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Abstract

We study the question of obtaining last-iterate convergence rates for no-regret learning algorithms
in multi-player games. We show that the optimistic gradient (OG) algorithm with a constant step-size,
which is no-regret, achieves a last-iterate rate of O(1/

√
T ) with respect to the gap function in smooth

monotone games. This result addresses a question of Mertikopoulos & Zhou (2018), who asked whether
extra-gradient approaches (such as OG) can be applied to achieve improved guarantees in the multi-
agent learning setting. The proof of our upper bound uses a new technique centered around an adaptive
choice of potential function at each iteration. We also show that the O(1/

√
T ) rate is tight for all p-

SCLI algorithms, which includes OG as a special case. As a byproduct of our lower bound analysis we
additionally present a proof of a conjecture of Arjevani et al. (2015) which is more direct than previous
approaches.

1 Introduction

In the setting of multi-agent online learning ([SS11, CBL06]), K players interact with each other over time.

At each time step t, each player k ∈ {1, . . . ,K} chooses an action z
(t)
k ; z

(t)
k may represent, for instance, the

bidding strategy of an advertiser at time t. Player k then suffers a loss ℓt(z
(t)
k ) that depends on both player

k’s action z
(t)
k and the actions of all other players at time t (which are absorbed into the loss function ℓt(·)).

Finally, player k receives some feedback informing them of how to improve their actions in future iterations.

In this paper we study gradient-based feedback, meaning that the feedback is the vector g
(t)
k = ∇zkℓt(z

(t)
k ).

A fundamental quantity used to measure the performance of an online learning algorithm is the regret
of player k, which is the difference between the total loss of player k over T time steps and the loss of the

best possible action in hindsight: formally, the regret at time T is
∑T

t=1 ℓt(z
(t)
k ) − minzk

∑T
t=1 ℓt(zk). An

algorithm is said to be no-regret if its regret at time T grows sub-linearly with T for an adversarial choice
of the loss functions ℓt. If all agents playing a game follow no-regret learning algorithms to choose their
actions, then it is well-known that the empirical frequency of their actions converges to a coarse correlated
equilibrium (CCE) ([MV78, CBL06]). In turn, a substantial body of work (e.g., [CBL06, DP09, EDMN09,
CD11, VZ13, KKDB15, BTHK15, MP17, MZ18, KBTB18]) has focused on establishing for which classes of
games or learning algorithms this convergence to a CCE can be strengthened, such as to convergence to a
Nash equilibrium (NE).

However, the type of convergence guaranteed in these works generally either applies only to the time-
average of the joint action profiles, or else requires the sequence of learning rates to converge to 0. Such
guarantees leave substantial room for improvement: a statement about the average of the joint action profiles
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Table 1: Known last-iterate convergence rates for learning in smooth monotone games with perfect gradient

feedback (i.e., deterministic algorithms). We specialize to the 2-player 0-sum case in presenting prior work, since

some papers in the literature only consider this setting. Recall that a game G has a γ-singular value lower bound if

for all z, all singular values of ∂FG(z) are ≥ γ. ℓ,Λ are the Lipschitz constants of FG , ∂FG , respectively, and c, C > 0

are absolute constants where c is sufficiently small and C is sufficiently large. Upper bounds in the left-hand column

are for the EG algorithm, and lower bounds are for a general form of 1-SCLI methods which include EG. Upper

bounds in the right-hand column are for algorithms which are implementable as online no-regret learning algorithms

(e.g., OG or online gradient descent), and lower bounds are shown for two classes of algorithms containing OG and

online gradient descent, namely p-SCLI algorithms for general p ≥ 1 (recall for OG, p = 2) as well as those satisfying

a 2-step linear span assumption (see [IAGM19]). The reported upper and lower bounds are stated for the total gap

function (Definition 3); leading constants and factors depending on distance between initialization and optimum are

omitted.

Deterministic
Game class Extra gradient Implementable as no-regret

µ-strongly
monotone

Upper: ℓ
(
1− cµ

ℓ

)T
[MOP19b, EG]

Lower: µ
(

1− Cµ
ℓ

)T

[AMLJG19, 1-SCLI]

Upper: ℓ
(
1− cµ

ℓ

)T
[MOP19b, OG]

Lower: µ
(

1− Cµ
ℓ

)T

[IAGM19, 2-step lin. span]

Lower: µ

(

1− p

√
Cµ
ℓ

)T

[ASSS15, IAGM19, p-SCLI]

Monotone,
γ-sing. val.
low. bnd.

Upper: ℓ
(

1− cγ2

ℓ2

)T

[AMLJG19, EG]

Lower: γ
(

1− Cγ2

ℓ2

)T

[AMLJG19, 1-SCLI]

Upper: ℓ
(

1− cγ2

ℓ2

)T

[AMLJG19, OG]

Lower: γ
(

1− Cγ
ℓ

)T

[IAGM19, 2-step lin. span]

Lower: γ

(

1− p

√
Cγ
ℓ

)T

[ASSS15, IAGM19, p-SCLI]

λ-cocoercive Open Upper: 1
λ
√
T

[LZMJ20, Online grad. descent]

Monotone
Upper: ℓ+Λ√

T
[GPDO20, EG]

Lower: ℓ√
T

[GPDO20, 1-SCLI]

Upper: ℓ+Λ√
T

(Theorem 5, OG)

Lower: ℓ√
T

(Theorem 7, p-SCLI, lin. coeff. matrices)

fails to capture the game dynamics over time ([MPP17]), and both types of guarantees use newly acquired
information with decreasing weight, which, as remarked by [LZMJ20], is very unnatural from an economic
perspective.1 Therefore, the following question is of particular interest ([MZ18, LZMJ20, MPP17, DISZ17]):

Can we establish last-iterate rates if all players act according to
a no-regret learning algorithm with constant step size?

(⋆)

We measure the proximity of an action profile z = (z1, . . . , zK) to equilibrium in terms of the total gap
function at z (Definition 3): it is defined to be the sum over all players k of the maximum decrease in cost
player k could achieve by deviating from its action zk. [LZMJ20] took initial steps toward addressing (⋆),
showing that if all agents follow the online gradient descent algorithm, then for all λ-cocoercive games, the

action profiles z(t) = (z
(t)
1 , . . . , z

(t)
K ) will converge to equilibrium in terms of the total gap function at a rate

of O(1/
√
T ). Moreover, linear last-iterate rates have been long known for smooth strongly-monotone games

([Tse95, GBV+18, LS18, MOP19b, AMLJG19, ZMM+20]), a sub-class of λ-cocoercive games. Unfortunately,
even λ-cocoercive games exclude many important classes of games, such as bilinear games, which are the
adaptation of matrix games to the unconstrained setting. Moreover, this shortcoming is not merely an
artifact of the analysis of [LZMJ20]: it has been observed (e.g. [DISZ17, GBV+18]) that in bilinear games,
the players’ actions in online gradient descent not only fail to converge, but diverge to infinity. Prior work on
last-iterate convergence rates for these various subclasses of monotone games is summarized in Table 1 for
the case of perfect gradient feedback; the setting for noisy feedback is summarized in Table 2 in Appendix
A.4.

1In fact, even in the adversarial setting, standard no-regret algorithms such as FTRL ([SS11]) need to be applied with
decreasing step-size in order to achieve sublinear regret.
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1.1 Our contributions

In this paper we answer (⋆) in the affirmative for all monotone games (Definition 1) satisfying a mild
smoothness condition, which includes smooth λ-cocoercive games and bilinear games. Many common and
well-studied classes of games, such as zero-sum polymatrix games ([BF87, DP09, CCDP16]) and its gener-
alization zero-sum socially-concave games ([EDMN09]) are monotone but are not in general λ-cocoercive.
Hence our paper is the first to prove last-iterate convergence in the sense of (⋆) for the unconstrained version
of these games as well. In more detail, we establish the following:

• We show in Theorem 5 and Corollary 6 that the actions taken by learners following the optimistic
gradient (OG) algorithm, which is no-regret, exhibit last-iterate convergence to a Nash equilibrium in
smooth, monotone games at a rate of O(1/

√
T ) in terms of the global gap function. The proof uses a

new technique which we call adaptive potential functions (Section 3.1) which may be of independent
interest.

• We show in Theorem 7 that the rate O(1/
√
T ) cannot be improved for any algorithm belonging to the

class of p-SCLI algorithms (Definition 5), which includes OG.

The OG algorithm is closely related to the extra-gradient (EG) algorithm ([Kor76, Nem04]),2 which, at each
time step t, assumes each player k has an oracle Ok which provides them with an additional gradient at

a slightly different action than the action z
(t)
k played at step t. Hence EG does not naturally fit into the

standard setting of multi-agent learning. One could try to “force” EG into the setting of multi-agent learning
by taking actions at odd-numbered time steps t to simulate the oracle Ok, and using the even-numbered

time steps to simulate the actions z
(t)
k that EG actually takes. Although this algorithm exhibits last-iterate

convergence at a rate of O(1/
√
T ) in smooth monotone games when all players play according to it [GPDO20],

it is straightforward to see that it is not a no-regret learning algorithm, i.e., for an adversarial loss function
the regret can be linear in T (see Proposition 10 in Appendix A.3).

Nevertheless, due to the success of EG at solving monotone variational inequalities, [MZ18] asked whether
similar techniques to EG could be used to speed up last-iterate convergence to Nash equilibria. Our upper
bound for OG answers this question in the affirmative: various papers ([CYL+12, RS12, RS13, HIMM19])
have observed that OG may be viewed as an approximation of EG, in which the previous iteration’s gradient
is used to simulate the oracle Ok. Moreover, our upper bound of O(1/

√
T ) applies in many games for which

the approach used in [MZ18], namely Nesterov’s dual averaging ([Nes09]), either fails to converge (such
as bilinear games) or only yields asymptotic rates with decreasing learning rate (such as smooth strictly
monotone games). Proving last-iterate rates for OG has also been noted as an important open question
in [HIMM19, Table 1]. At a technical level, the proof of our upper bound (Theorem 5) uses the proof
technique in [GPDO20] for the last-iterate convergence of EG as a starting point. In particular, similar to
[GPDO20], our proof proceeds by first noting that some iterate z(t

∗) of OG will have gradient gap O(1/
√
T )

(see Definition 2; this is essentially a known result) and then showing that for all t ≥ t∗ the gradient gap only
increases by at most a constant factor. The latter step is the bulk of the proof, as was the case in [GPDO20];
however, since each iterate of OG depends on the previous two iterates and gradients, the proof for OG is
significantly more involved than that for EG. We refer the reader to Section 3.1 and Appendix B for further
details.

The proof of our lower bound for p-SCLI algorithms, Theorem 7, reduces to a question about the spectral
radius of a family of polynomials. In the course of our analysis we prove a conjecture by [ASSS15] about
such polynomials; though the validity of this conjecture is implied by each of several independent results in
the literature (e.g., [AS16, Nev93]), our proof is more direct than previous ones.

Lastly, we mention that our focus in this paper is on the unconstrained setting, meaning that the players’
losses are defined on all of Euclidean space. We leave the constrained setting, in which the players must
project their actions onto a convex constraint set, to future work.

1.2 Related work

Multi-agent learning in games. In the constrained setting, many papers have studied conditions under
which the action profile of no-regret learning algorithms, often variants of Follow-The-Regularized-Leader

2EG is also known as mirror-prox, which specifically refers to its generalization to general Bregman divergences.

3



(FTRL), converges to equilibrium. However, these works all assume either a learning rate that decreases
over time ([MZ18, ZMB+17, ZMA+18, ZMM+17]), or else only apply to specific types of potential games
([KKDB15, KBTB18, PPP17, KPT09, CL16, BEDL06, PP14]), which significantly facilitates the analysis of
last-iterate convergence.3

Such potential games are in general incomparable with monotone games, and do not even include finite-
state two-player zero sum games (i.e., matrix games). In fact, [BP18] showed that the actions of players
following FTRL in two-player zero-sum matrix games diverge from interior Nash equilibria. Many other
works ([HMC03, MPP17, KLP11, DFP+10, BCM12, PP16]) establish similar non-convergence results in
both discrete and continuous time for various types of monotone games, including zero-sum polymatrix
games. Such non-convergence includes chaotic behavior such as Poincaré recurrence, which showcases the
insufficiency of on-average convergence (which holds in such settings) and so is additional motivation for the
question (⋆).

Monotone variational inequalities & OG. The problem of finding a Nash equilibrium of a monotone
game is exactly that of finding a solution to a monotone variational inequality (VI). OG was originally intro-
duced by [Pop80], who showed that its iterates converge to solutions of monotone VIs, without proving explicit
rates.4 It is also well-known that the averaged iterate of OG converges to the solution of a monotone VI at
a rate of O(1/T ) ([HIMM19, MOP19a, RS13]), which is known to be optimal ([Nem04, OX19, ASM+20]).
Recently it has been shown ([DP18, LNPW20]) that a modification of OG known as optimistic multiplicative-
weights update exhibits last-iterate convergence to Nash equilibria in two-player zero-sum monotone games,
but as with the unconstrained case ([MOP19a]) non-asymptotic rates are unknown. To the best of our knowl-
edge, the only work proving last-iterate convergence rates for general smooth monotone VIs was [GPDO20],
which only treated the EG algorithm, which is not no-regret. There is a vast literature on solving VIs, and
we refer the reader to [FP03] for further references.

2 Preliminaries

Throughout this paper we use the following notational conventions. For a vector v ∈ Rn, let ‖v‖ denote
the Euclidean norm of v. For v ∈ Rn, set B(v, R) := {z ∈ Rn : ‖v − z‖ ≤ R}; when we wish to make the
dimension explicit we write BRn(v, R). For a matrix A ∈ R

n×n let ‖A‖σ denote the spectral norm of A.
We let the set of K players be denoted by K := {1, 2, . . .K}. Each player k’s actions zk belong to their

action set, denoted Zk, where Zk ⊆ Rnk is a convex subset of Euclidean space. Let Z =
∏K

k=1 Zk ⊆ Rn,
where n = n1 + · · ·+ nK . In this paper we study the setting where the action sets are unconstrained (as in
[LZMJ20]), meaning that Zk = Rnk , and Z = Rn, where n = n1 + · · ·+ nK . The action profile is the vector
z := (z1, . . . , zK) ∈ Z. For any player k ∈ K, let z−k ∈ ∏

k′ 6=k Zk′ be the vector of actions of all the other
players. Each player k ∈ K wishes to minimize its cost function fk : Z → R, which is assumed to be twice
continuously differentiable. The tuple G := (K, (Zk)

K
k=1, (fk)

K
k=1) is known as a continuous game.

At each time step t, each player k plays an action z
(t)
k ; we assume the feedback to player k is given in

the form of the gradient ∇zkfk(z
(t)
k , z

(t)
−k) of their cost function with respect to their action z

(t)
k , given the

actions z
(t)
−k of the other players at time t. We denote the concatenation of these gradients by FG(z) :=

(∇z1f1(z), . . . ,∇zKfK(z)) ∈ Rn. When the game G is clear, we will sometimes drop the subscript and write
F : Z → R

n.

Equilibria & monotone games. A Nash equilibrium in the game G is an action profile z∗ ∈ Z so that
for each player k, it holds that fk(z

∗
k, z

∗
−k) ≤ fk(z

′
k, z

∗
−k) for any z′k ∈ Zk. Throughout this paper we study

monotone games:

3In potential games, there is a canonical choice of potential function whose local minima are equivalent to being at a Nash
equilibrium. The lack of existence of a natural potential function in general monotone games is a significant challenge in
establishing last-iterate convergence.

4Technically, the result of [Pop80] only applies to two-player zero-sum monotone games (i.e., finding the saddle point of a
convex-concave function). The proof readily extends to general monotone VIs ([HIMM19]).
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Definition 1 (Monotonicity; [Ros65]). The game G = (K, (Zk)
K
k=1, (fk)

K
k=1) is monotone if for all z, z′ ∈ Z,

it holds that 〈FG(z′)− FG(z), z′ − z〉 ≥ 0. In such a case, we say also that FG is a monotone operator.

The following classical result characterizes the Nash equilibria in monotone games:

Proposition 1 ([FP03]). In the unconstrained setting, if the game G is monotone, any Nash equilibrium z∗

satisfies FG(z∗) = 0. Conversely, if FG(z) = 0, then z is a Nash equilibrium.

In accordance with Proposition 1, one measure of the proximity to equilibrium of some z ∈ Z is the norm
of FG(z):

Definition 2 (Gradient gap function). Given a monotone game G with its associated operator FG , the
gradient gap function evaluated at z is defined to be ‖FG(z)‖.

It is also common ([MOP19a, Nem04]) to measure the distance from equilibrium of some z ∈ Z by adding
the maximum decrease in cost that each player could achieve by deviating from their current action zk:

Definition 3 (Total gap function). Given a monotone game G = (K, (Zk)
K
k=1, (fk)

K
k=1), compact subsets

Z ′
k ⊆ Zk for each k ∈ K, and a point z ∈ Z, define the total gap function at z with respect to the set

Z ′ :=
∏K

k=1 Z ′
k by TGapZ

′

G (z) :=
∑K

k=1

(

fk(z) −minz′
k
∈Z′

k
fk(z

′
k, z−k)

)

. At times we will slightly abuse

notation, and for F := FG , write TGapZ
′

F in place of TGapZ
′

G .

