
Stochastic Optimization for Performative Prediction

Celestine Mendler-Dünner* Juan C. Perdomo* Tijana Zrnic* Moritz Hardt†

{mendler, jcperdomo, tijana.zrnic, hardt}@berkeley.edu

University of California, Berkeley

Abstract

In performative prediction, the choice of a model influences the distribution of future
data, typically through actions taken based on the model’s predictions.

We initiate the study of stochastic optimization for performative prediction. What sets
this setting apart from traditional stochastic optimization is the difference between merely
updating model parameters and deploying the new model. The latter triggers a shift in the
distribution that affects future data, while the former keeps the distribution as is.

Assuming smoothness and strong convexity, we prove rates of convergence for both
greedily deploying models after each stochastic update (greedy deploy) as well as for taking
several updates before redeploying (lazy deploy). In both cases, our bounds smoothly
recover the optimal O(1/k) rate as the strength of performativity decreases. Furthermore,
they illustrate how depending on the strength of performative effects, there exists a regime
where either approach outperforms the other. We experimentally explore the trade-off on
both synthetic data and a strategic classification simulator.

1 Introduction

Prediction in the social world is often performative in that a prediction triggers actions that
influence the outcome. A forecast about the spread of a disease, for example, can lead to drastic
public health action aimed at deterring the spread of the disease. In hindsight, the forecast
might then appear to have been off, but this may largely be due to the actions taken based
on it. Performativity arises naturally in consequential statistical decision-making problems in
domains ranging from financial markets to online advertising.

Recent work [14] introduced and formalized performative prediction, an extension of the
classical supervised learning setup whereby the choice of amodel can change the data-generating
distribution. This perspective leads to an important notion of stability requiring that a model is
optimal on the distribution it entails. Stability prevents a certain cat-and-mouse game in which
the learner repeatedly updates a model, because it no longer is accurate on the observed data.
Prior work established conditions under which stability can be achieved through repeated risk
minimization on the full data-generating distribution.

When samples arrive one-by-one over time, however, the learner faces a new challenge
compared with traditional stochastic optimization. With every new sample that arrives, the
learner has to decide whether to deploy the model, thereby triggering a drift in distribution, or

* Equal contribution. † MH is a paid consultant for Twitter.

1

a
rX

iv
:2

0
0
6
.0

6
8
8
7
v
4

[c

s.
L

G
]

 1
9
 F

e
b
 2

0
2
1

to continue to collect more samples from the same distribution. Never deploying a model avoids
distribution shift, but forgoes the possibility of converging to a stable point. Deploying the
model too greedily could lead to overwhelming distribution shift that hampers convergence. In
fact, it is not even clear that fast convergence to stability is possible at all in an online stochastic
setting.

1.1 Our contributions

In this work, we initiate the study of stochastic optimization for performative prediction.
Our main results are the first convergence guarantees for the stochastic gradient method in
performative settings. Previous finite-sample guarantees [14] had an exponential dependence
on the dimension of the data distribution.

We distinguish between two natural variants of the stochastic gradient method. One variant,
called greedy deploy, updates model parameters and deploys the model at every step, after seeing
a single example. The other, called lazy deploy, updates model parameters on multiple samples
before deploying a model. We show that both methods converge to a stable solution. However,
which one is preferable depends both on the cost of model deployment and the strength of
performativity.

To state our results more precisely we recall the formal setup of performative prediction.
In performative prediction, we assume that after deploying a model parameterized by θ, data
are drawn from the distribution D(θ). The distribution map D(·) maps model parameters to
data-generating distributions.

Given a loss function ℓ(z;θ), a peformatively stablemodel θ satisfies the fixed-point condition,

θ ∈ argmin
θ′

E
z∼D(θ)

ℓ(z;θ′) .

Performative stability expresses the desideratum that the model θ minimizes loss on the distri-
bution D(θ) that it entails. Once we found a performatively stable model, we therefore have no
reason to deviate from it based on the data that we observe.

The stochastic gradient method in this setting operates in a sequence of rounds. In each
round k, the algorithm starts from a model θk and can choose to perform n(k) stochastic gradient
updates where each data point is drawn i.i.d. from the distribution D(θk). After n(k) stochastic
gradient updates, the algorithm deploys the new model parameters θk+1. Henceforth, the data-
generating distribution is D(θk+1) and the algorithm proceeds to the next round. For greedy
deploy, n(k) = 1 for all k, whereas for lazy deploy n(k) is a hyperparameter we can choose freely.

To analyze the stochastic gradient method, we import the same assumptions that were used
in prior work on performative prediction. Apart from smoothness and strong convexity of
the loss function, the main assumption is that the distribution map is sufficiently Lipschitz.
This means that a small change to the model parameters (in Euclidean distance) leads to small
change in the data-generating distribution (as measured in the Wasserstein metric).

Our first main result shows that under these assumptions, greedy deploy achieves the same
convergence rate as the stochastic gradient method in the absence of performativity.

Theorem 1.1 (Greedy deploy, informal). If the loss is smooth and strongly convex and the distribu-
tion map is sufficiently Lipschitz, greedy deploy converges to performative stability at rate O(1/k),
where k is the number of model deployment steps.

2

Generally speaking, the Lipschitz parameter has to be smaller than the inverse condition
number of the loss function for our bound to guarantee convergence. The exact rate stated in
Theorem 3.2 further improves as the Lipschitz constant tends to 0.

In many realistic scenarios, data are plentiful, but deploying a model in a large production
environment is costly. In such a scenario, it makes sense to aim to minimize the number of
model deployment steps by updating the model parameters on multiple data points before
initiating another model deployment. This is precisely what lazy deploy accomplishes as our
next result shows.

Theorem 1.2 (Lazy deploy, informal). Under the same assumptions as above, for any α > 0, lazy
deploy converges to performative stability at rate O(1/kα) provided that O(k1.1α) samples are collected
between deployments k and k +1.

In particular, this shows that any distance from optimality δ > 0 can be achieved with (1/δ)c

model deployments for an arbitrarily small c > 0 at the cost of collecting polynomial in 1/δ
many samples.

Our main theorems provide upper bounds on the convergence rate of each method. As such
they can only draw an incomplete picture about the relative performance of these methods.
Our empirical investigation therefore aims to shed further light on their relative merits. In
particular, our experiments show that greedy deploy generally performs better than lazy deploy
when the distribution map has a small Lipschitz constant, i.e., the performative effects are
small. Conversely, lazy deploy fares better when the distribution map is less Lipschitz. These
observations are consistent with what our theoretical upper bounds suggest.

1.2 Related work

Perdomo et al. [14] introduced the performative prediction framework and analyzed algorithms
for finding stable points that operate at the population level. While they also analyze some finite-
sample extensions of these procedures, their analysis relies on concentration of the empirical
distribution to the true distribution in the Wasserstein metric, and hence requires exponential
sample complexity. In contrast, our analysis ensures convergence even if the learner collects a
single sample at every step.

There has been a long line of work [3, 4, 5, 6, 10] within the learning theory community
studying concept drift and learning from drifting distributions. Our results differ from these
previous works since in performative prediction, changes in distribution are not a passive feature
of the environment, but rather an active consequence of model deployment. This introduces
several new considerations, such as the conceptual idea of performative stability, which is the
main focus of our investigation.

