysis.
BlockSci is versatile in its support for different blockchains
and analysis tasks. It incorporates an in-memory, analytical
(rather than transactional) database, making it orders of mag-
nitudes faster than using general-purpose graph databases. We
describe BlockSci’s design and present four analyses that il-
lustrate its capabilities, shedding light on the security, privacy,
and economics of cryptocurrencies.

1 Introduction

Public blockchains constitute an unprecedented research cor-
pus of financial transactions. Bitcoin’s blockchain alone is
260 GB as of December 2019.1 This data holds the key to
measuring the privacy of cryptocurrencies in practice, study-
ing user behavior with regards to security and economics,
or understanding the non-currency applications that use the
blockchain as a database.

We present BlockSci, a software platform that enables the
science of blockchains. It addresses three pain points of ex-
isting tools: poor performance, limited capabilities, and a
cumbersome programming interface. Compared to the use
of general-purpose graph databases, BlockSci is hundreds of
times faster for sequential queries and substantially faster for
all queries, including graph traversal queries. It comes bun-
dled with analytic modules such as address clustering, exposes
different blockchains through a common interface, collects
“mempool” state and imports exchange rate data, and gives
the programmer a choice of interfaces: a Jupyter notebook for
intuitive exploration and C++ for performance-critical tasks.
In contrast to commercial tools, BlockSci is not tailored to
specific use cases such as criminal investigations or insights

∗These authors contributed equally to this work.
1All numbers in this paper are current as of December 2019, and analyses

of the Bitcoin blockchain as of block height 610,695, unless stated otherwise.

for cryptocurrency traders. Instead, by providing efficient and
convenient programmatic access to the full blockchain data,
it enables a wide range of reproducible, scientific analyses.

BlockSci’s design starts with the observation that
blockchains are append-only databases; further, the snapshots
used for research are static. Thus, the ACID properties of
transactional databases are unnecessary. This makes an in-
memory analytical database the natural choice. On top of
the obvious speed gains of memory, we apply a number of
tricks such as converting hash pointers to actual pointers and
deduplicating address data, which further greatly increase
speed and decrease the size of the data. We plan to scale
vertically as blockchains grow, and we expect that this will
be straightforward for the foreseeable future, as commodity
cloud instances currently offer up to a hundred times more
memory than required for loading and analyzing Bitcoin’s
blockchain. Avoiding distributed processing is further moti-
vated by the fact that blockchain data is graph-structured, and
thus hard to partition effectively. In fact, we conjecture that
the use of a traditional, distributed transactional database for
blockchain analysis has infinite COST (Configuration that
Outperforms a Single Thread) [1], in the sense that no level
of parallelism can outperform an optimized single-threaded
implementation.

BlockSci comes with batteries included. First, it is not
limited to Bitcoin: a parsing step converts a variety of
blockchains into a common, compact format. Currently sup-
ported blockchains include Bitcoin, Bitcoin Cash, Bitcoin
SV, Litecoin, and Zcash (Section 2.1). A multi-chain mode
optimizes for user-friendly and memory-efficient analyses of
forked blockchains together with their parent chain. Smart
contract platforms such as Ethereum are outside our scope.

Second, BlockSci includes a library of useful analytic tools,
such as identifying special transactions (e.g., CoinJoin) and
linking addresses to each other based on well-known heuris-
tics, including across forked chains (Section 2.4). Third,
BlockSci can record the time of transaction broadcasts on
the peer-to-peer network and expose them through the same
interface. Similarly, we make (historical and current) data on

USENIX Association 29th USENIX Security Symposium 2721

the exchange rates between cryptocurrencies and fiat curren-
cies readily available. These allow many types of analyses
that wouldn’t be possible with blockchain data alone.

The analyst begins exploring the blockchain through a
Jupyter notebook interface (Section 2.5), which initially ex-
poses a chain object, representing the entire blockchain.
Startup is instantaneous because transaction objects are not
initially instantiated, but only when accessed. Iterating over
blocks and transactions is straightforward, as illustrated by
the following query, which computes the average fee paid by
transactions in each block mined in December 2019:

fees = [mean(tx.fee for tx in block) for
block in chain.range(’Dec 2019’)]

This interface is suitable for exploration, but for analyses re-
quiring high performance, BlockSci also has a C++ interface.
For many tasks, most of the code can be written in Python us-
ing a “fluent interface”, an API design pattern that combines
expressiveness and high performance (Section 2.5).

In Section 3 we present four applications to illustrate the
capabilities of BlockSci. First, we show how multisignatures
have the unfortunate effect of weakening confidentiality by
exposing the details of access control on the blockchain, and
hurting the privacy of users who do not use them (Section 3.1).
Next, we study how users’ cash-out behavior after the Bitcoin
Cash hard fork hurt their privacy (Section 3.2) and find pat-
terns of key reuse that may put users’ funds at elevated risk.
Turning to economics, we analyze Bitcoin Core’s fee estima-
tion’s algorithm (Section 3.3), and find it relatively ineffective
for predicting waiting times due to the inherent uncertainty
of proof-of-work. Finally, we provide improved estimates
of the velocity of cryptocurrencies, i.e., the frequency with
which coins change possession (Section 3.4). This helps us
understand their use as a store of value versus a medium of
exchange.

2 Design and architecture

Figure 1 shows an overview of BlockSci’s architecture. There
are two routes for importing data into BlockSci (Section 2.1).
Through either route, the data is converted by the parser (Sec-
tion 2.2) into the BlockSci Data (Section 2.3), which can be
incrementally updated as new blocks come in. The analysis
library (Section 2.4) loads this data as an in-memory database,
which the user can either query directly (in C++) or through
a Jupyter notebook interface (Section 2.5).

A recurring theme in this section is that since BlockSci is
a domain-specific database, we are able to make assumptions
about the schema and the workload that allow us to achieve
large performance gains and an expressive interface. Both
this broad lesson and some of our specific optimizations may
be applicable to other domains.

2.1 Recording and importing data

Design decision: which blockchains should BlockSci sup-
port? There are hundreds of blockchains, some of which
differ from Bitcoin in minor ways and others drastically. As
we aim to provide a common interface for the analysis of all
supported blockchains, supporting too few blockchains (e.g.,
just Bitcoin) limits usefulness, but supporting too many dif-
ferent blockchains would complicate the interface and make
optimizations harder.

Recall that the Bitcoin blockchain consists primarily of a
directed acyclic graph of transactions. The edges connecting
transactions have attributes, i.e., addresses or scripts, attached
to them. Transactions are grouped into blocks which are ar-
ranged in a linear chain, with a small amount of metadata per
block. BlockSci supports blockchains that follow this basic
structure. For example, Litecoin makes no changes to the data
structure, and is thus fully supported. Cryptocurrencies that
introduce changes to the script operations may be supported
only partially, but the user can parse unknown scripts with a
few lines of code. Zcash is also supported, at least to the extent
that Zcash blockchain analysis is even possible: it introduces
a complex script that includes zero-knowledge proofs, but
these aspects are parceled away in a special type of address
that is not publicly legible by design.

An example of an unsupported blockchain is Monero, as it
doesn’t follow the “each input spends one output” paradigm.
Its transaction graph contains additional edges, the mixins.
Supporting it would require changes to the data layout as well
as the programmer interface. Similarly, Ethereum departs
from the transaction-graph model, and further, its script is
vastly different from and more complex than that of Bitcoin.

In our analyses we have worked with six blockchains: Bit-
coin, Bitcoin Cash, Litecoin, Namecoin, Dash, and Zcash.
Many other cryptocurrencies make no changes to the
blockchain format, and so should be supported with no
changes to BlockSci.

Multi-chain mode. By default, BlockSci operates on a sin-
gle blockchain. We also provide a multi-chain mode in which
several forked chains (e.g., Bitcoin ≺ Bitcoin Cash ≺ Bitcoin
SV) can be combined in an optimized, memory-efficient multi-
chain configuration. In this mode, data common to forked
chains (such as pre-fork transactions) need to be loaded into
memory only once. Address data is deduplicated across forks,
allowing for novel cross-chain analyses.

Importer. For cryptocurrencies with small blockchains
where import performance is not a concern, we use the JSON-
RPC interface. The advantage of this approach is versatility,
as many cryptocurrencies aim to conform to a standard JSON-
RPC schema regardless of the on-disk data structures and
serialization format. For larger blockchains (currently only
Bitcoin and its forks are large enough for import performance
to be a concern), we use our own high-performance importer
that directly reads the raw data on disk.

2722 29th USENIX Security Symposium USENIX Association

Network P2P
node

Parser

Raw
blockchain

data

JSON-RPC
importer

Custom
importer

BlockSciFull Node Software

Transaction graph

Scripts & additional data

Indexes

BlockSci Data

Analysis
library

Notebook
interface

P2P data
Price data

Address tags

User-supplied data

Figure 1: Overview of BlockSci’s architecture.

Mempool recorder. BlockSci can optionally record mem-
pool data, that is, timestamps of transactions that are broad-
cast to the P2P network and are waiting to be included in the
blockchain. The waiting time of included transactions pro-
vides valuable data for economic analyses and isn’t recorded
in the blockchain itself. When users choose to collect these
timestamps, they are accessible through the same interface as
all other blockchain data.

2.2 Parser

Implementation challenge: optimizing the parser. The on-
disk format of blockchains is not very usable for analysis. It
is optimized for a different set of goals, such as transaction
validation and data retrieval in a distributed network. Bitcoin
Core and similar clients minimize memory consumption and
store blocks in raw network format on disk, whereas we aim
for a representation of the data that can fit in memory. Given
that a data transformation is necessary, we describe the design
and optimization of the parser that handles this step.

Parsing is sequential and stateful. The blockchain must
be processed sequentially as two types of state are required
for the transformation: one is to link a transaction’s inputs
to outputs of prior transactions, and the other is to link input-
s/outputs to addresses. Each transaction input specifies which
output it spends, encoded as (transaction hash, output index).
The parser assigns an ID to every transaction and stores infor-
mation for every unspent output (UTXO), including the hash
→ ID mapping. Similarly, it must assign IDs to addresses and
maintain this mapping for linking and deduplication.