As discussed in [GPDO20], it is in general impossible to obtain meaningful guarantees on the total gap
function by allowing each player to deviate to an action in their entire space Zk, which necessitates defining
the total gap function in Definition 3 with respect to the compact subsets Z ′

k. We discuss in Remark 4 how,
in our setting, it is without loss of generality to shrink Zk so that Zk = Z ′

k for each k. Proposition 2 below
shows that in monotone games, the gradient gap function upper bounds the total gap function:

Proposition 2. Suppose G = (K, (Zk)
K
k=1, (fk)

K
k=1) is a monotone game, and compact subsets Z ′

k ⊂ Zk are
given, where the diameter of each Z ′

k is upper bounded by D > 0. Then

TGapZ
′

G (z) ≤ D
√
K · ‖FG(z)‖.

For completeness, a proof of Proposition 2 is presented in Appendix A.

Special case: convex-concave min-max optimization. Since in a two-player zero-sum game G =
({1, 2}, (Z1,Z2), (f1, f2)) we must have f1 = −f2, it is straightforward to show that f1(z1, z2) is convex in z1
and concave in z2. Moreover, it is immediate that Nash equilibria of the game G correspond to saddle points
of f1; thus a special case of our setting is that of finding saddle points of convex-concave functions ([FP03]).
Such saddle point problems have received much attention recently since they can be viewed as a simplified
model of generative adversarial networks (e.g., [GBV+18, DISZ17, CGFLJ19, GHP+18, YSX+17]).

Optimistic gradient (OG) algorithm. In the optimistic gradient (OG) algorithm, each player k per-
forms the following update:

z
(t+1)
k := z

(t)
k − 2ηtg

(t)
k + ηtg

(t−1)
k , (OG)

where g
(t)
k = ∇zkfk(z

(t)
k , z

(t)
−k) for t ≥ 0. The following essentially optimal regret bound is well-known for the

OG algorithm, when the actions of the other players z
(t)
−k (often referred to as the environment’s actions) are

adversarial:

Proposition 3. Assume that for all z−k the function zk 7→ fk(zk, z−k) is convex. Then the regret of OG

with learning rate ηt = O(D/L
√
t) is O(DL

√
T ), where L = maxt ‖g(t)

k ‖ and D = max{‖z∗k‖,maxt ‖z(t)k ‖}.

In Proposition 3, z∗k is defined by z∗k ∈ argminzk∈Zk

∑t
t′=0 fk(zk, z

(t′)
−k ). The assumption in the proposition

that ‖z(t)k ‖ ≤ D may be satisfied in the unconstrained setting by projecting the iterates onto the region
B(0, D) ⊂ Rnk , for some D ≥ ‖z∗k‖, without changing the regret bound. The implications of this modification
to (OG) are discussed further in Remark 4.
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3 Last-iterate rates for OG via adaptive potential functions

In this section we show that in the unconstrained setting (namely, that where Zk = Rnk for all k ∈ K), when
all players act according to OG, their iterates exhibit last-iterate convergence to a Nash equilibrium. Our
convergence result holds for games G for which the operator FG satisfies the following smoothness assumption:

Assumption 4 (Smoothness). For a monotone operator F : Z → Rn, assume that the following first and
second-order Lipschitzness conditions hold, for some ℓ,Λ > 0:

∀z, z′ ∈ Z, ‖F (z)− F (z′)‖ ≤ ℓ · ‖z− z′‖ (1)

∀z, z′ ∈ Z, ‖∂F (z)− ∂F (z′)‖σ ≤ Λ · ‖z− z′‖. (2)

Here ∂F : Z → R
n×n denotes the Jacobian of F .

Condition (1) is entirely standard in the setting of solving monotone variational inequalities ([Nem04]);
condition (2) is also very mild, being made for essentially all second-order methods (e.g., [ALW19, Nes06]).

By the definition of FG(·), when all players in a game G act according to (OG) with constant step size η,
then the action profile z(t) takes the form

z(−1), z(0) ∈ R
n, z(t+1) = z(t) − 2ηFG(z

(t)) + ηFG(z
(t−1)) ∀t ≥ 0. (3)

The main theorem of this section, Theorem 5, shows that under the OG updates (3), the iterates converge
at a rate of O(1/

√
T ) to a Nash equilibrium with respect to the gradient gap function:

Theorem 5 (Last-iterate convergence of OG). Suppose G is a monotone game so that FG satisfies As-
sumption 4. For some z(−1), z(0) ∈ Rn, suppose there is z∗ ∈ Rn so that FG(z∗) = 0 and ‖z∗ − z(−1)‖ ≤
D, ‖z∗ − z(0)‖ ≤ D. Then the iterates z(T ) of OG (3) for any η ≤ min

{
1

150ℓ ,
1

1711DΛ

}
satisfy:

‖FG(z
(T ))‖ ≤ 60D

η
√
T

(4)

By Proposition 2, we immediately get a bound on the total gap function at each time T :

Corollary 6 (Total gap function for last iterate of OG). In the setting of Theorem 5, let Z ′
k := B(z(0)k , 3D)

for each k ∈ K. Then, with Z ′ =
∏

k∈K Z ′
k,

TGapZ
′

G (z(T )) ≤ 180KD2

η
√
T

. (5)

We made no attempt to optimize the consants in Theorem 5 and Corollary 6, and they can almost
certainly be improved.

Remark 4 (Bounded iterates). Recall from the discussion following Proposition 3 that it is necessary to
project the iterates of OG onto a compact ball to achieve the no-regret property. As our guiding question
(⋆) asks for last-iterate rates achieved by a no-regret algorithm, we should ensure that such projections are
compatible with the guarantees in Theorem 5 and Corollary 6. For this we note that [MOP19a, Lemma 4(b)]
showed that for the dynamics (3) without constraints, for all t ≥ 0, ‖z(t) − z∗‖ ≤ 2‖z(0) − z∗‖. Therefore,
as long as we make the very mild assumption of a known a priori upper bound ‖z∗‖ ≤ D/2 (as well as

‖z(−1)
k ‖ ≤ D/2, ‖z(0)k ‖ ≤ D/2), if all players act according to (3), then the updates (3) remain unchanged

if we project onto the constraint sets Zk := B(0, 3D) at each time step t. This observation also serves
as motivation for the compact sets Z ′

k used in Corollary 6: the natural choice for Z ′
k is Zk itself, and by

restricting Zk to be compact, this choice becomes possible.

3.1 Proof overview: adaptive potential functions

In this section we sketch the idea of the proof of Theorem 5; full details of the proof may be found in
Appendix B. First we note that it follows easily from results of [HIMM19] that OG exhibits best-iterate
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convergence, i.e., in the setting of Theorem 5 we have, for each T > 0, min1≤t≤T ‖FG(z(t))‖ ≤ O(1/
√
T ).5 The

main contribution of our proof is then to show the following: if we choose t∗ so that ‖FG(z(t
∗))‖ ≤ O(1/

√
T ),

then for all t′ ≥ t∗, we have ‖FG(z(t
′))‖ ≤ O(1) · ‖FG(z(t

∗))‖. This was the same general approach taken in
[GPDO20] to prove that the extragradient (EG) algorithm has last-iterate convergence. In particular, they
showed the stronger statement that ‖FG(z(t))‖ may be used as an approximate potential function in the
sense that it only increases by a small amount each step:

‖FG(z
(t′+1))‖ ≤

︸︷︷︸

t′≥0

(1 + ‖F (z(t
′))‖2) · ‖FG(z

(t′))‖ ≤
︸︷︷︸

t′≥t∗

(1 +O(1/T )) · ‖FG(z
(t′))‖. (6)

However, their approach relies crucially on the fact that for the EG algorithm, z(t+1) depends only on z(t).
For the OG algorithm, it is possible that (6) fails to hold, even when FG(z(t)) is replaced by the more natural
choice of (FG(z(t)), FG(z(t−1))).6

Instead of using ‖FG(z(t))‖ as a potential function in the sense of (6), we propose instead to track the
behavior of ‖F̃ (t)‖, where

F̃ (t) := FG(z
(t) + ηFG(z

(t−1))) +C(t−1) · FG(z
(t−1)) ∈ R

n, (7)

and the matrices C(t−1) ∈ Rn×n are defined recursively backwards, i.e., C(t−1) depends directly on C(t),
which depends directly on C(t+1), and so on. For an appropriate choice of the matrices C(t), we show that
F̃ (t+1) = (I − ηA(t) +C(t)) · F̃ (t), for some matrix A(t) ≈ ∂FG(z(t)). We then show that for t ≥ t∗, it holds
that ‖I − ηA(t) +C(t)‖σ ≤ 1 + O(1/T ), from which it follows that ‖F̃ (t+1)‖ ≤ (1 + O(1/T )) · ‖F̃ (t)‖. This
modification of (6) is enough to show the desired upper bound of ‖FG(z(T ))‖ ≤ O(1/

√
T ).

To motivate the choice of F̃ (t) in (7) it is helpful to consider the simple case where F (z) = Az for some
A ∈ Rn×n, which was studied by [LS18]. Simple algebraic manipulations using (3) (detailed in Appendix B)

show that, for the matrix C := (I+(2ηA)2)1/2−I
2 , we have F̃ (t+1) = (I − ηA + C)F̃ (t) for all t. It may be

verified that we indeed have A(t) = A and C(t) = C for all t in this case, and thus (7) may be viewed as a
generalization of these calculations to the nonlinear case.

Adaptive potential functions. In general, a potential function Φ(FG , z) depends on the problem instance,
here taken to be FG , and an element z representing the current state of the algorithm. Many convergence
analyses from optimization (e.g., [BG17, WRJ18], and references therein) have as a crucial element in their
proofs a statement of the form Φ(FG , z(t+1)) . Φ(FG , z(t)). For example, for the iterates z(t) of the EG
algorithm, [GPDO20] (see (6)) used the potential function Φ(FG , z(t)) := ‖FG(z(t))‖.

Our approach of controlling the the norm of the vectors F̃ (t) defined in (7) can also be viewed as an
instantion of the potential function approach: since each iterate of OG depends on the previous two iterates,
the state is now given by v(t) := (z(t−1), z(t)). The potential function is given by ΦOG(FG ,v(t)) := ‖F̃ (t)‖,
where F̃⊤ is defined in (7) and indeed only depends on v(t) once FG is fixed since v(t) determines z(t

′) for
all t′ ≥ t (as OG is deterministic), which in turn determine C(t−1). However, the potential function ΦOG

is quite unlike most other choices of potential functions in optimization (e.g., [BG17]) in the sense that it
depends globally on FG : For any t′ > t, a local change in FG in the neighborhood of v(t′) may cause a change
in ΦOG(FG ,v(t)), even if ‖v(t) − v(t′)‖ is arbitrarily large. Because ΦOG(FG ,v(t)) adapts to the behavior of
FG at iterates later on in the optimization sequence, we call it an adaptive potential function. We are not
aware of any prior works using such adaptive potential functions to prove last-iterate convergence results,
and we believe this technique may find additional applications.

4 Lower bound for convergence of p-SCLIs

The main result of this section is Theorem 7, stating that the bounds on last-iterate convergence in Theorem
5 and Corollary 6 are tight when we require the iterates z(T ) to be produced by an optimization algorithm

5In this discussion we view η,D as constants.
6For a trivial example, suppose that n = 1, FG(z) = z, z(t

′) = δ > 0, and z(t
′
−1) = 0. Then ‖(FG(z

(t′)), FG(z
(t′−1)))‖ = δ

but ‖(FG(z
(t′+1)), FG(z

(t′)))‖ > δ
√
2− 4η.
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satisfying a particular formal definition of “last-iterate convergence”. Notice that that we cannot hope to
prove that they are tight for all first-order algorithms, since the averaged iterates z̄(T ) := 1

T

∑T
t=1 z

(t) of OG

satisfy TGapZ
′

G (z̄(T )) ≤ O
(

D2

ηT

)

[MOP19a, Theorem 2]. Similar to [GPDO20], we use p-stationary canonical

linear iterative methods (p-SCLIs) to formalize the notion of “last-iterate convergence”. [GPDO20] only
considered the special case p = 1 to establish a similar lower bound to Theorem 7 for a family of last-iterate
algorithms including the extragradient algorithm. The case p > 1 leads to new difficulties in our proof since
even for p = 2 we must rule out algorithms such as Nesterov’s accelerated gradient descent ([Nes75]) and
Pólya’s heavy-ball method ([Pol87]), a situation that did not arise for p = 1.

Definition 5 (p-SCLIs [ASSS15, ASM+20]). An algorithm A is a first-order p-stationary canonical linear
iterative algorithm (p-SCLI) if, given a monotone operator F , and an arbitrary set of p initialization points
z(0), z(−1), . . . , z(−p+1) ∈ Rn, it generates iterates z(t), t ≥ 1, for which

z(t) =

p−1
∑

j=0

αj · F (z(t−p+j)) + βj · z(t−p+j), (8)

for t = 1, 2, . . ., where αj , βj ∈ R are any scalars.7

From (3) it is evident that OG with constant step size η is a 2-SCLI with β1 = 1, β0 = 0, α1 = −2η, α0 = η.
Many standard algorithms for convex function minimization, including gradient descent, Nesterov’s acceler-
ated gradient descent (AGD), and Pólya’s Heavy Ball method, are of the form (8) as well. We additionally
remark that several variants of SCLIs (and their non-stationary counterpart, CLIs) have been considered in
recent papers proving lower bounds for min-max optimization ([AMLJG19, IAGM19, ASM+20]).

For simplicity, we restrict our attention to monotone operators F arising as F = FG : Rn → Rn for a
two-player zero-sum game G (i.e., the setting of min-max optimization). For simplicity suppose that n is
even and for z ∈ Rn write z = (x,y) where x,y ∈ Rn/2. Define Fbil

n,ℓ,D to be the set of ℓ-Lipschitz operators

F : Rn → Rn of the form F (x,y) = (∇xf(x,y),−∇yf(x,y))
⊤ for some bilinear function f : Rn/2 ×Rn/2 →

R, with a unique equilibrium point z∗ = (x∗,y∗), which satisfies z∗ ∈ DD := BRn/2(0, D)×BRn/2(0, D). The
following Theorem 7 uses functions in Fbil

n,ℓ,D as “hard instances” to show that the O(1/
√
T ) rate of Corollary

5 cannot be improved by more than an algorithm-dependent constant factor.

Theorem 7 (Algorithm-dependent lower bound for p-SCLIs). Fix ℓ,D > 0, let A be a p-SCLI, and let
z(t) denote the tth iterate of A. Then there are constants cA, TA > 0 so that the following holds: For
all T ≥ TA, there is some F ∈ Fbil

n,ℓ,D so that for some initialization z(0), . . . , z(−p+1) ∈ DD and T ′ ∈
{T, T + 1, . . . , T + p− 1}, it holds that TGapD2D

F (z(T
′)) ≥ cAℓD2

√
T

.

We remark that the order of quantifiers in Theorem 7 is important: if instead we first fix a monotone
operator F ∈ Fbil

n,ℓ,D corresponding to some bilinear function f(x,y) = x⊤My, then as shown in [LS18,

Theorem 3], the iterates z(T ) = (x(T ),y(T )) of the OG algorithm will converge at a rate of e
−O

(

σmin(M)2

σmax(M)2
·T

)

,
which eventually becomes smaller than the sublinear rate of 1/

√
T .8 Such “instance-specific” bounds are

complementary to the minimax perspective taken in this paper.
We briefly discuss the proof of Theorem 7; the full proof is deferred to Appendix C. As in prior work

proving lower bounds for p-SCLIs ([ASSS15, IAGM19]), we reduce the problem of proving a lower bound on
TGapDD

G (z(t)) to the problem of proving a lower bound on the supremum of the spectral norms of a family
of polynomials (which depends on A). Recall that for a polynomial p(z), its spectral norm ρ(p(z)) is the
maximum norm of any root. We show:

Proposition 8. Suppose q(z) is a degree-p monic real polynomial such that q(1) = 0, r(z) is a polynomial
of degree p− 1, and ℓ > 0. Then there is a constant C0 > 0, depending only on q(z), r(z) and ℓ, and some
µ0 ∈ (0, ℓ), so that for any µ ∈ (0, µ0),

sup
ν∈[µ,ℓ]

ρ(q(z)− ν · r(z)) ≥ 1− C0 ·
µ

ℓ
.

7We use slightly different terminology from [ASSS15]; technically, the p-SCLIs considered in this paper are those in [ASSS15]
with linear coefficient matrices.

8σmin(M) and σmax(M) denote the minimum and maximum singular values of M, respectively. The matrix M is assumed
in [LS18] to be a square matrix of full rank (which holds for the construction used to prove Theorem 7).
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The proof of Proposition 8 uses elementary tools from complex analysis. The fact that the constant C0

in Proposition 8 depends on q(z), r(z) leads to the fact that the constants cA, TA in Theorem 7 depend on
A. Moreover, we remark that this dependence cannot be improved from Proposition 8, so removing it from
Theorem 7 will require new techniques:

Proposition 9 (Tightness of Proposition 8). For any constant C0 > 0 and µ0 ∈ (0, ℓ), there is some
µ ∈ (0, µ0) and polynomials q(z), r(z) so that supν∈[µ,ℓ] ρ(q(z)− ν · r(z)) < 1− C0 · µ. Moreover, the choice
of the polynomials is given by

q(z) = ℓ(z − α)(z − 1), r(z) = −(1 + α)z + α for α :=

√
ℓ−√

µ√
ℓ+

√
µ
. (9)

The choice of polynomials q(z), r(z) in (9) are exactly the polynomials that arise in the p-SCLI analysis of
Nesterov’s AGD [ASSS15]; as we discuss further in Appendix C, Proposition 8 is tight, then, even for p = 2,
because acceleration is possible with a 2-SCLI. As byproducts of our lower bound analysis, we additionally
obtain the following:

• Using Proposition 8, we show that any p-SCLI algorithm must have a rate of at least ΩA(1/T ) for
smooth convex function minimization (again, with an algorithm-dependent constant).9 This is slower
than the O(1/T 2) error achievable with Nesterov’s AGD with a time-varying learning rate.