Our work draws upon ideas from the stochastic convex optimization literature [7, 13, 15,
17, 18, 19]. Relative to these previous studies, our work analyzes the behavior of the stochastic
gradient method in performative settings, where the underlying objective changes as a response
to model deployment.

Lastly, we can view instances of performative prediction as special cases of reinforcement
learning problems with nice structure, such as a Lipschitz mapping from policy parameters
to the induced distribution over trajectories (see [14] for further discussion). The variants of
the stochastic gradient method we consider can be viewed as policy gradient-like algorithms
[1, 9, 20, 21] for this setting.

3

2 Preliminaries

We start by reviewing the core concepts of the framework of performative prediction. After-
wards, we set the stage for our analysis of stochastic algorithms by first considering gradient
descent at the population level. In doing so, we highlight some of the fundamental limitations
of gradient descent in performative settings.

2.1 The framework of performative prediction

Throughout our presentation, we focus on predictive models fθ that are parametrized by a
vector θ ∈Θ ⊆ R

d , where the parameter space Θ is a closed, convex set. The model or classifier,
fθ , maps instances z ∈ Rm to predictions fθ(z). Typically, we think of z as being a feature, label
pair (x,y). We assess the quality of a classifier fθ via a loss function ℓ(z;θ).

The key theme in performative prediction is that the choice of deployed model fθ influences
the future data distribution and hence the expected loss of the classifier fθ . This behavior
is formalized via the notion of a distribution map D(·), which is the key conceptual device of
the framework. For every θ ∈ Θ, D(θ) denotes the distribution over instances z induced by
the deployment of fθ . In this paper, we consider the setting where at each step, the learner
observes a single sample z ∼ D(θ), where fθ is the most recently deployed classifier. After
having observed this sample, the learner chooses whether to deploy a new model or to leave the
distribution as is before collecting the next sample.

We adopt the following Lipschitzness assumption on the distribution map. It captures the
idea that if two models make similar predictions, then they also induce similar distributions.

Definition 2.1 (ε-sensitivity [14]). A distribution map D(·) is ε-sensitive if for all θ,θ′ ∈Θ:

W1

(

D(θ),D(θ′)
)

6 ε‖θ −θ′‖2,
where W1 denotes the Wasserstein-1, or earth mover’s distance.

The value of ε indicates the strength of performative effects; small ε means that the distribu-
tion induced by the model fθ is not overly sensitive to the choice of θ, while large ε indicates
high sensitivity. As an extreme case, ε = 0 implies D(θ) =D(θ′) for all θ,θ′ ∈Θ and hence there
are no performative effects, as in classical supervised learning.

Given how the choice of a model induces a change in distribution, a naturally appealing
property of a predictive model in performative settings is that it achieves minimal risk on the
distribution that it induces. This solution concept is referred to as performative stability.

Definition 2.2 (Performative stability). A predictive model fθPS
is peformatively stable if

θPS ∈ argmin
θ

E
z∼D(θPS)

ℓ(z;θ).

We refer to θPS as being performatively stable, or simply stable, if fθPS
is performatively stable.

Performative stability captures an equilibrium notion in which a prediction induces a shift in
distribution by the environment, yet remains simultaneously optimal for this new distribution.
These solutions are referred to as stable since they eliminate the need for retraining. Besides
eliminating the need for retraining, there are cases where performatively stable solutions also
have good predictive power on the distribution they induce. More specifically, stable points can

imply a small performative risk, PR(θ)
def
= Ez∼D(θ) ℓ(z;θ), in the case of a strongly convex loss and

a reasonably small sensitivity parameter ε (Theorem 4.3, [14]).

4

To illustrate these abstract concepts, we instantiate a simple traffic prediction example with
performative effects which will serve as a running example throughout the paper.

Example 2.3 (ETA estimation). Suppose that each day we want to estimate the duration of a trip
on a fixed route from the current weather conditions. Let x ∈ {0,1} denote a binary indicator of
whether the current day is sunny or rainy, and suppose that Pr {x = 1} = p ∈ (0,1). Let fθ denote
the deployed model which predicts trip duration y from x. Assume y behaves according to the
following linear model:

y = µ+w · x − ε · (fθ(x)−µ),
where µ > 0 denotes the usual time needed to complete the route on a sunny day, w > 0 denotes
additional incurred time due to bad weather, and −ε · (fθ(x)−µ) denotes the performative effects,
for some ε ∈ (0,1). Namely, if the model predicts a faster than usual time to the destination,
more people want to take the route, thus worsening the traffic conditions and making y large. If,
on the other hand, the model predicts a longer trip, then few people follow the route and the
resulting y is smaller. Suppose that the model class is all predictors of the form fθ(x) = xθ1 +θ2,
where θ = (θ1,θ2) and θ1 ∈ (0,w),θ2 ∈ (0,2µ). It is not hard to see that the distribution map
corresponding to this data-generating process is ε-sensitive.

Assume that we measure predictive performance according to the squared loss, ℓ((x,y);θ) =
1
2 (y−θ1x−θ2)

2. Then, a simple calculation reveals that the unique performatively stable solution,
satisfying Definition 2.2, corresponds to

θPS =
(

w

1+ ε
, µ

)

.

In fact, one can show that θPS is simultaneously optimal in the sense that it minimizes the
performative risk, θPS = argminθ PR(θ) = argminθE(x,y)∼D(θ) ℓ((x,y);θ).

2.2 Population-level results

Before analyzing optimization algorithms in stochastic settings, we first consider their behavior
at the population level. Throughout our analysis, we make the following assumptions on
the loss ℓ(z;θ), which hold for broad classes of objectives. To ease readability, we let Z =
∪θ∈Θsupp(D(θ)).
(A1) (joint smoothness) A loss function ℓ(z;θ) is β-jointly smooth if the gradient1 ∇ℓ(z;θ) is

β-Lipschitz in θ and z, that is for all θ,θ′ ∈Θ and z,z′ ∈ Z it holds that,
∥

∥

∥∇ℓ(z;θ)−∇ℓ(z;θ′)
∥

∥

∥

2
6 β

∥

∥

∥θ −θ′
∥

∥

∥

2
and

∥

∥

∥∇ℓ(z;θ)−∇ℓ(z′;θ)
∥

∥

∥

2
6 β

∥

∥

∥z − z′
∥

∥

∥

2
.

(A2) (strong convexity) A loss function ℓ(z;θ) is γ-strongly convex if for all θ,θ′ ∈Θ and z ∈ Z
it holds that

ℓ(z;θ) > ℓ(z;θ′) +∇ℓ(z;θ′)⊤(θ −θ′) + γ

2

∥

∥

∥θ −θ′
∥

∥

∥

2

2
.

For γ = 0, this is equivalent to convexity.

We will refer to
β
γ , where β is as in (A1) and γ as in (A2), as the condition number.

In this paper we are interested in the convergence of optimization methods to performative
stability. However, unlike classical risk minimizers in supervised learning, it is not a priori clear
that performatively stable solutions always exist. We thus recall the following fact regarding
existence.