In Bitcoin, transactions spending outputs of other transac-
tions in the same block must appear after them. Other cryp-
tocurrencies, however, violate this rule. Bitcoin Cash uses
canonical transaction ordering (CTOR) within each block,
i.e., based on their hash. Thus, to process a block, the parser

processes transactions in multiple passes: it first identifies all
transactions in a block before it can correctly link transaction
inputs to the outputs spent. This allows the parser to tolerate
an arbitrary ordering of transactions within each block.

UTXOs can be removed from the parser state after they
have been spent. Address mapping, however, allows no such
optimization. Any address may be used by any output and
thus all addresses must be tracked at all times. Storing the
map in memory would require too much memory, and storing
it on disk would make the parser too slow.

Optimization: Bloom filters and address caches. To
achieve further optimizations, we observe that the vast ma-
jority of inputs spend recently created outputs (e.g., 88 % of
inputs spend outputs created in the last 4000 blocks). And
only 8.6 % of Bitcoin addresses are used more than once, but
those account for 51 % of all occurrences. This motivates the
following trade-off between speed and memory consumption:

1. A bloom filter (a probabilistic data structure that allows
testing membership in a set) stores all seen addresses.
Recall that negative results from a bloom filter are al-
ways correct, whereas there is a small chance of false
positives. This ensures correctness of lookups for exist-
ing addresses while minimizing the number of database
queries for nonexistent ones.

2. A multi-use address cache contains (and does not evict)
all addresses that have been used multiple times.

3. Address hashes are stored in a key-value database on disk
(RocksDB [2]), with a default cache that has a Least Re-
cently Used (LRU) replacement policy. New entries are
cached before being written to the database in batches.

Shared state across chains. In multi-chain mode, the
parser processes all—parent and forked—chains sequentially.
It shares and reuses parser states across chains, such as the
bloom filter of seen addresses. By sharing a single database,
address data is deduplicated across forked chains.

USENIX Association 29th USENIX Security Symposium 2723

Description Bits Description Bits

Description Bits

Real size 32

Base size 32

Locktime 32

Input count 16

Output count 16

Inputs
. . .

128
(each)

Outputs
. . .

128
(each)

Spent tx ID 32

Address ID 32

Value 60

Address type 4

Spending tx ID 32

Address ID 32

Value 60

Address type 4

Figure 2: Transaction structure

Incremental updates. The append-only nature of the
blockchain enables incremental updates to the parser out-
put. The parser serializes its final state at the end of a run and
resumes from that state when invoked again. A difficulty with
this approach is handling blockchain reorganization which
occurs when a block that was originally in the longest branch
is surpassed by a different branch. BlockSci recommends to
ignore the most recent few blocks during initialization. The
probability of a reorg that affects d or more blocks decreases
exponentially in d. The default value of d for Bitcoin is 6. If
a deeper reorg happens, the user needs to reparse the chain.

2.3 BlockSci Data

Key challenge: finding a data layout that gives a good
trade-off between memory efficiency and performance.

Based on our experience with empirical blockchain analysis
over several years, we divide the available data into three
categories and combine it in a hybrid scheme that provides us
with a reasonable trade-off between efficient use of memory
and speed of access:

1. The core transaction graph is required for most analyses
and always loaded in-memory. It is stored in a row-based
format.

2. Scripts and additional data is required for only a subset of
analyses. It is stored in a hybrid (partially column-based,
partially row-based) format and is loaded on-demand.

3. Indexes to look up individual transactions or addresses
by hash are stored in a separate database on disk.

We make further optimizations to improve performance,
including using fixed-size encodings for data fields where pos-
sible, optimizing the memory layout for locality of reference,
linking outputs to inputs for efficient traversal, and sharing
identical data across chains in multi-chain mode.

Transaction graph. The core transaction graph is stored
in a single sequential table of transactions, with entries hav-
ing the structure shown in Figure 2. Note that entries have
variable lengths, due to the variable number of inputs and

outputs (there is a separate array of offsets for indexing, due
to the variable entry lengths). Normally this would necessitate
entries to be allocated in the heap, rather than contiguously,
which would have worse memory consumption and worse
locality of reference.

However, because of the append-only property of the
blockchain, there are only two types of modifications that
are made to the transactions table: appending entries (due
to new transactions) and length-preserving edits to existing
entries (when existing UTXOs are consumed by new transac-
tions). This allows us to create a table that is stored as flat file
on disk that grows linearly as new blocks are created. To load
the file for analysis, it is mapped into memory. The on-disk
representation continues to grow (and be modified in place),
but the analysis library provides a static view (Section 2.4).

Layout and locality. The main advantage of the transac-
tion graph layout is spatial locality of reference. Analyses that
iterate over transactions block-by-block exhibit strong locality
and benefit from caching. Such analyses will remain feasible
even on machines with insufficient memory to load the entire
transaction graph, because disk access will be sequential.

The layout stores both inputs and outputs as part of a trans-
action, resulting in a small amount of duplication (a space
cost of about 19 %), but resulting in a significant speedup for
sequential iteration compared to a normalized layout. Variants
of the layout are possible depending on the types of iteration
for which we wish to optimize performance (Section 2.6).

Additional data. Beyond the core transaction graph,
BlockSci provides access to additional data that are necessary
for some types of analyses. These include script data, trans-
action hashes and version numbers, input sequence numbers,
input-output linkages, and raw data contained in coinbase
transactions. Keeping this data separate reduces memory us-
age in exchange for a small reduction in speed of access for
analyses that require this data (e.g., 10 % slower for a typical
query that iterates over transaction metadata).

Scripts. BlockSci categorizes scripts into 5 generic types,
each of which contains scripts of one or more address formats:
script-hash (for script-hash and witness-script-hash scripts),
pubkey (for raw pubkey, pubkey-hash, individual pubkeys in
a multisig script, and witness-pubkey-hash scripts), multisig,
null data, and unknown witness scripts. All other scripts are
categorized as nonstandard. Internally, script data of different
address formats is deduplicated: for example, a public key
used in both a pubkey-hash and a witness-pubkey-hash script
is stored only once. For nonstandard scripts, BlockSci stores
the entire script data which can be parsed with only a few
lines of code by the analyst.

Indexes. Transaction hashes and addresses are stored in
flat files and can easily be looked up by transaction/address
ID. The reverse mapping from hash to ID, however, is stored
in separate indexes in RocksDB databases (the address in-
dex is also used by the parser). Accessing these indexes is
almost never performance critical in scientific analysis—in

2724 29th USENIX Security Symposium USENIX Association

fact, many analyses don’t require the indexes at all. Besides
the ability to look up transactions and addresses by hash, we
also provide a lookup for all outputs associated with specific
addresses.

Multi-chain mode. To support forked blockchains, we
make three modifications to the layout described above. First,
forked chains often share a large common history with their
parent chain. We load these identical blocks only once, and
the analysis library provides the abstraction of a full chain for
each fork. Second, the fixed-size encoding does not permit
storing data of multiple chains. For example, UTXOs at fork
height can be spent in both the parent and the forked chains,
but the fixed-length field can only hold a single index for the
spending transaction (cf. Figure 2). Each fork thus needs a
separate flat file that contains the spending transactions’ IDs
for outputs created before the fork. Third, the index that maps
addresses to outputs requires an additional chain identifier to
distinguish between outputs on different chains.

2.4 BlockSci Analysis Library

The snapshot illusion. The following three seemingly con-
tradictory properties hold in BlockSci:

1. The transactions table is regularly updated on disk as new
blocks are received (note that arbitrarily old transactions
may be updated if they have unspent outputs that get
spent in new blocks).

2. The table is memory-mapped and shared between all
running instances of BlockSci.

3. Each instance loads a snapshot of the blockchain that
never changes unless the programmer explicitly invokes
a reload.

The contradiction disappears once we notice that the state
of the transactions table at any past point in time (block height)
can be reconstructed given the current state. To provide the
illusion of a static data structure, when the blockchain object
is initialized, it stores the height of the blockchain at initial-
ization time. The blockchain on disk increases over time, but
the stored height remains fixed, and accesses to blocks past
this height are prevented. The analysis library intercepts and
rewrites accesses to transaction outputs such that outputs that
were spent in blocks added after initialization appear unspent.

Memory mapping and parallelism. Since BlockSci uses
the same format for the transaction graph on disk and in
memory, loading the blockchain simply involves memory-
mapping this file. Once in memory, each transaction can be
accessed as a C++ struct; no new memory needs to be
allocated to enable an objected-oriented interface to the data.
This is because the disk layout of each struct is identical to
its memory layout.

Memory mapping allows users to efficiently run BlockSci
on machines with less than the recommended amount of mem-
ory provided that they only require access to a subset of the
data that fits in memory.

Memory mapping also allows multithreaded parallel pro-
cessing with no additional effort. Recall that if a file is mapped
into memory by multiple processes, they use the same phys-
ical memory for the file. The file has only one writer (the
parser); it is not modified by the analysis library. Thus, syn-
chronization between different analysis instances isn’t nec-
essary. With a disk-based database, analyses tend to be I/O-
bound, with little or no benefit from multiple CPUs, whereas
BlockSci is CPU-bound, and performance scales roughly lin-
early with the number of virtual CPUs (Section 2.6). Finally,
memory mapping also makes it straightforward to support
multiple users on a single machine, which is especially useful
given that Jupyter notebook (the main interface to BlockSci)
can be exposed via the web.

Mapreduce. Many analyses, such as computing the aver-
age transaction fee over time, can be expressed as mapreduce
operations over the transactions table (or ranges of blocks).
Thus the analysis library supports a mapreduce abstraction
that, with no additional effort from the programmer, handles
parallelizing the task to utilize all available cores. As we
show in Section 2.6.1, parallel iteration over all transactions,
transaction inputs, and transaction outputs on the Bitcoin
blockchain as of December 2019 takes only 0.9 seconds on a
single 16-vCPU EC2 instance.

Address linking. Address linking (or clustering) is a key
step in many analytic tasks including understanding trends
over time and evaluating privacy. Recall that cryptocurrency
users can trivially generate new addresses, and most wallets
take advantage of this ability. Nevertheless, addresses con-
trolled by the same user or entity may be linked to each other,
albeit imperfectly, through various heuristics.