• We give a direct proof of the following statement, which was conjectured by [ASSS15]: for polynomials
q, r in the setting of Proposition 8, for any 0 < µ < ℓ, there exists ν ∈ [µ, ℓ] so that ρ(q(z)− ν · r(z)) ≥√

ℓ/µ−1√
ℓ/µ+1

. Using this statement, for the setting of Theorem 7, we give a proof of an algorithm-independent

lower bound TGapDD

F (z(t)) ≥ Ω(ℓD2/T ). Though the algorithm-independent lower bound of Ω(ℓD2/T )
has already been established in the literature, even for non-stationary CLIs (e.g., [ASM+20, Proposition
5]), we give an alternative proof from existing approaches.

5 Discussion

In this paper we proved tight last-iterate convergence rates for smooth monotone games when all players
act according to the optimistic gradient algorithm, which is no-regret. We believe that there are many
fruitful directions for future research. First, it would be interesting to obtain last-iterate rates in the case
that each player’s actions is constrained to the simplex and they use the optimistic multiplicative weights
update (OMWU) algorithm. [DP18, LNPW20] showed that OMWU exhibits last-iterate convergence, but
non-asymptotic rates remain unknown even for the case that FG(·) is linear, which includes finite-action
polymatrix games. Next, it would be interesting to determine whether Theorem 5 holds if (2) is removed
from Assumption 4; this problem is open even for the EG algorithm ([GPDO20]). Finally, it would be
interesting to extend our results to the setting where players receive noisy gradients (i.e., the stochastic
case). As for lower bounds, it would be interesting to determine whether an algorithm-independent lower
bound of Ω(1/

√
T ) in the context of Theorem 7 could be proven for stationary p-SCLIs. As far as we are

aware, this question is open even for convex minimization (where the rate would be Ω(1/T )).
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A Additional preliminaries

A.1 Proof of Proposition 2

Proof of Proposition 2. Fix a game G, and let F = FG : Z → Rn. Monoticity of F gives that for any fixed
z−k ∈ ∏

k′ 6=k Zk′ , for any zk, z
′
k ∈ Zk, we have

〈F (z′k, z−k)− F (zk, z−k), (z
′
k, z−k)− (zk, z−k)〉 = 〈∇zkfk(z

′
k, z−k)−∇zk(zk, z−k), z

′
k − zk〉 ≥ 0.

Since fk is continuously differentiable, [Nes75, Theorem 2.1.3] gives that fk is convex. Thus

fk(zk, z−k)− min
z′k∈Z′

k

fk(z
′
k, z−k) ≤ 〈∇zkfk(zk, z−k), zk − z′k〉 ≤ ‖∇zkfk(zk, z−k)‖ ·D.

Summing the above for k ∈ K and using the definition of the total and gradient gap functions, as well as

Cauch-Schwarz, gives that TGapZ
′

G (z) ≤ D ·∑K
k=1 ‖∇zkfk(z)‖ ≤ D

√
K‖F (z)‖.

A.2 Optimistic gradient algorithm

In this section we review some additional background about the optimistic gradient algorithm in the setting of
no-regret learning. The starting point is online gradient descent; player k following online gradient descent

produces iterates z
(t)
k ∈ Zk defined by z

(t+1)
k = z

(t)
k − ηtg

(t)
k , where g

(t)
k = ∇zkfk(z

(t)
k , z

(t)
−k) is player k’s

gradient given its action z
(t)
k and the other players’ actions z

(t)
−k at time t. Online gradient descent is a no-

regret algorithm (in particular, it satisfies the same regret bound as OG in Proposition 3); it is also closely
related to the follow-the-regularized-leader (FTRL) ([SS11]) algorithm from online learning.10

The optimistic gradient (OG) algorithm ([RS13, DISZ17]) is a modification of online gradient descent,
for which player k performs the following update:

z
(t+1)
k := z

(t)
k − 2ηtg

(t)
k + ηtg

(t−1)
k , (OG)

where again g
(t)
k = ∇zkfk(z

(t)
k , z

(t)
−k) for t ≥ 0. As way of intuition behind the updates (OG), [DISZ17]

observed that OG is closely related to the optimistic follow-the-regularized-leader (OFTRL) algorithm from

online learning: OFTRL augments the standard FTRL update by using the gradient g
(t)
k at time t as a

prediction for the gradient at time t + 1. When the actions z
(t)
−k of the other players are predictable in the

sense that they do not change quickly over time, then such a prediction using g
(t)
k is reasonably accurate

and can improve the speed of convergence to an equilibrium ([RS13]).

A.3 Linear regret for extragradient algorithm

In this section we review the definition of the extragradient (EG) algorithm, and show that if one attempts
to implement it in the setting of online multi-agent learning, then it is not a no-regret algorithm. Given a
monotone game G and its corresponding monotone operator FG : Z → Rn and an initial point u(0) ∈ Rn the
EG algorithm attempts to find a Nash equilibrium z∗ (i.e., a point satisfying FG(z∗) = 0) by performing the
updates:

u(t) = ΠZ(u
(t−1) − ηFG(z

(t−1))), t ≥ 1 (10)

z(t) = ΠZ(u
(t) − ηFG(u

(t))), t ≥ 0, (11)

where ΠZ(·) denotes Euclidean projection onto the convex set Z. Assuming Z contains a sufficiently large
ball centered at z∗, this projection step has no effect for the updates shown above when all players perform
EG updates (see Remark 4); the projection is typically needed, however, for the adversarial setting that we
proceed to discuss in this section (e.g., as in Proposition 3).

It is easy to see that the updates (10) and (11) can be rewritten as u(t) = ΠZ(u(t−1) − ηFG(ΠZ(u(t−1) −
ηFG(u(t−1))))). Note that these updates are somewhat similar to those of OG when expressed as (23) and

10In particular, they are equivalent in the unconstrained setting when the learning rate ηt is constant.
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(24), with w(t) in (23) and (24) playing a similar role to u(t) in (10) and (11). A key difference is that the
iterate u(t) is needed to update z(t) in (11), whereas this is not true for the update to z(t) in (23). Since in
the standard setting of online multi-agent learning, agents can only see gradients corresponding to actions
they play, in order to implement the above EG updates in this setting, we need two timesteps for every
timestep of EG. In particular, the agents will play actions v(t), t ≥ 0, where v(2t) = u(t) and v(2t+1) = z(t)

for all t ≥ 0. Recalling that FG(z) = (∇z1f1(z), . . . ,∇zKfK(z)), this means that player k ∈ [K] performs
the updates

v
(2t)
k = ΠZk

(v
(2t−2)
k − η∇zkfk(v

(2t−1)
k , z

(2t−1)
−k )), t ≥ 1 (12)

v
(2t+1)
k = ΠZk

(v
(2t)
k − η∇zkfk(v

(2t)
k ,v

(2t)
−k )), t ≥ 0, (13)

where v
(0)
k = u

(0)
k . Unfortunately, as we show in Proposition 10 below, in the setting when the other players’

actions z
(t)
−k are adversarial (i.e., players apart from k do not necessarily play according to EG), the algorithm

for player k given by the EG updates (12) and (13) can have linear regret, i.e., is not a no-regret algorithm.
Thus the EG algorithm is insufficient for answering our motivating question (⋆).

Proposition 10. There is a set Z =
∏K

k=1 Zk together with a convex, 1-Lipschitz, and 1-smooth function

f1 : Z → R so that for an adversarial choice of z(t)−k, the EG updates (12) and (13) produce a sequence v
(t)
k ,

0 ≤ t ≤ T with regret Ω(T ) with respect to the sequence of functions vk 7→ fk(vk,v
(t)
−k) for any T > 0.

Proof. We take K = 1, k = 1, n = 2,Z1 = Z2 = [−1, 1], and f1 : Z1 × Z2 → R to be f1(v1,v2) = v1 · v2,

where v1,v2 ∈ [−1, 1]. Consider the following sequence of actions v
(t)
2 of player 2:

v
(t)
2 = 1 for t even; v

(t)
2 = 0 for t odd.

Suppose that player 1 initializes at v
(0)
1 = 0. Then for all t ≥ 0, we have

∇z1f1(v
(2t−1)
1 ,v

(2t−1)
2 ) = v

(2t−1)
2 = 0 ∀t ≥ 1

∇z1f1(z
(2t)
1 ,v

(2t)
2 ) = v

(2t)
2 = 1 ∀t ≥ 0.

It follows that for t ≥ 0 we have v
(2t)
1 = 0 and v

(2t+1)
1 = max{−η,−1}. Hence for any T ≥ 0 we have

∑T−1
t=0 f1(v

(t)
1 ,v

(t)
2 ) = 0 whereas

min
v1∈Z1

T−1∑

t=0

f1(v1,v
(t)
2 ) = −⌈T/2⌉,

(with the optimal point v1 being v∗
1 = −1) so the regret is ⌈T/2⌉.

A.4 Prior work on last-iterate rates for noisy feedback

In this section we present Table 2, which exhibits existing last-iterate convergence rates for gradient-based
learning algorithms in the case of noisy gradient feedback (i.e., it is an analogue of Table 1 for noisy feedback,
leading to stochastic algorithms). We briefly review the setting of noisy feedback: at each time step t, each

player k plays an action z
(t)
k , and receives the feedback

g
(t)
k := ∇zkfk(z

(t)
k , z

(t)
−k) + ξ

(t)
k ,

where ξ
(t)
k ∈ R

nk is a random variable satisfying:

E[ξ
(t)
k |F (t)] = 0, (14)

where F = (F (t))t≥0 is the filtration given by the sequence of σ-algebras F (t) := σ(z(0), z(1), . . . , z(t))

generated by z(0), . . . , z(t). Additionally, it is required that the variance of ξ
(t)
k be bounded; we focus on
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the following two possible boundedness assumptions:

E[‖ξ(t)k ‖2|F (t)] ≤ σ2
t (Abs)

or E[‖ξ(t)k ‖2|F (t)] ≤ τt‖FG(z
(t))‖2, (Rel)

where σt > 0 and τt > 0 are sequences of positive reals (typically taken to be decreasing with t). Often
it is assumed that σt is the same for all t, in which case we write σ = σt. Noise model (Abs) is known as
absolute random noise, and (Rel) is known as relative random noise [LZMJ20]. The latter is only of use in
the unconstrained setting in which the goal is to find z∗ with FG(z∗) = 0. While we restrict Table 2 to 1st
order methods, we refer the reader also to the recent work of [LBJM+20], which provides last-iterate rates
for stochastic Hamiltonian gradient descent, a 2nd order method, in “sufficiently bilinear” games.

As can be seen in Table 2, there is no work to date proving last-iterate rates for general smooth monotone
games. We view the problem of extending the results of this paper and of [GPDO20] to the stochastic setting
(i.e., the bottom row of Table 2) as an interesting direction for future work.

Table 2: Known upper bounds on last-iterate convergence rates for learning in smooth monotone games with

noisy gradient feedback (i.e., stochastic algorithms). Rows of the table are as in Table 1; ℓ,Λ are the Lipschitz

constants of FG , ∂FG , respectively, and c > 0 is a sufficiently small absolute constant. The right-hand column

contains algorithms implementable as online no-regret learning algorithms: stochastic optimistic gradient (Stoch. OG)

or stochastic gradient descent (SGD). The left-hand column contains algorithms not implementable as no-regret

algorithms, which includes stochastic extragradient (Stoch. EG), stochastic forward-backward (FB) splitting, double

stepsize extragradient (DSEG), and stochastic variance reduced extragradient (SVRE). SVRE only applies in the

finite-sum setting, which is a special case of (Abs) in which fk is a sum of m individual loss functions fk,i, and a noisy

gradient is obtained as ∇fk,i for a random i ∈ [m]. Due to the stochasticity, many prior works make use of a step

size ηt that decreases with t; we make note of whether this is the case (“ηt decr.”) or whether the step size ηt can be

constant (“ηt const.”). For simplicity of presentation we assume Ω(1/t) ≤ {τt, σt} ≤ O(1) for all t ≥ 0 in all cases for

which σt, τt vary with t. Reported bounds are stated for the total gap function (Definition 3); leading constants and

factors depending on distance between initialization and optimum are omitted.

Stochastic
Game class Not implementable as no-regret Implementable as no-regret

µ-strongly
monotone

(Abs): σℓ
µ
√
T

[PB16, Stoch. FB splitting, ηt decr.]

(See also [RVV16, MKS+19])

(Abs): ℓ(σ+ℓ)

µ
√
T

[KUS19, Stoch. EG, ηt decr.]

Finite-sum: ℓ
(
1− cmin{ 1

m , µ
ℓ }

)T

[CGFLJ19, SVRE, ηt const.] (See also [PB16])

(Abs): σℓ
µ
√
T

[HIMM19, Stoch. OG, ηt decr.]

(See also [FOP20])

Monotone,
γ-sing. val.
low. bnd.

(Abs), (Rel): Stoch. EG may not convg.
[CGFLJ19, HIMM20]

(Abs): ℓ2σ

γ3/2 6√
T

[HIMM20, DSEG, ηt decr.]

Open

λ-cocoercive Open
(Rel): 1

λ
√
T
+

√
∑

t≤T τt

T [LZMJ20, SGD, ηt const.]

(Abs):
√

∑

t≤t(t+1)σ2
t

λ
√
T

[LZMJ20, SGD, ηt const.]

Monotone Open Open

B Proofs for Section 3

In this section we prove Theorem 5. In Section B.1 we show that OG exhibits best-iterate convergence, which
is a simple consequence of prior work. In Section B.1 we begin to work towards the main contribution of this
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work, namely showing that best-iterate convergence implies last iterate convergence, treating the special case
of linear monotone operators F (z) = Az. In Section B.3 we introduce the adaptive potential function for
the case of general smooth monotone operators F , and finally in Section B.4, using this choice of adaptive
potential function, we prove Theorem 5. Some minor lemmas used throughout the proof are deferred to
Section B.5.

B.1 Best-iterate convergence

Throughout this section, fix a monotone game G satisfying Assumption 4, and write F = FG , so that F is a
monotone operator (Definition 1). Recall that the OG algorithm with constant step size η > 0 is given by:

z(−1), z(0) ∈ R
n, z(t+1) = z(t) − 2ηF (z(t)) + ηF (z(t−1)) ∀t ≥ 0. (15)

In Lemma 11 we observe that some iterate z(t
∗) of OG has small gradient gap.

Lemma 11. Suppose F : Rn → Rn is a monotone operator that is ℓ-Lipschitz. Fix some z(0), z(−1) ∈ Rn,
and suppose there is z∗ ∈ Rn so that F (z∗) = 0 and max{‖z∗ − z(0)‖, ‖z∗ − z(−1)‖ ≤ D. Then the iterates
z(t) of OG for any η < 1

ℓ
√
10

satisfy:

min
0≤t≤T−1

‖F (z(t))‖ ≤ 4D

η
√
T ·

√

1− 10η2ℓ2
. (16)

More generally, we have, for any S ≥ 0 with S < T/3,

min
0≤t≤T−S

max
0≤s<S

‖F (z(t+s))‖ ≤ 6D

η
√

T/S ·
√

1− 10η2ℓ2
. (17)

Proof. For all t ≥ 1, define w(t) = z(t) + ηF (z(t−1)). Equation (B.4) of [HIMM19] gives that for each t ≥ 0,
z ∈ R

n

‖w(t+1) − z‖2 ≤ ‖w(t) − z‖2 − 2η〈F (z(t)), z(t) − z〉+ η2ℓ2‖z(t) − z(t−1)‖2 − ‖ηF (z(t−1))‖2.

Choosing z = z∗, using that 〈F (z(t)), z(t) − z∗〉 ≥ 0, and applying Young’s inequality gives that for t ≥ 1,

‖w(t+1) − z∗‖2 ≤‖w(t) − z∗‖2 + η2ℓ2‖2ηF (z(t−1))− ηF (z(t−2))‖2 − ‖ηF (z(t−1))‖2

≤‖w(t) − z∗‖2 + (η2ℓ2) · 8η2‖F (z(t−1))‖2 + (η2ℓ2) · 2η2‖F (z(t−2))‖2 − η2‖F (z(t−1))‖2.

Summing the above equation for 1 ≤ t ≤ T − 1 gives

η2 ·
(

(1− 8η2ℓ2)

T−2∑

t=0

‖F (z(t))‖2 − 2η2ℓ2
T−3∑

t=−1

‖F (z(t))‖2
)

≤ ‖w(1) − z∗‖2 − ‖w(T−1) − z∗‖2.

Since ‖w(1) − z∗‖ ≤ 3D, ‖F (z(−1))‖ ≤ Dℓ, and 2η2ℓ2 ≤ 1, it follows that

min
0≤t≤T−2

‖F (z(t))‖ ≤ 4D

η
√
T − 1 ·

√

1− 10η2ℓ2
.

The desired result (16) follows by substituting T + 1 for T .
To obtain (17), we break {0, 1, . . . , T − 2} into ⌊(T − 1)/S⌋ windows of S consecutive time steps each.

