ARTIFACT ARTIFACT
EVALUATED EVALUATED

é;uSEnIX fusenlx
ASSOCIATION ASSOCIATION

AVAILABLE

Aragog: Scalable Runtime Verification of Shardable Networked Systems

Nofel Yaseen®, Behnaz Arzani®, Ryan Beckett®, Selim Ciraci®, and Vincent Liu®

®University of Pennsylvania

Abstract

Network functions like firewalls, proxies, and NATSs are in-
stances of distributed systems that lie on the critical path for
a substantial fraction of today’s cloud applications. Unfortu-
nately, validating these systems remains difficult due to their
complex stateful, timed, and distributed behaviors.

In this paper, we present the design and implementation
of Aragog, a runtime verification system for distributed net-
work functions that achieves high expressiveness, fidelity, and
scalability. Given a property of interest, Aragog efficiently
checks running systems for violations of the property with
a scale-out architecture consisting of a collection of global
verifiers and local monitors. To improve performance and
reduce communication overhead, Aragog includes an array of
optimizations that leverage properties of networked systems
to suppress provably unnecessary system events and to shard
verification over every available local and global component.
We evaluate Aragog over several network functions including
a NAT Gateway that powers Azure, identifying both design
and implementation bugs in the process.

1 Introduction

An emerging bottleneck to correctness and availability in
modern cloud systems are the various network functions (e.g.,
firewalls, NATs, and load balancers) that interpose on the ma-
jority of application requests flowing to, from, and between
servers in the cloud. Over time, these network functions (NFs)
have become increasingly complex. Today, many of these
functions are full-fledged distributed systems whose correct-
ness depends on the coordination of multiple devices as well
as on stored state and system timing.

Configuration errors and software bugs in these compo-
nents can have an outsized impact on SLAs [4] not only
because of the complexity of these systems, but also because
they are on the critical path of most application requests.
For instance, a production NAT gateway we verify in this
work manages (replicated) states for millions of flows and
errors in this system can lead to black holes, broken con-
nectivity, forwarding loops, and more. Public incident re-
ports from providers show multiple outages due to errors
like these [4, 19].

To improve availability, recent proposals suggest using
static verification to prove the correctness of these sys-
tems [21,25, 29, 34,4042, 44]. While powerful, the need

TMicrosoft Research

SMicrosoft

to reason about every possible interleaving of inputs and con-
trol flows presents a significant obstacle to the application of
these techniques in today’s network functions. Attempting
to explore the full space of control flow paths often leads to
state/path explosion [25,29,40]. Mitigations to this problem,
broadly speaking, can be categorized in a few ways. The first
is to require the use of special programming languages or
other types of programmer interaction [21,43]. The second is
to use model checking techniques to more efficiently explore
all possible system behaviors. Finally, many systems—to re-
duce the state space they must verify and to make verification
more tractable—limit the set of verifiable behaviors, e.g., to
those that are unordered [34], abstract [10], or restricted to a
single machine [42,44].

While effective in many cases, each of these approaches
also comes with significant drawbacks. With the first, pro-
grammers are saddled with a substantial burden that can
overwhelm the development of the system. With the second,
model checking still typically relies on hand-written models
of functionality, which may be difficult to provide for a rapidly
evolving or complex system. Finally, limiting the scope of
verification fails to extend to the increasingly complex ser-
vices found in modern networks—services that arguably need
verification the most.

An alternative approach to static verification is runtime ver-
ification of distributed systems. In runtime verification, a tool
extracts information about the current state of a running sys-
tem (testbed, canary, or production) to verify that invariants
hold throughout execution [13,14,28,30,31,33,36,39]. Com-
pared to static verification, runtime verifiers only test inputs
and control flows that are seen in practice, thus improving
scalability and enabling verification of actual deployments
running over actual data. In return, they sacrifice a principled
exploration of the system’s behavior and the ability to catch
bugs early. We argue that these tradeoffs are a better fit for
our operators’ requirements.

We find today’s runtime verifiers cannot be applied as-is
to deployed network functions. The challenge (for network
functions) is the need, at runtime, to: (1) reason about the
coordination between events issued at different locations, (2)
efficiently aggregate global state after each event, and (3) scale
sub-linearly with the size of the original system—after all,
a verifier that requires the same amount of resources as the
system itself is untenable for most production environments.

In this paper, we present the design of a scale-out, runtime

verification tool for network functions called Aragog that over-
comes the above challenges. Aragog provides a simple, but
expressive language for describing violations of invariants,
with a focus on supporting network functions. Examples of
network-centric language features that are found in Aragog’s
Invariant Violation (IV) specifications, but that are uncommon
in other runtime verifiers are support for properties that are
parametric over the “location” of events, properties that refer-
ence stateful variables, the ability to execute partial matches
over packet fields, and support for temporal predicates.
Aragog translates these IV specifications to a set of sym-
bolic automata that can efficiently verify the current global
state of the system. In addition, to ensure that the system can
scale out to a near-unlimited number of machines, Aragog im-
plements the core of these checks on top of production stream
processing systems [2, 3]. To efficiently coordinate between
distributed verifiers, Aragog relies on hardware-supported
time synchronization protocols like PTP. Finally, to minimize
the overhead of the verification system, Aragog leverages
observations that network events/invariants are typically:

Flow- or connection-based: For most network functions, cor-
rectness is defined on a per-flow or per-connection basis. From
the IV specification, Aragog derives sharding keys that allow
it to distribute the verification task across independent work-
ers. These shards also expose boundaries on which we can
gracefully scale down to a sampled subset of the input.

Partially suppressible: Rather than aggregate all events in the
system to a logically centralized verifier, most network events
have limited windows of relevance depending on the state
of the system, e.g., only if the connection has recently been
closed. Aragog includes an optimization scheme to suppress
such messages before they ever leave the NF instance.

Aragog does not guarantee perfect accuracy under
asynchrony—to do so would require atomicity guarantees
in the critical path of the network functions. Aragog instead
handles these situations speculatively and notifies users
after-the-fact' about transient inconsistency (§7.3). Despite
this, Aragog identified at least four bugs in an early (limited)
deployment of a real distributed network function: Azure’s
new NAT gateway (NATGW). These bugs were detected
within ~100 ms of occurrence. Compare this to the hours our
operators typically spend searching for similar bugs.

To summarize, our work makes the following contributions:

e We present a case study of the needs of a large modern
network function from Microsoft’s Azure. The system
exhibits several interesting characteristics and suggests
key requirements for verifier design.

e We synthesize ideas from timed regular expressions, sym-
bolic automata, and parametric verification. To the best of

I'This reporting happens in under 1 s. This delay is on the same order as
other alerting systems used in our production networks.

- (o)

Packet Packet Packet
Worker Worker Worker

Flow g Flow m—p Flow
Decider ™ Decider == Decider

S Nm?
Figure 1: The architecture of our NATGW. The bolded blue
arrows show the sequence of communication to handle the
SYN packet of an incoming flow: it is sent to a random packet
worker, which forwards it to the flow decider in charge of
that flow. The flow decider chooses a target server and repli-
cates the mapping to other deciders, then installs it in the
original packet worker. The three dashed red arrows trace the
allocation of the mapping for the reverse flow.

our knowledge, ours is the first to demonstrate a concrete
need and method for combining these concepts.

e We introduce the design and implementation of Aragog,
a system for at-scale runtime verification. When needed,
Aragog can also run on traces (offline) and therefore com-
plement static verification to find implementation bugs in
distributed networked systems. Among other innovations,
Aragog includes a novel method for computing location-
dependent suppression of network events.

e We introduce a collection of Aragog invariant violations
for a set of distributed network functions, and we evaluate
Aragog on NATGW and a distributed firewall.

2 Motivation: A Cloud-scale NAT Gateway

Our work is grounded in experience with Azure’s large-scale
NF that we call NATGW. NATGW is a cloud-scale NAT gate-
way that balances incoming requests over available servers
and supports almost all external traffic.

Like many other NFs of similar scale [16,35], NATGW is
implemented entirely in software, is distributed across a pool
of servers, and replicates state for fault tolerance. Routers use
ECMP-based anycast to randomly direct packets to NATGW
workers, which then rewrite the destination IP and port to
point at a target server. A similar translation occurs for packets
in the reverse direction (from the server to the client).

Figure 1 depicts the NATGW architecture. It is composed
of two types of nodes: packet workers and flow deciders.
Packet workers process every packet passing through the
NATGW, parsing its header, looking up the target server, and
rewriting the packet header to point to that target. The map-
ping of a flow to a target server is decided with the help of a
sharded set of flow deciders. The deciders cache and replicate
these mappings to other deciders to ensure availability.

Flow allocation. When a packet worker receives the first
packet of a new flow, it uses a hash of the 5-tuple to identify

the “primary” flow decider that owns the flow and forwards
the packet to that decider. The primary then:

1. Decides the target server to which to send the new flow
and installs the mapping in the local flow cache.

s

2. Sends the reverse mapping to the flow decider that “owns’
the other end of the flow. Together, these two mappings
cover translation for both incoming and outgoing traffic.

3. With its counterpart primary, greedily copies the map-
pings to the cache of other flow deciders in a manner akin
to chain replication: decider i will try to copy to deciders
(i4+1) mod N and (i+2) mod N, where N is the number
of deciders. If one is down, it switches to (i +3) mod N.

4. Installs the mapping into the originating packet worker.

After the above flow allocation, the packet worker can pro-
cess all subsequent packets of the flow without coordination
with any other node. If the packet worker fails, anycast redi-
rects the packet to another worker; the new worker will send
the packet to the primary flow decider, fetching the existing
mapping. If the flow decider fails, packet workers will query
the next deciders in the sequence until they find the mapping.

Flow mapping timeouts. All components time out their flow
mappings to ensure stale entries are eventually removed.