Two common types of heuristics include (1) inputs spent
in the same transaction are controlled by the same entity, and
(2) identifying a change address based on client software or
user behavior (e.g., [3]). As the multi-input heuristic does
not apply to CoinJoin transactions, we add an exception for
those transactions, which we identify using the algorithm de-
scribed by Goldfeder at al. [4]. Change address identification
is challenging due to the variety of existing client software.
BlockSci comes with several—as of this writing, ten—change
address heuristics that can be used individually or in combina-
tion with each other, allowing the analyst to choose or create
a heuristic best suited for their analysis task.

These heuristics create links (edges) in a graph of addresses.
By iterating over all transactions and applying the union-find
algorithm on the contained addresses we generate clusters
of addresses. This set of clusters is the output of address
linking. We use the union-find implementation by Jakob [5].
Clustering takes only a few minutes, allowing the analyst to
recompute and compare clusters with different heuristics.

In multi-chain mode, BlockSci can enhance the clustering
of a target chain using information from forked chains. Ad-
dresses that exist on multiple chains may be used differently
on them, e.g., combined with a different set of input addresses.

USENIX Association 29th USENIX Security Symposium 2725

100 101 102 103

Cluster size

100

102

104

106

108

Nu
m

be
r o

f c
lu

st
er

s

Figure 3: Distribution of sizes of address clusters in Bitcoin
after applying address-linking heuristics. Sizes 1–2,000 are
shown here but there are many clusters that are much larger.

Cross-chain address clustering uses these additional links to
enhance the clustering of the target chain (cf. Section 3.2).

Figure 3 shows the distribution of cluster sizes for Bitcoin
using the multi-input heuristic only. There are about 474
million clusters in total, of which about 380 million are single
addresses, and about 93 million have between 2 and 20,000
addresses. There are 809 clusters with over 20,000 addresses,
including one supercluster with over 17 million addresses.

Address linking is inherently imperfect, and ground truth is
difficult to obtain on a large scale, since it requires interacting
with service providers. We do not attempt to be comprehen-
sive, resulting in false negatives (i.e., missed edges, resulting
in more clusters than truly exist). More perniciously, most of
the heuristics are also subject to false positives (i.e., spurious
edges), which can lead to “cluster collapse”. In particular, it is
likely that the supercluster above is a result of such a collapse.

Tagging. Address linking is especially powerful when com-
bined with address tagging, i.e., labeling addresses with real-
world identities. This can be useful for forensics and law-
enforcement investigations but it can also violate user pri-
vacy. BlockSci does not provide address tags. Tagging re-
quires interacting with service providers and cannot be done
in an automated way on a large scale. Companies such as
Chainalysis and Elliptic specialize in tagging and forensics,
blockchain.info allows users to publicly tag addresses that
they control, and researchers sometimes provide datasets of
address tags [6]. BlockSci has a limited tagging feature: if
the user provides tags for a subset of addresses, individual
clusters can return tags associated with them.

2.5 Programmer interface

Key challenge: combining speed and expressiveness.
BlockSci aims to come close to the speed of C++ while provid-
ing expressiveness and convenience of a high-level language,
namely Python, for as many analysis tasks as possible.

Python interface. Jupyter notebook is a popular Python
interface for data science. It allows packaging together code,

visualization, and documentation, enabling easy sharing and
reproducibility of scientific findings. We expose the C++
BlockSci library to Python through the pybind11 interface [7].
While we intend Jupyter notebook to be the main interface to
BlockSci, it is straightforward to utilize the analysis library
directly from standalone C++ or Python programs and derive
most of the benefits of BlockSci.

Python is not a language known for performance; unsur-
prisingly, we find that it is significantly slower to run queries
through the Python interface. Nevertheless, our goal is to al-
low the programmer to spend most of their time interacting
with the Jupyter notebook, while simultaneously ensuring
that the bottleneck parts of queries execute as C++ code. We
illustrate this through an example.

Suppose our goal is to find transactions with anomalously
high transaction fees — say 0.1 bitcoins (107 satoshis), worth
about 720 US dollars as of December 2019. The slowest way
to do this would be to write the entire query in Python:

[tx for block in chain for tx in block if
sum(txin.value for txin in tx.inputs) -
sum(txout.value for txout in
tx.outputs) > 10**7]

This way does not result in acceptable performance. A first
step to improve both performance and conciseness is to have
a built-in function to compute the fee:

[tx for block in chain for tx in block if
tx.fee > 10**7]

Although tx.fee calls a C++ function, we model it as
a property in the Python interface. Most helper functions
are modeled as properties, unless they are expected to take
significant time to compute, or take arguments. tx.fee is
just one of many helpers exposed by the Python library that
execute as C++. We’ve found that most of the analyses in
Section 3 benefit from a small number of helper functions.

Fluent interface. Running this analysis over the entire
blockchain in Python still does not provide great performance.
At the time of writing, the Bitcoin blockchain contains more
than 480 million transactions, for each of which the above
query instantiates a Python object, even though only a few
thousand transactions will eventually be selected.

To make analyses faster without requiring the user to write
complicated C++ code, we’ve developed a fluent interface [8]
to specify graph queries. A fluent interface is an internal
domain-specific language (DSL) that allows the analyst to
specify queries as a sequence of selections and filters over
the transaction graph. Method chaining makes specifying se-
quences of operations convenient: every operation returns a
proxy object to which further operations can be applied. Exe-
cution happens lazily for most parts of this interface: either
when the analyst requests a list of the results or when the
query reaches a point that does not allow further traversal
(e.g., after selecting the fee of a transaction). Using the flu-

2726 29th USENIX Security Symposium USENIX Association

Table 1: BlockSci C++ running time for various queries iter-
ating over 610,695 Bitcoin blocks.

Iterating over Single-threaded Multithreaded

Tx headers 6.7 sec 0.6 sec
Tx outputs 9.8 sec 0.8 sec
Tx inputs & outputs 11.3 sec 0.9 sec
Headers in random order 179.1 sec Unsupported

ent interface, the anomalous-fee query can be expressed as
follows:

chain.blocks.txes.where(lambda tx: tx.fee >
10**7).to_list()

Our interface provides many options to select and filter
data. The select clause allows to select properties of ob-
jects, though most properties can be conveniently accessed di-
rectly, e.g., txes.fee instead of txes.select(lambda tx:
tx.fee), as the library redirects such property accesses to the
corresponding select function call. As demonstrated above,
where filters objects using predicates. any and all apply
predicates over a list of objects and return whether they apply
to any or all contained items, max and min select elements
with the highest (or lowest) attribute value, and a group_by
clause returns aggregates of properties. We provide a detailed
overview of available clauses in the online documentation.

The fluent interface operates single-threaded. Providing the
mapreduce functionalities of the C++ interface for the fluent
interface is planned for future versions. Currently, the user
can work around this limitation using Python’s multiprocess
library to parallelize the computation on subsets of blocks or
transactions.

2.6 Performance evaluation
We now report the speed and memory consumption of
BlockSci. All measurements assume that the in-memory data
structures are already loaded in memory. This takes about 4
minutes for Bitcoin and needs to be done only once per boot.

2.6.1 Basic run time statistics

We run measurements on a single r5.4xlarge EC2 instance
(16 vCPUs, 2.5 GHz Intel Xeon Platinum 8175M, 128 GiB
memory, 800 GiB EBS volume). The cost is $1.12 per hour.

The most common type of access is a mapreduce-style iter-
ation over the blockchain. A representative example is finding
transactions with anomalously high fees, because computing
the fee requires iterating over not just transactions, but also
the inputs and outputs of each transaction. In essence, this
query touches the entirety of the transactions table data.

As Table 1 shows, a single-threaded implementation of this
query completes in 11.3 seconds. Mapreduce-style queries are

Table 2: BlockSci Python running time for the anomalous-fee
query iterating over 610,695 blocks under the three paradigms
discussed in Section 2.5.

Query type Single threaded Multithreaded

Pure Python — 18 hrs
C++ builtin 6 min 59 sec 58.6 sec
Fluent interface 38.3 sec 8.7 sec

embarrassingly parallel, as seen in the table. Our test machine
has 16 virtual cores, i.e., 8 physical cores with hyperthreading.
Executed in parallel, the query finishes under one second.

The table shows that iterating over only the outputs (e.g.,
finding the max output value) is faster, and iterating over
only the headers is faster still. The above queries benefit
from locality of reference. Other queries, especially those
involving graph traversal, will not. To simulate this, we iterate
over transaction headers in random order. We see that there is
a 26-fold slowdown.

In Section 2.5 we presented several paradigms for query-
ing the blockchain from the Python interface: pure Python,
C++ helper functions, and the fluent interface. Table 2 shows
the performance of these three paradigms on the anomalous-
fee query. The pure-Python method has unacceptable perfor-
mance (this is partially a result of a few performance traps
in the current codebase). Using the helper method is a lot
faster, but using the fluent interface is preferred: it is 7–11x
faster than the helper method. Compared to implementing a
single-threaded C++ query, the fluent interface is only 3-5x
slower for many practical applications (cf. Table 3).

2.6.2 Comparison with graph databases

Graph traversal is integral to many blockchain analyses, such
as inspecting specific addresses or determining change based
on properties of the spending transaction. In this section,
we compare BlockSci’s performance against three general-
purpose graph databases: Neo4j, RedisGraph, and Memgraph.

Neo4j is one of the most popular graph databases currently
available. While it is not an in-memory database, we can
load the entire dataset into the page cache before execut-
ing queries. Memgraph and RedisGraph are pure in-memory
graph databases, the latter being built on top of the key-value
database Redis.

All three databases allow to import data in CSV format
and to execute queries using the Cypher query language. This
allows us to run almost exact queries on all three databases.
We created an export tool for BlockSci that exports blockchain
data into the CSV format readable by these databases.

The graph representation of these databases is significantly
larger than the BlockSci Data format (and thus needs more
disk space and memory), even though we choose to only
store a few properties and not all information available in

USENIX Association 29th USENIX Security Symposium 2727

Table 3: Average running time in seconds (over five consecutive runs) for graph queries on a dataset with 25 million transactions
(up to block height 262,176). Standard deviations and running times for more datasets are provided in Table 8 in the appendix.