Then there must be some t ∈ {0, . . . , T − 2− (S − 1)} so that

S−1∑

s=0

‖F (z(t+s))‖2 ≤ (4D)2

η2(1 − 10η2ℓ2)⌊(T − 1)/S⌋ ,

from which (17) follows since S < T/3.

In the remainder of this section we present our main technical contribution in the context of Theorem
5, showing that for a fixed T , the last iterate z(T ) does not have gradient gap ‖F (z(T ))‖ much larger than
min1≤t≤T max0≤s≤2 ‖F (z(t+s))‖.
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B.2 Warm-up: different perspective on the linear case

Before treating the case where F is a general smooth monotone operator, we first explain our proof technique
for the case that F (z) = Az for some matrix A ∈ Rn×n. This case is covered by [LS18, Theorem 3]11; the
discussion here can be viewed as an alternative perspective on this prior work.

Assume that F (z) = Az for some A ∈ Rn×n throughout this section. Let z(t) be the iterates of OG, and
define

w(t) = z(t) + ηF (z(t−1)) = z(t) + ηAz(t−1). (18)

Thus the updates of OG can be written as

z(t) = w(t) − ηF (z(t−1)) = w(t) − ηAz(t−1) (19)

w(t+1) = w(t) − ηF (z(t)) = w(t) − ηAz(t). (20)

The extra-gradient (EG) algorithm is the same as the updates (19), (20), except that in (19), F (z(t−1)) is
replaced with F (wt). As such, OG in this context is often referred to as past extragradient (PEG) [HIMM19].
Many other works have also made use of this interpretation of OG, e.g., [RS12, RS13, Pop80].

Now define

C =
(I + (2ηA)2)1/2 − I

2
= η2A2 +O((ηA)4), (21)

where the square root of I + (2ηA)2 may be defined via the power series
√
I −X :=

∑∞
j=0 X

k(−1)k
(
1/2
k

)
. It

is easy to check that C is well-defined as long as η ≤ O(1/ℓ) ≤ O(1/‖A‖σ), and that CA = AC. Also note
that C satisfies

C2 +C = η2A2. (22)

Finally set
w̃(t) = w(t) +Cz(t−1),

so that w̃(t) corresponds (under the PEG interpretation of OG) to the iterates w(t) of EG, plus an “adjust-
ment” term, Cz(t), which is O((ηA)2). Though this adjustment term is small, it is crucial in the following
calculation:

w̃(t+1) = w(t+1) +Cz(t)

=(20) w(t) − ηAz(t) +Cz(t)

=(19) w(t) + (C− ηA)(w(t) − ηAz(t−1))

= (I − ηA+C)w(t) + (η2A2 − ηAC)z(t−1)

=(22) (I − ηA+C)(w(t) +Cz(t−1))

= (I − ηA+C)w̃(t).

Since C,A commute, the above implies that F (w̃(t+1)) = (I − ηA+C)F (w̃(t)). Monotonicity of F implies
that for η = O(1/ℓ), we have ‖I − ηA + C‖σ ≤ 1. It then follows that ‖F (w̃(t+1))‖ ≤ ‖F (w̃(t))‖, which
establishes that the last iterate is the best iterate.

B.3 Setting up the adaptive potential function

We next extend the argument of the previous section to the smooth convex-concave case, which will allow
us to prove Theorem 5 in its full generality. Recall the PEG formulation of OG introduced in the previous
section:

z(t) = w(t) − ηF (z(t−1)) (23)

w(t+1) = w(t) − ηF (z(t)), (24)

11Technically, [LS18] only considered the case where A =

(

0 M

−M⊤ 0

)

for some matrix M, which corresponds to min-max

optimization for bilinear functions, but their proof readily extends to the case we consider in this section.
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where again z(t) denote the iterates of OG (15).
As discussed in Section 3.1, the adaptive potential function is given by ‖F̃ (t)‖, where

F̃ (t) := F (w(t)) +C(t−1) · F (z(t−1)) ∈ R
n, (25)

for some matrices C(t) ∈ Rn×n, −1 ≤ t ≤ T , to be chosen later. Then:

F̃ (t+1) = F (w(t+1)) +C(t) · F (z(t))

=(24) F (w(t) − ηF (z(t))) +C(t) · F (z(t))

= F (w(t))− ηA(t)F (z(t)) +C(t) · F (z(t))

=(23) F (w(t)) + (C(t) − ηA(t)) · F (w(t) − ηF (z(t−1)))

= F (w(t)) + (C(t) − ηA(t)) · (F (w(t))− ηB(t)F (z(t−1)))

= (I − ηA(t) +C(t)) · F (w(t)) + η(ηA(t) −C(t))B(t) · F (z(t−1)), (26)

where

A(t) :=

∫ 1

0

∂F (w(t) − (1 − α)ηF (z(t)))dα

B(t) :=

∫ 1

0

∂F (w(t) − (1 − α)ηF (z(t−1)))dα.

(Recall that ∂F (·) denotes the Jacobian of F .) We state the following lemma for later use:

Lemma 12. For each t, A(t) + (A(t))⊤,B(t) + (B(t))⊤ are PSD, and ‖A(t)‖σ ≤ ℓ, ‖B(t)‖σ ≤ ℓ. Moreover,
it holds that

‖A(t) −B(t)‖σ ≤ηΛ

2
‖F (z(t))− F (z(t−1))‖

‖A(t) −A(t+1)‖σ ≤Λ‖w(t) −w(t+1)‖+ ηΛ

2
‖F (z(t))− F (z(t+1))‖

‖B(t) −B(t+1)‖σ ≤Λ‖w(t) −w(t+1)‖+ ηΛ

2
‖F (z(t−1))− F (z(t))‖.

Proof. For all z ∈ Rn, monotonicity of F gives that ∂F (z) + ∂F (z)⊤ is PSD, which means that so are
A(t) + (A(t))⊤,B(t) + (B(t))⊤. Similarly, (1) gives that for all z ∈ R

n, ‖∂F (z)‖σ ≤ ℓ, from which we get
‖A(t)‖σ ≤ ℓ, ‖B(t)‖σ ≤ ℓ by the triangle inequality.

The remaining three inequalities are an immediate consequence of the triangle inequality and the fact
that ∂F is Λ-Lipschitz (Assumption 4).

Now define the following n× n matrices:

M(t) := I − ηA(t) +C(t)

N(t) := η(ηA(t) −C(t))B(t).

Moreover, for a positive semidefinite (PSD) matrix S ∈ Rn×n and a vector v ∈ Rn, write ‖v‖2S := v⊤Sv, so
that for a matrix M ∈ Rn×n and a vector v ∈ Rn, we have

‖v‖2M⊤M := v⊤M⊤Mv = ‖Mv‖22.

Then by (26),

‖F̃ (t+1)‖2 = ‖M(t) · F (w(t)) +N(t) · F (z(t−1))‖2

= ‖F (w(t)) + (M(t))−1N(t) · F (z(t−1))‖2(M(t))⊤M(t) . (27)
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Next we define C(T ) = 0 and for −1 ≤ t < T ,12

C(t−1) := (M(t))−1N(t). (28)

Notice that the definition of C(t−1) in (28) depends on C(t), which depends on C(t+1), and so on. By (27)
and (25), it follows that

‖F̃ (t+1)‖2 = ‖F (w(t)) +C(t−1) · F (z(t−1))‖2(M(t))⊤M(t) (29)

= ‖F̃ (t)‖2(M(t))⊤M(t)

= ‖(I − ηA(t) +C(t))F̃ (t)‖2

≤ ‖I − ηA(t) +C(t)‖2σ‖F̃ (t)‖2. (30)

Our goal from here on is two-fold: (1) to prove an upper bound on ‖I−ηA(t)+C(t)‖σ, which will ensure, by
(30), that ‖F̃ (t+1)‖ . ‖F̃ (t)‖, and (2) to ensure that ‖F̃ (t)‖ is an (approximate) upper bound on ‖F (z(t))‖
for all t, so that in particular upper bounding ‖F̃ (T )‖ suffices to upper bound ‖F (z(T ))‖. These tasks will
be performed in the following section; we first make a few remarks on the choice of C(t−1) in (28):

Remark 6 (Specialization to the linear case & experiments). In the case that the monotone operator F is
linear, i.e., F (z) = Az, it is straightforward to check that the matrices C(t−1) as defined in (28) are all equal
to the matrix C defined in (21) and A(t) = B(t) = A for all t. A special case of a linear operator F is that
corresponding to a two-player zero-sum matrix game, i.e., where the payoffs of the players given actions x,y,
are ±x⊤My. In experiments we conducted for random instances of such matrix games, we observe that
the adaptive potential function F̃ (t) closely tracks F (z(t)), and both are monotonically decreasing with t. It
seems that any “interesting” behavior whereby F (z(t)) grows by (say) a constant factor over the course of
one or more iterations, but where F̃ (t) grows only by much less, must occur for more complicated monotone
operators (if at all). We leave a detailed experimental evaluation of such possibilities to future work.

Remark 7 (Alternative choice of C(t)). It is not necessary to choose C(t−1) as in (28). Indeed, in light of
the fact that it is the spectral norms ‖I− ηA(t−1)+C(t−1)‖σ that control the increase in ‖F̃ (t−1)‖ to ‖F̃ (t)‖,
it is natural to try to set

C̃(t−1) = arg min
C∈Rn×n

[

‖I − ηA(t−1) +C‖σ
∣
∣
∣
∣

{

‖C‖σ ≤ 1

10

}

and ∗
]

, (31)

where

∗ =
{

‖F (w(t)) +C · F (z(t−1))‖2(M(t))⊤M(t) ≥ ‖F (w(t)) + (M(t))−1N(t) · F (z(t−1))‖2(M(t))⊤M(t)

}

. (32)

The reason for the constraint ∗ defined in (32) is to ensure that ‖F̃ (t+1)‖2 ≤ ‖F̃ (t)‖2
(M(t))⊤M(t) (so that (29)

is replaced with an inequality). The reason for the constraint ‖C‖σ ≤ 1/10 is to ensure that ‖F (z(T ))‖ ≤
O
(

‖F̃ (T )‖
)

. Though the asymptotic rate of O(1/
√
T ) established by the choice of C(t−1) in (28) is tight

in light of Theorem 7, it is possible that a choice of C(t−1) as in (31) could lead to an improvement in the
absolute constant. We leave an exploration of this possibility to future work.

B.4 Proof of Theorem 5

In this section we prove Theorem 5 using the definition of F̃ (t) in (25), where C(t−1) is defined in (28).
We begin with a few definitions: for positive semidefinie matrices S,T, write S � T if T − S is positive
semidefinite (this is known as the Loewner ordering). We also define

D(t) := −ηC(t)B(t) + (I − ηA(t) +C(t))−1(ηA(t) −C(t))2ηB(t) ∀t ≤ T − 1. (33)

12The invertibility of M(t), and thus the well-definedness of C(t−1), is established in Lemma 15.
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To understand the definition of the matrices D(t) in (33), note that, in light of the equality

(I −X)−1X = X+ (I −X)−1X2 (34)

for a square matrix X for which I −X is invertible, we have, for t ≤ T ,

I − ηA(t−1) +C(t−1)

=I − ηA(t−1) + (I − ηA(t) +C(t))−1(ηA(t) −C(t))ηB(t)

=I − ηA(t−1) + η2A(t)B(t) +
(

−ηC(t)B(t) + (I − ηA(t) +C(t))−1(ηA(t) −C(t))2ηB(t)
)

=I − ηA(t−1) + η2A(t)B(t) +D(t). (35)

Thus, to upper bound ‖I − A(t−1) + C(t−1)‖, it will suffice to use the below lemma, which generalizes
[GPDO20, Lemma 12] and can be used to give an upper bound on the spectral norm of I − ηA(t−1) +
η2A(t)B(t) +D(t) for each t:

Lemma 13. Suppose A1,A2,B,D ∈ Rn×n are matrices and K,L0, L1, L2, δ > 0 so that:

• A1 +A⊤
2 , A2 +A⊤

2 , and B+B⊤ are PSD;

• ‖A1‖σ, ‖A2‖σ, ‖B‖σ ≤ L0 ≤ 1/106;

• D+D⊤ � L1 ·
(
B⊤B+A1A

⊤
1

)
+Kδ2 · I.

• D⊤D � L2 ·B⊤B.

• 10L0 +
4L2

L2
0
+ 5L1 ≤ 24/50.

• For any two matrices X,Y ∈ {A1,A2,B}, ‖X−Y‖σ ≤ δ.

It follows that
‖I −A1 +A2B+D‖σ ≤

√

1 + (K + 400) δ2.

Proof of Lemma 13. We wish to show that

(I −A1 +A2B+D)⊤(I −A1 +A2B+D) �
(
1 + (K + 400) · δ2

)
I,

or equivalently

(A1 +A⊤
1 )− (B⊤A⊤

2 +A2B)−A⊤
1 A1 + (B⊤A⊤

2 A1 +A⊤
1 A2B)−B⊤A⊤

2 A2B

− (D⊤ +D) + (D⊤A1 +A⊤
1 D)− (D⊤A2B+B⊤A⊤

2 D)−D⊤D � − (K + 400) · δ2I. (36)

For i ∈ {1, 2}, let us write Ji = (Ai −A⊤
i )/2,Ri = (Ai +A⊤

i )/2, and K = (B −B⊤)/2,S = (B +B⊤)/2,
so that R1,R2,S are positive semidefinite and J1,J2,K are anti-symmetric.

Next we will show (in (42) below) that the sum of all terms in (36) apart from the first four are preceded
by a constant (depending on L0, L1) times B⊤B in the Loewner ordering. To show this we begin as follows:
for any ǫ, ǫ1 > 0, we have:

(Lemma 18) A⊤
1 A1 � (1 + ǫ1) ·B⊤B+

(

1 +
1

ǫ1

)

δ2I (37)

(Lemma 17) −B⊤A⊤
2 A1 −A⊤

1 A2B � ǫ ·B⊤B+
1

ǫ
·A⊤

1 A2A
⊤
2 A1

(Lemma 20) � ǫ ·B⊤B+
L2
0

ǫ
·A⊤

1 A1

(Lemma 18) �
(

ǫ +
2L2

0

ǫ

)

·B⊤B+
2L2

0

ǫ
δ2I (38)

(Lemma 20) B⊤A⊤
2 A2B � L2

0B
⊤B. (39)
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Note in particular that (37), (38), and (39) imply that

(A1 −A2B)⊤(A1 −A2B) �
(

1 + ǫ+ ǫ1 +
2L2

0

ǫ
+ L2

0

)

·B⊤B+

(

1 +
2L2

0

ǫ
+

1

ǫ1

)

δ2I,

and choosing ǫ = L0 ≤ 1 (whereas ǫ1 is left as a free parameter to be specified below) gives

(A1 −A2B)⊤(A1 −A2B) � (1 + 4L0 + ǫ1) ·B⊤B+

(

1 + 2L0 +
1

ǫ1

)

· δ2I. (40)

It follows from (40) and Lemma 17 that

(A2B−A1)
⊤D+D⊤(A2B−A1)

� min
ǫ>0,ǫ1>0

ǫ ·
(

(1 + 4L0 + ǫ1) ·B⊤B+

(

1 + 2L0 +
1

ǫ1

)

· δ2I
)

+
1

ǫ
· L2B

⊤B

�
(

2L2
0 +

L2

L2
0

)

·B⊤B+ (2L2
0 + L0) · δ2I, (41)

where the last line results from the choice ǫ = L2
0, ǫ1 = L0.