To ensure NATGW maintains mappings for active flows,
packet workers periodically send a keepalive message to the
primary decider. The primary forwards the keepalive to all
replicas, refreshing the timeout on every instance of the map-
ping in the system. In parallel, the primary forwards the
keepalive to the primary in charge of the reverse mapping.

Eventual consistency. This NATGW design exhibits some
interesting properties. One of them is a choice to allow for
temporary inconsistency in the presence of node failures in
order to satisfy certain practical and performance constraints.

For example, consider three replicas of a flow mapping
Rp, Rpy1, and Rp.,, where Rp is the primary. To delete the
mapping, Rp would send a delete request to both of the other
nodes. Now imagine the message to Rp. | is dropped. Rather
than waiting for Rp, 1, the others will go ahead and delete
f. If, later, Rp fails, packet workers will contact Rp for the
mapping, which will return a stale/inconsistent result until a
timeout or periodic sync eliminates the inconsistency.

There are known mitigations to the above behavior (e.g.,
querying a quorum on every packet or initiating a view change
algorithm on Rp’s failure); however, these come with signifi-
cant performance costs. Instead, the NATGW is an example
of a deployed architecture that chooses eventual consistency
after careful consideration of its drawbacks and alternative
solutions. Our work is motivated by our operators’ experience
with such behaviors.

3 Design Goals

Our runtime verifier targets the following design goals:

Practicality. Network functions are complex; written in a
variety of languages; and frequently rely on external libraries,
drivers, and other components. NATGW, for example, is built
using libraries like DPDK and interacts with an ecosystem
of networking hardware and configurations. The intricacies
of the systems, the richness of their dependencies, and the
rapid evolution of all the associated components mean the
system is not easily modeled or accurately simplified. Instead,
verification should be of the end-to-end system, in situ.

In the same vein, Aragog should not place undue burden on
developers, e.g., by requiring engineers to perform non-trivial
proof writing (as mandated by many deductive reasoning
techniques). NATGW has over 40 thousand lines of code—
Aragog should avoid incurring a proportional overhead.

Expressiveness. Prior work has observed a gap between state-
of-the-art verification tools and the requirements of modern
networks [33]. In particular, it is challenging to specify in-
variants related to: (1) parametric variables over values like
locations or identifiers, (2) coordination between network de-
vices, and (3) timing of events. Moreover, since the number of
devices (e.g., flow deciders) may vary over time as the system
scales out, it is useful to express properties in a way that does
not require explicitly naming components. Aragog should
provide syntax and semantic support for these behaviors.

Scalability. Just as a single machine cannot handle all traffic
entering a large network, it also cannot be expected to ver-
ify the correctness of the entire network. Rather, the verifier
should scale out to arbitrary size and require fewer resources
than the original system. Therefore, Aragog should attempt
to minimize the number of messages exported from each NF,
e.g., by exporting events (resulting from the execution of the
NF) rather than packets (the inputs to the NF).

Graceful degradation of accuracy. As we describe in Sec-
tion 7.3, perfect precision and recall is impossible in an asyn-
chronous system without substantial overhead. Instead, Ar-
agog’s correctness goal is in the same spirit as NATGW’s:
perfect recall under the assumption of ‘partial synchrony’ [15]
and notifications of potential false positives/negatives after-
the-fact. Our operators find this is sufficient for most cases.

Near-real-time alerts. Diagnosing bugs manually can take
hours of operator time and the network could worsen the
longer the bug persists: Aragog should raise alerts within
seconds of observing the offending sequences of events.

4 Aragog’s Architecture

We present the design and implementation of a practical, ex-
pressive, and scalable verifier for large and complex NF de-
ployments. Our system, Aragog, is a combination of a lan-
guage for specifying invariant violations and a scale-out run-
time system. Aragog takes a grey-box approach, requiring
small changes to the underlying source code in order to export
events of interest to the verifier. Thus, Aragog verifies by:

Message Global Verifiers
. Brokers ki

Network Functions

.[NE Filters Local] Glebal i
! Impl Map State] State Alerting i
| ' GroupBy Machine | | Machines]
' NF Instance

Figure 2: The architecture of Aragog. NF instances generate
and feed events into a set of local state machines. The NF
instances use these state machines to determine if they can
hide unnecessary messages before exporting the rest to the
global verifier. These messages pass through a Kafka cluster
and are streamed to a set of Flink-based verification engines.

Specifying invariant violations over user-defined events.
To provide operators with sufficient expressiveness to check
network-level events, Aragog comes equipped with a new
language for specifying invariant violations that is based on
writing symbolic regular expressions over a global trace of
events (and their locations) in the system. Aragog’s language
includes a notion of parameterized “variables” that allows vio-
lations to be described in a way that holds for any combination
of variable instantiations subject to constraints.

Checking for invariant violations. NF developers export
any relevant events to Aragog. To scale up checking of the
event stream, Aragog does two things. The first is to auto-
matically analyze and split verification into local and global
components. The local level resides at the NF instances them-
selves, where Aragog infers (only using the state of the lo-
cal instance) whether it can safely suppress the event before
exporting it to the global Aragog verifier. The second is to
leverage the fact that most network invariants are defined
across related flows rather than globally—for instance, on the
granularity of a 5-tuple. As a result, events can be automati-
cally sharded across a cluster of scale-out stream processing
workers using Kafka [26] and Flink [11].

Note that, because the invariants are defined and checked
only across related flows, we only need to know the correct or-
dering for events pertaining to those flows: event timestamps
that use the sub-microsecond-scale synchronization of PTP
suffices for our needs. For many production networks, these
types of event exports are already common.

Overview. Figure 2 shows Aragog’s design. Users describe a
set of invariant violations that identify classes of incorrect be-
havior. Aragog translates these to a set of symbolic automata
and then splits the automata into local and global components.
It then deploys these to NF instances and global verifiers.

At runtime, NF instances stream events into the pipeline.
The local Aragog agent filters, maps, and shards events The
message brokers aggregate and compact those streams The
global verifiers determine, for the shard, whether a viola-
tion occurred. Kafka and Flink will automatically allocate

{ "fields" : [
{"eventType" : 16},
{"nodeType" : 8},
{"sourceIPvdor6" : 8},
{"sourceIPvdor6==4" : [{"srcIP" : 32}]
6 "sourceIPvdor6==6" : [{"srcIP" : 128} 1},

8 1y

9 "constants" : {

10 "NAT_ALLOCATION" : 1, // eventTypes
11 "FLOWCACHE_CONSENSUS" : 769,

12 "PACKET_WORKER" : 0, // nodeTypes

Figure 3: A snippet of the NATGW JSON event schema.

resources and load balance requests to ensure scalability.

5 Specification Language

Users define both events and policies over the events using
two types of specifications that are inputs to Aragog: event
definitions and Invariant Violation (IV) specifications. While
both of these require the user to have some knowledge of the
inner workings of the NF to specify how it can fail, our net-
work operators determined that event-based violations struck
a reasonable balance between precision and ease-of-use.

5.1 Event Definitions

Users specify the format of the event messages that arrive
at the local verifier. Aragog expects these messages to be in
the form of packed arrays of raw binary data whose format is
defined with a JSON configuration file. For example, Figure 3
shows a selected subset of the definition for NATGW event
messages. ‘fields’ contains the ordered list of expected fields
in the message. Each field is defined by a JSON dictionary
specifying the field’s name and its length in bits—for instance,
the first 16 bits of the event message is an eventType.

Conditionals. In addition to specifying the length of each
field and their ordering, Aragog allows users to implement
simple conditional parsing logic. The example event defini-
tion shows one such use where srcIP can be either IPv4 or
IPv6. In the configuration shown, event messages include a
8-bit field that specifies the IP version number. Depending
on the value of that version number, the next field is either
a 32-bit or 128-bit srcIP field. These branches can define
entire sub-headers and can contain nested conditionals.

Named constants. Aragog also allows users to define named
constants representing integer values represented in decimal,
hexadecimal, or binary notation. We show four such constants
in Figure 3: two for values of the eventType field and one
for the nodeType field. These are intended for use in IV spec-
ifications to make them more readable.

| FILTER((eventType == FLOWCACHE_PRIMARY_ADD
2 || eventType == FLOWCACHE_REMOVE_ENTRY)
3 && workerType == FD)

4 GROUPBY (srcIP, dstIP, srcPort, dstPort, proto)
5 MATCH

6 (eventType == FLOWCACHE_PRIMARY_ADD) @ $X

7 ((eventType == FLOWCACHE_REMOVE_ENTRY) @ NOT $X)*
8 (eventType == FLOWCACHE_PRIMARY_ADD) @ NOT $X

Figure 4: An example IV specification that ensures at most
one primary is ever active for a given flow.

5.2 Invariant-Violation (IV) Specifications

Aragog parses incoming event messages and checks them
against a set of user-defined policies that describe sequences
of events that violate the invariants of the system. Opera-
tors specify these policies using Aragog’s domain-specific
language, which we detail in this subsection.

Figure 4 shows an example specification for our NATGW.
The policy only pertains to a subset of events (lines 1-3), and
Aragog verifies it on a per-5-tuple basis (line 4). A violation
occurs when some node $X adds a primary mapping (line 6)
and then a different node (NOT $X) adds the same mapping
(line 8) without $X removing it. The full grammar for IV
specifications is shown in Figure 5. Briefly, an IV specification
consists of (1) a collection of event transformations followed
by (2) a regex-like expression over the generated events.

5.2.1 Transformations

Aragog allows users to define a set of policy-specific trans-
formations. In addition to enabling greater flexibility and
expressiveness, Aragog also uses these transformations to
perform an initial filtering and aggregation as well as to iden-
tify valid sharding strategies. Aragog currently supports three
transformations: GROUPBY, FILTER, and MAP.