Query BlockSci Neo4j RedisGraph Memgraph
C++ (ST) C++ (MT) Fluent interface (ST) w/o index w/ index

Tx locktime > 0 0.31 0.03 1.37 7.84 0.05 1.85 16.44
Max output value 0.46 0.03 3.91 26.63 24.55 4.48 40.08
Calculate fee 0.57 0.03 2.79 302.73 303.69 –1 187.02
Satoshi Dice address 0.49 N/A 0.54 0.95 0.99 2.56 45.91
Zero-conf outputs 5.47 0.32 18.17 192.01 207.41 1488.93 59.96
Locktime change 7.57 0.45 18.21 208.95 213.59 –1 122.98

–1: did not finish within reasonable time (based on other queries and dataset sizes), ST = single-threaded, MT = multi-threaded

BlockSci. We deem this a reasonable compromise: while
BlockSci aims to be a general-purpose tool, analysts may
decide to ignore data irrelevant to their goals when choosing
a different database. We design the graph property model for
flexibility and expressiveness of traversal queries, thus we
explicitly model blocks, transactions, outputs, and addresses
as nodes. A detailed description of the model can be found in
Appendix A.

We evaluate these databases on graphs of different sizes
(i.e. historic snapshots of the blockchain). While we intended
to run the measurements on the full transaction graph, perfor-
mance issues of the graph databases already became apparent
with data set sizes significantly smaller than the full graph and
prevented the completion of measurements on the full graph
in a reasonable time frame (cf. Table 8 in the appendix).

We run measurements on an r5.8xlarge EC2 instance (32
vCPUs, 256GiB memory). Besides repeating the iterative
queries from the previous section (finding transactions with a
positive locktime, finding the highest output value and finding
the highest transaction fee) we also run three queries involv-
ing graph traversal (calculating the total value received by a
popular address, counting the number of outputs that have
been spent in the same block and identifying transactions
where exactly one output has been spent in a transaction that
uses a similar locktime policy).2

Table 3 shows query running times for a dataset of 25
million transactions (the current blockchain contains more
than 489 million transactions). We can see that BlockSci’s
is generally much faster than the other databases, by a factor
of 2–16 compared to the best results for graph traversal, and
hundreds times faster for many sequential queries. Results for
more data sets can be found in Table 8 in the appendix.

2The Cypher queries used are listed in Table 7 in the appendix.

Table 4: Size of the transaction graph under each of 4 possible
memory layouts. The ‘Current’ column refers to the Bitcoin
blockchain as of the end of December 2019, which has about
489 million transactions, 1.198 billion inputs and 1.302 billion
outputs (including unspent ones).

Growth (bytes) Current

Current 24 Ntx + 16 Nin + 16 Nout 50.09 GB
Normalized 24 Ntx + 8 Nin + 16 Nout 40.50 GB
Fee cached 32 Ntx + 16 Nin + 16 Nout 54.00 GB
64-bit 24 Ntx + 24 Nin + 24 Nout 69.26 GB

2.6.3 Comparison with other open-source blockchain
analysis tools

When we initially made BlockSci publicly available, we eval-
uated its performance against other open-source blockchain
analysis tools. We found BlockSci to be 15-600x faster than
these tools [9], and its performance has improved consider-
ably since. As we attempted to repeat the comparison, we
found that these tools are no longer maintained. A few new
blockchain analysis tools are available, but we found that
they aren’t general purpose tools but only support specific use
cases.

2.6.4 Parser performance

Parsing the blockchain needs to be done only once upon instal-
lation; incremental updates are essentially instantaneous. On
our r5.4xlarge machine, parsing the Bitcoin blockchain until
end of December 2019 (block height 610,695) took 5.5 hours.
Note that it takes Bitcoin Core several hours to download the
blockchain, so initialization is slow anyway.

2.6.5 Memory

Table 4 shows the memory consumption of BlockSci as a
function of the size of the blockchain (measured by the num-
ber of transactions, inputs, outputs, and addresses). As noted

2728 29th USENIX Security Symposium USENIX Association

earlier, for almost all analysis tasks we have encountered so
far, only the transaction table needs to be in memory to ensure
optimal performance. As of December 2019, this comes out
to about 50 GB for Bitcoin.

Recall that BlockSci’s default layout of the transaction table
is not normalized: coins are stored once as inputs and once as
outputs. The table also shows the memory consumption for
several alternate layouts. While normalizing the layout would
save 19 % space, it leads to a steep drop in performance for
typical queries such as max-fee. Alternatively, we could store
derived data about transactions, such as the fee, at the expense
of space. Finally, we also show how the space consumption
would increase if and when we need to transition to 64-bit
integers for storing transaction and address IDs.

3 Applications

We now present four analyses that highlight BlockSci’s ef-
fectiveness at supporting blockchain analyses. The first two
relate to privacy and confidentiality, the third and fourth to
the economics of cryptocurrencies. Table 5 shows how these
applications take advantage of the features of BlockSci’s anal-
ysis library and data sources.

3.1 Multisignatures hurt confidentiality

Security conscious users or companies that store large
amounts of cryptocurrency often make use of Bitcoin’s mul-
tisignature capability. Unlike standard pay-to-public-key-hash
(P2PKH) transactions which only require one signature to
sign, multisig addresses allow one to specify n keys and a pa-
rameter m≤ n such that any m of the specified keys must sign
in order to spend the money. This feature allows distributing
control of a Bitcoin wallet: keys can be stored on n servers or
by n different employees of a company such that m of them
must agree to authorize a transaction. Similarly, a user could
store a key on both her desktop computer and her smartphone
and require the participation of both to authorize a transaction
(a 2-of-2 multisig).

Bitcoin’s multisig implementation requires users to explic-
itly list all n keys as well as the values m and n. To make it
easier to receive funds to multisig addresses, Bitcoin imple-
ments an address format called pay-to-script-hash (P2SH),
where the sender only needs to know a hash value of the full
script. When spending from such an address, the receiver
has to provide all individual keys and the parameters m and
n along with valid signatures in the input. As of December
2019, up to 27 % of all bitcoins mined are held in multisig
addresses.3

3There is some uncertainty because we can only determine whether a
P2SH script wraps a multisig script or some other kind of script once it has
been spent. However, past data suggests that most of the value in P2SH
outputs indeed correspond to multisig.

In this section we show how multisignatures expose confi-
dential information about access control on the blockchain,
as suggested by Gennaro et al [13]. We further show how the
use of multisignatures can hurt the privacy of other users. Fi-
nally, we observe patterns of multisig usage that substantially
reduce its security benefits.

Confidentiality. For companies or individuals that use mul-
tisig to enforce access control over their wallet, multisig pub-
licly exposes the access control structure as well as changes
to that structure. In other words, it exposes the number of total
keys and the number of keys needed to sign, the individual
(public) keys themselves, as well as changes in access control
that may correspond to events such as a loss of a device or
the departure of an employee.

Two characteristics indicate that a transaction might repre-
sent a change in access control:

• Single input, single output. Payment transactions typi-
cally involve multiple inputs and/or change outputs. By
contrast, a transaction with only one input and one out-
put (whether a regular or a multisig address) suggests
that both are controlled by the same entity.
• Overlapping sets of multisig keys between the input

and the output suggest a change in access control (e.g.,
the replacement or removal of a specific key), but not a
complete transfer of control.

As an example of such a transaction with these characteris-
tics, consider the transaction 96d95e...4. In this transaction,
over USD $130,000 of Bitcoin was transferred from one 2-
of-3 multisig address to a second 2-of-3 multisig address.
These addresses shared 2 keys in common, but one of the
original keys was replaced with a different key. Chainalysis5

labels both the input and output addresses as being controlled
by coinsbank.com. This publicly reveals an internal access
control change happening at a private company.

Figure 4 shows that these types of information leakage hap-
pen regularly. Every month, tens of thousands of transactions
transferring bitcoins worth millions of dollars publicly expose
confidential access control structure changes in this way.

Privacy. When an output address uses the same type of
access-control policy as an input address, it is a strong indica-
tor that the output was used as a change address. This provides
a powerful heuristic to identify change addresses. We find
that for many transactions, this heuristic allows identifying
change addresses even though previously known heuristics
(e.g., [3]) do not allow such a determination.

While Gennaro et al. mention the unfortunate privacy-
infringing side-effect of multisig [13], we provide the first
empirical evidence for the pervasiveness of this effect. We
have implemented a generalized heuristic that identifies the
change address based on it being the only output that matches

4https://blockchain.info/tx/96d95eb77ae1663ee6a6dbcebbbd4
fc7d7e49d4784ffd9f5e1f3be6cd5f3a978

5https://www.chainalysis.com/

USENIX Association 29th USENIX Security Symposium 2729

coinsbank.com
https://blockchain.info/tx/96d95eb77ae1663ee6a6dbcebbbd4fc7d7e49d4784ffd9f5e1f3be6cd5f3a978
https://blockchain.info/tx/96d95eb77ae1663ee6a6dbcebbbd4fc7d7e49d4784ffd9f5e1f3be6cd5f3a978
https://www.chainalysis.com/

Application Tran
sac

tio
n grap

h an
aly

sis

Addres
s lin

kag
e (cl

uste
rin

g)

CoinJoin
dete

cti
on

Scri
pt pars

ing

Mem
pool data

Exch
an

ge rat
e data

Multi-
ch

ain
mode

Altc
oin

support

Multisignature transactions (Section 3.1) • • • •
Multi-chain privacy (Section 3.2) • • • • •
Fee estimation effectiveness (Section 3.3) • •
Velocity of cryptocurrencies (Section 3.4) • • •
Selected papers (cf. Section 3.5)
Privacy and linkability of mining in Zcash [10] • •*
Tracking ransomware end to end [11] •
Tracing transactions across cryptocurrency ledgers [12] • •
When the cookie meets the blockchain [4] • • • • •

* implements additional functionality for Zcash on top of BlockSci

Table 5: Usage of BlockSci features and data sources in our analyses and selected papers.