By (40) and (41) we have, for any ǫ1 > 0,

(A1 −A2B)⊤(A1 −A2B) + (A2B−A1)
⊤D+D⊤(A2B−A1) + (D⊤ +D) +D⊤D

�
(

1 + 4L0 + ǫ1 + 2L2
0 +

L2

L2
0

+ L1 + L2

)

·B⊤B+ L1 ·A1A
⊤
1 +

(

K + 1 + 2L0 +
1

ǫ1
+ 2L2

0 + L0

)

· δ2I

�
(

1 + 5L0 + ǫ1 +
2L2

L2
0

+ L1

)

·B⊤B+ L1 ·A1A
⊤
1 +

(

K + 1 + 4L0 +
1

ǫ1

)

· δ2I. (42)

Next, for any ǫ > 0, it holds that

B⊤A⊤
2 +A2B

= −(K⊤J2 + J⊤
2 K) + (SR2 +R2S) + (SJ⊤

2 + J2S) + (K⊤R2 +R2K)

(Lemma 17) � −(K⊤J2 + J⊤
2 K) + (SR2 +R2S) +

1

ǫ
·
(
S2 +R2

2

)
+ ǫ ·

(
J2J

⊤
2 +K⊤K

)

(Lemma 19) � −(K⊤J2 + J⊤
2 K) + 3S2 +

1

ǫ
·
(
S2 +R2

2

)
+ ǫ ·

(
J2J

⊤
2 +K⊤K

)
+ 2δ2I

(Lemma 18) � −(K⊤J2 + J⊤
2 K) +

(

3 +
3

ǫ

)

S2 + 3ǫ ·K⊤K+

(

2 +
2

ǫ
+ 2ǫ

)

δ2I. (43)

Next, we have for any ǫ > 0,

A1A
⊤
1 =R1R

⊤
1 + (J1R

⊤
1 +R1J

⊤
1 ) + J1J

⊤
1

(Lemma 17) �2R1R
⊤
1 + 2J1J

⊤
1

=2R1R
⊤
1 + 2J⊤

1 J1

(Lemma 18) � (2 + 2ǫ)S2 + (2 + 2ǫ)J⊤
2 J2 +

4

ǫ
· δ2I. (44)
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By (43) and (44), for any µ, ν ∈ (0, 1) and ǫ > 0 with 2ν + 10ǫ+ µ · (2 + 2ǫ) ≤ 1,

B⊤A⊤
2 +A2B+ (1 + ν)B⊤B+ µAA⊤

�− (K⊤J2 + J⊤
2 K) + 3ǫK⊤K+ (1 + ν)K⊤K+ µ · (2 + 2ǫ)J⊤

2 J2 +

(

4 + ν +
3

ǫ
+ µ · (2 + 2ǫ)

)

S2

+ (1 + ν)(K⊤S+ SK) +

(

2 +
2

ǫ
+ 2ǫ+

4µ

ǫ

)

δ2I

�− (K⊤J2 + J⊤
2 K) + (1 + ν + 3ǫ+ (1 + ν)ǫ)K⊤K+ µ · (2 + 2ǫ)J⊤

2 J2

+

(

4 + ν +
3

ǫ
+

1 + ν

ǫ
+ µ · (2 + 2ǫ)

)

S2 +

(

2 +
2 + 4µ

ǫ
+ 2ǫ

)

δ2I (45)

�− (K⊤J2 + J⊤
2 K) +K⊤K+ (2ν + 10ǫ+ µ(2 + 2ǫ))J⊤

2 J2

+

(

5 +
5

ǫ
+ µ · (2 + 2ǫ)

)

S2 +

(

4 +
2 + 4µ

ǫ
+ 2ǫ

)

δ2I (46)

�(J2 −K)⊤(J2 −K) +

(

6 +
5

ǫ

)

S2 +

(

4 +
4

ǫ
+ 2ǫ

)

δ2I (47)

�
(

12 +
10

ǫ

)

R2
1 +

(

17 +
14

ǫ
+ 2ǫ

)

δ2I (48)

�
(

12 +
10

ǫ

)

L0R1 +

(

17 +
14

ǫ
+ 2ǫ

)

δ2I. (49)

where (45) follows from Lemma 17, (46) follows from Lemma 18 and ν+5ǫ ≤ 1, (47) follows from 2ν+10ǫ+
µ · (2 + 2ǫ) ≤ 1, (48) follows from ‖J2 −K‖σ ≤ δ as well as Lemma 18, and (49) follows from Lemma 20

together with ‖R1/2
1 ‖σ ≤ √

L0.
By (42) and (49), by choosing ǫ1 = 1/100, ǫ = 1/20, ν = 5L0 + ǫ1 +

2L2

L2
0
+ L1, and µ = L1, which satisfy

10ǫ+2ν+(2+2ǫ)µ = 10ǫ+2 ·
(

5L0 + 1/100 +
2L2

L2
0

+ L1

)

+3L1 ≤ 1/2+1/50+

(

10L0 +
4L2

L2
0

+ 5L1

)

≤ 1,

it holds that for the above choices of ǫ, ǫ1,

(B⊤A⊤
2 +A2B) + (A1 −A2B)⊤(A1 −A2B) + (A2B−A1)

⊤D+D⊤(A2B−A1) + (D⊤ +D) +D⊤D

�L0/2 ·
(

12 +
10

ǫ

)

(A⊤
1 +A1) +

(

K + 18 + 4L0 +
1

ǫ1
+

14

ǫ
+ 2ǫ

)

δ2I

�106L0 · (A⊤
1 +A1) + (K + 400) δ2I

�A⊤
1 +A1 + (K + 400) · δ2I,

establishing (36).

The next several lemmas ensure that the matrices D(t) satisfy the conditions of the matrix D of Lemma
13. First, Lemma 14 shows that ‖F (z(t))‖ only grows by a constant factor over the course of a constant
number of time steps.

Lemma 14. Suppose that for some t ≥ 1, we have max{‖F (z(t))‖, ‖F (z(t−1))‖} ≤ δ. Then for any s ≥ 1,
we have ‖F (z(t+s))‖ ≤ δ · (1 + 3ηℓ)s.

Proof. We prove the claimed bound by induction. Since F is ℓ-Lipschitz, we get

‖F (z(t+s))− F (z(t+s−1))‖ ≤ 3ηℓmax{‖F (z(t+s−1))‖, ‖F (z(t+s−2))‖}

for each s ≥ 1, and so if δs := max{‖F (z(t+s−1))‖, ‖F (z(t+s−2))‖}, the triangle inequality gives

‖F (z(t+s))‖ ≤ δs(1 + 3ηℓ).

It follows by induction that ‖F (z(t+s))‖ ≤ δ · (1 + 3ηℓ)s.
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Lemma 15 uses backwards induction (on t) to establish bounds on the matrices C(t).

Lemma 15 (Backwards induction lemma). Suppose that there is some L0 > 0 so that for all t ≤ T , we have
max{η‖A(t)‖σ, η‖B(t)‖σ} ≤ L0 ≤

√

1/200 and ηℓ ≤ 2/3. Then:

1. ‖C(t)‖σ ≤ 2L2
0 for each t ∈ [T ].

2. The matrices C(t) are well-defined, i.e., I − ηA(t) +C(t) is invertible for each t ∈ [T ], and the spectral
norm of its inverse is bounded above by

√
2.

3. ‖ηA(t) −C(t)‖σ ≤ 2L0 and ‖I − ηA(t) +C(t)‖σ ≤ 1 + 2L0 for each t ∈ [T ].

4. For all t < T , it holds that

(I − ηA(t+1) +C(t+1))−1(ηA(t+1) −C(t+1))(η(A(t+1))⊤ − (C(t+1))⊤)(I − ηA(t+1) +C(t+1))−⊤

�3 ·
(

(ηA(t+1))(ηA(t+1))⊤ +C(t+1)(C(t+1))⊤
)

.

5. Let δ(t) := max{‖F (z(t))‖, ‖F (z(t−1))‖} for all t ≤ T . For t < T , it holds that

C(t)(C(t))⊤ � J1 · ηA(t)(ηA(t))⊤ + J2 · (δ(t))2 · I,

for J1 = 8L2
0 and J2 = 30L2

0η
2(ηΛ)2.

Proof. The proof proceeds by backwards induction on t. The base case t = T clearly holds since C(T ) = 0.
As for the inductive step, suppose that items 1 through 4 hold at time step t, for some t ≤ T . Then by (28)

and L0 ≤
√
2−1
2 ,

‖C(t−1)‖σ ≤ L0 · (L0 + ‖C(t)‖σ) · ‖(I − ηA(t) +C(t))−1‖ ≤
√
2L0 · (L0 + 2L2

0) ≤ 2L2
0,

establishing item 1 at time t− 1.
Next, note that ‖ηA(t−1) − C(t−1)‖ ≤ L0 + 2L2

0 ≤ 2L0. Thus, by Equation (5.8.2) of [HJ12] and
L0 ≤ 1

2 − 1
2
√
2
, it follows that

‖(I − ηA(t−1) +C(t−1))−1‖σ ≤ 1

1− 2L0
≤

√
2,

which establishes item 2 at time t−1. It is also immediate that ‖I−ηA(t−1)+C(t−1)‖σ ≤ 1+2L0, establishing
item 3 at time t− 1.

Next we establish items 4 and 5 at time t− 1. First, we have

‖A(t) −A(t−1)‖σ

(Lemma 12) ≤Λ‖w(t) −w(t−1)‖+ ηΛ

2
‖F (z(t))− F (z(t−1))‖

≤ηΛ‖F (z(t−1))‖ + ηΛ

2

(

2ηℓ‖F (z(t−1))‖ + ηℓ‖F (z(t−2))‖
)

≤δ(t−1) · 2ηΛ, (50)

where the final inequality uses ηℓ ≤ 2/3.
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Next, by definition of C(t−1) in (28),

C(t−1)(C(t−1))⊤

=η2(I − ηA(t) +C(t))−1(ηA(t) −C(t))B(t)(B(t))⊤(η(A(t))⊤ − (C(t))⊤)(I − ηA(t) +C(t))−⊤

�L2
0(I − ηA(t) +C(t))−1(ηA(t) −C(t))(η(A(t))⊤ − (C(t))⊤)(I − ηA(t) +C(t))−⊤ (51)

� L2
0

(1− ‖ηA(t) −C(t)‖σ)2
· (ηA(t) −C(t))(η(A(t))⊤ − (C(t))⊤) (52)

� 2L2
0

(1− 2L0)2
·
(

(ηA(t))(ηA(t))⊤ +C(t)(C(t))⊤
)

(53)

�3L2
0 ·

(

(ηA(t))(ηA(t))⊤ +C(t)(C(t))⊤
)

, (54)

�3L2
0 ·

(

(ηA(t))(ηA(t))⊤ · (1 + J1) + J2 · (δ(t))2 · I
)

(55)

�6L2
0(1 + J1) · (ηA(t−1))(ηA(t−1))⊤ + 6L2

0η
2(1 + J1) · ‖A(t−1) −A(t)‖2σ + 3L2

0J2 · (δ(t))2 · I (56)

�6L2
0(1 + J1) · (ηA(t−1))(ηA(t−1))⊤ + 24L2

0η
2(1 + J1)(ηΛ)

2 · (δ(t−1))2 + 3L2
0J2 · (δ(t))2 · I (57)

�6L2
0(1 + J1) · (ηA(t−1))(ηA(t−1))⊤ + (δ(t−1))2 ·

(
24L2

0η
2(1 + J1)(ηΛ)

2 + 3L2
0J2(1 + 3ηℓ)

)
· I (58)

where:

• (51) follows by Lemma 20;

• (52) is by Lemma 21 with X = ηA(t) −C(t);

• (53) uses Lemma 17 and item 3 at time t;

• (54) follows from L0 ≤ 1−
√

2/3

2 ;

• (55) follows from the inductive hypothesis that item 5 holds at time t;

• (56) follows from Lemma 18;

• (57) follows from (50);

• (58) follows from the fact that δ(t) ≤ (1 + 3ηℓ)δ(t−1), which is a consequence of Lemma 14.

Inequalities (51) through (54) establish item 4 at time t − 1. In order for item 5 to hold at time t − 1, we
need that

6L2
0(1 + J1) ≤ J1 (59)

24L2
0η

2(1 + J1)(ηΛ)
2 + 3L2

0J2(1 + 3ηℓ) ≤ J2. (60)

By choosing J1 = 8L2
0 we satisfy (59) since L0 <

√

1/24. By choosing J2 = 30L2
0η

2(ηΛ)2 we satisfy (60)
since

24L2
0η

2(1 + 8L2
0)(ηΛ)

2 + 3L2
0 · J2(1 + 3ηℓ) ≤ 25L2

0η
2(ηΛ)2 + 9L2

0J2 ≤ J2,

where we use L0 ≤
√

1/192 and ηℓ ≤ 2/3. This completes the proof that item 5 holds at time t− 1.

Lemma 16. Suppose that the pre-conditions of Lemma 15 (namely, those in its first sentence) hold. Then
for each t ∈ [T ], we have

D(t) + (D(t))⊤ � 6L0η
2(B(t))⊤B(t) + 4L0η

2A(t)(A(t))⊤ +

(

4L0 +
1

3L0

)

C(t)(C(t))⊤. (61)

and
(D(t))⊤D(t) � 60L4

0η
2(B(t))⊤B(t). (62)
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Proof. By Lemma 17, for any ǫ > 0,

−C(t)ηB(t) − η(B(t))⊤(C(t))⊤

� ǫ · η2(B(t))⊤B(t) +
1

ǫ
·C(t)(C(t))⊤.

Also, for any ǫ > 0,

(I − ηA(t) +C(t))−1(ηA(t) −C(t))2ηB(t) + η(B(t))⊤(η(A(t))⊤ − (C(t))⊤)2(I − ηA(t) +C(t))−⊤

� 1

ǫ
(I − ηA(t) +C(t))−1(ηA(t) −C(t))2(η(A(t))⊤ − (C(t))⊤)2(I − ηA(t) +C(t))−⊤ + ǫη2(B(t))⊤B(t) (63)

� 4L2
0

ǫ
(I − ηA(t) +C(t))−1(ηA(t) −C(t))(η(A(t))⊤ − (C(t))⊤)(I − ηA(t) +C(t))−⊤ + ǫη2(B(t))⊤B(t)

(64)

� 12L2
0

ǫ
·
(

η2A(t)(A(t))⊤ +C(t)(C(t))⊤
)

+ ǫη2(B(t))⊤B(t). (65)

where (63) uses Lemma 17, (64) uses item 3 of Lemma 15 and Lemma 20, and (65) uses item 4 of Lemma
15.

Choosing ǫ = 3L0 and using the definition of D(t) in (33), it follows from the above displays that

D(t) + (D(t))⊤ � 6L0η
2(B(t))⊤B(t) + 4L0η

2A(t)(A(t))⊤ +

(

4L0 +
1

3L0

)

C(t)(C(t))⊤,

which establishes (61).
To prove (62) we first note that

∥
∥
∥(I − ηA(t) +C(t))−1(ηA(t) −C(t))2 −C(t)

∥
∥
∥
σ

(Lemma 15, item 2) ≤
√
2‖ηA(t) −C(t)‖2σ + ‖C(t)‖σ

(Lemma 15, items 1 & 3) ≤
√
2 · 4L2

0 + 2L2
0 = (2 + 4

√
2)L2

0.

By Lemma 20, it follows that
(D(t))⊤D(t) � 60L4

0 · η2(B(t))⊤B(t),

establishing (62).

Finally we are ready to prove Theorem 5; for convenience we restate it here.

Theorem 5 (restated). Suppose F : Rn → R
n is a monotone operator that is ℓ-Lipschitz and is such that

∂F (·) is Λ-Lipschitz. For some z(−1), z(0) ∈ Rn, suppose there is z∗ ∈ Rn so that FG(z∗) = 0 and ‖z∗ −
z(−1)‖ ≤ D, ‖z∗−z(0)‖ ≤ D. Then the iterates z(T ) of the OG algorithm (3) for any η ≤ min

{
1

150ℓ ,
1

1711DΛ

}

satisfy:

‖FG(z
(T ))‖ ≤ 60D

η
√
T

(66)

Proof of Theorem 5. By Lemma 11 with S = 3, we have that for some t∗ ∈ {0, 1, 2, . . . , T },

max{‖F (z(t
∗))‖, ‖F (z(t

∗−1))‖, ‖F (z(t
∗−2))‖} ≤ 6

√
3D

η
√
T ·

√

1− 10η2ℓ2
≤ 12D

η
√
T

=: δ0. (67)

Set L0 := ηℓ ≤ 1/150 and Λ0 := ηΛ. By Lemma 12 we have that ‖ηA(t)‖σ ≤ L0 and ‖ηB(t)‖σ ≤ L0 for all
t ≤ T . Thus the preconditions of Lemma 15 hold, and in particular by item 1 of Lemma 15, it follows that

‖F̃ (t∗)‖ = ‖F (w(t∗)) +C(t∗−1) · F (z(t
∗−1))‖

≤ ‖F (w(t∗))‖+ 2L2
0‖F (z(t

∗−1))‖ ≤ δ0 · (1 + L0 + 2L2
0) ≤ δ0 · (1 + 2L0). (68)
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Write δ := δ0(1 + 2L0). By (30), we have that for any t ∈ {t∗, . . . , T },

‖F̃t‖2 ≤
t−1∏

t′=t∗

‖I − ηA(t′) +C(t′)‖2σ · δ2. (69)

We will prove by forwards induction (contrast with Lemma 15) that for each t ∈ {t∗−1, . . . , T }, the following
hold:

1. ‖F̃ (t+1)‖ ≤ 2δ. (We will only need this item for t∗ − 1 ≤ t ≤ T − 1.)

2. max{‖F (z(t))‖, ‖F (z(t−1))‖} ≤ 4δ.

3. ‖I − ηA(t) +C(t)‖2σ ≤ 1 + 10025Λ2
0η

2δ2 if t ≥ t∗.

The base case t = t∗ − 1 is immediate: item 1 follows from (68), item 2 follows from (67), and item 3 states
nothing for t = t∗ − 1. We now assume that items 1 through 3 all hold for some value t − 1 ≥ t∗ − 1, and
prove that they hold for t. We first establish that item 2 holds at time t, namely that ‖F (z(t))‖ ≤ 4δ. Since
item 1 holds at time t− 1, we get that ‖F̃t‖ ≤ 2δ, and so

‖F (w(t))‖ = ‖F̃t −C(t−1)F (z(t−1))‖ ≤ ‖F̃t‖+ 2L2
0‖F (z(t−1))‖ ≤ 2δ + 8L2

0δ,

which implies that

‖F (z(t))‖ ≤ ‖F (w(t))‖+ ηℓ‖F (z(t−1))‖ ≤ 2δ + 8L2
0δ + 4L0δ ≤ 4δ,

where the last inequality holds since 8L2
0 + 4L0 ≤ 2.