1Gradients of the loss ℓ are always taken with respect to the parameters θ.

5

Fact 2.4 ([14]). Assume that the loss is β-jointly smooth (A1) and γ-strongly convex (A2). If D(·) is
ε-sensitive with ε <

γ
β , then there exists a unique performatively stable point θPS ∈Θ.

We note that it is not possible to reduce sensitivity by merely rescaling the problem, while
keeping the ratio γ/β the same; the critical condition εβ/γ < 1 remains unaltered by scaling.2

The upper bound ε < γ/β on the sensitivity parameter is not only crucial for the existence of
unique stable points but also for algorithmic convergence. It defines a regime outside which
gradient descent is not guaranteed to converge to stability even at the population level.

To be more precise, consider repeated gradient descent (RGD), defined recursively as

θk+1 = θk − ηk E
z∼D(θk)

[∇ℓ(z;θk)], k > 1, where θ1 ∈Θ is initialized arbitrarily.

As shown in the following result, RGD need not converge to a stable point if ε >
γ
β . Furthermore,

a strongly convex loss is necessary to ensure convergence, even if performative effects are
arbitrarily weak.

Proposition 2.5. Suppose that the distribution map D(·) is ε-sensitive. Repeated gradient descent
can fail to converge to a performatively stable point in any of the following cases, for any choice of
positive step size sequence {ηk}k>1:

(a) The loss is β-jointly smooth (A1) and convex, but not strongly convex (A2), for any β,ε > 0.

(b) The loss is β-jointly smooth (A1) and γ-strongly convex (A2), but ε >
γ
β , for any γ,β,ε > 0.

On the other hand, if ε < γ/β we prove that RGD converges to a unique performatively
stable point at a linear rate. Proposition 2.6 strengthens the corresponding result of Perdomo
et al. [14], who showed linear convergence of RGD for ε < γ/(γ + β). Proofs can be found in
Appendix C.

Proposition 2.6. Assume that the loss is β-jointly smooth (A1) and γ-strongly convex (A2), and
suppose that the distribution map D(·) is ε-sensitive. Let ε < γ

β , and suppose that θPS ∈ Int(Θ) . Then,

repeated gradient descent (RGD) with a constant step size ηk = η
def
=

γ−εβ
2(1+ε2)β2 satisfies the following:

(a) ‖θk+1 −θPS‖2 6
(

1− η(γ−εβ)
2

)

‖θk −θPS‖2, where 0 <
η(γ−εβ)

2 < 1.

(b) The iterates θk of RGD converge to the stable point θPS at a linear rate, ‖θk+1 −θPS‖2 6 δ for

k > 2
η(γ−εβ) log

(‖θ1−θPS‖2
δ

)

.

Together, these results show that γ/β is a sharp threshold for the convergence of gradient de-
scent in performative settings, thereby resolving an open problem in [14]. Having characterized
the convergence regime of gradient descent, we now move on to presenting our main technical
results, focusing on the case of a smooth, strongly convex loss with ε < γ/β.

2The reason is that the notion of joint smoothness we consider does not scale like strong convexity when rescaling
θ. For example, rescaling θ 7→ 2θ (thus making ε 7→ ε/2) would downscale the strong convexity parameter and the
parameter corresponding to the usual notion of smoothness in optimization by a factor of 4, however the smoothness
in z would downscale by a factor of 2.

6

3 Stochastic optimization results

We introduce two variants of the stochastic gradient method for optimization in performative
settings (i.e. stochastic gradient descent, SGD), which we refer to as greedy deploy and lazy deploy.
Each method performs a stochastic gradient update to the model parameters at every iteration,
however they choose to deploy these updated models at different time intervals.

To analyze these methods, in addition to (A1) and (A2), we make the following assumption
which is customary in the stochastic optimization literature [7, 16].

(A3) (second moment bound) There exist constants σ2 and L2 such that for all θ,θ′ ∈Θ:

E
z∼D(θ)

[

‖∇ℓ(z;θ′)‖22
]

6 σ2 +L2‖θ′ −G(θ)‖22, where G(θ)
def
= argmin

θ′
E

z∼D(θ)
ℓ(z;θ′).

Given the operator G(·), performative stability can equivalently be expressed as θPS ∈ G(θPS).

3.1 Greedy deploy

A natural algorithm for stochastic optimization in performative prediction is a direct extension
of the stochastic gradient method, whereby at every time step, we observe a sample z(k) ∼ D(θk),
compute a gradient update to the current model parameters θk , and deploy the new model θk+1

(see left panel in Figure 1). We call this algorithm greedy deploy. In the context of our traffic
prediction example, this greedy procedure corresponds to iteratively updating and redeploying
the model based off information from the most recent trip.

While this procedure is algorithmically identical to the stochastic gradient method in
traditional convex optimization, in performative prediction, the distribution of the observed
samples depends on the trajectory of the algorithm. We begin by stating a technical lemma
which introduces a recursion for the distance between θk and θPS.

Lemma 3.1. Assume (A1), (A2) and (A3). If the distribution map D(·) is ε-sensitive with ε < γ/β,
then greedy deploy with step size ηk satisfies the following recursion for all k > 1:

E

[

‖θk+1 −θPS‖22
]

6

1− 2ηk(γ − εβ) + η2kL
2

(

1+ ε
β

γ

)2

E

[

‖θk −θPS‖22
]

+ η2kσ
2.

Similar recursions underlie many proofs of SGD, and Lemma 3.1 can be seen as their
generalization to the performative setting. Furthermore, we see how the bound implies a strong
contraction to the performatively stable point if the performative effects are weak, that is when
ε≪ γ/β.

Using this recursion, a simple induction argument suffices to prove that greedy deploy
converges to the performatively stable solution (see Appendix D). Moreover, it does so at the
usual O(1/k) rate.

Theorem 3.2. Assume (A1), (A2) and (A3). If the distribution map D(·) is ε-sensitive with ε <
γ
β ,

then for all k > 0 greedy deploy with step size ηk =
(

(γ − εβ)k +8L2/(γ − εβ)
)−1

satisfies

E

[

‖θk+1 −θPS‖22
]

6
Mgreedy

(γ − εβ)2k +8L2
,

where Mgreedy =max
{

2σ2,8L2‖θ1 −θPS‖22
}

.

7

Greedy Deploy

Input: step size sequence {ηk}∞k=1
Deploy initial classifier θ1 ∈Θ
For each k = 1,2, . . .

– Observe z(k) ∼ D(θk)

– Update model parameters:
θk+1 = θk − ηk∇ℓ(z(k);θk)

– Deploy θk+1

Lazy Deploy

Input: step size sequence {ηk,j }∞k,j=1
Deploy initial classifier θ1 ∈Θ
For each k = 1,2, . . .

– Set ϕk,1 = θk

– For each j = 1, . . . ,n(k) :

1. Observe z
(k)
j ∼ D(θk)

2. Update model parameters:

ϕk,j+1 = ϕk,j − ηk,j∇ℓ(z
(k)
j ;ϕk,j)

– Deploy θk+1 = ϕk,n(k)+1

Figure 1: Stochastic gradient method for performative prediction. Greedy deploy publishes the new
model at every step while lazy deploy performs several gradient updates before releasing the new model.