100

102

104

106

108

Va
lu

e
pe

r m
on

th
 (U

SD
)

2014 2015 2016 2017 2018 2019 2020
100

101

102

103

104

105

Tr
an

sa
ct

io
ns

 p
er

 m
on

th

Value per month
Txes per month

Figure 4: Frequency and value of multisig transactions that ex-
pose confidential information about access structure changes
on the blockchain.

100

102

104

106

108

1010

Va
lu

e
pe

r m
on

th
 (U

SD
)

2014 2015 2016 2017 2018 2019 2020
100

101

102

103

Tr
an

sa
ct

io
ns

 p
er

 m
on

th

Value per month
Txes per month

Figure 5: Frequency and value of transactions that weaken
multisig security by temporarily sending coins to regular ad-
dresses, advertising the presence of a single point of failure.

the type of all input addresses (e.g., using P2SH for multisig-
nature access control). Using this heuristic, we can uniquely
identify a change address in 122 million out of 489 million
transactions. Of these change addresses we identified, over 72
million were cases in which the anonymity of non-multisig
users was reduced because they transacted with a party that
used a script-hash address. Over 49 million were cases of
script-hash users having their anonymity reduced (i.e., the
reverse scenario, in which a payment is made to a regular
address).

We note that adding Schnorr signatures [14] could improve
confidentiality and privacy of multisignature transactions (e.g.,
by making multisig indistinguishable from regular addresses)
[15]. However, without widespread or mandatory adoption,
they could also hurt privacy if they allow further distinction
between different users (similar to how distinguishing be-
tween the use of script-hash and non-script-hash addresses
reduces privacy).

Security. A surprising, but relatively common motif is for
multisig users to switch their money from a multisig address
to a regular address, and then back into a multisig address. We
conjecture that this may happen when users are changing the
access control policy on their wallet, although it is unclear why
they transfer their funds to a regular address in the interim,
and not directly to the new multisig address.

This practice negates some of the security benefits of mul-
tisignatures, as it advertises to an attacker when a high-value
wallet is most vulnerable. To identify this pattern, we looked
for transactions in which all of the inputs were from multisig
addresses of the same access structure and there was a single
non-multisig output, which was subsequently sent back to a
multisig address. We restricted our analysis to single output
transactions as this is an indicator of self-churn, i.e. a user

2730 29th USENIX Security Symposium USENIX Association

pre-fork only

Fork
after fork, BTC only

pre+after fork, BTC only

pre+after fork
BTC+BCH

pre+after fork, BCH only

after fork, BCH only

after fork
BTC+BCH

Figure 6: A BTC/BCH address might be used only before the
fork (brown), continue to be used only in BTC after the fork
(orange), be used only on BCH after the fork (green), etc.

30M
200M
400M
600M

Dec 2017 Jun 2018 Dec 2018 Jun 2019 Dec 2019
0M

10M

20M

30M

Figure 7: The absolute number of addresses per category. For
legend and color coding see Figure 6.

shuffling money among her own addresses.
In Figure 5, we see that a few thousand transactions each

month exhibit this pattern, temporarily reducing the security
of bitcoins worth up to hundreds of million USD.

3.2 Cashing out on forks hurts privacy
In a blockchain fork, two separate chains emerge with a shared
history, often with different rulesets. One prominent example
of such a fork is Bitcoin Cash (BCH), which split from the
original Bitcoin (BTC) chain in August 2017 over disagree-
ment about the maximum size of blocks (cf. [16]). Users who
held BTC at the time of the fork automatically own the same
quantity of BCH, too. Unfortunately for users, blockchain
forks can also lead to unintentional privacy compromise (cf.
[17]). A generally privacy-conscious user who carefully crafts
transactions on one chain may perform privacy-harming trans-
actions on another, such as sweeping and cashing out their
coins. Here, we investigate privacy implications of the BCH
fork.

Preliminaries. We start by systematizing the use of ad-
dresses across forked chains (Figure 6). Addresses that held
coins before the fork may continue to be used on either (or-
ange or gray) or both chains (red). New addresses may be used
after the fork on either chain (yellow or green), or start to ap-
pear on both chains despite no pre-fork use (blue). Addresses
may also cease to see use after the fork (brown).

In Figure 7 we show the address distribution between usage
types over time. A small but noticeable trend is a decline in
the number of addresses that existed pre-fork and initially
had only been used on BCH (gray). This suggests that users
may have moved their funds on the BCH chain shortly after
the fork, without moving them on the BTC chain until many
months after. We suspect that these may represent users who
decided to cash out their funds on the BCH chain after the
fork.

Privacy impact. We quantify the privacy impact of this
activity on BCH using BlockSci’s cross-chain clustering ca-
pabilities (Figure 8). Cross-chain clustering produces an en-
hanced clustering of a single chain using additional links from
a forked chain, allowing us to investigate the additional pri-
vacy impact of the behavior on the forked chain. To evaluate
the impact of the fork event, we create an early cross-chain
clustering for Dec 31, 2017, five months after the BCH fork,
and compare it to individual BTC single-chain clusterings
created every 6 months until Dec 31, 2019.

Combining the BCH clustering with the BTC clustering
yields a total of 1.05 million additional cluster merges until
Dec 31, 2017. Every merge combines two existing (single-
or cross-chain) clusters into a cross-chain cluster. 75.44 %
of those early merges on BCH occur on the BTC chain (on
average, about 8.9 months after occuring on the BCH chain).
The high degree of overlap provides evidence that observing
cluster merges on the BCH chain does indeed indicate that
the corresponding BTC clusters belong to the same entity.

The remaining 24.56 % represent an upper bound of the
unique additional privacy leakage for BTC users from their be-
havior on BCH. With the rough heuristic that each cross-chain
cluster represents a distinct user, 99,500 users are affected
by this privacy leak: that is, it becomes possible to link their
BTC addresses with each other based on their BCH activity.

Next, we evaluate the long-term privacy impact of the fork.
To this end, we create a cross-chain clustering of BTC and
BCH until Dec 31, 2019. Again, using BCH data to enhance
the BTC clustering, we observe a total of 571,924 additional
cluster merges from cross-chain clustering. The enhanced
clustering includes almost 200,000 cross-chain clusters that
contain over 750,000 single-chain clusters of the BTC chain
(as some cross-chain clusters may contain multiple single-
chain clusters). The cross-chain clusters together contain al-
most 30 million addresses, or roughly 5 % of all BTC ad-
dresses. In other words, roughly 5 % of BTC addresses poten-
tially suffer a privacy compromise due to cash-out behavior
on BCH.

USENIX Association 29th USENIX Security Symposium 2731

A1 A2 A3

A1 A2 A3 A4

A1 A2 A3 A4

single-chain cluster

cross-chain cluster

BCH

BTC

BTC BCH

Figure 8: Two single-chain clusters on the BTC blockchain
are merged into a cross-chain cluster based on the link be-
tween A2 and A3 found in a BCH cluster.

Address reuse. Further investigating the different address
use patterns, we observe the appearance of (previously un-
seen) addresses on both chains after the fork (i.e., the blue
addresses in Figure 6). As of December 31, 2019, there are
over one million such addresses, holding a total of 360,000
BTC (USD 2.7 billion) respectively 1.45 million BCH (USD
303 million). Such reuse may occur deliberately (e.g., when
users import keys into wallets on both chains) or unintention-
ally (e.g., when hierarchical deterministic wallets continue to
generate similar keys after the fork). Either way, it may not
only lead to continued privacy compromise, but also raises
severe security concerns. To protect their keys, those users
need to enforce the same security policies on both chains,
including a strict separation of keys between hot and cold wal-
lets (e.g., avoid importing a cold wallet key into a hot wallet),
as compromise of keys on one chain would allow the attacker
to steal coins on all chains that share those keys (cf. [18]).

3.3 (In)effectiveness of Bitcoin Core’s fee esti-
mation

The Bitcoin protocol defines an upper limit on the size of each
block, effectively limiting the number of transactions that min-
ers can include in a block. Bitcoin users compete with each
other for the inclusion of their transaction in a block by pay-
ing a transaction fee, as rational miners prioritize transactions
that pay higher fees per size unit. Demand for block space
(equally, the number of pending transactions) is constantly
changing, and with it the minimum fee required for transac-
tions to get included in the next block. Supply for block space
is not created on a fixed schedule: the arrival time of blocks
follows an exponential distribution introduced by the proof-
of-work mining mechanism. And the fee mechanism used

by Bitcoin, effectively a pay-as-bid auction, is not incentive
compatible, making it difficult to determine the optimal fee
to pay [19, 20].

Wallets often use fee estimation techniques that use historic
data to estimate fees such that transactions get included in the
blockchain within a certain target time frame with high confi-
dence. In particular, Bitcoin Core has a fee estimation feature
that is well known, widely used, and relied upon. Given a
target interval, say 2 blocks, the algorithm chooses fees such
that in the past 60 % of transactions were included in half of a
target interval, 85 % within the target and at least 95 % within
twice the target. But how good is this estimate? Note that most
users’ time preferences are in terms of time and not blocks.
Suppose a user values their transaction being included in a
block in 20 minutes or less, and hence selects a transaction
fee corresponding to a target of 2 blocks, based on the mean
block interval of 10 minutes. How long can the user actually
expect to wait? We use BlockSci to answer this question.

Data collection. We used BlockSci’s mempool recorder to
record timestamps of transactions submitted to the Bitcoin
P2P network over a time span of 3 months, from 8/8/19 until
11/19/19. In total, we collected timestamps for 32.98 million
transactions, 99.94% of all transactions that were included
in the blockchain during that epoch. While the timestamps
observed by different nodes may very, this delay is small:
compared to timestamps collected by blockchain.com, our
timestamps lag by an average of 0.9 (± 0.3) seconds.

Bitcoin Core produces fee estimates in two modes: a con-
servative mode that is supposed to be less impacted by short-
term drops in fee levels [21] (the default mode of the RPC
interface), and a more aggressive economic mode that is used
for transactions using replace-by-fee (RBF), a transaction re-
placement option allowing users to increase transaction fees
after submitting a transaction to the network (the default mode
of the wallet GUI). We collected fee estimates in the conser-
vative mode every ten seconds during this time frame. While
this mode may err on the side of higher fees (and thus faster
inclusion), we chose it because it does not require accounting
for replaced transactions, something BlockSci does not track.