Operators can use GROUPBY to indicate which events need
to be considered together and which can be considered sep-
arately. For example, when an operator wishes to guarantee
at most one primary is active (Figure 4) for each flow, the
GROUPBY is used to classify events into unique flows. Aragog
uses this transformation to both simplify policy logic and to
assist in the sharding of verification.

Operators can also use the FILTER transformation to in-
dicate which events should be considered at all and which
should be ignored. In the above example, we only care about
flow deciders—specifically when they add a flow as a primary
and when they delete the flow mapping from the cache; we
can filter events of any other type or from any other type of
node. FILTERS are critical for reducing the number of events
handled by the verification framework.

Finally, operators can use the map transformation to gen-
erate entirely new fields based on mathematical expressions
over existing fields of the event message.

(IVspec) := (transformations) ‘MATCH’ (events)

(transformations) ::= (transformations) (transformations)
| ‘GROUPBY’ ‘ (’ (fields) ‘)’
| ‘FILTER’ ‘(" (filter_matches) ‘)’
| “MAP” “ (* (field_expression) ¢, (field_name) *)’

(fields) == (field_name) [*,” (fields)]
| ‘LOCATION’ [*,” (fields)]

(filter_matches) ::= *(* (filter_matches) ‘)’
| (filter_matches) ‘| | (filter_matches)
| (filter_matches) ‘&’ (filter_matches)
| (filter_match)

(filter_match) ::= (field_name) (compare_op) (field_name)
| (field_name) (compare_op) (value)

(events) := *.” ‘@ (location_spec)
I [“1°]°C (event_match) ©)’ ‘@" (location_spec)
I < (events))’

I (events) (events)

| (events) (regex_op)

| ‘SHUFFLE’ ‘(’ (events_list) ‘)’

| ‘CHOICE’ “(* (events_list) *)’

(events_list) ::= (events) [, (events_list)]

(location_spec) ::= ‘ANY’
I (loc_matches)

(loc_matches) ::= [‘NOT’] ‘$’(loc_name) [, (loc_matches)]
(event_match) ::= (field_match) [¢,” (event_match)]
(field_match) ::= (terminal) (compare_op) (terminal)

(terminal) ::= (field_name)
I (value)
| “$’(variable_name)
| ‘TIME’

Figure 5: Grammar for Aragog’s IV specification language.
Tokens ending in ‘_name’ are identifiers that must begin with
a letter; the ‘compare_op’ token refers to the class of operators

==’, ‘1=’, ‘<, etc; ‘value’ indicates a constant number; and
‘field_expression’ is a mathematical expression over fields.

5.2.2 Event Expressions

Users define invariant violations over the transformed event
streams by specifying sequences of events that result in a
violation of a particular policy. Users specify these sequences
with a regular-expression-like language, which describes pat-
terns over pre-defined elements. In Aragog’s case, the ele-
ments take the form of a set of matching operations over the
fields of the event message; the example in Figure 4 shows
matches on one such field, the event Type. A match can occur
at any point in the stream of events and triggers on every oc-
currence of the match, not just the first. For example, if events
A — B — A form a violation and (at runtime) we observe the
sequence CABABAC, Aragog will alert twice.

As in other regular languages, users can list the sequence
of expected elements and use operators like “*’, ‘+’, and *?’
to signify repetitions. Users can also leverage the functions
cHOICE and SHUFFLE. In cHOICE, an occurrence of any one of

I FILTER(eventType == INIT || eventType == DROP

2 GROUPBY (LOCATION)

3 MATCH

4 (eventType == INIT, srclp == $S, dstIp == $D,
srcPort == $P, dstPort == $Q) @ ANY

(. @ ANY)*

6 (eventType == DROP, srclIp == $D, dstIp == $S,

srcPort == $Q, dstPort == $P) Q@ ANY

[

Figure 6: An example specification that checks that a stateful
firewall does not drop reverse traffic for an open connection.

the contained expressions matches. In sHUFFLE, the contained
events can arrive in any order, but must all arrive.

Event expressions come after the set of transformations and
must appear after a MATCH statement.

Locations. In distributed NFs, an important feature is that
correct behavior is defined not only on the events and their or-
der, but on where the events occurred. Therefore, every event
match is accompanied by a location specifiers. This is useful
for specifying matches, but it is also important for determin-
ing how we might partition evaluation of the IV specification
across both local and global verifiers (see Section 6). In both
cases, the goal is to determine whether each pair of events are
expected to occur at the same or at different NF instances.

Consider again the example in Figure 4. The example con-
tains a single named location, $X, corresponding to the orig-
inal primary node for the current flow. One way to use this
named location is to specify that another event in the sequence
must also occur at $X. Another, demonstrated in lines 7&8,
is to specify that the event occurs at a location distinct from
$X. Note that the syntax does not constrain the relationship
between the locations of the events of lines 7&8.

Every event can reference one or more named locations,
or it alternatively use the location ANY, which indicates no
special semantic meaning of the location of the event. In the
case of multiple locations, users specify multiple predicates
(one per location). For example, to ensure three events with
distinct locations: one could specify evy at ($X, NOT $Y); evp
at (NOT $X, $Y); and evz at (NOT $X, NOT SY).

One possible method of implementing locations is to enu-
merate all possible locations in the system and expand the
event expression accordingly. While this would allow the us-
age of more traditional state-machine evaluation techniques,
it would also lead to an unacceptably inefficient implementa-
tion. Further, any change in membership would require us to
fully recompile and re-install all IV specifications across the
system. Instead, Aragog lazily tracks all potential candidates
for location variables at runtime using a multi-leveled tree
data structure, which we describe in detail in Section 6.

Variables. Aragog generalizes the state tracking afforded to
locations in order to track other types of state in the IV speci-
fication. Examples of non-location stateful properties include
the IP/port NAT mappings of the NATGW and connection
tracking in a firewall. An example of the latter is shown in Fig-

MAP (srcIP dstIP ? srcIP :

< dstIP, IP1)
MAP (srcIP < dstIP ? dstIP :
<
<

srclIP, IP2)

MAP (srcIP dstIP ? srcPort : dstPort, portl)

MAP (srcIP dstIP ? dstPort : srcPort, port2)
FILTER(flag == FIN || flag == ACK || flag == FIN_ACK)
6 GROUPBY (IP1, IP2, portl, port2)

O

w

MATCH
8 (flag == FIN) @ $X
9 SHUFFLE (
10 (flag == FIN, TIME == $s) @ $Y,
11 (flag == ACK, TIME == $t) @ $Y)
12 (flag == SYN, TIME - min(s, St) <= 30000) @ $X

Figure 7: An example of a timing violation specification that
checks the behavior of TCP’s TIME-WAIT state [22]. The
SYN must not arrive by a deadline. This specification assumes
that only packet sends are captured.

| FILTER(flag == FIN || flag == FIN_ACK)

2 GROUPBY (IP1, IP2, portl, port2)

3 (eventType == FIN, TIME == $t) @ ANY

4 ((eventType !'= FIN_ACK, TIME - $t <= 30000) @ ANY)*
(TIME - $t > 30000) @ ANY

W

Figure 8: An example of a timing-related IV specification
that checks timely arrival of a FIN_ACK after a FIN. The
FIN_ACK must arrive by a deadline.

ure 6, which verifies that if an outbound flow from source IP
$S and destination IP $D is properly initialized, then packets
in the reverse direction are also allowed.

As these variables do not indicate or impose restrictions on
the location of the event, we do not use them for the partition-
ing procedure of Section 6.

Timing. Timeouts and deadlines are also common in NFs. To
specify them, users can use parameterized variables in con-
junction with a builtin TIME field to compare the time between
multiple events. For example, Figure 7 defines a violation of
the TIME-WAIT semantics of a TCP flow in which SYN
packets should not be sent within 30's of a passive closer’s
FIN/ACK. The same SYN packet 31s after the FIN/ACK
would not be a violation. On the other end of the spectrum,
Figure 8 defines a violation where a FIN-ACK does not arrive
in time (within 30 s of the FIN). Any intervening FIN-ACK
will mean that the violation does not match.

6 State Machine Generation

Aragog checks for invariant violations efficiently by trans-
lating each of the IV specifications into a state machine. In
contrast to traditional finite-state automata, Aragog requires
a combination of complex features, e.g., timing, arithmetic,
field/location variables, and regular expression-event patterns.

Aragog, thus, generates its state machines in three stages.
First, it creates a symbolic non-deterministic finite automaton
(SFA) [12] whose alphabet is based around a theory of arith-
metic and boolean algebra, and whose predicates can include
the placeholder variables described in the previous section.

ET==REMOVE
TRUE A pl=$X

ET==ADD ET==ADD
A p==$X (—(% A pl=$X
— 9 1 2

Figure 9: SFA for Figure 4 with some field names and con-
stants abbreviated as well. p indicates location.

Second, it determinizes the SFA to a symbolic deterministic
finite automaton (SDFA) to reduce runtime overhead of state
machine execution. Finally, it constructs localized versions
of the SDFA that can be used to infer the global state of the
system from only locally observed events.

6.1 Constructing the SFA

We first convert all predicates on events into boolean logic
with equalities/inequalities by taking the conjunction of all
event field matches and the location specifier. For example, we
transform an event match (A==B, C==D) @ NOT $X to the
predicate (A==B A C==D A p!=$X), where p is the place-
holder for the event’s location, which we determinize at run-
time. A ‘!’ modifier on the event would negate this predicate.

Aragog performs an additional check on the sequence of
generated predicates to facilitate efficient variable checking
(Section 7.2). Specifically, it checks via reachability analysis
that all uses of variables in either an arithmetic expression
or non-equality comparison (<, <, >, and >) strictly follow
after their introduction via an equality comparison.