Comparing this result to the traditional analysis of SGD for smooth, strongly convex objec-
tives (e.g. [15]), we see that the traditional factor of γ is replaced by γ − εβ, which we view as
the effective strong convexity parameter of the performative prediction problem. When ε = 0,
there are no performative effects and the problem of finding the stable solution reduces to that
of finding the risk minimizer on a fixed, static distribution. Consequently, it is natural for the
two bounds to identify.

3.2 Lazy deploy

Contrary to greedy deploy, lazy deploy collects multiple data points and hence takes multiple
stochastic gradient steps between consecutive model deployments. In the setting from Example
2.3, this corresponds to observing the traffic conditions across multiple days, and potentially
diverse conditions, before deploying a new model.

This modification significantly changes the trajectory of lazy deploy relative to greedy deploy,
given that the observed samples follow the distribution of the last deployed model, which might
differ from the current iterate. More precisely, after deploying θk , we perform n(k) stochastic
gradient steps to the model parameters, using samples from D(θk) before we deploy the last
iterate as θk+1 (see right panel in Figure 1).

At a high level, lazy deploy converges to performative stability because it progressively
approximates repeated risk minimization (RRM), defined recursively as,

θk+1 = G(θk)
def
= argmin

θ′∈Θ
E

z∼D(θk)
ℓ(z;θ′) for k > 1 and θ1 ∈Θ initialized arbitrarily.

Perdomo et al. [14] show that RRM converges to a performatively stable classifier at a linear
rate when ε < γ/β. Since the underlying distribution remains static between deployments, a
classical analysis of SGD shows that for large n(k) these “offline" iterates ϕk,j converge to the risk
minimizer on the distribution corresponding to the previously deployed classifier. In particular,
for large n(k), θk+1 ≈ G(θk). By virtue of approximately tracing out the trajectory of RRM, lazy
deploy converges to θPS as well. This sketch is formalized in the following theorem. For details
we refer to Appendix E.

8

Theorem 3.3. Assume (A1), (A2), and (A3), and that the distribution map D(·) is ε-sensitive with
ε <

γ
β . For any α > 0, running lazy deploy with n(k) > n0k

α , k = 1,2, . . . many steps between

deployments and step size sequence ηk,j = (γj +8L2/γ)−1, satisfies

E

[

‖θk+1 −θPS‖22
]

6 ck · ‖θ1 −θPS‖22 +
(

cΩ(k) +
2

kα·(1−o(1))

)

·Mlazy,

where c =
(

ε
β
γ

)2
+ o(1) and Mlazy =

3(σ+γ)2

γ2(1−c) . Here, o(1) is independent of k and vanishes as n0 grows;

n0 is chosen large enough such that c < 1.

3.3 Discussion

In this section, we have presented how varying the intervals at which we deploy models
trained with stochastic gradient descent in performative settings leads to qualitatively different
algorithms. While greedy deploy resembles classical SGD with a step size sequence adapted
to the strength of distribution shift, lazy deploy can be viewed as a rough approximation of
repeated risk minimization.

As we alluded to previously, the convergence behavior of both algorithms is critically affected
by the strength of performative effects ε. For ε≪ γ/β, the effective strong convexity parameter
γ − εβ of the performative prediction problem is large. In this setting, the relevant distribution
shift of deploying a new model is neglible and greedy deploy behaves almost like SGD in
classical supervised learning, converging quickly to performative stability.

Conversely, for ε close to the convergence threshold, the contraction of greedy deploy to the
performatively stable classifier is weak. In this regime, we expect lazy deploy to perform better
since the convergence of the offline iterates ϕk,j to the risk minimizer on the current distribution
G(θk) is unaffected by the value of ε. Lazy deploy then converges by closely mimicking the
behavior of RRM.

Furthermore, both algorithms differ in their sensitivity to different initializations. In greedy
deploy, the initial distance ‖θ1 −θPS‖22 decays polynomially, while in lazy deploy it decays at a
linear rate. This suggests that the lazy deploy algorithm is more robust to poor initialization.
While we derive these insights purely by inspecting our upper bounds, we find that these
observations also hold empirically, as shown in the next section.

In terms of the asymptotics of both algorithms, we identify the following tradeoff between
the number of samples and the number of deployments sufficient to converge to performative
stability.

Corollary 3.4. Assume (A1), (A2), and (A3), and that D(·) is ε-sensitive with ε <
γ
β .

– To ensure that greedy deploy returns a solution θ⋆ such that, E
[

‖θ⋆ − θPS‖22
]

6 δ, it suffices to

collect O(1 / δ) samples and to deploy O(1 / δ) classifiers.

– To achieve the same guarantee using lazy deploy, it suffices to collect O(1 / δ
α+1

(1−ω)·α) samples and to

deploy O(1 / δ
1
α) classifiers, for any α > 0 and some ω = 1− o(1) which tends to 1 as n0 grows.

We see from the above result that by choosing large enough values of n0 and α, we can make
the sample complexity of the lazy deploy algorithm come arbitrarily close to that of greedy

deploy. However, to match the same convergence guarantee, lazy deploy only performs O(1 / δ
1
α)

deployments, which is significantly better than the O(1 / δ) deployments for greedy deploy.

9

0 10k 20k 30k 40k 50k
number of samples collected

10 4

10 3

10 2

10 1

100

101
di

st
an

ce
 to

PS

greedy deploy
lazy deploy

(a) ε = 0.2

0 10k 20k 30k 40k 50k
number of samples collected

10 3

10 2

10 1

100

101

di
st

an
ce

 to

PS

greedy deploy
lazy deploy

(b) ε = 0.6

0 10k 20k 30k 40k 50k
number of samples collected

10 3

10 2

10 1

100

101

102

di
st

an
ce

 to

PS

greedy deploy
lazy deploy

(c) ε = 0.9

Figure 2: Convergence of lazy and greedy deploy to performative stability for varying values of ε. We use
n(k) = k for lazy deploy. The results are for the synthetic Gaussian example with µ = 10, σ = 0.1.

This reduction in the number of deployments is particularly relevant when considering the
settings that performative prediction is meant to address. Whenever we use prediction in social
settings, there are important social costs associated with making users adapt to a new model
[12]. Furthermore, in industry, there are often significant technical challenges associated with
deploying a new classifier [2]. By choosing n(k) = n0k

α appropriately, we can reduce the number
of deployments necessary for lazy deploy to converge while at the same time improving the
sample complexity of the algorithm.

4 Experiments

We complement our theoretical analysis of greedy and lazy deploy with a series of empirical
evaluations3. First, we carry out experiments using synthetic data where we can analytically
compute stable points and carefully evaluate the tradeoffs suggested by our theory. Second, we
evaluate the performance of these procedures on a strategic classification simulator previously
used as a benchmark for optimization in performative settings by [14].