Identifying Bitcoin Core transactions. To identify Bit-
coin Core transactions, we first filter for transactions that set a
non-zero locktime, a characteristic of the Bitcoin Core client
[22]. Then, we select transactions that have RBF disabled.
This yields a subset of 4,589,246 transactions out of the 32.98
million transactions we collected timestamps for (13.9 %).
Next, we identify transactions where the fees paid by the
transaction matches the estimate we recorded for one of the
common target times. A manual inspection shows very little
variance around our recorded estimate, hence we choose to
consider all transactions that are within a threshold of ±5
satoshi. If paid fees overlap with estimates for multiple tar-
gets, we select the shortest target time. This selection yields
981,214 transactions.

Analyzing calibration. For these transactions we calcu-

2732 29th USENIX Security Symposium USENIX Association

late the difference between Bitcoin Core’s targeted inclusion
times at the 60 %, 85 % and 95 % quantiles and the actual
inclusion times (shown in Table 6 in the appendix). Many
transactions get included much earlier than targeted (e.g., 60 %
of transactions targeting a 60 minute inclusion are included
in under 16.75 minutes). However, the 95 % quantile consid-
erably lags behind (e.g., 59 minutes behind twice the target
time for transactions with a 60 minute target).

Analyzing variability. However, calibration is not the
whole story. We use a regression analysis to better understand
how well targeted inclusion time corresponds to actual inclu-
sion times. As the inclusion time is influenced by the block
arrival rate, which follows an exponential distribution, we use
a Generalized Linear Model with a Gamma distribution (de-
tailed results are provided in Table 10 in the appendix). We
include weekly fixed effects to account for gradually changing
factors like the hash rate.

Targeted inclusion time explains a mere 17.2 % of the de-
viance of the model (a measure of fit compared to a perfect
model). This means that despite the use of fee estimation,
there is a high degree of uncertainty in the actual inclusion
time, primarily due to the inherent randomness introduced by
the proof-of-work mining but possibly also the unpredictable
behavior of other users.

Bitcoin Core incorporates the state of the mempool in a
relatively straightforward way for fee estimation: if a transac-
tion resides in the mempool longer than the targeted inclusion
interval, its fee is considered as insufficient. But another way
to use mempool state is as an estimate of the backlog of trans-
actions. We perform another regression where we incorporate
the size of the mempool as a predictor, which gives a rough
indication of how much fee estimation might be improved by
incorporating mempool information in a more sophisticated
way. We see that the deviance explained rises to only 22.4 %,
suggesting that the limitation is intrinsic.

We offer two main takeaways from this analysis: Bitcoin
users should be careful not to over-rely on the waiting time
estimates produced by wallet software, and cryptocurrency
researchers and designers should consider alternatives to the
pay-as-bid auction employed by Bitcoin that may achieve a
tighter relationship between fees and inclusion time.

3.4 Improved estimates of the velocity of cryp-
tocurrencies

The velocity of money is the frequency with which one unit of
currency is used for purchases in a unit of time. It can provide
an insight into the extent to which money is used as a medium
of exchange versus a store of value.

In most cases it is not possible to infer the purpose behind a
cryptocurrency transaction from the blockchain. However, an
alternative definition of the velocity of money is the frequency
with which one unit of currency changes possession in any
manner (whether or not for purchases of goods and services)

Jan
2017

Jan
2018

Jan
2019

Jan
2020

Jul Jul Jul0M

2M

4M

6M

8M

10M

BT
C

m
ov

ed
 p

er
 d

ay

Naive estimate
Our estimate

Figure 9: Two estimates of the velocity of bitcoins.

in a unit of time. Blockchain analysis may enable estimating
the velocity of cryptocurrencies under this definition.

Even under this simplified definition, it is challenging to
estimate the velocity of cryptocurrencies. A naive method
would be to compute the total value of transaction outputs in
a unit of time and divide it by the total value of the money
supply during that period. However, multiple addresses may
be controlled by the same entity, and therefore not all transac-
tion outputs represent changes in possession. Meiklejohn et al.
call this “self-churn” [3], a term that we adopt. The impact of
self-churn is visually obvious in the graph of total transaction
outputs (Figure 9). We would not expect spikes such as those
in early 2017 if the graph reflected actual money demand,
which would be much more stable over time.

To minimize the effect of self-churn, we adopt two heuris-
tics. First, we eliminate outputs controlled by an address that
can be linked to one of the inputs’ addresses (through ad-
dress clustering, cf. Section 2.4), ignoring “superclusters" to
minimize false positives. This reduces change outputs and
transactions that are detectable as an entity “shuffling their
money around”. We also eliminate outputs that are spent
within less than k blocks (we use k = 4). Manual examination
suggests that such transactions are highly likely to represent
self-churn, such as “peeling chains” where a large output is
broken down into a series of smaller outputs in a sequence of
transactions.

The orange line in Figure 9 shows the daily transaction
volume on the Bitcoin blockchain after applying the above
two heuristics. With this estimate, the velocity of Bitcoin
works out to 1.2 per month averaged over the period January
2017–June 2018, compared to 3.9 with the naive metric, and
0.7 over the period July 2018–December 2019, compared to
2.2 with the naive metric. Our revised estimate is not only
much lower but also much more stable over time.

Starting in 2018 the naive estimate drops closer to our
improved estimate. We suppose that this is partially due to
scarcity in block space (and a corresponding rise in transac-
tion fees), which encourages intermediaries to batch multiple
payments into a single transaction, thereby eliminating some

USENIX Association 29th USENIX Security Symposium 2733

of the self-churn that is evident in the naive estimate earlier.
Spikes in the graph, like the one in mid 2019, may represent
large intermediaries (e.g., exchanges) moving large amounts
of bitcoin to addresses with updated access control structures.

We note several caveats. First, this still likely fails to ex-
clude some transfers of value between addresses controlled by
the same entity. Without ground truth, it is hard to be certain
how good the estimate is. Second, it doesn’t count transfers of
possession that don’t touch the blockchain. When exchanges,
online wallets, and other intermediaries hold money on behalf
of users, payments and transfers of “bitcoins" might happen
even though no actual bitcoins changed hands (as only ac-
count balances in an internal database need to be updated).
Nevertheless, we believe that the metric can be a useful proxy
for understanding the use of cryptocurrencies, and possibly
for comparing between cryptocurrencies.

3.5 Other applications of BlockSci

Besides our own use, BlockSci has seen a variety of use in
both academic and industry settings. We are currently aware
of at least 9 peer-reviewed articles, 6 preprints, and 2 software
projects that use BlockSci for blockchain analysis (a full list
is available online6).

The dual topics of privacy and forensics are common
among these papers. These include information leaks from
payments and purchases through intermediaries [4], the use
of intermediaries to convert between cryptocurrencies [12], as
well as the identification of entities and the analysis of their
behavior in the transaction graph [6, 11, 23–25]. Many of
these results are of interest to law enforcement and regulators,
and we have helped regulators use BlockSci for their own
investigations. Two other themes are issues surrounding the
security and scalability of cryptocurrencies [26–28], as well
as economic analyses of cryptocurrencies [29].

BlockSci has also been used as the foundation for spe-
cialized blockchain analysis tools. Boshmaf, Al Jawaheri,
and Al Sabah [23] have built a tagging system on top of
BlockSci, and the GraphSense blockchain analytics platform
uses BlockSci’s parser and altcoin support to generate an
address graph out of the transaction graph [30].

4 Conclusion

There is a high level of interest in blockchain analysis
among developers, researchers, and students, leading to an
unmet need for effective analysis tools. While general-
purpose in-memory graph databases exist, a tool customized
to blockchain data can take advantage of its append-only na-
ture as well as provide integrated high-performance routines
for common tasks such as address linking.

6https://citp.github.io/BlockSci/studies/

BlockSci has already been widely used as a research and
educational tool. We hope it will continue to be broadly useful,
and plan to keep maintaining it as open-source software.

Acknowledgments

We are grateful to Lucas Mayer for prototype code, Danny
Yuxing Huang, Pranay Anchuri, Shaanan Cohney, Rainer
Böhme, Michael Fröwis, Jakob Hollenstein, Jason Anasta-
sopoulos, Sarah Meiklejohn, and Dillon Reisman for useful
discussions, and Chainalysis for providing access to their Re-
actor tool. We also thank the anonymous USENIX Security
reviewers, the reviewers of the artifact evaluation process and
our shepherd Anita Nikolich for their feedback.

This work is supported by NSF grants CNS-1421689 and
CNS-1651938, a grant from the Ripple University Blockchain
Research Initiative, the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No.
740558, the Austrian FFG’s KIRAS programme under project
VIRTCRIME, and an NSF Graduate Research Fellowship un-
der grant number DGE-1148900.

References

[1] Frank McSherry, Michael Isard, and Derek Gordon
Murray. “Scalability! But at what COST?” In: Pro-
ceedings of the 15th Workshop on Hot Topics in Oper-
ating Systems (HotOS XV). May 2015. URL: https:
/ / www . usenix . org / conference / hotos15 /
workshop-program/presentation/mcsherry (vis-
ited on 06/12/2020).

[2] Facebook Database Engineering Team. RocksDB. A
persistent key-value store for fast storage environments.
Version 6.10.2. June 5, 2020. URL: https://rocksdb.
org/.

[3] Sarah Meiklejohn et al. “A Fistful of Bitcoins: Charac-
terizing Payments Among Men with No Names”. In:
Proceedings of the 2013 Internet Measurement Con-
ference (IMC). Oct. 2013. DOI: 10.1145/2504730.
2504747.

[4] Steven Goldfeder et al. “When the cookie meets the
blockchain: Privacy risks of web payments via cryp-
tocurrencies”. In: Proceedings on Privacy Enhancing
Technologies. Vol. 2018. Oct. 2018. DOI: 10.1515/
popets-2018-0038.

[5] Wenzel Jakob. Lock-free parallel disjoint set data struc-
ture. June 14, 2020. URL: https://github.com/
wjakob/dset.