We proceed to the proof of item 1 at time t. By Lemma 12, we have that

‖B(t) −B(t+1)‖σ ≤Λ‖w(t) −w(t+1)‖+ ηΛ

2
‖F (z(t−1))− F (z(t))‖

≤ηΛ‖F (z(t))‖+ ηΛ

2
(‖ηℓF (z(t−2))‖ + ‖2ηℓF (z(t−1))‖)

(item 2 at times t, t− 1) ≤4δΛ0 · (1 + 3L0/2) ≤ 5δΛ0 (70)

‖B(t) −A(t)‖σ ≤ηΛ

2
‖F (z(t))− F (z(t−1))‖

(item 2 at time t− 1) ≤6δΛ0L0 (71)

‖B(t+1) −A(t+1)‖σ ≤ηΛ

2
‖F (z(t+1))− F (z(t))‖

≤Λ0

2
· (L0‖F (z(t))‖+ 2L0‖F (z(t+1))‖)

(item 2 at time t & Lemma 14) ≤Λ0

2
· (4δL0 + 2L0(1 + 3L0) · 4δ)

≤8Λ0L0δ. (72)

Recall that (35) gives

I − ηA(t) +C(t) = I − ηA(t) + η2A(t+1)B(t+1) +D(t+1).

Now we will apply Lemma 13 with A1 = ηA(t),A2 = ηA(t+1),B = ηB(t+1),D = D(t+1), L0 = ηℓ (which is
called L0 in the present proof as well). We check that all of the preconditions of the lemma hold:

• For X ∈ {ηA(t), ηA(t+1), ηB(t+1)}, X+X⊤ is PSD by Lemma 12.

• For X ∈ {ηA(t), ηA(t+1), ηB(t+1)}, ‖X‖σ ≤ ηℓ = L0 by Lemma 12, and we have L0 ≤ 1/53.13

13As we have already noted, this observation establishes also that the preconditions of Lemmas 15 and 16 hold.
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• We may bound D(t+1) + (D(t+1))⊤ as follows:

D(t+1) + (D(t+1))⊤

�6L0η
2(B(t))⊤B(t) + 4L0η

2A(t)(A(t))⊤ +

(

4L0 +
1

3L0

)

C(t)(C(t))⊤ (73)

�6L0η
2(B(t))⊤B(t) + 4L0η

2A(t)(A(t))⊤

+

(
1

2L0

)

·
(

8L2
0 · ηA(t)(ηA(t))⊤ + 30L2

0η
4Λ2(4δ)2 · I

)

(74)

�6L0η
2(B(t))⊤B(t) + 8L0η

2A(t)(A(t))⊤ + 240L0η
2Λ2

0δ
2 · I

�12L0η
2(B(t+1))⊤B(t+1) + 8L0η

2A(t)(A(t))⊤ + (300δ2η2Λ2
0 + 240L0η

2Λ2
0δ

2) · I. (75)

�12L0η
2(B(t+1))⊤B(t+1) + 8L0η

2A(t)(A(t))⊤ + 310δ2η2Λ2
0 · I.

where (73) follows from Lemma 16, (74) follows from item 5 of Lemma 15 and item 2 of the current
induction at time t, and (75) follows from Lemma 18 and (70). This shows that in our application of
Lemma 13 we may take L1 = 12L0. Moreover, as we will take the parameter δ in Lemma 13 to be
5Λ0ηδ (see below items), we may take K = 14L0 (since 14 · (5Λ0ηδ)

2 ≥ 310δ2η2Λ2
0).

• Lemma 16 gives
(D(t+1))⊤D(t+1) � 60L4

0η
2(B(t+1))⊤B(t+1),

so we may take L2 = 60L4
0 in our application of Lemma 13.

• We calculate that

12L0 +
4L2

L2
0

+ 5L1 = 12L0 +
240L4

0

L2
0

+ 60L0 = 72L0 + 240L2
0 ≤ 1/2

holds as long as L0 ≤ 1/150.

• By (70), (71), and (72), we may take the parameter δ in Lemma 13 to be equal to 5Λ0ηδ since
max{8Λ0L0δ, 4δΛ0 + 12δΛ0L0, 4δΛ0 + 20δΛ0L0} ≤ 5Λ0δ.

By Lemma 13, it follows that

‖I − ηA(t) +C(t)‖2σ ≤ 1 + 25Λ2
0η

2δ2 · (400 + 14L0) ≤ 1 + 10025Λ2
0η

2δ2,

which establishes that item 3 holds at time t.
Finally we show that item 1 holds at time t. To do so, we use (69) and the fact that δ2 ≤ 146D2

η2T to
conclude that

‖F̃ (t+1)‖2 ≤ δ2 ·
(
1 + 10025Λ2

0η
2δ2

)T ≤ δ2 ·
(

1 +
K0Λ

2
0D

2

T

)T

≤ 4δ2,

where K0 = 10025 · 146 and the last inequality holds as long as K0Λ
2
0D

2 = K0η
2Λ2D2 ≤ 1/2, i.e., η ≤

1√
2K0·ΛD

; in particular, it suffices to take η ≤ 1
1711·ΛD . This verifies that item 1 holds at time t, completing

the inductive step.
The conclusion of Theorem 5 is an immediate conclusion of item 2 at time T , since 4δ ≤ 5δ0 = 60D

η
√
T

.

B.5 Helpful lemmas

Lemma 17 (Young’s inequality). For square matrices X,Y, we have, for any ǫ > 0,

XY⊤ +YX⊤ � ǫXX⊤ +
1

ǫ
·YY⊤.

Applying the previous lemma to the cross terms in the quantity XX⊤ when using the decomposition
X = Y + (X−Y), we obtain the following.
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Lemma 18. For square matrices X,Y, we have, for any ǫ > 0,

XX⊤ � (1 + ǫ) ·YY⊤ +

(

1 +
1

ǫ

)

‖X−Y‖2σ · I.

In particular, choosing ǫ = 1 gives

XX⊤ � 2YY⊤ + 2‖X−Y‖2σ · I.

Lemma 19 is an immediate corollary of the two lemmas above:

Lemma 19. For square matrices X,Y, we have

XY⊤ +YX⊤ � 3YY⊤ + 2‖X−Y‖2σ · I.

Lemma 20. For square matrices X,Y such that ‖Y‖σ ≤ M , we have

X⊤Y⊤YX � M2X⊤X.

Proof. For any v, we have
‖YXv‖2 ≤ M2‖Xv‖2.

Lemma 21. For any square matrix X so that ‖X‖σ < 1, we have

(I −X)−1XX⊤(I −X)−⊤ � 1

(1− ‖X‖σ)2
·XX⊤.

Proof. Using the equality (34), we have that for any ǫ > 0,

(I −X)−1XX⊤(I −X)−⊤

=(X+ (I −X)−1X2)(X⊤ + (X⊤)2(I −X)−⊤)

=XX⊤ + (I −X)−1X2X⊤ +X(X⊤)2(I −X)−⊤ + (I −X)−1X2(X⊤)2(I −X)−⊤

(Lemma 17) �(1 + 1/ǫ)XX⊤ + (1 + ǫ)(I −X)−1X2(X⊤)2(I −X)−⊤

(Lemma 20) �(1 + 1/ǫ)XX⊤ + (1 + ǫ)‖X‖2σ · (I −X)−1XX⊤(I −X)−⊤.

Rearranging gives

(I −X)−1XX⊤(I −X)−⊤ � min
ǫ>0:(1+ǫ)‖X‖2

σ<1

(1 + 1/ǫ)XX⊤

1− (1 + ǫ)‖X‖2σ
Choosing ǫ = 1−‖X‖σ

‖X‖σ
gives the desired conclusion.

C Proofs for Section 4

In this section we prove Theorem 7, and as byproducts of our analysis additionally prove the results mentioned
at the end of Section 4.

Recall from Section 4 that Fbil
n,ℓ,D is defined to be the set of ℓ-Lipschitz operators F : Rn → Rn of the

form

F (z) = Az + b where z =

(
x

y

)

,A =

(
0 M

−M⊤ 0

)

,b =

(
b1

−b2

)

, (76)

for which A is of full rank and −A−1b ∈ DD := BRn/2(0, D)× BRn/2(0, D). Note that each F ∈ Fbil
n,ℓ,D can

be written as the min-max gradient operator F (x,y) = (∇xf(x,y)
⊤,−∇yf(x,y)

⊤)⊤ corresponding to the
function

f(x,y) = x⊤My + b⊤
1 x+ b⊤

2 y. (77)

We next note that when F ∈ Fbil
n,ℓ,D, the p-SCLI updates of Definition 5 can be rewritten as follows:
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Observation 22. Suppose that A is a p-SCLI. Then there are constants αj , βj , γ, δ ∈ R, 0 ≤ j ≤ p − 1,
depending only on A, so that for an instance F of the form F (z) = Az + b, and an arbitrary set of p
initialization poitns z(0), . . . , z(−p+1) ∈ Rn, the iterates z(t) of A satisfy

z(t) =

p−1
∑

j=0

Cj(A)z(t−p+j) +N(A)b, (78)

for t ≥ 1 and Cj(A) = αjA+ βjIn for 0 ≤ j ≤ p− 1 and N(A) = γA+ δIn.

In the case of OG with a constant step size η, for F (z) = Az+ b, we may rewrite (15) as

z(t) = (I − 2ηA)z(t−1) + (ηA)z(t−2) − ηb,

so we have C0(A) = In − 2ηA,C1(A) = ηA,N(A) = −ηIn.
All lower bounds we prove in this section will apply more generally to any iterative algorithm A whose

updates are of the form (78) when restricted to instances F (z) = Az+ b.
The remainder of this section is organized as follows. In Section C.1, we prove Theorem 7. In Section C.2

we prove Proposition 8, which is used in the proof of Theorem 7, and Proposition 9, showing that Proposition
8 is tight in a certain sense. In Section C.3 we prove a conjecture of [ASSS15], which is similar in spirit
to Proposition 8 and leads to an algorithm-independent version of Theorem 7 (with a weaker quantitative
bound). Finally, in Section C.4, we discuss another byproduct of our analysis, namely a lower bound for
p-SCLIs for convex function minimization.

C.1 p-SCLI lower bounds for the class Fbil
n,ℓ,D

Notation. For a square matrix A, let ρ(A) be its spectral radius, i.e., the maximum magnitude of an
eigenvalue of A. For matrices A1 ∈ Rn1×m1 ,A2 ∈ Rn2×m2 , let A1 ⊗ A2 ∈ R(n1n2)×(m1m2) be the tensor
product (also known as Kronecker product) of A1,A2.

We will need the following standard lemma:

Lemma 23. For a square matrix C and all k ∈ N, we have ‖Ck‖σ ≥ ρ(C)k.

Next we prove Theorem 7, restated below for convenience.

Theorem 7 (restated). Fix ℓ,D > 0, let A be a p-SCLI14, and let z(t) denote the tth iterate of A. Then
there are constants cA, TA > 0 so that the following holds: For all T ≥ TA, there is some F ∈ Fbil

n,ℓ,D so

that for some initialization z(0), . . . , z(−p+1) ∈ DD and some T ′ ∈ {T, T + 1, . . . , T + p − 1}, it holds that

TGapD2D

F (z(T
′)) ≥ cAℓD2

√
T

.

Proof of Theorem 7. Take F (z) = Az + b, where A,b are of the form shown in (76), with M = ν · I for
some ν ∈ (0, ℓ]. Notice that A therefore depends on the choice of ν (which will be specified later), but for
simplicity of notation we do not explicitly write this dependence. The outline of the proof is to first eliminate
some corner cases in which the iterates of A do not converge and then reduce the statement of Theorem 7
to that of Proposition 8. There are a few different ways to carry out this reduction: we follow the linear
algebraic approach of [ASSS15], but an approach of a different flavor using elementary ideas from complex
analysis is given in [Nev93, Section 3.7].

Since F ∈ Fbil
n,ℓ,D, we have that the equilibrium z∗ = (x∗,y∗) ∈ DD satisfies BRn/2(x∗, D)×BRn/2(y∗, D) ⊂

D2D. Then, from [GPDO20, Eq. (22)], it follows that TGapD2D

F (z) ≥ D‖F (z)‖ for any z ∈ Rn. Therefore,

to prove Theorem 7 it suffices to show the lower bound ‖F (z(T
′))‖ ≥ cAℓD√

T
.

We consider the dynamics of the iterates of A for various choices of z(0), . . . , z(−p+1) ∈ DD. To do so, we

14More generally, A may be any algorithm satisfying the conditions of Observation 22.
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define the block matrices:

C(A) :=











0 In 0 · · · 0

0 0 In 0 · · ·
...

...
. . .

. . .
...

...
...

. . . 0 In
C0(A) C1(A) · · · Cp−2(A) Cp−1(A)











, U :=








0
...
0

In








∈ R
pn×n, (79)

and the block vectors

w(t) :=








z(t−p+1)

z(t−p+2)

...

z(t)








.

Then the updates of A as in (78) can be written in the following form, for F (z) = Az+ b:

w(t+1) = C(A)w(t) +UN(A)b.

Hence

w(t) = C(A)t ·w(0) +

t∑

s=1

C(A)t−sUN(A)b. (80)

Recall that Observation 22 gives us Cj(A) = αj ·A + βj · In, and N(A) = γ ·A + δ · In, for some real
numbers αj , βj , γ, δ where 0 ≤ j ≤ p− 1.

We now consider several cases:
Case 1: C(A) − Inp or N(A) is not invertible for some choice of ν ∈ (0, ℓ] (which determines A as

explained above). First suppose that C(A) − Inp is not invertible. Note that the row-space of C(A) − Inp
contains the row-space of the following matrix:

C̃ :=










−In In 0 · · ·
−In 0 In · · ·

...
. . .

. . .
...

−In 0 · · · In
−In +C0(A) C1(A) · · · Cp−1(A)










.

If C0(A) + · · ·+Cp−1(A) − In is full-rank, then the row-space of C̃ additionally contains the row-space of
(
In 0 · · · 0

)
∈ Rn×np, and thus C̃, and so C(A)−I would be full-rank. Thus C0(A)+· · ·+Cp−1(A)−In

is not full-rank. But we can write:

−In +

p−1
∑

j=0

Cj(A) =



−1 +

p−1
∑

j=0

βj



 In +





p−1
∑

j=0

αj



 ·A =





(

−1 +
∑p−1

j=0 βj

)

In/2
∑p−1

j=0 αjM

−∑p−1
j=0 αjM

(

−1 +
∑p−1

j=0 βj

)

In/2





But since M is a nonzero multiple of the identity matrix, if the above matrix is not full-rank, it must be
identically 0, i.e.,

∑p−1
j=0 Cj(A) = In. Hence

∑p−1
j=0 βj = 1,

∑p−1
j=0 αj = 0.

Thus, for any choice of the matrix A ∈ Rn×n, if we choose b = 0 (so that F (z) = Az), and if z(0) =
· · · = z(−p+1) = z for some z ∈ Rn, it holds that for all t ≥ 1, the iterates z(t) of Z satisfy z(t) = z. We now
choose M = ℓ · In/2 and z = z(0) = D/

√

n/2 · 1 ∈ Rn, so that z(0) −A−1b = z(0) ∈ DD. Then for all t ≥ 0,

‖F (z(t))‖2 = ‖F (z(0))‖2 = 2ℓ2D2.

Similarly, if N(A) is not invertible for some choice of ν ∈ (0, ℓ], then by choice of A we must have that
γ = δ = 0, i.e., N(A) = 0 for all choices of ν. Thus, choosing w(0) = 0 and b = D/

√

n/2 · 1 ∈ DD,

and so for all t ≥ 0, ‖F (z(t))‖ = ‖F (z(0))‖ = ‖b‖ =
√
2D. Thus in this case we get the lower bound for

T ≥ TA := ℓ2.
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Cases 2 & 3. In the remaining cases C(A) − Inp and N(A) are invertible for all ν ∈ (0, ℓ]. Hence we
can rewrite (80) as:

w(t) = C(A)t ·w(0) + (C(A)− Inp)
−1(C(A)t − Inp)UN(A)b. (81)

We consider three further sub-cases:
Case 2. ρ(C(A)) ≥ 1 for some ν ∈ (0, ℓ]. Fix such a ν (and thus A). Since C(A) is invertible, we

must in fact have ρ(C(A)) > 1; write ρ0 := ρ(C(A)). Again we choose b = 0, so that w(t) = C(A)t ·w(0),
and so (Ip ⊗ A)w(t) = C(A)t · (Ip ⊗ A)w(0). By Lemma 23 we have that ‖C(A)t‖σ ≥ ρt0. Let w̃(0) :=
((z̃(−p+1))⊤, . . . , (z̃(0))⊤)⊤ be a singular vector of C(A)t corresponding to a singular value which is at least
ρt0. By appropriately scaling w̃(0), we may ensure that z̃(−p+1), . . . , z̃(0) ∈ DD and ‖w̃(0)‖ ≥ D. Moreover,
we have that ‖(Ip ⊗ A)w(t)‖ = ν‖w(t)‖ ≥ νρt0D. This quantity can be made arbitrarily large by taking t
to be arbitrarily large (as ρ0 > 1), and thus in this case ‖F (z(t))‖ = ‖Az(t)‖ fails to converge to 0 since
‖(Ip ⊗A)w(t)‖ → ∞ as t → ∞.

Case 3. ρ(C(A)) < 1; in this case we have

lim
t→∞

U⊤w(t) = −U⊤(C(A)− Inp)
−1UN(A)b.