With the resulting predicates, Aragog constructs the SFA by
creating a start state, S, with a self-loop for any event (TRUE).
This self-loop ensures the pattern will match starting from
anywhere in the event trace. From the initial state S, Aragog
recursively builds out the state machine using Thompson’s
construction [38], treating cHo1cE as a choice operator, and
expanding sHUFFLE to all permutations. Figure 9 shows a
(minimized) SFA for the example violation specification from
Figure 4. We mark the final state in the SFA as the accepting
state, which indicates a violation when reached.

The specified transitions may not cover the complete space
of possible events. All events that do not match any transition
out of the current state will never lead to a match.

Aragog next determinizes the SFA: it generates an effi-
ciently executable DSFA from the SFA using standard sym-
bolic automata techniques [12]. The result is a state machine
where all transitions are unambiguous and exhaustive. Fig-
ure 10 shows the DSFA for the example. Each state in the
DSFA stores the correesponding set of SFA states the machine
is in at that given point in time.

6.2 Local State Machines

Conceptually, the DSFA provides an efficient method for
checking whether a stream of events leads to an invariant
violation. In principle, we could simply funnel all events to a

(ET==REMOVE
p!=$X)
ET!=ADD ET==ADD
oisox ET==ADD ‘ ET==ADD

==$X
P N : A p!=$X

T ™
Y_//

ET==ADD ’

’

Ap==$X _~

A p==$X

1]
!

@ E

'\ ET==REMOVE
SoOAp==$X

~

ET!=ADD V p!=$X

Figure 10: DSFA for the SFA in Figure 4. Colored, dashed
edges represent suppressible transitions.

central verifier, which would then apply the relevant DSFA
transition and report a violations upon reaching an accepting
state. Unfortunately, doing so would require the verifier to
process all unfiltered events in the system. Instead, we further
improve Aragog’s scalability by generating a localized ver-
sion of the state machine that is executed on the same machine
as the NF before sending the event to the global verifier.

6.2.1 Suppressible Transitions

The local state machine needs to identify events that will not
impact the detection (or lack of detection) of a user-specified
violation whether or not it is sent to the global verifier. Our
key observation is that there are transitions in the global DSFA
that do not affect the end result of the state machine. We term
these transitions suppressible transitions. More formally:

Definition 1. An event stream s is either empty s = € or it
consists of an event followed by another stream s = e - s'.

Definition 2. ¢ N ¢’ indicates that, from state ¢, event e tran-
sitions to state ¢’. We lift this to event streams inductively as

ng,andqﬁ)q”iﬁqﬁq’andq’i>q”.

Definition 3. Transition ¢ is suppressible if for any event e
matching ¢ from state g, then (1) ¢ — ¢’ means ¢’ is not an
accepting state, and (2) for any event stream s, and accepting
state g, then g = gq iff g = qa.

In the running example DSFA in Figure 10, the three dashed
transitions are suppressible given the above definition. The
two self-loops are clearly suppressible (satisfy Definition 3)
since an event processed by such a loop will not change the
global state—(not) observing the event has no effect, and the
loops do not occur on accepting states. Perhaps less obvious
is that the bottom-most edge is also suppressible since, from
either state {S} or {S,2}, one needs to see the same two events
to get back to the accepting state {S,2}. For example, an ADD
event at $X followed by another at NOT $X will take either
state {S} or {S,2} back to {S,2}. We never mark transitions
with time constraints as suppressible—we assume the timing
of an otherwise irrelevant event might still be significant.

Algorithm 1 Create a local state machine for a variable

1: input: Global DSFA G, variable V, filter F
2: output: Local DSFA L

3: procedure CREATELOCALDFA(G, V, F)
4: L := CopyStates(G)

5: for S + States(G) do
6.
7
8

for T « Transitions(G, S) do
P := Predicate(G, T)
: if SAT((F AP) # (p=V)) then
9: AddTransition(L, TargetState(T), €)

10: P’ := Simplify(P, p==V)
11: AddTransition(L, TargetState(T), P")
12: return Determinize(L)

6.2.2 Local State Machine Construction

Aragog uses local knowledge to determine whether an event
will be processed by a suppressible transition. Since each local
component is unaware of what might be happening at other
components, it must conservatively account for all possibili-
ties. To determine (locally) whether an event is suppressible,
we create a local state machine for every location variable
in every IV specification such that each machine assumes it
is playing the role of that location (e.g., one machine for “I
might be $X in a violation” and another for “I might be $Y in
a violation”). In the example from Figure 10, there is only a
single local state machine: the one for $X.

The first step in creating a local state machine, L, is to
model the uncertainty other locations may introduce (Algo-
rithm 1). The algorithm takes the global state machine G, the
location variable V (e.g., $X), and a predicate F correspond-
ing to the user-defined FILTER statements. It returns a new
localized SDFA.

The algorithm considers each transition T in G where T
has predicate P, and checks whether the formula (FAP) %
(p = V) is satisfiable (line 8). If it is, then there exists a
potential event that makes it through the filter F and uses
transition T but which takes place at a location other than V.
To model the fact that other NF instances might send events
that use this transition, the algorithm adds to L an epsilon (€)
transition (line 9). An € transition is one which the local SFA
can take immediately and unconditionally. It accounts for the
possibility of concurrent execution of other NF instances to
represent that the global state could be in either state (the one
before or the one after the € transition).

In either case, the algorithm then adds a local transition
to L by simplifying the existing transition predicate (P) to
account for the fact that the location is known (line 11). It does
so by partially evaluating the predicate with the assumption
that p==V (line 10). In Figure 10, for example, the transition
(ET==REMOVE A p==$X) is simplified to ET==REMOVE.

Figure 11 shows the local SFA for location $X and its deter-
minized (DSFA) form. By executing the DSFA in Figure 11
locally, an NF instance can learn some partial information
about the state of the overall system. For example, after seeing

ET!=ADD, €

ET==ADD, €
ET==ADD

FALSE, €

— {S}

ET::REMOVE

ET!=ADD, €

ET!=ADD ET!'=REMOVE

ET==ADD

—— 0
(s} {8, 13.45.213)

ET==REMOVE

—({{5}}

Figure 11: Local machine for $x from Figure 10. SFA is
shown on top and its equivalent DSFA is shown below. Col-
ored, dashed edges indicate locally suppressible transitions.

an ADD event, the NF instance recognizes that (if it is $X) the
global state machine can be in any state: {S}, {S,1}, or {S,2}.
However, after locally processing a REMOVE event, the local
machine now knows it must be in state {S} once more.

6.2.3 Suppressing Events Locally

The local machine can hide events when it can prove they
would otherwise be processed by suppressible transitions in
the global machine. Algorithm 2 is used to create all the data
structures needed to suppress events locally. It takes the global
state machine G as input along with the user-defined filters F
and produces, as output, a collection of local state machines
(L;) as well as a negated condition (NC), explained below.

The algorithm works by iterating over every location or
variable in the IV specification (line 5) and calling Create-
LocalDFA to build the local state machine (line 6). It then
walks over each local transition (T) and attempts to mark the
transition as locally suppressible. To do so, it looks up all the
possible global states corresponding to this local state (line
11) and checks whether the local transition can process an
event that is also processed by, and is not suppressible for,
some global transition T from one of these states (line 16). If
not, then all events that trigger T must be part of a suppressible
transition in the global DSFA, so the event is suppressed.

In Figure 11, events matching ET!=ADD in state {{S}} are
suppressible: for each global state in the set ({S}), this event
must be processed by a suppressible global transition.

Negated condition. The final part of the algorithm (lines
20 to 23) computes a “negated condition.” This condition
captures the case where the local NF may not correspond
to any named location in the IV specification, e.g., the NF
instance is not $X, but it still may observe a relevant event
as NOT $X. We observe, in such a case, the current machine
can not possibly know anything about the global automaton

Algorithm 2 Construct local state machines

1: input: Global DSFA G, filter F
2: output: Local state ® = ({Ly,...,L;},NC)
3: procedure LOCALIZE(G, F)
4: NC :=false, LS :=0
5: for V < Variables(G) do
6: L := CreateLocalDFA(G, V, F)
7: for S < States(L) do
8: for T < Transitions(L, S) do
9: suppress := true
10: P :=Predicate(L, T)
11: for S’ < GlobalStates(L, S) do
12: for T' < Transitions(G, S’) do
13: if CanSuppress(G, T') then
14: continue
15: P’ := Predicate(G, T')
16: if SAT(PA (p=V)AP') then
17: suppress := false
18: if suppress then MarkSuppressed(L, T)
19: LS:=LSU{L}
20: for S’ « States(G) do
21: for T' < Transitions(G, S") do
22: if CanSuppress(G, T’) then continue
23: NC :=NC V Simplify(Predicate(G, T'), p==Fresh())

24: return (LS, NC)

state since the other NF instances that also are not $X may
be sending events that match NOT $X transitions. The fix is
simple: the algorithm computes the disjunction of all the
transition predicates in the global state machine subject to the
knowledge that the location p does not match any variable
(line 23).

In the running example, the algorithm computes: (ET==ADD
A Z==$X) V (ET==ADD A %!=$X) V (ET==REMOVE A Z==5X),
where 7 is a fresh variable that is guaranteed to not match
any location in the predicate. The above condition simplifies
to ET==ADD. This means that the local machine must send
any FLOWCACHE_PRIMARY_ADD events to the global verifier
regardless of its local state.

Note that non-location variables may introduce some un-
certainty at the local verifier, which may not be sure what
other NF instances have observed for their value. To address
this, Aragog first tries to generate a predicate that accounts
for any possible variable assignment by enumerating all pos-
sible assignments from their ==/! = expressions, replacing
their occurrences in the negated condition, and computing
the disjunction of the resulting predicates. If any variables or
arithmetic operations remain in the disjunction, Aragog will
simply not suppress any events, which is always safe.