4.1 Synthetic data

For our first experiment, we consider the task of estimating the mean of a Gaussian random
variable under performative effects. In particular, we consider minimizing the expected squared
loss ℓ(z;θ) = 1

2 (z −θ)2 where z ∼ D(θ) =N (µ+ εθ,σ2). For ε > 0, the true mean of a distribution
D(θ) depends on our revealed estimate θ. Furthermore, for ε < γ/β = 1, the problem has a
unique stable point. A short algebraic manipulation shows that θPS =

µ
1−ε . As per our theory,

both greedy and lazy deploy converge to performative stability for all ε < 1.

Effect of performativity. We compare the convergence behavior of lazy deploy and greedy
deploy for various values of ε in Figure 2. We choose step sizes for both algorithms according to
our theorems in Section 3. In the case of lazy deploy, we set α = 1, and hence n(k) ∝ k.

We see that when performative effects are weak, i.e. ε≪ γ/β, greedy deploy outperforms
lazy deploy. Lazy deploy in turn is better at coping with large distribution shifts from strong
performative effects. These results confirm the conclusions from our theory and show that the

3Code is available at https://github.com/zykls/performative-prediction.

10

0 200k 400k 600k
number of samples collected

0.10

0.15

0.20

0.25
di

st
an

ce
 to

PS

101 103 105

number of deployments

0.10

0.15

0.20

0.25

di
st

an
ce

 to

PS

greedy deploy
lazy deploy, n(k) = k
lazy deploy, n(k) = k3

Figure 3: Convergence of lazy and greedy deploy to performative stability. Results are for the strategic
classification experiments with ε = 100. (left panel) convergence as a function of the number of samples.
(right panel) convergence as a function of the number of deployments.

choice of whether to delay deployments or not can indeed have a large impact on algorithm
performance depending on the value of ε.

Deployment schedules. We also experiment with different deployment schedules n(k) for
lazy deploy. As described in Theorem 3.3, we can choose n(k) ∝ kα for all α > 0. The results
for α ∈ {0.5,1,2} and ε ∈ {.2, .6, .9}, are depicted and compared to the population-based RRM
algorithm, in Figure 4 in the Appendix. We find that shorter deployment schedules, i.e., smaller
α, lead to faster progress during initial stages of the optimization, whereas longer deployments
schedules fare better in the long run while at the same time significantly reducing the number
of deployments.

4.2 Strategic classification

In addition to the experiments on synthetic data, we also evaluate the performance of the two
optimization procedures in a simulated strategic classification setting. Strategic classification is
a two-player game between an institution which deploys a classifier fθ and individual agents
who manipulate their features in order to achieve a more favorable classification.

Perdomo et al. [14] introduce a credit scoring simulator in which a bank deploys a logistic
regression classifier to determine the probability that an individual will default on a loan.
Individuals correspond to feature, label pairs (x,y) drawn from a Kaggle credit scoring dataset
[8]. Given the bank’s choice of a classifier fθ , individuals solve an optimization problem to
compute the best-response set of features, xBR. This optimization procedure is parameterized
by a value ε which determines the extent to which agents can change their respective features.
The bank then observes the manipulated data points (xBR, y). This data-generating process can
be described by a distribution map, which we can verify is ε-sensitive. For additional details we
refer to Appendix A.

At each time step, the learner observes a single sample from the distribution in which the
individual’s features have been manipulated in response to the most recently deployed classifier.
This is in contrast to the experimental setup in [14], where the learner gets to observe the entire
distribution of manipulated features at every step. While we cannot compute the stable point
analytically in this setting, we can calculate it empirically by running RRM until convergence.

11

Results. The inverse condition number of this problem is much smaller than in the Gaussian
example; we have γ/β ≈ 10−2. We fist pick ε within the regime of provable convergence, i.e.,
ε = 10−3, and compare the two methods. As expected, for such a small value of ε greedy deploy
is the preferred method. Results are depicted in Figure 5 in the Appendix.

Furthermore, we explore the behavior of these algorithms outside the regime of provable
convergence with ε≫ γ/β. We choose step sizes for both algorithms as defined in Section 3 with
the exception that we ignore the ε-dependence in the step size schedule of greedy deploy and
choose the same initial step size as for lazy deploy (Theorem 3.2). As illustrated in Figure 3
(left), lazy significantly outperforms greedy deploy in this setting. Moreover, the performance
of lazy deploy significantly improves with α. In addition to speeding up convergence, choosing
larger sample collection schedules n(k) substantially reduces the number of deployments, as
seen in Figure 3 (right).

Acknowledgements

We wish to acknowledge support from the U.S. National Science Foundation Graduate Re-
search Fellowship Program and the Swiss National Science Foundation Early Postdoc Mobility
Fellowship Program.

References

[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and
Approximation with Policy Gradient Methods in Markov Decision Processes. volume 125
of Proceedings of Machine Learning Research, pages 64–66. PMLR, 09–12 Jul 2020.

[2] Algorithmia. 2020 State of Enterprise Machine Learning. 2020. https://info.

algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/

Algorithmia_2020_State_of_Enterprise_ML.pdf.

[3] Peter L. Bartlett. Learning with a Slowly Changing Distribution. In Proceedings of the
Conference on Computational Learning Theory (COLT), pages 243–252, 1992.

[4] Peter L. Bartlett, Shai Ben-David, and Sanjeev R. Kulkarni. Learning Changing Concepts
by Exploiting the Structure of Change. Machine Learning, 41(2):153–174, 2000.

[5] Rakesh D Barve and Philip M Long. On the Complexity of Learning from Drifting
Distributions. Information and Computation, 138(2):170–193, 1997.

[6] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-Stationary Stochastic Optimization.
Operations Research, 63(5):1227–1244, 2015.

[7] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization Methods for Large-Scale
Machine Learning. SIAM Review, 60(2):223–311, 2018.

[8] Kaggle. Give Me Some Credit. https://www.kaggle.com/c/GiveMeSomeCredit/data,
2012.

[9] Sham M Kakade. A Natural Policy Gradient. In Advances in Neural Information Processing
Systems, pages 1531–1538, 2002.

12

[10] Anthony Kuh, Thomas Petsche, and Ronald L Rivest. Learning Time-Varying Concepts. In
Advances in Neural Information Processing Systems (NIPS), pages 183–189, 1991.

[11] John Miller, Chloe Hsu, Jordan Troutman, Juan Perdomo, Tijana Zrnic, Lydia Liu, Yu Sun,
Ludwig Schmidt, and Moritz Hardt. WhyNot, 2020.

[12] Smitha Milli, John Miller, Anca D. Dragan, and Moritz Hardt. The Social Cost of Strategic
Classification. In Proceedings of the Conference on Fairness, Accountability, and Transparency
(FAT*), page 230–239. Association for Computing Machinery, 2019.

[13] Eric Moulines and Francis R Bach. Non-Asymptotic Analysis of Stochastic Approximation
Algorithms for Machine Learning. In Advances in Neural Information Processing Systems
(NIPS), pages 451–459, 2011.

[14] Juan C. Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative
Prediction. In Proceedings of the International Conference on Machine Learning (ICML), 2020.

[15] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making Gradient Descent
Optimal for Strongly Convex Stochastic Optimization. In Proceedings of the International
Conference on Machine Learning (ICML), pages 1571–1578, 2012.