Note that U⊤(C(A) − Inp)
−1U is the lower n× n-submatrix of the matrix (C(A) − Inp)

−1, and therefore
it must be the inverse of the Schur complement of the upper (p−1)n×(p−1)n-submatrix of C(A)−Inp. Thus

U⊤(C(A)−Inp)
−1U is invertible, and since N(A) is as well, we may define B(A) := −

(
U⊤(C(A)− Inp)

−1UN(A)
)−1

.
Hence U⊤(C(A)− Inp)

−1U = −B(A)−1N(A)−1. As shown in [ASSS15, Eqs. (68) – (70)], this implies that
∑p−1

j=0 Cj(A) = In +N(A)B(A), which can be written as:





p−1
∑

j=0

αj



A+





p−1
∑

j=0

βj



 In = I + (γA+ δIn) ·B(A). (82)

Let 1p ∈ Rp be the p-vector of ones. The fact that N(A)B(A) =
∑p−1

j=0 Cj(A)− In and definition of U
gives

UN(A)B(A) = (C(A)− Ipn)






In
...
In




 = (C(A)− Ipn)(1p ⊗ In) ⇒ (C(A)− Ipn)

−1UN(A)B(A) = 1p⊗ In.

It then follows from (81) and the fact that N(A),C(A) commute with A that

(Ip ⊗A)w(t) + (1p ⊗ b)

= (Ip ⊗A)C(A)tw(0) + (Ip ⊗A)(C(A)t − Inp)(C(A)− Ipn)
−1UN(A)B(A)B(A)−1b+ (1p ⊗ b)

= (Ip ⊗A)C(A)tw(0) + (C(A)t − Inp)(Ip ⊗A)(1p ⊗B(A)−1b) + (1p ⊗ b)

= (Ip ⊗A)C(A)tw(0) +C(A)t(1p ⊗AB(A)−1b) + 1p ⊗ (In −AB(A)−1)b. (83)

Case 3a.
∑p−1

j=0 βj 6= 1. Taking ν → 0 (i.e., A → 0) in (82), we see that δ 6= 0, and moreover

limA→0 B(A) = δ−1(
∑p−1

j=0 βj − 1)In 6= 0. Thus, there must be some ν0 ∈ (0, ℓ] so that B(A) 6= A, and so

for this choice of ν = ν0, by (83), for an arbitrary choice of w(0) and for some choice of b not in the nullspace
of In −AB(A)−1 with ‖b‖ = ν0D/

√

n/2 · 1, the following holds: for some constants T0 ∈ N, c0 > 0, for all
t ≥ T0, we have ‖(Ip ⊗A)w(t) + (1p ⊗b)‖ ≥ c0. This suffices to prove the desired lower bound on ‖F (z(t))‖
(in particular, the constant T0 determines TA in the theorem statement).

Case 3b.
∑p−1

j=0 βj = 1. This case contains the case in which the iterates z(t) of the p-SCLI converge to

the true solution −A−1b for all A,b, and is thus the main nontrivial case (in particular, it is the case in
which we use Proposition 8).
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We now choose b = 0 ∈ Rn, and so (I ⊗A)w(t) = C(A)tAw(0) (we use here that Cj(A) all commute
with A). [ASSS15, Lemma 14] gives that the characteristic polynomial of C(A) is given by

χC(A)(λ) = (−1)pn det



λpIn −
p−1
∑

j=0

λjCj(A)



 .

Recall that the assumption of linear coefficient matrices gives us that Cj(A) = αj ·A+ βj · In, where A

is defined as in (76), depending on some matrix M. Recall our choice of M = ν · In/2, for some ν ∈ (0, ℓ], to

be specified below. Now define q(λ) := λp −∑p−1
j=0 βjλ

j and r(λ) :=
∑p−1

j=0 αjλ
j . Then

λpIn −
p−1
∑

j=0

λjCj(A) = q(λ) · In − r(λ) ·A =

(
q(λ) · In/2 νr(λ) · In/2

−νr(λ) · In/2 q(λ) · In/2

)

=

(
q(λ) νr(λ)

−νr(λ) q(λ)

)

⊗ In/2.

By the formula for the determinant of a tensor product of matrices,

χC(A)(λ) = (−1)pn · (q(λ)2 + ν2r(λ)2)n/2,

and so the spectral radius of C(A) is given by ρ(C(A)) = ρ(q(λ)2 + ν2r(λ)2). Since
∑p−1

j=0 βj = 1, we have

that q(1)2 = 0; moreover, λ 7→ q(λ)2 is a degree-2p monic polynomial, while λ 7→ −r(λ)2 is a degree-(2(p−1))
(and thus also degree-(2p− 1)) polynomial. Thus, by Proposition 8, we get that there are some constants
µA, CA > 0 (depending on the algorithm A) so that for any µ ∈ (0, µA), there is some ν ∈ [µ, ℓ] so that
ρ(q(λ)2 + ν2r(λ)2) ≥ 1 − CA · µ2/ℓ2. Let TA be so that ℓ/(2

√
TA) < µA. Now for any T ≥ TA, we may

choose µ = ℓ/(2
√
T ), and set ν ∈ [ℓ/(2

√
T ), ℓ] accordingly per Proposition 8. By Lemma 23, we have that,

for T ≥ TA,
‖C(A)T ‖σ ≥ ρ(C(A))T ≥ (1− CA/(4T ))

T ≥ exp(−CA).

Set cA = exp(−CA). Choose w(0) = ((z(−p+1))⊤, . . . , (z(0))⊤)⊤ ∈ Rnp so that it is a (right) singular vector
of C(A)T corresponding to a singular value of magnitude at least cA. By scaling w(0) appropriately, we may
ensure that z(0), . . . , z(−p+1) ∈ DD, and that ‖w(0)‖ ≥ D. It follows that

‖(Ip ⊗A)w(T )‖2 = ‖(Ip ⊗A)C(A)Tw(0)‖2 ≥ cAν
2D2 ≥ cAℓ2D2

T
.

Thus, for some T ′ ∈ {T, T − 1, . . . , T − p + 1}, we have that ‖F (z(T
′))‖ = ‖Az(T

′)‖ ≥
√

cAℓ2D2

pT ′ , which

establishes the desired lower bound on iteration complexity.

C.2 Proof of Propositions 8 and 9

In this section we prove Propositions 8 and 9.

Proposition 8 (restated). Suppose q(z) is a degree-p monic real polynomial such that q(1) = 0, r(z) is a
polynomial of degree p− 1, and ℓ > 0. Then there is a constant C0 > 0, depending only on q(z), r(z) and ℓ,
and some µ0 ∈ (0, ℓ), so that for any µ ∈ (0, µ0),

sup
ν∈[µ,ℓ]

ρ(q(z)− ν · r(z)) ≥ 1− C0 ·
µ

ℓ
.

Proof. Let ∆ ⊂ C be the unit disk in the complex plane centered at 0 and of radius 1. Set R(z) to be the

rational function R(z) := q(z)
r(z) . Our goal is to find some µ0 so that for any µ < µ0, we have

[µ, ℓ] ∩ {R(z) : |z| ≥ 1− C0 · µ/ℓ} 6= ∅. (84)

We may assume r(1) 6= 0 (if instead r(1) = 0, then q(1)− ν · r(1) = 0 for all ν, and the proof is complete).
Hence R(1) = 0, and R is nonconstant. Since R(z) is holomorphic in a neighborhood of 1, there are
neighborhoods U ∋ 1 and V ∋ 0, with R(U) = V , together with conformal mappings a : ∆ → U with
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a(0) = 1, and b : V → ∆ with b(0) = 0, which extend to continuous functions on ∆̄, V̄ , respectively, so that
the mapping R̃ : ∆ → ∆, defined by R̃ = b ◦R ◦ a, satisfies R̃(w) = wk for some k ≥ 1.

By Cauchy’s integral formula, there is a positive constant A0, depending only on the function R(·), so
that for w ∈ ∆, we have that

|a(w) − (1 + a′(0) · w)| ≤ A0 · |w|2

and for z ∈ V , we have that
|b(z)− b′(0) · z| ≤ A0 · |z|2.

By choosing µ0 > 0 to be sufficiently small, we may ensure that [0, µ0] ⊂ V . Now fix any µ ∈ (0, µ0). We
consider several cases:

Case 1. k = 1. Let w0 = b(µ), so that

|w0| ≤ |b′(0)| · µ+A0 · µ2 ≤ A1 · µ (85)

for some constant A1 > 0. We have that R(a(w0)) = µ by definition of a(z). Moreover,

|a(w0)| ≥ |1 + a′(0) · w0| −A0 · |w0|2 ≥ 1− |a′(0)| · (|b′(0)| · µ+A0 · µ2)− A0 · A2
1µ

2,

and thus as long as C0 is chosen sufficiently large as a function of |a′(0)|, |b′(0)|, A0, A1, ℓ, we have |a(w0)| ≥
1− C0 · µ/ℓ, and R(a(w0)) = µ, and thus (84) is satisfied in this case.

Case 2. k = 2. Again let w0 = b(µ), so that (85) holds. Let u0 ∈ ∆ be a square root of w0, i.e.,
u2
0 = (−u0)

2 = w0. Then R(a(u0)) = R(a(−u0)) = µ. It must be the case that either a′(0) ·u0 or −a′(0) ·u0

has a non-negative real part; suppose without loss of generality that it is a′(0) · u0 (if not, then replace u0

with −u0). Then

|a(u0)| ≥ |1 + a′(0) · u0| −A0 · |u0|2 ≥
√

1 + |a′(0) · u0|2 −A0 · |w0| ≥
√
1−A0A1µ,

and thus as long as C0 is chosen sufficiently large as a function of A0, A1, ℓ, we have that |a(u0)| ≥ 1−C0 ·µ/ℓ
and R(a(u0)) = µ, and again (84) is satisfied in this case.

Case 3. k ≥ 3. In this case we have that |R(1 − z)| ≤ O(|z|3) as z → 0, so there are some constants
µ0, C > 0 so that for µ ∈ (0, µ0) we have that any root z of z 7→ q(z)−µ · r(z) must satisfy |z− 1| ≥ C 3

√

µ/ℓ.

Theorem 25 (in the following section) implies that supν∈[µ,ℓ] ρ(q(z)− ν · r(z)) ≥ 1− 3
√

µ/ℓ for all µ ∈ [0, ℓ].
By making µ0 smaller if necessary we may assume without loss that for any µ ∈ [0, µ0], it holds that
3
√

µ/ℓ < C 3
√

µ/ℓ. If it holds that supν∈[µ0,ℓ] ρ(q(z) − ν · r(z)) ≥ 1, then the lemma is established for this

case. Otherwise, there is some µ′ ∈ (0, µ0) so that for some ν ∈ [µ′, µ0] we have ρ(q(z)−ν ·r(z)) ≥ 1−3
√

µ′/ℓ.
But since µ′ ≤ ν ≤ µ0 we also have

|ρ(q(z)− ν · r(z))− 1| ≥ C 3
√

ν/ℓ > 3
√

ν/ℓ ≥ 3
√

µ′/ℓ,

and so it must be the case that ρ(q(z)− ν · r(z)) ≥ 1+3
√

µ′/ℓ ≥ 1, which establishes the lemma in this case.
We remark also that the case k ≥ 3 can be dealt with directly, without appealing to Theorem 25: again

let w0 = b(µ), so that (85) holds. Then there exists some kth root u0 ∈ ∆ of w0 so that a′(0) · u0 = reiθ for
some θ ∈ [−π/3, π/3] and r > 0. Then

|a(u0)| ≥ |1 + a′(0) · u0| −A0 · |u0|2 ≥ 1√
3
|a′(0)| · |u0|+ 1−A0 · |u0|2 ≥ 1

for sufficiently small u0 (which can be made arbitrarily small by taking µ ↓ 0).

Proposition 9 (restated). For any constant C0 > 0 and µ0 ∈ (0, ℓ), there is some µ ∈ (0, µ0) and polyno-
mials q(z), r(z) so that supν∈[µ,ℓ] ρ(q(z)− ν · r(z)) < 1 − C0 · µ. Moreover, the choice of the polynomials is
given by

q(z) = ℓ(z − α)(z − 1), r(z) = −(1 + α)z + α for α :=

√
ℓ−√

µ√
ℓ+

√
µ
. (86)
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Proof of Proposition 9. The proof of this proposition involves similar calculations as were done in [ASSS15,
Section 5.2], but we spell them out in detail for completeness.

Fix C0 > 0, µ0 ∈ (0, ℓ). We will show that for some µ ∈ (0, µ0), we have that ρ(q(z)−ν ·r(z)) < 1−C0 ·µ
for all ν ∈ [µ, ℓ], for the choice of q(z), r(z), α in (86).

Fix any ν ∈ [µ, ℓ]. Solving q(z)− ν · r(z) = 0 gives

z =
(α+ 1)(1− ν/ℓ)±

√

(α+ 1)2(1− ν/ℓ)2 − 4α

2
. (87)

Let us write α =
√
ℓ−√

µ√
ℓ+

√
µ
= 1− 2ǫ for some ǫ ∈ [

√

µ/ℓ, 2
√

µ/ℓ]. Note that, since ν ≥ µ,

(α+ 1)2(1− ν/ℓ)2 − 4α ≤ (α+ 1)2(1 − µ/ℓ)2 − 4α = 4((1−
√

µ/ℓ)2 − α) < 0,

so the values of z in (87) have absolute value equal to
√
α ≤ 1 − ǫ ≤ 1 −

√

µ/ℓ for any ν ∈ [µ, ℓ]. For

sufficiently small µ, we have
√

µ/ℓ > C0µ, and thus 1−
√

µ/ℓ < 1− C0µ.

The polynomials in (86) are closely related to Nesterov’s accelerated gradient descent (AGD); we discuss
this connection further in Remark 8.

C.3 Proof of a conjecture of [ASSS15]

In this section we prove the following conjecture:

Conjecture 24 ([ASSS15]). Suppose q(z) is a degree-p monic real polynomial such that q(1) = 0. Then for
any polynomial r(z) of degree p− 1 and for any 0 < µ < ℓ, there exists ν ∈ [µ, ℓ] so that

ρ(q(z)− ν · r(z)) ≥
√

ℓ/µ− 1
√

ℓ/µ+ 1
. (88)

Theorem 25. Conjecture 24 is true.

We are not aware of any reference in the literature directly claiming to prove the statement of Conjecture
24. However, we will show two distinct proofs of Conjecture 24: the first is an indirect proof showing how
Conjecture 24 may be derived indirectly as a consequence of prior works ([Nev93, AS16]), and the second is
a direct proof using basic principles from complex analysis.

Before continuing, we introduce some further notation.

Notation. For a polynomial s(z), write ρ(s) to be the spectral radius of s, i.e., ρ(s) = max{|z| : s(z) = 0}
is the maximum magnitude of a root of s. Let Ĉ = C ∪ {∞} denote the Riemann sphere. For z ∈ C, r > 0,
let D(z, r) := {w ∈ C : |w − z| < r} denote the (open) disk of radius r centered at z. Set ∆ = D(0, 1) and
H := {z ∈ C : ℑ(z) > 0} to be the upper half-plane (here ℑ(z) denotes the imaginary part of z). We refer
the reader to [Ahl79] for further background on complex analysis.

Indirect proof of Theorem 25 using prior works. We first make the simplifying assumption that there is no
ν ∈ [µ, ℓ] so that q(z) − ν · r(z) = zp. (We remove this assumption at the end of the proof.) Let us write
q(z) = zp − qp−1z

p−1 − · · · − q1z − q0, r(z) = r0 + r1z + · · · + rp−1z
p−1. We have that q0 + · · · + qp−1 = 1

since q(1) = 0. Similar to the proof of Theorem 7, define, for ν ∈ [µ, ℓ],

C(ν) :=











0 1 0 · · · 0
0 0 1 0 · · ·
...

...
. . .

. . .
...

...
...

. . . 0 1
C0(ν) C1(ν) · · · Cp−2(ν) Cp−1(ν)











,
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where Cj(ν) = qj + rjν for 0 ≤ j ≤ p− 1. By our initial simplifying assumption, there is no ν ∈ [µ, ℓ] so that
C0(ν) = · · · = Cp−1(ν) = 0. Then by [ASSS15, Lemma 14], we have that

ρ(C(ν)) = ρ



zp −
p−1
∑

j=0

Cj(ν)z
j



 = ρ (q(z)− ν · r(z)) . (89)

Let e := 1√
p (1, 1, . . . , 1)

⊤ ∈ Rp. Note that e⊤C(ν)te is a polynomial in ν, which we write as pt(ν), of degree

at most t. It is also immediate that pt(0) = 1 for all t. Moreover, pt satisfies

|pt(ν)| ≤ |e⊤C(ν)te| ≤ ‖c(ν)te‖ ≤ ‖C(ν)t‖σ. (90)

Next we will need the following lemma:

Lemma 26. It holds that

sup
ν∈[µ,ℓ]

ρ(C(ν)) = sup
ν∈[µ,ℓ]

lim inf
t→∞

‖C(ν)t‖1/tσ ≥ lim inf
t→∞

sup
ν∈[µ,ℓ]

‖C(ν)t‖1/tσ . (91)

Notice that the opposite direction of the inequality in (91) holds trivially, and thus we have equality.
Notice also that the first equality in (91) follows by Gelfand’s formula.

Proof of Lemma 26. Note that if at least one of C0(ν), . . . , Cp−1(ν) is nonzero, then C(ν)p 6= 0: this is the
case since there is some vector v ∈ Rp so that 〈v, (C0(ν), . . . , Cp−1(ν))〉 6= 0, and the first entry of C(ν)pv

is 〈v, (C0(ν), . . . , Cp−1(ν))〉. Since [µ, ℓ] is compact, it follows that the function ν 7→ ‖C(ν)‖p

‖C(ν)p‖ is bounded for

ν ∈ [µ, ℓ]. Let S := supν∈[µ,ℓ]
‖C(ν)‖p

‖C(ν)p‖ , σ := max
{

1/2, ln(p−1)
ln(p)

}

, and Ap = 2p. Then [Koz09, Theorem 1]

gives that for all ν ∈ [µ, ℓ] and t ≥ 1, we have

‖C(ν)t‖1/t ≤ ρ(C(ν)) · AAp·tσ−1

p ·
(‖C(ν)‖p
‖C(ν)p‖

)Ap·tσ−1

≤ ρ(C(ν)) · AAp·tσ−1

p · SAp·tσ−1

.