7 Runtime System

We next describe the Aragog runtime.

7.1 Workflow Overview

We begin with the common case: NF instances synchronized
via PTP send events—at runtime—to a co-located local agent

via traditional IPC mechanisms. This local agent applies trans-
formations, computes supressions using local state machines,
and then sends any non-suppressible events to the global veri-
fier via a set of Kafka brokers.

Filtering, mapping, and grouping. After ingesting
the stream of PTP-timestamped events, local Aragog
agents co-located with the NF first apply any applicable
transformations—FILTER, MAP Or GROUPBY—t0 the raw
stream. As each IV specification can have a different set of
transformations, this may require Aragog to duplicate the
incoming stream of raw events (it tries to avoid doing so
when possible). The end result is a set of keyed event streams:
one stream for each combination of policy and GrourBY key.

Computing suppression. The next step, also performed lo-
cally, is to determine whether events in each keyed stream are
suppressible. Aragog passes the events through the localized
state machines — one for each location referenced in each
IV specification. For a given event and IV, Aragog suppresses
the event when (1) all localized instances of the IV specifica-
tion would take a suppressible transition when fed the current
event and (2) the event does not satisfy the negated condition.
If either constraint is false, Aragog sends the event to a Kafka
queue for the given keyed event stream.

As a concrete example, Figure 12 shows processing of a
series of events with the specification in Figure 4 and with
the same GroupBY key. The first event is an ADD event at flow
decider FD;. After seeing this event, FD; will transition locally
from state go ({S}) to state g1 ({{S},{S,1},{S,2}}). Since
this transition is not suppressible, the event is sent to the veri-
fier. The next event is a REMOVE event that takes place at FDs.
This particular transition is suppressible and the negated con-
dition (ET==ADD) is not satisfied, thus, the event is suppressed.

This suppression can substantially reduce the number of
events received by the global verifier. For example, with three
replicas (including the primary), a correct execution of Fig-
ure 4 Aragog would receive—after suppression—just 2 out
of 4 events (the add and remove at the primary but not the 2
suppressed removes at nodes other than $X).

Global state machines. Pulling from Kafka is a cluster of
Flink instances running the global versions of the IV state
machines. Both the Kafka and Flink instances are automati-
cally provisioned, checkpointed, assigned GrourBY keys, and
load balanced to worker nodes. As Flink does not guarantee
that events from different NF instances will arrive in order,
Aragog temporarily stores and reorders events in the Flink
workers with an efficient priority queue before passing them
to the associated state machine.

One challenge is how long to wait for delayed events. One
approach is to maintain a list of all NF instances along with
the timestamp of the last event they sent to this partition and
only process time ¢t when we have seen events from all in-
stances up to ¢ + latency. Unfortunately, most NF instances
do not interact with most flows/policies and sending ‘null’

|FD2|FD1|*| |FD1|FD3|*|

| no events |
| | NN
15,2} {8,1} {S} {S,2} {S,1} {S}

—
Global: {S} {S,1} {S} s} {s,1} s} 5,2 5.2
@ . : . violation! violation! N

Time

/ 7 7
Local:

’ ’ ’

\4

ADD@FD,
q0 — 41

REMOVE@FD3 REMOVE@FD, REMOVE@FD,
q0 — 40 q0 — 40 q1 — 490

ADD@FD,
q0 — 41

REMOVE@FD,
q0 — 90

ADD@FD;
q0 — 41

ADD@FD3
q0 — 41

Figure 12: Distributed execution for the example from Figure 4 on an example sequence of events for N flow deciders. Time
progresses from left to right. Local events are shown along the bottom line with the local state of the flow decider. We use gg =
{{S}} and g = {{S},{S,1},{S,2}}. The global verifier’s state is shown at the top. Red, dashed edges indicate suppressed events.

events to advance the timestamps of every partition would be
costly. Instead, Aragog relies on the assumption of a maxi-
mum latency #,,,, and handles violations of this assumption
with the techniques in Section 7.3.

Aragog will hold each event for t,,,, time before running it
through the global DSFA. While processing events for a given
IV specification, the verifiers will track all of the possible
states in which the associated state machine could be, as well
as all potential values of the IV specification’s variables (see
Section 7.2 for details). If any of the possible states is a ‘final’
state in the IV’s DSFA, Aragog will raise an alert.

Consistent sampling. If scaling is still challenging despite
sharding the verifier, filtering relevant events, and suppress-
ing events locally, Aragog provides a final mechanism that
lets users trade performance for completeness by sampling
a consistent set of events with consistent hashing based on
the GroupBY key (e.g., a 5-tuple for NATGW). In this way,
each group is itself complete though false negatives remain
possible when violations occur for keys that are not sampled.

7.2 (Location) Variable Tracking

Aragog tracks all possible instantiations of variables (location
or otherwise) at runtime using a multi-level tree data structure
(shown at the top of Figure 12). Intuitively, the tree captures
the state the global automaton would be in for every possi-
ble instantiation, with the leaves of the tree as the state and
the interior nodes as variable assignments. Every variable is
assigned a single level of the tree.

Let the number of variables (location or otherwise) for an
IV specification be n. When the system starts, the DSFA is
in the start state, {S}, for all possible variable assignments.
This is represented as a degenerate tree with height n+ 1 and
a single leaf pointing at the start state {S}. The interior nodes
are all set to *, indicating no constraints on the n variables. For
every incoming event, we advance the DSFA using the state
and variable assignments of every leaf. Whenever a predicate
is encountered that references a variable, V;, if V; = x is an
ancestor of the current leaf we split execution into a case
where V; satisfies the predicate and a case where it does not.

The (n— i)-height subtree under V; = * may need to be cloned.

In the example of Figure 12, there is only one variable ($X)
and, thus, only two levels in the tree. The system starts in the
degenerate case where $X = *. After the first ADD event arrives
at the verifier from FD1, we fork the tree to separate out the old
case and a new case for $X=FD;. When $X is FDy, the verifier
takes the transition (ET == ADD A p == $X) to state {S,1}:
the current location p is FDj, and $X is also FD;. Otherwise
if $x!=FDy, it takes the self-loop transition to remain in {S}.
For the next event from FD; (REMOVE), there is no new case to
fork, and applying the transition to both cases in the tree leads
to both being in state {S} once more. Therefore, the states are
collapsed together back to *. This process continues until the
second to last event where a violation is detected for the case
where $X = FD, due to a duplicate add at FD;. The final event
(ADD at FD3) leads to a second violation, where now $X = FDy,
and is subsequently caught by the implementation.

7.3 Fault Tolerance

Failures and message drops/delays can cause Aragog to be-
come desynchronized from the ground-truth state of the sys-
tem. Even so, Aragog is able to guarantee both precision and
recall of typical network violations under the assumption of
‘partial synchrony’ [15], i.e., that there exists a time, #;, after
which there is some upper bound on message delivery time.
® Recall: Under a partial synchrony assumption, Aragog’s
practice of creating a self loop in the initial state of the
SFA means all violations whose trace begins after t, are
accurately modelled in the state machine and detected.

e Precision: Aragog’s precision guarantees are less com-
plete, but still hold in practice. Specifically, we observe
that all of the IV specifications we studied contained some
property where flow state would eventually be dropped
in reaction to a REMOVE_ENTRY or TCP FIN/RST event;
such transitions are common in networked systems and
ensure that any desynchronized state machine instances
will eventually transition back to the initial state.

In addition to the above, Flink provides guarantees that
successfully pulled events are processed by the state machine

Network Function Invariant Description

LoC States Transitions

nat_decider_open: After a PW goes into closed state, at least one replica also goes into closed state. 14 4 10
nat_consensus: All TCP flows are open only after consensus. 5 2 4
nat_open_to: Open flows are timed out after 4 minutes of inactivity. 5 4 12
nat_primary_single: There is a single primary per flow. 10 3 7
NAT Gateway nat_primary_to: The NATGW does not start an idle timeout for active flows. 13 6 18
nat_same_consensus: After TCP flow U is terminated, the next flow for U achieves consensus. 12 5 15
nat_syn_to: Flows with a TCP handshake in progress timeout after 5 seconds of inactivity. 5 4 12
nat_udp_same_consensus: If UDP flow U times out, the next flow for U achieves consensus. 12 6 17
fw_consistency: all Firewall instances should block suspicious IPs after a block rule is added. 6 4 12
Firewall [5] fw_client_init: Ensure a flow can only be open after a client initiates it. 4 2 4
fw_syn_first: Data packets are only allowed after a SYN is sent. 4 2 4
DHCP dhcp_reuse: Leased addresses are not re-used until expiration or release. 6 4 12
dhcp_overlap: Leases should not overlap between DHCP servers. 6 3 7

Table 1: List of example invariants that Aragog can implement for several common network functions and systems.

exactly once. End-to-end guarantees of exactly once delivery
between Flink and Kafka are also possible, but would incur
the overhead of atomic exporting of NF events, transactions,
and rollbacks. Instead, Aragog chooses to rely on partial syn-
chrony and to alert users after the fact when false positives
may have occurred. This can happen when an event arrives
with a timestamp earlier than the last processed event, two
events arrive from an NF instance with a gap in their sequence
numbers, or an NF instance (and its local agent) fail. Upon
restarting, the agent can immediately resume exporting events,
but the local state machine may be out of sync. In this case, it
can temporarily export all events (which is always safe) until
it can synchronize with the global verifier to rebuild the local
state machines from the global verifier’s state.

8 Implementation

We have implemented Aragog with more than 6,500 lines
of Java 8 code, packaged with Maven v3.6 and more than
2,000 lines of C++ code. The implementation consists of two
major components: the compiler and runtime system. It can
be found at: https://github.com/microsoft/aragog.