[16] Benjamin Recht and Stephen J. Wright. Optimization for Modern Data Analysis. 2019.
Preprint available at http://eecs.berkeley.edu/~brecht/opt4mlbook.

[17] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

[18] Tom Schaul, Sixin Zhang, and Yann LeCun. No More Pesky Learning Rates. In Proceedings
of the International Conference on Machine Learning (ICML), volume 28, pages 343–351,
2013.

[19] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic
Convex Optimization. In Proceedings of the Conference on Computational Learning Theory
(COLT), 2009.

[20] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
Gradient Methods for Reinforcement Learning with Function Approximation. In Advances
in Neural Information Processing Systems, pages 1057–1063, 2000.

[21] Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning. Machine learning, 8(3-4):229–256, 1992.

13

A Additional evaluations and details on experimental setup

0 10k 20k
number of samples collected

10 3

10 2

10 1

100

101

di
st

an
ce

 to
 st

ab
le

 p
oi

nt

n(k) = k
n(k) = k
n(k) = k2

0 10k 20k
number of samples collected

10 3

10 2

10 1

100

101

di
st

an
ce

 to
 st

ab
le

 p
oi

nt

n(k) = k
n(k) = k
n(k) = k2

0 10k 20k 30k 40k 50k
number of samples collected

10 2

10 1

100

101

102

di
st

an
ce

 to
 st

ab
le

 p
oi

nt

n(k) = k
n(k) = k
n(k) = k2

101 102 103 104

number of deployments
10 3

10 2

10 1

100

101

di
st

an
ce

 to
 st

ab
le

 p
oi

nt

greedy
lazy, n(k) = k
lazy, n(k) = k
lazy, n(k) = k2

(a) ε = 0.2

101 102 103 104

number of deployments
10 3

10 2

10 1

100

101

102

di
st

an
ce

 to
 st

ab
le

 p
oi

nt

greedy
lazy, n(k) = k
lazy, n(k) = k
lazy, n(k) = k2

(b) ε = 0.6

101 102 103 104

number of deployments
10 3

10 2

10 1

100

101

102

103

104

105

di
st

an
ce

 to
 st

ab
le

 p
oi

nt

greedy
lazy, n(k) = k
lazy, n(k) = k
lazy, n(k) = k2

(c) ε = 0.9

Figure 4: Convergence to performative stability of lazy deploy for the synthetic Gaussian example with
µ = 10, σ = 0.1. (top row) We show convergence of lazy deploy as a function of the number of samples
collected for various values of ε. (bottom row) We plot convergence in the same setting, but now as a
function of the number of deployments. For comparison we add greedy deploy (red) and RRM (dashed,
gray line). The stars indicate the value attained at the end of our simulation (50k SGD updates).

0 200k 400k 600k
number of samples collected

0.0

0.1

0.2

0.3

0.4

di
st

an
ce

 to
 st

ab
le

 p
oi

nt

greedy deploy
lazy deploy, n(k) = k
lazy deploy, n(k) = k3

101 103 105

number of deployments

0.0

0.1

0.2

0.3

0.4

0.5

0.6

di
st

an
ce

 to
 st

ab
le

 p
oi

nt

greedy deploy
lazy deploy, n(k) = k
lazy deploy, n(k) = k3

0 200k 400k 600k
number of samples collected

10 4

10 3

10 2

ex
ce

ss
 p

er
fo

rm
at

iv
e

ris
k

greedy deploy
lazy deploy, n(k) = k
lazy deploy, n(k) = k3

Figure 5: Convergence of lazy and greedy deploy to performative stability. Results are for the strategic
classification experiments with ε = 0.001. (left panel) convergence as a function of the number of samples
collected. (center panel) convergence as a function of the number of deployments. (right panel) excess
performative risk with respect the the stable classifier θPS as a function of stochastic gradient updates.

14

Input: base distribution D, classifier fθ , cost function c, and utility function u
Sampling procedure for D(θ):

1. Sample (x,y) ∼ D
2. Compute best response xBR← argmaxx′ u(x

′ ,θ)− c(x′ ,x)
3. Output sample (xBR, y)

Figure 6: Distribution map for strategic classification (Perdomo et al. [14]).

Algorithm parameters. If not stated otherwise we use the following step size schedules pro-
posed by our theory:

– greedy deploy (Theorem 3.2): ηk =
cη

k+k0
, where cη = 1

γ−εβ and k0 =
8L2

(γ−εβ)2 .

– lazy deploy (Theorem 3.3): ηk,j =
cη

j+k0
, where cη = 1

γ and k0 =
8L2

γ2 .

In Figure 3 we experiment with ε = 100 which is outside the regime of our convergence
guarantees. Therefore we adapt the ε-dependence of the step size in greedy deploy. In particular,

we pick cη = 100
γ and k0 = 8L2

γ2 for both algorithms. The factor 100 was found empirically to

reduce runtime. The deployment schedule n(k) for lazy deploy is parameterized by α as
n(k) = n0k

α , where we choose n0 = 1 for our experiments.

Confidence invervals. We repeat all our experiments 30 times and plot the mean µs and
the shaded area µs ± z s√

n
where s denotes the standard deviation computed over the runs and

z = 1.645. The value of z is chosen to ensure 90% coverage assuming Gaussian errors in the data.

A.1 Synthetic Gaussian experiments

The distribution map for the synthetic example is given by D(θ) =N (µ+θε,σ2) where we use
µ = 10 and σ = 0.1 for our experiments. The SGD updates take the following form:

– greedy deploy: θk+1 = θk + ηk(z
(k) −θk) where z(k) ∼ D(θk).

– lazy deploy: ϕk,j+1 = ϕk,j + ηk,j (z
(k)
j −ϕk,j), where z

(k)
j ∼ D(θk).

We initialize all optimization procedures at the risk minimizer θ1 = µ to mitigate effects of bad
initialization and to instead focus on the effects of performativity.

A.2 Strategic classification simulator

For these experiments, we use the same experimental setup used by Perdomo et al. [14] as
implemented in the WhyNot library [11]. We include all the relevant details for the sake of
completeness.

The distribution map for this strategic classification example is described in Figure 6. The
base distribution D is a subsampled version of the Kaggle dataset [8] with d = 10 features and
n = 18357 examples. Labels are binary variables y ∈ {0,1} and indicate whether an individual
defaulted on a loan or not. We preprocess the data and normalize features to have zero mean
and unit standard deviation. Out of the ten features, three are treated as strategic features.
These are dimensions 1,6,8 corresponding to features such as the number of open credit lines.

15

The empirical distribution on these 18k points is considered to be the true distribution. To
run our stochastic optimization experiments, we simply sample a single example from the data
set according to the data-generating process described in Figure 6.

Individual utilities u(θ,x) = −θ⊤x are linear and the costs are quadratic c(x′ ,x) = 1
2ε ‖x′ − x‖.