Since σ < 1, it follows that

lim inf
t→∞

sup
ν∈[µ,ℓ]

‖C(ν)t‖1/t ≤ lim inf
t→∞

sup
ν∈[µ,ℓ]

ρ(C(ν)) · AAp·tσ−1

p · SAp·tσ−1

= sup
ν∈[µ,ℓ]

ρ(C(ν)).

By (90) and Lemma 26, we have

lim inf
t→∞

sup
ν∈[µ,ℓ]

|pt(ν)|1/t = lim inf
t→∞

sup
ν∈[µ,ℓ]

|e⊤C(ν)te|1/t

≤ lim inf
t→∞

sup
ν∈[µ,ℓ]

‖C(ν)te‖1/t

≤ lim inf
t→∞

sup
ν∈[µ,ℓ]

‖C(ν)t‖1/tσ

≤ sup
ν∈[µ,ℓ]

ρ(C(ν)). (92)

(We use Lemma 26 in (92).) Let St denote the set of polynomials st with complex coefficients of degree at
most t such that st(0) = 1. (Note in particular that the polynomials pt defined above belong to St for each
t.) It follows from Theorem 3.6.3, and Example 3.8.3 of [Nev93] that

inf
t>0

inf
st∈St

sup
ν∈[µ,ℓ]

|st(ν)|1/t =
√

ℓ/µ− 1
√

ℓ/µ+ 1
. (93)
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(In more detail, the quantity on the left-hand-side of (93), which is called the optimal reduction factor of
the region [µ, ℓ] in [Nev93] and denoted by η[µ,ℓ] therein, is shown in [Nev93, Theorem 3.6.3] to be equal to

e−G(0), where G : C − [µ, ℓ] → R is the Green’s function for the region C − [µ, ℓ]. Then [Nev93, Example
3.8.3] explicitly computes the Green’s function and shows that e−G(0) is the quantity on the right-hand-side
of (93)).

Combining (89), (92), and (93), we see that

sup
ν∈[µ,ℓ]

ρ(q(z)− ν · r(z)) = sup
ν∈[µ,ℓ]

ρ(C(ν)) ≥ inf
t>0

inf
st∈St

sup
ν∈[µ,ℓ]

|st(ν)|1/t =
√

ℓ/µ− 1
√

ℓ/µ+ 1
.

Finally, we deal with the case that for some ν ∈ [µ, ℓ], we have q(z)− ν · r(z) = zp. Since the roots of a
polynomial are continuous functions of its coefficients and a continuous function defined on a compact set is
uniformly continuous, for any ǫ > 0, there is some δ > 0 so that for any polynomial r̃(z) = r̃0 + · · ·+ r̃pz

p−1

with |r̃j − rj | ≤ δ for each j, we have that |ρ(q(z)− ν · r(z))− ρ(q(z)− ν · r̃(z))| ≤ ǫ for all ν ∈ [µ, ℓ]. Such a
polynomial r̃ may be found so that q(z)− ν · r̃(z) 6= zp for all ν ∈ [µ, ℓ], and so by the proof above we have

sup
ν∈[µ,ℓ]

ρ(q(z)− ν · r(z)) ≥ sup
ν∈[µ,ℓ]

ρ(q(z)− ν · r̃(z))− ǫ ≥
√

ℓ/µ− 1
√

ℓ/µ+ 1
− ǫ.

The desired conclusion follows by taking ǫ ↓ 0, thus completing the proof of Theorem 25.
We remark that an alternative approach to establishing (93) without appealing to the heavy machinery

of Green’s functions is to use [AS16, Lemma 2] directly, which shows that

inf
st∈St

sup
ν∈[µ,ℓ]

|st(ν)| ≥
(√

ℓ/ν − 1
√

ℓ/ν + 1

)t

.

The approach to proving Conjecture 24 described above is unsatisfying in that it first passes a statement

about polynomials (namely, Conjecture 24) to a statement about matrices (namely, about lim inft supν∈[µ,ℓ] ‖C(ν)t‖1/tσ ),
relying on a nontrivial uniform version of Gelfand’s formula ([Koz09]), before passing back to a statement
about polynomials and using either [AS16] or [Nev93] to establish (93). It is natural to wonder whether there
is a direct proof of Conjecture 24 which operates on the polynomials q(z), r(z) directly, without bounding
the optimal reduction factor in (93) and constructing the matrices C(ν). We next give such a direct proof
of Conjecture 24, which follows from basic facts from complex analysis.

Direct proof of Theorem 25. Fix some polynomials q, r satisfying the conditions of Conjecture 24. Choose
δ ∈ R so that maxν∈[µ,ℓ] ρ(q(z) − ν · r(z)) = 1 − δ. Notice that the maximum exists since the roots of a

polynomial are a continuous function of its coefficients. Our goal is to show that δ ≤ 1 −
√

ℓ/µ−1√
ℓ/µ+1

. Define

the rational function R : Ĉ → Ĉ by R(z) = q(z)
r(z) . If, for some z0 with |z0| > 1 − δ, R(z0) =: ν ∈ [µ, ℓ],

then we have q(z0) − ν · r(z0) = 0, and so ρ(q(z) − ν · r(z)) ≥ |z0| > 1 − δ, a contradiction. Hence the

restriction of R to Ĉ −D(0, 1− δ) is in fact a holomorphic function to the Riemann surface Ĉ − [µ, ℓ], i.e.,

R : Ĉ−D(0, 1− δ) → Ĉ− [µ, ℓ]. (Recall that D(0, 1− δ) denotes the closed disc of radius 1− δ centered at
0.) We next need the following standard lemma:

Lemma 27. There is a holomorphic map G : Ĉ − [µ, ℓ] → ∆ from Ĉ − [µ, ℓ] to the unit disk ∆, so that

G(0) =
1−

√
ℓ/µ

1+
√

ℓ/µ
and G(∞) = 0.15

For completeness we prove Lemma 27 below; we first complete the proof of Theorem 25 assuming Lemma
27.

15In fact, G is a conformal mapping, though we will not need this.
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Notice that the mapping z 7→ 1
z maps D

(

0, 1
1−δ

)

to Ĉ−D(0, 1− δ). Thus we may define R̃ : D
(

0, 1
1−δ

)

→
Ĉ− [µ, ℓ] by R̃(z) = R

(
1
z

)
, which is holomorphic since R is. Now define the function H : ∆ → ∆ by

H(z) = G

(

R̃

(
1

1− δ
· z

))

,

which is well-defined since 1
1−δ · z ∈ D

(

0, 1
1−δ

)

for z ∈ ∆. Since H is a composition of the holomorphic

functions z 7→ 1
1−δ · z, R̃, and G, H is itself holomorphic. Note that

H(0) = G(R̃(0)) = G(R(∞)) = G(∞) = 0 (94)

H(1− δ) = G(R̃(1)) = G(R(1)) = G(0) =
1−

√

ℓ/µ

1 +
√

ℓ/µ
. (95)

where to derive (94) we used that R(∞) = ∞ since q(z) is monic of degree p and r(z) is of degree p− 1, and
to derive (95) we used that R(1) = 0 since q(1) = 0 by assumption.

Next we recall the Schwarz lemma from elementary complex analysis:

Lemma 28 (Schwarz). A holomorphic function f : ∆ → ∆ with f(0) = 0 satisfies |f(z)| ≤ |z| for all z ∈ ∆.

Since H : ∆ → ∆ is holomorphic, satisfies H(0) = 0 (by (94)), (95) together with Lemma 28 gives us
that

|H(1− δ)| =
√

ℓ/µ− 1
√

ℓ/µ+ 1
≤ 1− δ.

In particular, δ ≤ 1−
√

ℓ/µ−1√
ℓ/µ+1

, which completes the proof.

Now we prove Lemma 27 for completeness.

Proof of Lemma 27. We will take

G(w) :=

√
w − µ− i

√
ℓ− w√

w − µ+ i
√
ℓ− w

,

where the choice of the branch of the square root will be explained below. In particular, G is obtained as
the composition of maps G = G5 ◦G4 ◦G3 ◦G2 ◦G1, where G1, . . . , G5 are defined by:

G1 : Ĉ− [µ, ℓ] → Ĉ− [0, 1], w 7→ ℓ− w

ℓ− µ

G2 : Ĉ− [0, 1] → Ĉ− [1,∞], w 7→ 1/w

G3 : Ĉ− [1,∞] → Ĉ− [0,∞], w 7→ w − 1

G4 : Ĉ− [0,∞] → H, w 7→ √
w (96)

G5 : H → ∆, w 7→ w − i

w + i
,

where the choice of the branch of the square root in (96) is given by G4(re
iθ) =

√
reiθ/2 for r > 0, θ ∈ (0, 2π).

It is clear that each of G1, . . . , G5 are holomorphic functions between their respective Riemann surfaces, and
thus G : Ĉ− [µ, ℓ] → ∆ is holomorphic.

To verify the values of G(0), G(∞), note that G3(G2(G1(0))) = −µ/ℓ and G3(G2(G1(∞)) = −1. By
the choice of the branch of the square root defining G4, we have that G4(G3(G2(G1(0)))) = i

√

µ/ℓ and

G4(G3(G2(G1(∞))) = i. It follows that G(∞) = 0 and G(0) =
1−

√
ℓ/µ√

ℓ/µ+1
.
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Theorem 25 leads to an algorithm-independent version of Theorem 7. We need the following definition:
a p-SCLI in the form (78) with Cj(A) = αjA + βjIn is called consistent ([ASSS15]) if

∑p−1
j=0 βj = 1. It

is known that if the iterates of A converge for all b ∈ Rn, then A is consistent; hence consistent p-SCLIs
represent all “useful” ones.

Proposition 29. Let A be a consistent p-SCLI and let z(t) denote the tth iterate of A. Then for all
T ∈ N, there is some F ∈ Fbil

n,ℓ,D so that for some initialization z(0), . . . , z(−p+1) ∈ DD and some T ′ ∈
{T, T − 1, . . . , T − p+ 1}, it holds that TGapD2D

F (z(T
′)) ≥ ℓD2

√
20pT

.

Proof. The proof of Proposition 29 mirrors nearly exactly the proof of Theorem 7, except we need only
consider Case 3b by consistency. Moreover, the only difference to Case 3b is the following: instead of
applying Proposition 8, we apply Theorem 25 (i.e., Conjecture 24) with µ = ℓ/2T . Then, we may choose
µ ∈ [ℓ/2T, ℓ] accordingly per the statement of Conjecture 24 to conclude that

ρ(C(A))T ≥
(
2T − 1

2T + 1

)T

≥ 1/5.

Thus it follows in the same way as in the proof of Theorem 7 that for some T ′ ∈ {T, T − 1, . . . , T − p+ 1}
we have that ‖F (z(T

′))‖ ≥
√

ν2D2

5pT ≥
√

ℓ2D2

20pT .

The conclusion of Proposition 29 is known even for non-stationary p-CLIs and without the superfluous
1/

√
p factor (e.g., it follows from Proposition 5 in [ASM+20]), but our proof is new since it involves Theorem

25, which does not seem to have been previously known in the literature. We are hopeful that Theorem
25 may have further consequences for proving lower bounds for optimization algorithms, such as in the
stochastic setting.

C.4 Byproduct: Lower bound for convex function minimization

In this section we prove an (algorithm-dependent) lower bound of Ω(1/T ) on the rate of convergence for p-
SCLIs for convex function minimization. This statement was claimed to be proven by [AS16, Corollary 1], but
in fact their results only give a linear lower bound for the strongly convex case (and not the sublinear bound
of Ω(1/T ) we obtain here): in particular, Corollary 1 of [AS16] is a corollary of Theorem 2 of [AS16], which

should be adjusted to state that the error after T iterations cannot be upper bounded by O
(

(1− (µ/L)α)
T
)

,

for any α < 1.16 This weaker version of [AS16, Theorem 2] does not imply [AS16, Corollary 1].
In this section, we show that Proposition 8 can be used to correct the above issue in [AS16]. We first

introduce the function class of “hard” functions, analogously to Fbil
n,ℓ,D. Let Fquad

n,ℓ,D be the class of ℓ-smooth17

functions f : Rn → R of the form

f(x) =
1

2
x⊤Sx+ b⊤x,

for which S ∈ Rn×n is a positive definite matrix and x∗ := −S−1b has norm ‖x∗‖ ≤ D. We prove the

following lower bound for p-SCLI algorithms using functions from Fquad
n,ℓ,D

Proposition 30. Let A be a p-SCLI, and let x(t) denote the tth iterate of A. Then there are constants
cA, TA > 0 so that the following holds: for all T ≥ TA, there is some f ∈ Fquad

n,ℓ,D so that for some initialization

x(0), . . . ,x(−p+1) ∈ B(0, D) and some T ′ ∈ {T, T + 1, . . . , T + p− 1}, it holds that f(x(T ))− f(x∗) ≥ cAℓD2

T .

Proof of Proposition 30. Note that for any x ∈ Rn, we have that

f(x)− f(x∗) =
1

2
x⊤Sx+ b⊤x+

1

2
b⊤S−1b =

1

2
(Sx + b)⊤S−1(Sx+ b).

16In particular, this modified version can be established by only using functions for which the condition number L/µ is a
constant. In more detail, one runs into the following issue when using the machinery of [AS16] to attempt to prove that the
iteration complexity of a p-SCLI cannot be O(κα ln(1/ǫ)) for any α < 1: at the end of the proof of [AS16, Theorem 2], Lemma
4 of [AS16] is used to conclude the existence of some η ∈ (L/2, L) satisfying a certain inequality. However, L/η represents the
condition number κ of the problem, and so choosing η ∈ (L/2, L) forces the condition number κ of the function to be a constant.

17Recall that f is ℓ-smooth iff its gradient is ℓ-Lipschitz.

40



Define, for each t ≥ 0,

w(t) :=








x(t−p+1)

x(t−p+2)

...
x(t)








.

We will choose S = ν · In, for some ν ∈ (0, ℓ] to be chosen later. Thus f(x) − f(x∗) = 1
2ν ‖Sx + b‖2. Next

we proceed exactly as in the proof of Theorem 7, with S taking the role of A there. In particular, we define
C(S) exactly as in (79), where Cj(S) = αj · A + βj · In,N(S) = γ · S + δ · In, where αj , βj , γ, δ ∈ R are
the constants associated with the p-SCLI A. Cases 1, 2, and 3a of the proof (namely, the ones in which the
algorithm does not converge) proceed in exactly the same way and we omit the details.

To deal with Case 3b (i.e., the case that
∑p−1

j=0 βj = 1), we choose b = 0 ∈ Rn, and (83) gives us that

(Ip ⊗ S)w(t) = C(S)tSw(0). Moreover, it follows from [ASSS15, Lemma 14] that

ρ(C(S)) = ρ(q(z)− ν · r(z)).

By Proposition 8, there are some constants µA, CA > 0 so that for any µ ∈ (0, µA), there is some ν ∈ [µ, ℓ]
so that ρ(q(z)− ν · r(z)) ≥ 1− CA · µ/ℓ. Letting TA be so that ℓ/(4TA) < µA, as long as T ≥ TA, we may
choose µ = ℓ/(4T ), and set ν ∈ [ℓ/(4T ), ℓ] accordingly per Proposition 8. By Lemma 23, we have that for
T ≥ TA,

‖C(S)T ‖σ ≥ ρ(C(S))T ≥ (1− CA/(4T ))
T ≥ exp(−CA).

Set cA = exp(−CA). Choose w(0) = ((x(−p))⊤, . . . , (x(0))⊤)⊤ ∈ R
np so that it is a right singular vector of

C(S)T corresponding to a singular value of magnitude at least cA. By scaling w(0) appropriately, we may
ensure that ‖x(−p+1)‖, . . . , ‖x(0)‖ ≤ D, and that ‖w(0)‖ ≥ D. It follows that

p−1
∑

j=0

(

f(x(T−j))− f(x∗)
)

=
1

2ν
‖(Ip ⊗ S)w(T )‖2 = ν

2
‖C(S)tw(0)‖2 ≥ νD2cA

2
≥ ℓD2cA

8T
.

By replacing T with T + p− 1 and decreasing cA, the conclusion of Proposition 30 follows.

Remark 8. As in Theorem 7, the lower bound in Proposition 30 involves an algorithm-dependent constant
cA due to the reliance on Proposition 8. We remark that the iterates x(t) of gradient descent satisfy
f(x(t)) − f(x∗) ≤ O(ℓD2/T ) for any ℓ-smooth convex function f , so Proposition 8 is tight up to the
algorithm-dependent constant cA. Nesterov’s AGD improves the rate of gradient descent to O(ℓD2/T 2),
but is non-stationary (i.e., requires a changing step size). The polynomials in Proposition 9 (i.e., (9))
showing the necessity of an algorithm-dependent constant in Proposition 8 correspond under the reduction
outlined in the proof of Proposition 30 to running Nesterov’s AGD with a fixed learning rate. We do not
know if such an algorithm (for an appropriate choice of the arbitrary but fixed learning rate) can lead to an
arbitrarily large constant factor speedup over the rate O(ℓD2/T ) of gradient descent. We believe this is an
interesting direction for future work.
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