The compiler takes as inputs an event format specification
as described in Section 5.1 along with a set of IV specifica-
tions in the format of Section 5.2. For each IV specification,
it generates the global state machine, the resulting local state
machines, information about suppressible events, and a slew
of other metadata about variables, filters, and partitioning. The
lexer and parser use the ANTLR v4.7 [1] parser generator,
and the SFA construction and determinization use the open-
source symbolicautomata library [6], but with the addition
of a custom Z3-based [7] theory of Boolean Algebra designed
to support our IV specification language.

We built the runtime system on top of Apache Flink [2]
and Kafka [3]. These frameworks are designed for scalable
and robust stream processing and provide, intrinsically, fault-
tolerant and stateful processing, exactly-once semantics, load
balancing, flexible membership, checkpointing, etc. The local
agents, implemented in C++, ingest events directly, then filter,

map, and suppress events as necessary before sending them
to Kafka. The global verifiers, implemented in Java using
Apache Flink, pull from Kafka into a timestamp-based priority
queue from which events are dequeued after waiting for a
maximum delay; violations are logged to disk. We place
the verifiers off of the critical path to avoid any impact on
production traffic.

9 Evaluation

We evaluate Aragog in CloudLab [37] with a number of net-
work functions and along a number of dimensions.

The deployed NAT gateway (§2). We use two event traces
captured from two different builds of the NAT gateway to
evaluate Aragog. The builds capture the introduction of a set
of bugs that arose from the change of an interface between
two internal components, with V1 from before the change
and V2 from after. The traces are both for 7 flow deciders
over a 30 minute interval, but they export a different number
of packets (V1: 23.7M; V2: 9.0M) owing to changes in the
protocol. The production deployment of NATGW does not yet
support fine-grained clock synchronization, but our operators
plan to add it in the system’s next version. Instead, we capture
the event traces and correct for time drift using a set of known
synchronization points within the event stream. In total, there
are eight IV specifications for NATGW (see Table 1).

A distributed firewall. We also execute a collection of micro-
benchmarks using an open-source, stateful, and distributed
firewall implementation built on iptables, conntrackd, and
keepalived [5]). On the firewall, we check various invariant
violations, some of which were derived from [8]. The list of
specific invariant violations we check are listed in Table 1.

We deploy this firewall on a topology with four clients, four
internal hosts on a single LAN, and four firewall nodes inter-
posing between the two groups. The firewalls are configured
as two high-availability groups with one primary and one hot
standby each. Each primary-standby group shares a virtual IP
with the VRRP protocol. We base the traffic between external
hosts and internal servers on the traces provided in [9].

https://github.com/microsoft/aragog

Invariant Violation Version 1 Version 2
nat_decider_open 0 0
nat_consensus 0 0
nat_open_to 1 45019
nat_primary_single 0 0
nat_primary_to 1 29964
nat_same_consensus 536 259
nat_syn_to 0 2697
nat_udp_same_consensus 0 0

Table 2: Violations found in traces for NATGW versions. Note
that V1’s trace contains more events than V2’s, which may ac-
count for the difference in nat_same_consensus violations.

DHCP. To show the flexibility of Aragog and its language, we
also give examples of DHCP invariant violations in Table 1.
With our current implementation, the operator needs to write
just 6 lines to express the invariant violations. Each of the
state machines uses a small number of states and transitions.

Evaluation metrics. We evaluate Aragog along a number of
key dimensions: lines of code, throughput, latency, and CPU
overhead. In addition, our micro-benchmarks show Aragog’s
ability to scale as the number of nodes in the NF deployment
increase by demonstrating the benefits of our event suppres-
sion scheme. Finally, we find Aragog is able to identify bugs
in production systems. In particular, we were able to identify
four bugs in the NAT gateway which were confirmed by our
operators. Similarly, in the firewall, Aragog was able to find a
series of injected configuration errors over real traffic traces.

9.1 Bugs Identified by Aragog

NATGW Bugs. Running the traces through Aragog, we
discovered violations of nat_open_to, nat_primary_to,
nat_same_consensus, nat_syn_to, all of which were con-
firmed as caused by bugs by the NATGW team. Table 2 shows
the absolute number of violations observed for each.

nat_open_to was by far the most frequent violator in V2.
Discussions with our operators revealed that in V2, this vio-
lation (and that of nat_syn_to) were due to related bugs in
the code: it had taken operators over an hour to identify the
issues while Aragog identified it in under a minute. Although
nat_open_to also had a violation in V1, further examina-
tion revealed that the violation in V1 was due to an expected
consequence of eventual consistency—specifically one of the
replicas was getting update messages from the packet worker
but the primary did not and therefore started a timeout for the
flow. This led us to start checking for nat_primary_to.

Also prominent in both systems were violations of
nat_same_consensus. This violation occurred because the
flow was not closed or removed properly from one of the
replicas. The operators suspected this could be an issue, but
never had a method to test that hypothesis. Aragog confirmed
the problem and helped the developers to formulate the test
setup to reproduce the issue.

1x108 ¢

Q Version 1 o
g Version 2

(0] .

>

e 3

5 100000 | % .

%3,, %@ T =
[e]

=

= 10000 b

1 2 3 4 5 6 7 8
Number of invariants
Figure 13: The throughput in events/second for an executor
of Aragog on the trace.

Bugs in the distributed firewall rules. For the firewall, we
manually injected bugs in the firewall configuration to test Ar-
agog’s ability to identify this category of errors. The injected
issues, for instance, always allowed external traffic from a
particular address range into the internal network, violating
fw_client_init. Aragog found all of them.

9.2 Throughput of Aragog

Aragog’s global verifier keeps track of the set of possible
states for each IV specification and the possible values for
each variable/location. Thus, Aragog’s throughput is directly
correlated with the number of IVs checked (Figure 13). To
evaluate this scaling, we run the V1/2 traces through all the
8 NATGW 1V specifications using a single Task Slot on the
global verifier (running on an Intel(R) Xeon(R) E5-2450 pro-
cessor CPU @ 2.10GHz machine). We upload the entire trace
on Apache Kafka after local processing to measure the max-
imum throughput a single task slot of Apache Flink of the
global verifier can process. In Figure 13 we randomly se-
lect n among the NATGW invariant violations and see the
performance. As each type of invariant violation exhibits dif-
ferent resource requirements, we see more variance when the
number of type of invariant violations selected is low.

With a single task slot, our optimizations allow Aragog
to scale and process over 500,000 events per second for a
single invariant violation type (over 30,000 for 8). Adding
more task slots does not improve the performance as our
implementation is parallel in nature and a single task slot is
already using multiples core in a single machine.

Aragog scales linearly as we add more machines to the
global verifier (Figure 14). Scaling with multiple machines
avoids the bottleneck of CPU and I/O.

9.3 Overhead of Aragog

To measure the memory and CPU overhead of Aragog, we
study its behavior while verifying the distributed firewall. In
Figures 15, 16 and 17, data is divided into separate groups.
‘Primary’ represents the verifier running at the primary fire-
wall. ‘Backup’ represents the verifier running at the hot-
standby firewall. ‘Manager’ and ‘executor’ represent the
Apache Flink job manager and executors, respectively. The
global verifier runs on the executors.

Process/Location Resource Spearman correlation
job manager CPU 0.14700

job manager memory —0.59379
executor CPU 0.78481
executor memory —0.38373
primary CPU 0.88916
primary memory —0.18253
backup CPU 0.93618
backup memory 0.24768

Table 3: Spearman Correlation between number of events/s
and resource utilization at different locations of verifier while
running the firewall.

@ 140000 | —_

% 120000 etz
5 100000 |- S

Ig 80000 r

S 60000 -

2 40000 - — Version 1

o L ersion 1
= 20000 Version 2

0 L
0 1 2 3 4
Number of Machines
Figure 14: Throughput of multiple Aragog verification server

checking all 8 types invariant violations

We see that in Figures 16 and 17, the overhead of the local
verifiers is low. This is important as the local components are
co-located with the production NF instances. To that end, the
CPU utilization of the local verifier increases linearly with
the number of flow events per second. We also observe the
CPU and memory usage for the local verifier is higher at the
primaries as they tend to generate more events. Memory at
the local components is much less correlated (Table 3), partly
due to Aragog’s small memory footprint (Figure 17).

The global verifier has higher CPU (Figure 15) and mem-
ory (Figure 17) than local verifiers as the global verifier is
implemented in Java using Apache Flink. We have set the
maximum memory of job manager to 1 GB and executor to
2 GB. In our graphs, we are plotting active memory in Java’s
heap for the global verifier rather than used memory to avoid
including memory waiting to be cleaned up by the Java GC.

Figure 18 shows the CDF of Aragog’s time to detection
for violations in the distributed firewall function. The time to
detection is low: in the median it takes roughly 70 ms from
the time the event was executed (the violation occurred) at
the NF instance until Aragog raises an alert.

9.4 Efficacy of Suppression

Each optimization in Aragog improves scalability by reducing
the number of events sent to the global verifier (reducing the
network overhead and the number of events processed at the
global verifier). Filters remove the need to send events that
are not pertinent and reduce the number of events sent to the
verifier by up to 61% for the NATGW (Table 4). Suppressible

300 -
manager
250 executor

200
150 |
100
50

CPU (% Utilization)

. . . . A J

0 500 1000 1500 2000 2500 3000 3500
Number of flow events per second

Figure 15: CPU utilization by Aragog’s global component.

‘Manager’ and ‘executor’ refer to the Flink node designations.

5

= primary
S 20t backup
g

= 15 ¢

o]

X 10|
 5¢

(@) e

° 0 100 200 300 400 500 600 700 800
Number of flow events per second

Figure 16: CPU utilization by Aragog’s local component. The

graph shows CPU utilization of the local verifier at both the

primary and backup firewall.

events can further reduce this number (by up to an additional
12% in our experiments).