Together, these lead to an ε-sensitive distribution map as shown in [14].
The loss of the institution is a logistic loss with ℓ2 regularization:

1

n

n
∑

i=1

[

log(1 + exp(x⊤i θ))− yix⊤i θ
]

+
λ

2
‖θ‖2

This loss is γ-strongly convex and β = max
{

2, 1
4n

∑n
i=1‖xi‖22 + γ

}

. jointly smooth [14]. We fix

λ = 103/n for all experiments. When evaluated on the base distribution, the objective has
parameters β = 4.72, γ = 0.054 which yields

γ
β = 0.011.

B Technical lemmas

Lemma B.1 (Kantorovich-Rubinstein). A distribution map D(·) is ε-sensitive if and only if for all
θ,θ′ ∈Θ:

sup

{

∣

∣

∣

∣
E

Z∼D(θ)
g(Z)− E

Z∼D(θ′)
g(Z)

∣

∣

∣

∣
6 ε‖θ −θ′‖2 : g : Rp→ R, g 1-Lipschitz

}

.

Lemma B.2 (Lemma C.4 in [14]). Let f : Rn→ R
d be an L-Lipschitz function, and let X,X ′ ∈ Rn

be random variables such that W1(X,X ′) 6 C. Then

‖E[f (X)]−E[f (X ′)]‖2 6 LC.

Lemma B.3 (First-order optimality condition). Let f be convex and let Ω be a closed convex set on
which f is differentiable, then

x∗ ∈ argmin
x∈Ω

f (x)

if and only if
∇f (x∗)T (y − x∗) > 0, ∀y ∈Ω.

Lemma B.4 (Theorem 3.5 in [14]). Suppose the loss function is γ-strongly convex (A2) and β-jointly
smooth (A3). Then, for all θ,θ′ ∈Θ, it holds that,

‖G(θ)−G(θ′)‖2 6 ε
γ

β
‖θ −θ′‖2.

Lemma B.5. Let s ∈ (0,1), and fix α > 0, then,

t
∑

k=1

k−αst−k 6
st(1−2

−1/α)

1− s +
2t−α

1− s .

Proof. Denote by ak
def
= k−α . Let Mt =max{m ∈N : am > 2at}. We decompose the sum depending

on Mt as follows:
t

∑

k=1

aks
t−k =

Mt
∑

k=1

aks
t−k +

t
∑

k=Mt+1

aks
t−k .

16

We bound the first term trivially, by applying the fact that ak 6 1. For the second term, we use
the fact that ak 6 2at for k > Mt . We thus get:

t
∑

k=1

aks
t−k
6

Mt
∑

k=1

st−k +2at

t
∑

k=Mt+1

st−k 6
st−Mt

1− s +
2at
1− s .

Since ak = k−α , then Mt 6
t

21/α
, and so

st−Mt

1− s +
2at
1− s 6

st(1−2
−1/α)

1− s +
2at
1− s .

�

C Population-level results: proofs

C.1 Proof of Proposition 2.5

Let Θ = R, and let z ∼ D(θ) be a point mass at 1+εθ. This distribution map is clearly ε-sensitive.
Furthermore, define the loss as,

ℓ(z;θ) = −βzθ +
γ

2
θ2,

where β > γ is an arbitrary positive scalar. Note that this objective is convex in θ and β-jointly

smooth. Furthermore, it has a unique performatively stable point θPS =
β/γ

1−εβ/γ whenever ε ,
γ
β ;

when ε =
γ
β , there is no stable point. Repeated gradient descent has the dynamics:

θk+1 = θk − ηk E
z∼D(θk)

∇ℓ(z;θk)

= θk − ηk(γ − εβ)θk + ηkβ

= (1− ηk (γ − εβ))θk + ηkβ.

If γ = 0, then the loss ℓ(z;θ) is convex. Furthermore, for any values of ε,β > 0 and any positive
step size sequence {ηk}∞k=1, it holds that 1 + ηkεβ > 1 meaning that RGD diverges.

To prove the second part of the statement, if γ > 0, then the loss is γ-strongly convex.
Furthermore, if ε > γ/β, then for any step size sequence {ηk}∞k=1, 1 − ηk(γ − εβ) > 1 and RGD

again diverges. When ε =
γ
β , there is no stable solution and hence RGD does not converge to

stability.

C.2 Proof of Proposition 2.6

This proof is essentially a consequence of Lemma 3.1. By following the steps of Lemma 3.1, we
get

‖θk+1 −θPS‖22 6 ‖θk −θPS‖22 − 2ηk(E∇ℓ(z(k);θk))
⊤(θk −θPS) + η2‖E∇ℓ(z(k);θk)‖22

def
= B1 − 2ηB2 + η2B3.

Following the same approach as in Lemma 3.1, we get

B2 > (γ − εβ)‖θk −θPS‖22.

17

The bound on B3 is slightly different, as we no longer make assumptions on the second moment
of the gradients; we use z(θPS) to denote a sample from D(θPS) and proceed as follows:

‖E∇ℓ(z(k);θk)‖22 = ‖E∇ℓ(z(k);θk)−E∇ℓ(z(θPS);θPS)‖22
6 ‖E∇ℓ(z(k);θk)−E∇ℓ(z(k);θPS) +E∇ℓ(z(k);θPS)−E∇ℓ(z(θPS);θPS)‖22
6 2‖E∇ℓ(z(k);θk)−E∇ℓ(z(k);θPS)‖22
+2‖E∇ℓ(z(k);θPS)−E∇ℓ(z(θPS);θPS)‖22
6 2β2‖θk −θPS‖22 +2β2ε2‖θk −θPS‖22
6 2β2

(

1+ ε2
)

‖θk −θPS‖22,

where in the third inequality we apply the fact that the loss if β-jointly smooth, together with
Lemma B.2. Putting everything together, this implies

‖θk+1 −θPS‖22 6 (1− 2η(γ − εβ) + 2η2β2(1 + ε2))‖θk −θPS‖22.

Using the fact that
√
1− x 6 1− x

2 for x ∈ [0,1], we get

‖θk+1 −θPS‖2 6 (1− η(γ − εβ) + η2β2(1 + ε2))‖θk −θPS‖2.

By setting η =
γ−εβ

2(1+ε2)β2 , we can conclude

‖θk+1 −θPS‖2 6
(

1− (γ − εβ)2
4(1+ ε2)β2

)

‖θk −θPS‖2.

Note that
(γ−εβ)2
4(1+ε2)β2 < 1 because (γ − εβ)2 6 γ2 + ε2β2 6 (1 + ε2)β2.

We can unroll the above recursion to get

‖θk+1 −θPS‖2 6
(

1− (γ − εβ)2
4(1+ ε2)β2

)k

‖θ1 −θPS‖2

6 exp

(

− k(γ − εβ)2
4(1+ ε2)β2

)

‖θ1 −θPS‖2.

Setting the right-hand side to δ and expressing k completes the proof.

D Greedy deploy: proofs

D.1 Proof of Lemma 3.1

Throughout the proof, we will use z(θPS) to denote a sample from D(θPS) which is independent
from the whole trajectory of greedy deploy (e.g. {θj , z

(j)}j , etc.).
Since Θ is closed and convex, we know

‖θk+1 −θPS‖22 = ‖ΠΘ(θk − ηk∇ℓ(z(k);θk))−θPS‖22 6 ‖θk − ηk∇ℓ(z(k);θk)−θPS‖22.