[6] Michael Fröwis et al. “Safeguarding the Evidential
Value of Forensic Cryptocurrency Investigations”. In:
(July 28, 2019). arXiv: 1906.12221.

2734 29th USENIX Security Symposium USENIX Association

https://citp.github.io/BlockSci/studies/
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://rocksdb.org/
https://rocksdb.org/
http://dx.doi.org/10.1145/2504730.2504747
http://dx.doi.org/10.1145/2504730.2504747
http://dx.doi.org/10.1515/popets-2018-0038
http://dx.doi.org/10.1515/popets-2018-0038
https://github.com/wjakob/dset
https://github.com/wjakob/dset
http://arxiv.org/abs/1906.12221

[7] Wenzel Jakob. pybind11 — Seamless operability be-
tween C++11 and Python. Version 2.5.0. Mar. 31,
2020. URL: https : / / github . com / pybind /
pybind11.

[8] Martin Fowler. FluentInterface. Dec. 20, 2020. URL:
https : / / www . martinfowler . com / bliki /
FluentInterface.html (visited on 02/14/2020).

[9] Harry Kalodner et al. BlockSci: Design and applica-
tions of a blockchain analysis platform. Sept. 8, 2017.
arXiv: 1709.02489.

[10] Alex Biryukov and Daniel Feher. “Privacy and Linka-
bility of Mining in Zcash”. In: 2019 IEEE Conference
on Communications and Network Security (CNS). June
2019. DOI: 10.1109/CNS.2019.8802711.

[11] Danny Yuxing Huang et al. “Tracking Ransomware
End-to-end”. In: Proceedings of the 39th IEEE Sym-
posium on Security & Privacy (S&P). May 2018. DOI:
10.1109/SP.2018.00047.

[12] Haaroon Yousaf, George Kappos, and Sarah Meikle-
john. “Tracing Transactions Across Cryptocurrency
Ledgers”. In: Proceedings of the 28th USENIX Se-
curity Symposium (USENIX Security). Aug. 2019.
URL: https : / / www . usenix . org / conference /
usenixsecurity19 / presentation / yousaf (vis-
ited on 06/13/2020).

[13] Rosario Gennaro, Steven Goldfeder, and Arvind
Narayanan. “Threshold-Optimal DSA/ECDSA Sig-
natures and an Application to Bitcoin Wallet Secu-
rity”. In: Proceedings of the 14th International Confer-
ence on Applied Cryptography and Network Security
(ACNS). Vol. 9696. Lecture Notes in Computer Sci-
ence (LNCS). June 2016. DOI: 10.1007/978-3-319-
39555-5_9.

[14] Claus-Peter Schnorr. “Efficient signature generation
by smart cards”. In: Journal of Cryptology 4 (1991).
DOI: 10.1007/BF00196725.

[15] Bitcoin Core. Technology roadmap - Schnorr signa-
tures and signature aggregation. URL: https : / /
bitcoincore . org / en / 2017 / 03 / 23 / schnorr -
signature-aggregation/ (visited on 06/07/2020).

[16] Yujin Kwon et al. “Bitcoin vs. Bitcoin Cash: Coexis-
tence or Downfall of Bitcoin Cash?” In: Proceedings
of the 40th IEEE Symposium on Security & Privacy
(S&P). May 2019. DOI: 10.1109/SP.2019.00075.

[17] Abraham Hinteregger and Bernhard Haslhofer. “Short
Paper: An Empirical Analysis of Monero Cross-chain
Traceability”. In: Proceedings of the 23th International
Conference on Financial Cryptography and Data Se-
curity (FC). Vol. 11598. Lecture Notes in Computer
Science (LNCS). Feb. 2019. DOI: 10.1007/978-3-
030-32101-7_10.

[18] Francisco Memoria. Bitcoin Gold Wallet Scam Sees
Fraudsters Steal $3.2 Million. CCN Markets. Nov. 24,
2017. URL: https://www.ccn.com/bitcoin-gold-
wallet-scam-nets-fraudsters-3-2-million-
after-stealing-users-private-keys/ (visited
on 02/14/2020).

[19] Ron Lavi, Or Sattath, and Aviv Zohar. “Redesigning
Bitcoin’s fee market”. In: Companion Proceedings of
the The Web Conference (WWW) 2019. May 2019. DOI:
10.1145/3308558.3313454.

[20] Soumya Basu et al. Towards a Functional Fee Market
for Cryptocurrencies. DOI: 10.2139/ssrn.3318327.

[21] Bitcoin Core. estimatesmartfee (0.19.0 RPC). Ver-
sion 0.19.0. URL: https://bitcoincore.org/en/
doc/0.19.0/rpc/util/estimatesmartfee/ (vis-
ited on 02/15/2020).

[22] Peter Todd. Discourage fee sniping with nLockTime.
Pull Request #2340. Dec. 19, 2014. URL: https://
github.com/bitcoin/bitcoin/pull/2340 (vis-
ited on 06/14/2020).

[23] Yazan Boshmaf, Husam Al Jawaheri, and Mashael
Al Sabah. “BlockTag: Design and Applications of a
Tagging System for Blockchain Analysis”. In: Pro-
ceedings of the 34th IFIP TC11 Information Security
Conference & Privacy Conference. June 2019. DOI:
10.1007/978-3-030-22312-0_21.

[24] Marc Jourdan et al. “Characterizing Entities in the Bit-
coin Blockchain”. In: 2018 IEEE International Confer-
ence on Data Mining Workshops (ICDMW). Oct. 2018.
DOI: 10.1109/ICDMW.2018.00016.

[25] Yury Zhauniarovich et al. Characterizing Bitcoin dona-
tions to open source software on GitHub. July 9, 2019.
arXiv: 1907.04002.

[26] Iain Stewart et al. “Committing to quantum resistance:
a slow defence for Bitcoin against a fast quantum com-
puting attack”. In: Royal Society Open Science 5.6 (6
June 2018). DOI: 10.1098/rsos.180410.

[27] Cristina Pérez-Solà et al. “Another coin bites the dust:
an analysis of dust in UTXO-based cryptocurrencies”.
In: Royal Society Open Science 6.1 (1 Jan. 2019). DOI:
10.1098/rsos.180817.

[28] Cristina Pérez-Solà et al. Analysis of the SegWit adop-
tion in Bitcoin. URL: https://deic-web.uab.cat/
~guille / publications / papers / 2018 . recsi .
segwit.pdf (visited on 06/13/2020).

[29] Bruno Biais et al. Equilibrium Bitcoin Pricing. DOI:
10.2139/ssrn.3261063.

USENIX Association 29th USENIX Security Symposium 2735

https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
http://arxiv.org/abs/1709.02489
http://dx.doi.org/10.1109/CNS.2019.8802711
http://dx.doi.org/10.1109/SP.2018.00047
https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/BF00196725
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
http://dx.doi.org/10.1109/SP.2019.00075
http://dx.doi.org/10.1007/978-3-030-32101-7_10
http://dx.doi.org/10.1007/978-3-030-32101-7_10
https://www.ccn.com/bitcoin-gold-wallet-scam-nets-fraudsters-3-2-million-after-stealing-users-private-keys/
https://www.ccn.com/bitcoin-gold-wallet-scam-nets-fraudsters-3-2-million-after-stealing-users-private-keys/
https://www.ccn.com/bitcoin-gold-wallet-scam-nets-fraudsters-3-2-million-after-stealing-users-private-keys/
http://dx.doi.org/10.1145/3308558.3313454
http://dx.doi.org/10.2139/ssrn.3318327
https://bitcoincore.org/en/doc/0.19.0/rpc/util/estimatesmartfee/
https://bitcoincore.org/en/doc/0.19.0/rpc/util/estimatesmartfee/
https://github.com/bitcoin/bitcoin/pull/2340
https://github.com/bitcoin/bitcoin/pull/2340
http://dx.doi.org/10.1007/978-3-030-22312-0_21
http://dx.doi.org/10.1109/ICDMW.2018.00016
http://arxiv.org/abs/1907.04002
http://dx.doi.org/10.1098/rsos.180410
http://dx.doi.org/10.1098/rsos.180817
https://deic-web.uab.cat/~guille/publications/papers/2018.recsi.segwit.pdf
https://deic-web.uab.cat/~guille/publications/papers/2018.recsi.segwit.pdf
https://deic-web.uab.cat/~guille/publications/papers/2018.recsi.segwit.pdf
http://dx.doi.org/10.2139/ssrn.3261063

[30] Bernhard Haslhofer, Roman Karl, and Erwin Filtz. “O
Bitcoin Where Art Thou? Insight into Large-Scale
Transaction Graphs”. In: Joint Proceedings of the
Posters and Demos Track of the 12th International
Conference on Semantic Systems and the 1st Inter-
national Workshop on Semantic Change & Evolving
Semantics (SuCCESS’16). Sept. 13, 2016. URL: http:
//ceur-ws.org/Vol-1695/paper20.pdf (visited
on 06/14/2020).

[31] Neo4j Labs. Awesome Procedures On Cypher (APOC).
May 23, 2020. URL: https://neo4j.com/labs/
apoc/ (visited on 06/14/2020).

Table 6: Bitcoin Core fee estimates are chosen such that 60 %
of past transactions were included within half of the target
interval, 85 % included within the target interval, and 95 %
within twice the target interval. The differences of actual inclu-
sion times with those targeted inclusion times of transactions
are shown below.

Target T
Difference to target (in minutes)

60 % (0.5T) 85 % (T) 95 % (2T)

20 min +0.48 +3.63 +5.52
40 min -7.00 -2.90 +18.47
60 min -13.25 -2.52 +58.92

120 min -38.25 -26.67 +108.64
240 min -96.53 -126.35 -41.58

A Graph Database Comparison

We model a simplified transaction graph that contains all
important types of nodes but does not include many of the
properties that BlockSci provides access to (the resulting
graph thus requires less storage than a full layout would re-
quire). While many different graph layouts are conceivable,
we chose a layout that models the transaction graph as explic-
itly as possible (cf. Figure 10). There are four types of nodes:
blocks, transactions, outputs and addresses. Blocks reference
included transactions, transactions reference previous outputs
that are being spent as well as new outputs being created, and
outputs reference the address they send value to.