10 Related Work

Runtime verification. Researchers have studied runtime veri-
fication extensively, with many papers dedicated to improving
its expressiveness and performance. We find that, unfortu-
nately, these existing systems are a poor fit for our setting.
For example, DS [28] is a runtime verifier. Like Aragog, it
focuses on identifying bugs in distributed systems at runtime,
and its usage of C++ implementations to specify general-
purpose properties means that it can check a wider range of
properties than Aragog. On the other hand, Aragog is able to
leverage its domain-specific IV specification language (based
on regular expressions) to reduce overhead (e.g., with event
suppression). Similarly, while CrystalBall [39] can proac-
tively steer a distributed system away from bad states, it im-
poses restrictions on the target system’s architecture that make
sense for a distributed system, but not necessarily for a large-
scale NF. A third system, Pivot Tracing [31] tracks only causal
relationships and not unrelated events at different machines—
a property required by some of NATGW’s uniqueness in-
variants. We emphasize that none of the above implies strict
superiority. In particular, as Aragog is domain-customized for
NFs, it should not be used for more general cases (e.g., it may
not be able to verify systems like Chord or Paxos efficiently).

We also note that Aragog borrows ideas from two areas
within runtime verification. The first is verification of dis-
tributed systems, which is broadly separated into two cate-
gories based on whether the system assumes a synchronized

@ 1000
2
c
il
g
= 100 @
5
>
g
5 ==
= 10t
Global Global Local Local
Job Manager Executor Primary ~ Backup

Figure 17: Memory utilization of verifier in MBytes.
1.
0.8
0.6

CDF

04
0.2

n n n n n J

0 il il il
0 20 40 60 80 100 120 140 160 180 200

Detection Latency (ms)
Figure 18: Latency (alert time — packet time) for detecting a
violation in the distributed firewall.

global clock [17]. In this respect, Aragog would be considered
a decentralized [14, 17] runtime verification system. The sec-
ond is parametric verification, which focuses on checking uni-
versally or existentially quantified expressions [13,20,30,36].
The location variables in Aragog are examples of parametric
variables. The main distinction of Aragog from these systems
is its combination of parametric and decentralized runtime
verification through its support for location variables. More-
over, Aragog’s efficient implementation of this combination
of features through its use of sharding and local symbolic
state machine partitioning is new in this context.

Static verification of NFs and distributed systems. Static
verification has as equally rich history, including in the do-
main of NFs and distributed systems [10, 34,42, 44]. Static
verification approaches may provide exhaustive guarantees
of correctness, but often suffer from issues of scalability. For
this reason, many static verifiers (e.g., [42,44]) assume single-
machine middleboxes, while others (e.g., [25,29,40]) may
require checking an exponential number of states/paths. Lever-
aging hand-written NF models can improve scalability com-
pared to verifying source code, but requires tedious and error-
prone manual translation of NF models and divorces the veri-
fier from the behavior of the actual deployed system [10,34].
Aragog makes a different set of tradeoffs, opting to sacrifice
principled exploration for improved scalability and giving
up the ability to catch bugs early for the ability to test real
implementations running over live data. We argue that these
tradeoffs are a better fit for our operators’ requirements.
Related to the above approaches is the use of semi-
automated theorem provers such as Dafny [27]. Users can
apply these tools to build systems that are provably correct. A
good example of this approach is IronFleet [21], which was

Version Generated After Filter After Suppression
Vi 189M 92.9M (49.1%) 70.2M (37.1%)
V2 72.2M 36.7M (50.8%) 28.0M (38.8%)

Table 4: Total number of generated events, events processed
after filtering, and events processed after filtering and suppres-
sion for the NAT gateway with all 8 IV specifications.

used to build a verified, Paxos-based replicated-state-machine
library. On the other hand, a drawback of this approach is that
it requires significant development effort. IronFleet verifica-
tion, for example, involved tens of thousands of lines of proof.
In contrast, Aragog aims to be a lightweight (but sans proof-
of-correctness) alternative, requiring little to no developer
effort by catching bugs at run time.

Stateless dataplane verification. Dataplane verification
tools such a HSA [23] and Anteater [32] verify the correct-
ness of a static snapshot of network forwarding tables. Later
tools such as Veriflow [24] perform runtime verification by
constantly re-verifying the network state as changes occur.
Each of these tools reasons about all packet behaviors—a
challenging task—however, their reasoning is limited to veri-
fication of stateless network forwarding. In contrast, Aragog
focuses on verifying complex temporal and stateful proper-
ties of general-purpose distributed NFs. For example, Aragog
can ensure a stateful firewall correctly allows traffic only for
connections that are established by an internal sender.

11 Discussion and Conclusion

Aragog is a lightweight verification framework for verifying
distributed network functions. To scale to large systems with
minimal overhead, Aragog leverages a two-tiered setup with
local monitors at each NF instance sending events to (and
hiding events from) a collection of sharded global verifiers.
While Aragog can verify any distributed system, its scalability
will depend on whether the invariant violations of interest can
utilize its sharding and suppression optimization effectively.

Finally, as Aragog is the first to verify distributed network
functions at scale (and at runtime), there are a number of
aspects where follow up work may be needed. Included in this
set are explorations of other time synchronization protocols,
e.g., [18] or some other lightweight and precise event ordering
mechanisms. Also for future work are innovations in atomic
event export and transactions over streams in Aragog.

Acknowledgments

We gratefully acknowledge our shepherd Xi Wang and the
anonymous OSDI reviewers for all of their thoughtful reviews,
comments, and time. The authors would also like to thank
Geoff Outhred for his feedback and support of this work. This
work was funded in part by NSF grant CNS-1845749, DARPA
contract HR0O011-17-C0047, and a Microsoft internship.

References

(1]
(2]

(3]
(4]

(3]
(6]

(71
(8]

(91

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

Antlr. https://www.antlr.org/.

Apache Flink: Stateful computations over data streams. https:
//flink.apache.org/.

Apache Kafka. https://kafka.apache.org/.

Maglev outage. https://status.cloud.google.com/
incident/cloud-networking/18013.

NetFilter. http://conntrack-tools.netfilter.org/.

A symbolic automata library. https://github.com/

lorisdanto/symbolicautomata.
Z3. https://github.com/Z3Prover/z3.

Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and Masum
Hasan. Conflict classification and analysis of distributed fire-
wall policies. IEEE journal on selected areas in communica-
tions, 23(10):2069-2084, 2005.

Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jiten-
dra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta,
and Murari Sridharan. Data center TCP (DCTCP). In Proceed-
ings of the ACM SIGCOMM 2010 conference, pages 63-74,
2010.

Kalev Alpernas, Roman Manevich, Aurojit Panda, Mooly Sa-
giv, Scott Shenker, Sharon Shoham, and Yaron Velner. Abstract
interpretation of stateful networks, 2017.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker
Markl, Seif Haridi, and Kostas Tzoumas. Apache Flink: Stream
and batch processing in a single engine. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering,
36(4), 2015.

Loris D’ Antoni and Margus Veanes. The power of symbolic
automata and transducers. In Computer Aided Verification,
29th International Conference (CAV ’17), July 2017.

Normann Decker, Martin Leucker, and Daniel Thoma. Moni-
toring modulo theories. In Erika Abrahdm and Klaus Havelund,
editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 341-356. Springer Berlin Heidelberg,
2014.

M. Ali Dorosty, Fathiyeh Faghih, and Ehsan Khamespanah.
Decentralized runtime verification for LTL properties using
global clock, 2019.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Con-
sensus in the presence of partial synchrony. J. ACM,
35(2):288-323, April 1988.

Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith,
Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu,
Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. Ma-
glev: A fast and reliable software network load balancer. In
13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’16), pages 523-535, 2016.

Adrian Francalanza, Jorge A. Pérez, and César Sdnchez. Run-
time Verification for Decentralised and Distributed Systems,
pages 176-210. 2018.

Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar,
Mendel Rosenblum, and Amin Vahdat. Exploiting a natural
network effect for scalable, fine-grained clock synchronization.
In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’18), pages 81-94, 2018.

[19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Ko-
ley, and Amin Vahdat. Evolve or die: High-availability de-
sign principles drawn from googles network infrastructure. In
Proceedings of the 2016 ACM SIGCOMM Conference, pages
58-72, 2016.

Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Z&-
linescu. Monitoring Events that Carry Data, pages 61-102.
2018.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob Lorch,
Bryan Parno, Michael Roberts, Srinath Setty, and Brian Zill.
IronFleet: Proving safety and liveness of practical distributed
systems. Communications of the ACM, 60:83-92, 06 2017.

Information Sciences Institute. Transmission Control Protocol.
RFC 793, RFC Editor, September 1981.

Peyman Kazemian, George Varghese, and Nick McKeown.
Header space analysis: Static checking for networks. In Pro-
ceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI ’12), pages 9-9, Berkeley,
CA, USA, 2012.

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. Veriflow: Verifying network-wide in-
variants in real time. SIGCOMM Comput. Commun. Rev.,
42(4):467-472, September 2012.

Charles Killian, James W. Anderson, Ranjit Jhala, and Amin
Vahdat. Life, death, and the critical transition: Finding liveness
bugs in systems code. In 4th USENIX Symposium on Net-
worked Systems Design & Implementation (NSDI *07), Cam-
bridge, MA, April 2007.

Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed
messaging system for log processing. In Proceedings of the
NetDB, volume 11, pages 1-7, 2011.

K. Rustan M. Leino. Dafny: An automatic program verifier
for functional correctness. In Edmund M. Clarke and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelli-
gence, and Reasoning, pages 348-370, 2010.

Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen
Lian, Jian Tang, Ming Wu, M. Frans Kaashoek, and Zheng
Zhang. D3S: Debugging deployed distributed systems. In
Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI "08), page 423-437,
USA, 2008.

Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Sum-
into, Daniar H. Kurniawan, Dikaimin Simon, Satria Priambada,
Chen Tian, Feng Ye, Tanakorn Leesatapornwongsa, Aarti
Gupta, Shan Lu, and Haryadi S. Gunawi. FlyMC: Highly
scalable testing of complex interleavings in distributed sys-
tems. In Proceedings of the Fourteenth EuroSys Conference
2019 (EuroSys ’19), New York, NY, USA, 2019.

Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin,
Patrick O’Neil Meredith, Traian Florin Serbénutd, and Grigore
Rosu. RV-Monitor: Efficient parametric runtime verification
with simultaneous properties. In Borzoo Bonakdarpour and
Scott A. Smolka, editors, Runtime Verification, pages 285-300,
2014.

https://www.antlr.org/
https://flink.apache.org/
https://flink.apache.org/
https://kafka.apache.org/
https://status.cloud.google.com/incident/cloud-networking/18013
https://status.cloud.google.com/incident/cloud-networking/18013
http://conntrack-tools.netfilter.org/
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
https://github.com/Z3Prover/z3

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot
Tracing: Dynamic causal monitoring for distributed systems.
In 2016 USENIX Annual Technical Conference (USENIX ATC
16), Denver, CO, June 2016.

Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Cae-
sar, P. Brighten Godfrey, and Samuel Talmadge King. Debug-
ging the data plane with Anteater. In Proceedings of the ACM
SIGCOMM 2011 Conference, pages 290-301, New York, NY,
USA, 2011.

Tim Nelson, Nicholas DeMarinis, Timothy Adam Hoff, Ro-
drigo Fonseca, and Shriram Krishnamurthi. Switches are mon-
itors too! stateful property monitoring as a switch design crite-
rion. In Proceedings of the 15th ACM Workshop on Hot Topics
in Networks (HotNets ’16), page 99—105, New York, NY, USA,
2016.

Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv,
and Scott Shenker. Verifying reachability in networks with
mutable datapaths. In /4th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’17), pages 699—
718, Boston, MA, March 2017.

Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy,
Albert Greenberg, David A. Maltz, Randy Kern, Hemant Ku-
mar, Marios Zikos, Hongyu Wu, Changhoon Kim, and Naveen
Karri. Ananta: Cloud scale load balancing. In Proceedings of
the ACM SIGCOMM 2013 Conference, pages 207-218, 2013.

Giles Reger, Helena Cuenca Cruz, and David Rydeheard.
MarQ: Monitoring at runtime with QEA. In Christel Baier and
Cesare Tinelli, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 596-610, 2015.

Robert Ricci, Eric Eide, and CloudLab Team. Introducing
CloudLab: Scientific infrastructure for advancing cloud archi-
tectures and applications. ;login:, the magazine of USENIX &
SAGE, 39(6):36-38, 2014.

(38]

[39]

(40]

[41]

[42]

[43]

[44]

Guangming Xing. Minimized thompson NFA. International
Journal of Computer Mathematics, 81:1097 — 1106, 2004.

Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor
Kuncak. CrystalBall: Predicting and preventing inconsisten-
cies in deployed distributed systems. In Proceedings of the
6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI °09), page 229-244, USA, 20009.

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng
Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Li-
dong Zhou. MODIST: Transparent model checking of unmod-
ified distributed systems. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI °09), page 213-228, USA, 2009.

Yifei Yuan, Soo-Jin Moon, Sahil Uppal, Limin Jia, and Vyas
Sekar. NetSMC: A custom symbolic model checker for state-
ful network verification. In /7th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI "20), pages
181-200, February 2020.

Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo
Rizzo, Luis Pedrosa, Katerina Argyraki, and George Candea.
Verifying software network functions with no verification ex-
pertise. In Proceedings of the 27th ACM Symposium on Op-
erating Systems Principles (SOSP ’19), page 275-290, New
York, NY, USA, 2019.

Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina
Argyraki, and George Candea. A formally verified NAT. In
Proceedings of the ACM SIGCOMM 2017 Conference, page
141-154, 2017.

Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind Kr-
ishnamurthy, and Xi Wang. Automated verification of cus-
tomizable middlebox properties with gravel. In 17th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’20), pages 221-239, Santa Clara, CA, February 2020.

10.10.4.1 10.10.4.1 10.10.5.1

10.10.1.5 10.10.1.6 10.10.1.7

N

10.10.5.1

10.10.1.8

I Traffic node
I Firewall/local verifier node
N Global verifier node

>< All to all connection

External Nodes

Firewall Nodes

VN

Global verifier

Figure 19: Topology for the distributed firewall demo.

A Artifact Appendix

Aragog is available at: https://github.com/microsoft/aragog.
Instructions for installing and running the artifact can be found
in the README of this repository.

A.1 Code Structure
A.1.1 SFA generation

SFA generation has three dependencies: symbolic automata,
z3 and antlr. The primary classes are:

GenerateSFA. java: This is the main class. It takes the event
definition file and the IV specification file, and it outputs the
SFA in a form that can be accepted by the runtime verifiers.
Ant1r is used to create the parse tree, which is then used to cre-
ate the global SFA using the class InvariantVisitor, which
recursively visits each node of the parse tree while construct-
ing the SFA. A DSFA is generated from this automata and
printed to a . sm.g file along with a DOT file representation.

GenerateLocalSFA java: This class is called by GenerateSFA
to create local versions of the global SFA. Specifically, it
takes the SFA and locations as input and outputs the local
SFA for each location. The end result of this step is a series of
.sm. [1-9][0-9] * files, one series for each IV specification.

EventSolver: This class contains the theory of
Booleanalgebra logic required to create the SFA. Please
refer to Section 6.1 of the paper for details.

A.1.2 Global Verifier

The global verifier has three dependencies: Apache Flink,
Apache Kafka, and ant1r. The primary classes are:

Verifierjava: This is the main class. The program creates state
machines according to the provided .sm.qg files and processes
them. The input event messages can come either from a file,
a socket, or Kafka. It parses the message, processes it, and
raises alerts if required. Everything is done in streams to allow
for parallelism.

Creation of the parser uses ParserFactory. java, which can
parse according to packet format . json or some user-specified
custom parser.

GlobalSFAProcessorjava: This class is the runtime DSFA
processor. It takes events as input and outputs alerts. Con-
tained in this processor is functionality for reordering events
based on their timestamp, tracking stateful variables across
events, and advancing all possible instantiations of the DSFA.
Critical to the function of the DSFA is an expression tree of bi-
nary/boolean operators that assist in evaluating the predicates
attached to each transition in the DSFA. See the expressions
sub-directory for details.

A.1.3 Local Verifier

The local verifier has three dependencies: cppkafka,
rapidjson and antlr. The primary files are:

main.cpp: Like GenerateSFA. java of the global verifier, the
local C++ version is responsible for constructing the state
machine from the provided files and processing input events
coming from either a file or a socket. The overall flow of the
local verifier mirrors that of the global verifier, except that this
one is implemented in C++ with none of the Flink support
for automatic scaling and fault tolerance: after receiving an
event, the event is parsed using the PacketParser class and
sent to the local SFA processor (described below). The key
difference is that the objective of this version is to decide
whether the event should be suppressed and output it if not.
Events are only suppressed if all state machines agree that
they are suppressible.

SFAProcessor.cpp: This is the local, C++ version of
GlobalSFAProcessor.java. Like other portions of Aragog’s
local components, the local SFA processor implements a
stripped-down, slightly modified version of the global ver-
ifier’s functionality. In this case, the local node is tracking its
view of the global state of the system, given only the locally
observed events. As such, it does not need to worry about
event reordering or location-variable tracking, which simpli-
fies the implementation and leads to improved performance.

A.2 Firewall Demo

We include in the repository an example experiment involving
firewalls and verifiers that emulates a portion of the experi-
mental methodology of Section 9. This experiment expects
the user to have a small cluster of machines that can play the

https://github.com/microsoft/aragog

role of each type of node. CloudLab is one viable option and
we include configurations to assist in allocating such a cluster.
The included code configures the topology of Figure 19.

The setup file, Setup/setup. sh, installs the required soft-
ware on each machine in the user’s cluster and also installs
IP route rules that create an overlay corresponding to the
topology referenced above.

Overall, the experiment consists of four external nodes,
four internal nodes on a single LAN, and four firewall nodes
interposing between the two groups. The firewalls are config-
ured as two high-availability groups with one primary and one
hot standby per group. Each primary-standby group shares
a virtual IP with the VRRP protocol. We base the traffic be-

tween external nodes and internal nodes on traffic models
from DCTCP [9].

The rules that are installed in the firewall are simple. In-
ternal nodes can communicate with each other and initiate
connections to external nodes. External nodes cannot initiate
connections to internal nodes.

Alongside the firewall, each firewall node also runs the
verifier, which computes filters and suppression. A single
global verifier node runs both the Apache Kafka and Apache
Flink deployments. Kafka is responsible for receiving and
pipelining the events from all of the local verifiers. Flink is
responsible for executing the global verifier.

	Introduction
	Motivation: A Cloud-scale NAT Gateway
	Design Goals
	Aragog's Architecture
	Specification Language
	Event Definitions
	Invariant-Violation (IV) Specifications
	Transformations
	Event Expressions

	State Machine Generation
	Constructing the SFA
	Local State Machines
	Suppressible Transitions
	Local State Machine Construction
	Suppressing Events Locally

	Runtime System
	Workflow Overview
	(Location) Variable Tracking
	Fault Tolerance

	Implementation
	Evaluation
	Bugs Identified by Aragog
	Throughput of Aragog
	Overhead of Aragog
	Efficacy of Suppression

	Related Work
	Discussion and Conclusion
	Artifact Appendix
	Code Structure
	SFA generation
	Global Verifier
	Local Verifier

	Firewall Demo