Table 7 shows the Cypher queries that we used. Minor
syntax changes were necessary due to the particularities of
the respective import scripts.

Table 8 contains the full measurements of our performance

analysis. All benchmarks are run on an r5.8xlarge EC2 in-
stance (32 vCPUs, 256 GiB memory, 800 GiB EBS volume).

Table 7: Cypher queries used in the graph database perfor-
mance comparison

Tx locktime > 0
MATCH (tx:Tx) WHERE tx.locktime > 0 RETURN COUNT(*)
Max output value
MATCH (o:Output) RETURN MAX(o.value)
Calculate fee
MATCH (i)<-[:TX_INPUT]-(tx:Tx)
WITH tx, SUM(i.value) as totalIn
MATCH (tx)-[:TX_OUTPUT]->(o)
WITH tx, (totalIn - SUM(o.value)) as fee
RETURN MAX(fee)
Satoshi Dice address
MATCH (a)<-[:TO_ADDRESS]-(o) WHERE ID(a) = {}
RETURN SUM(o.value)
Zero-conf outputs
MATCH (b:Block)-[:CONTAINS]->()-[:TX_OUTPUT]->(o)
<-[:TX_INPUT]-()<-[:CONTAINS]-(b)
RETURN COUNT(o)
Zero-conf outputs (Memgraph)
MATCH (b1:Block)-[:CONTAINS]->()-[:TX_OUTPUT]->(o)
<-[:TX_INPUT]-()<-[:CONTAINS]-(b2)
WHERE b1 = b2 RETURN COUNT(o)
Locktime change
MATCH (tx:Tx)-[:TX_OUTPUT]->(o)<-[:TX_INPUT]-(tx2)
WHERE (tx.locktime > 0) = (tx2.locktime > 0)
WITH tx, COUNT(o) as cnt WHERE cnt = 1
RETURN COUNT(*)
Locktime change (RedisGraph)
MATCH (tx:Tx)-[:TX_OUTPUT]->(o)<-[:TX_INPUT]-(tx2)
WHERE (tx.locktime = 0 AND tx2.locktime = 0)
OR (tx.locktime > 0 AND tx2.locktime > 0)
WITH tx, COUNT(o) as cnt WHERE cnt = 1
RETURN COUNT(*)

Block

TxOutput Output

Address

CONTAINS

TX_INPUT TX_OUTPUT

TO_ADDRESS

Figure 10: Property graph model

2736 29th USENIX Security Symposium USENIX Association

http://ceur-ws.org/Vol-1695/paper20.pdf
http://ceur-ws.org/Vol-1695/paper20.pdf
https://neo4j.com/labs/apoc/
https://neo4j.com/labs/apoc/

Table 8: Average running time in seconds and standard deviation (in parentheses) over five consecutive runs for various graph
queries and data set sizes on a r5.8xlarge EC2 instance (32 vCPUs, 256 GiB memory). We used Neo4j v3.5.14, RedisGraph
v2.0.1 (running on top of Redis v5.0.7) and Memgraph v0.15.0. Fluent interface is single-threaded.

Query BlockSci Neo4j RedisGraph Memgraph
C++ (ST) C++ (MT) Fluent interface w/o index w/ index

12.5M transactions
Tx locktime > 0 0.15 (0.0) 0.01 (0.0) 0.72 (0.0) 3.78 (0.8) 0.01 (0.0) 0.93 (0.0) 5.35 (0.1)
Max output value 0.23 (0.0) 0.02 (0.0) 1.96 (0.0) 13.46 (0.7) 14.28 (0.1) 2.21 (0.0) 19.52 (0.4)
Calculate fee 0.29 (0.0) 0.02 (0.0) 1.51 (0.0) 131.21 (2.4) 132.95 (1.3) –1 81.87 (2.2)
Satoshi Dice address 0.22 (0.0) –3 0.24 (0.0) 0.46 (0.0) 0.46 (0.0) 1.06 (0.0) 21.17 (0.1)
Zero-conf outputs 2.58 (0.0) 0.16 (0.0) 8.48 (0.1) 92.35 (0.3) 93.77 (0.1) 601.21 (0.3) 32.47 (NA)
Locktime change 3.49 (0.0) 0.20 (0.0) 8.55 (0.0) 96.61 (0.9) 100.29 (0.9) –1 47.33 (1.8)

25M transactions
Tx locktime > 0 0.31 (0.0) 0.03 (0.0) 1.37 (0.0) 7.84 (1.4) 0.05 (0.1) 1.85 (0.0) 16.44 (0.2)
Max output value 0.46 (0.0) 0.03 (0.0) 3.91 (0.0) 26.63 (0.0) 24.55 (2.9) 4.48 (0.0) 40.08 (0.5)
Calculate fee 0.57 (0.0) 0.03 (0.0) 2.79 (0.1) 302.73 (6.7) 303.69 (6.3) –1 187.02 (4.9)
Satoshi Dice address 0.49 (0.0) –3 0.54 (0.0) 0.95 (0.0) 0.99 (0.0) 2.56 (0.1) 45.91 (0.4)
Zero-conf outputs 5.47 (0.0) 0.32 (0.0) 18.17 (0.3) 192.01 (0.9) 207.41 (1.7) 1488.94 (2.7) 59.96 (0.3)
Locktime change 7.57 (0.0) 0.45 (0.0) 18.21 (0.0) 208.95 (0.9) 213.59 (1.8) –1 122.98 (3.6)

50M transactions
Tx locktime > 0 0.68 (0.0) 0.05 (0.0) 2.90 (0.1) 15.86 (2.3) 0.05 (0.1) 3.69 (0.0) –2

Max output value 0.98 (0.0) 0.05 (0.0) 8.79 (0.1) 63.77 (1.3) 61.92 (5.5) 10.08 (0.1) –2

Calculate fee 1.13 (0.0) 0.06 (0.0) 5.20 (0.0) –1 –1 –1 –2

Satoshi Dice address 0.55 (0.0) –3 0.60 (0.0) 1.05 (0.0) 1.08 (0.0) 7.34 (0.3) –2

Zero-conf outputs 13.01 (0.0) 0.78 (0.0) 41.02 (0.5) 472.20 (1.2) 493.25 (1.9) 5716.33 (8.8) –2

Locktime change 18.68 (0.0) 1.11 (0.0) 42.17 (0.1) 551.40 (4.1) 558.81 (4.5) –1 –2

100M transactions
Tx locktime > 0 1.44 (0.0) 0.09 (0.0) 5.57 (0.1) – – – –
Max output value 2.02 (0.0) 0.11 (0.0) 19.07 (0.1) – – – –
Calculate fee 2.30 (0.0) 0.12 (0.0) 10.55 (0.0) – – – –
Satoshi Dice address 0.54 (0.0) –3 0.60 (0.0) – – – –
Zero-conf outputs 29.36 (0.0) 1.71 (0.0) 92.47 (0.9) – – – –
Locktime change 42.65 (0.0) 2.53 (0.0) 90.10 (0.2) – – – –

200M transactions
Tx locktime > 0 2.71 (0.0) 0.18 (0.0) 11.60 (0.9) – – – –
Max output value 3.92 (0.0) 0.21 (0.0) 35.91 (0.7) – – – –
Calculate fee 4.50 (0.0) 0.23 (0.0) 19.26 (0.1) – – – –
Satoshi Dice address 0.55 (0.0) –3 0.60 (0.0) – – – –
Zero-conf outputs 60.48 (0.0) 4.56 (0.0) 175.37 (1.4) – – – –
Locktime change 98.22 (0.1) 6.62 (0.1) 181.23 (0.6) – – – –

–: not measured, –1: did not finish in reasonable time (based on other queries and dataset sizes), –2: ran out of memory, –3: not applicable
w/ index: property indexes created for Tx.locktime and Output.value

ST = single-threaded, MT = multithreaded

USENIX Association 29th USENIX Security Symposium 2737

Table 9: Database sizes on disk and when loaded in memory during the benchmark, in GB. Memory consumption is measured
after data has been loaded but before queries have been executed. Additional memory may be required to run the queries. For
BlockSci, memory usage is lower than storage on disk as not all data is loaded into memory. For Neo4j, the whole graph was
loaded into memory using the APOC warmup script [31] before executing queries for optimal performance.

BlockSci * Neo4j RedisGraph Memgraph

Txs Block height Disk Memory Disk Memory Disk Memory Disk Memory

12.5 M 220 406 3.5 1.3 6 7.1 3.5 20 4.7 56
25 M 262 176 7.2 2.6 12 13.4 7 41 9.6 114
50 M 327 439 17.5 5.7 27 28.5 16 97 – –

100 M 390 069 38.4 12.1 58 60.2 – – – –
200 M 454 860 80.9 23.2 110 113.6 – – – –

*Denotes the size of the full BlockSci Data (excluding parser state).
The other databases use a simplified data model.

Table 10: GLM regression of the time until inclusion for transactions (in minutes) with and without the current size of the
mempool and weekly fixed effects, fitted using a Gamma distribution with identity link function.

target only target + FE w/ mempool + FE

(Intercept) 4.1626 *** -1.2849 *** -5.3453 ***
(0.098) (0.390) (0.318)

Target time 0.54741 *** 0.4955 *** 0.2981 ***
(0.003) (0.003) (0.002)

Mempool size 0.0019 ***
(<0.001)

Weekly fixed effects No Yes Yes

Deviance explained 0.1591 0.1724 0.2238
Nagelkerke R2 0.2002 0.2163 0.2774

N 981 212 981 212 981 212

(. . .) = standard error. Significance level code: ***p<0.001.

2738 29th USENIX Security Symposium USENIX Association

	Introduction
	Design and architecture
	Recording and importing data
	Parser
	BlockSci Data
	BlockSci Analysis Library
	Programmer interface
	Performance evaluation
	Basic run time statistics
	Comparison with graph databases
	Comparison with other open-source blockchain analysis tools
	Parser performance
	Memory

	Applications
	Multisignatures hurt confidentiality
	Cashing out on forks hurts privacy
	(In)effectiveness of Bitcoin Core's fee estimation
	Improved estimates of the velocity of cryptocurrencies
	Other applications of BlockSci

	Conclusion
	Graph Database Comparison