18

Squaring the right-hand side and expanding out the square,

E

[

‖θk − ηk∇ℓ(z(k);θk)−θPS‖22
]

= E

[

‖θk −θPS‖22
]

− 2ηkE
[

∇ℓ(z(k);θk)
⊤(θk −θPS)

]

+ η2k E
[

‖∇ℓ(z(k);θk)‖22
]

def
= B1 − 2ηkB2 + η2kB3.

We begin by lower bounding B2. Since θPS is optimal for the distribution it induces, by

Lemma B.3 we have E
[

∇ℓ(z(θPS);θPS)
⊤(θk −θPS)

]

> 0. This allows us to bound B2 as:

B2 > E

[

(∇ℓ(z(k);θk)−∇ℓ(z(θPS);θk) +∇ℓ(z(θPS);θk)−∇ℓ(z(θPS);θPS))
⊤(θk −θPS)

]

= E

[

(∇ℓ(z(k);θk)−∇ℓ(z(θPS);θk)
⊤(θk −θPS)

]

+E

[

(∇ℓ(z(θPS);θk)−∇ℓ(z(θPS);θPS))
⊤(θk −θPS)

]

.

For the first term, we have that

E

[

(∇ℓ(z(k);θk)−∇ℓ(z(θPS);θk)
⊤(θk −θPS)

]

= E

[

E

[

(∇ℓ(z(k);θk)−∇ℓ(z(θPS);θk)
⊤(θk −θPS) | θk

]]

> − εβE
[

‖θk −θPS‖22
]

.

Having applied the law of iterated expectation, the above inequality follows from the fact that,
conditional on θk , the function ∇ℓ(z;θk)

⊤(θk −θPS) is β‖θk −θPS‖2−Lipschitz in z. To verify this
claim, we can apply the Cauchy-Schwarz inequality followed by the fact that the gradient is
β-jointly smooth. Then, we apply Lemma B.1 and the fact that D(·) is ε-sensitive to get the final
bound.

Now, we use strong convexity to bound the second term,

E

[

(∇ℓ(z(θPS);θk)−∇ℓ(z(θPS);θPS))
⊤(θk −θPS)

]

= E

[

E

[

(∇ℓ(z(θPS);θk)−∇ℓ(z(θPS);θPS))
⊤(θk −θPS) | θk

]]

> γE

[

‖θk −θPS‖22
]

.

Therefore, we get that

B2 > (γ − εβ)E
[

‖θk −θPS‖22
]

.

Now we move on to bounding B3. Using our assumption on the variance on the gradients
yields the following bound, we get

E

[

‖∇ℓ(z(k);θk)‖22
]

6 σ2 +L2E
[

‖θk −G(θk)‖22
]

= σ2 +L2E
[

‖θk −θPS +θPS −G(θk)‖22
]

6 σ2 +L2
(

E

[

(‖θk −θPS‖2 + ‖θPS −G(θk)‖2)2
])

6 σ2 +L2
(

1+ ε
β

γ

)2

E

[

‖θk −θPS‖22
]

,

where in the last step we use Lemma B.4, which implies ‖θPS −G(θk)‖2 6 ε
β
γ ‖θk −θPS‖2.

Putting all the steps together completes the proof.

19

D.2 Proof of Theorem 3.2

From Lemma 3.1, we have that the following recursion holds:

E

[

‖θk+1 −θPS‖22
]

6

1− 2ηk(γ − εβ) + η2kL
2

(

1+ ε
β

γ

)2

E

[

‖θk −θPS‖22
]

+ η2kσ
2.

Using the fact that ε <
γ
β , we get that,

E

[

‖θk+1 −θPS‖22
]

6

(

1− 2ηk(γ − εβ) + 4η2kL
2
)

E

[

‖θk −θPS‖22
]

+ η2kσ
2.

We proceed by using induction. As in the theorem statement, we let ηk =
1

(γ−εβ)(k+k0) , where

we denote k0 =
8L2

(γ−εβ)2 . The base case, k = 0, is trivially true by construction of the bound and

choice of k0. Now, we adopt the inductive hypothesis that

E

[

‖θk+1 −θPS‖22
]

6

max
{

2σ2,8L2‖θ1 −θPS‖22
}

(γ − εβ)2(k + k0)
.

Then, by Lemma 3.1, it is true that

E

[

‖θk+2 −θPS‖22
]

6

(

1− 2ηk(γ − εβ) + 4η2kL
2
)

E

[

‖θk+1 −θPS‖22
]

+ η2kσ
2

6
1

(γ − εβ)2

k + k0 − 2+ 4L2

(γ−εβ)2k0
(k + k0)2

max
{

2σ2,8L2‖θ1 −θPS‖22
}

+
σ2

(k + k0)2

6
1

(γ − εβ)2
(

k + k0 − 1.5
(k + k0)2

max
{

2σ2,8L2‖θ1 −θPS‖22
}

+
σ2

(k + k0)2

)

6
1

(γ − εβ)2
(

k + k0 − 1
(k + k0)2

max
{

2σ2,8L2‖θ1 −θPS‖22
}

− 0.5 · 2σ2 −σ2

(k + k0)2

)

=
1

(γ − εβ)2 ·
k + k0 − 1
(k + k0)2

max
{

2σ2,8L2‖θ1 −θPS‖22
}

6
1

(γ − εβ)2 ·
1

k +1+ k0
max

{

2σ2,8L2‖θ1 −θPS‖22
}

,

where the last step follows because (k + k0)
2 > (k + k0)

2 −1 = (k + k0 +1)(k + k0 −1). Therefore, we

have shown E

[

‖θk+2 −θPS‖22
]

6
Mgreedy

(γ−εβ)2(k+1+k0) , which completes the proof by induction.

E Lazy deploy: proofs

To prove Theorem 3.3, we use the following classical result about convergence of SGD on a
static distribution (see, e.g., [15]). The step size is chosen such that it matches the step size of
Theorem 3.2 when ε = 0. We include the proof for completeness.

Lemma E.1. Under assumptions (A1), (A2), and (A3), lazy deploy satisfies the following:

E

[

‖ϕk,j+1 −G(θk)‖22
]

6

(

1− 2ηk,jγ + η2k,jL
2
)

E

[

‖ϕk,j −G(θk)‖22
]

+ η2k,jσ
2.

20

If, additionally, ηk,j =
1

γj+8L2/γ
, then for all k > 1, j > 0, the following is true

E

[

‖ϕk,j+1 −G(θk)‖22
]

6
Mlazy

γ2j +L2
,

where Mlazy
def
= max

{

1.2σ2,8L2E[‖θk −G(θk)‖22]
}

.

Proof. First we prove the recursion. Since Θ is closed and convex, we know

E

[

‖ϕk,j+1 −G(θk)‖22
]

= E

[∥

∥

∥

∥

∥

ΠΘ

(

ϕk,j − ηk,j∇ℓ(z
(k)
j ;ϕk,j)

)

−G(θk)

∥

∥

∥

∥

∥

2

2

]

6 E

[

∥

∥

∥

∥
ϕk,j − ηk,j∇ℓ(z

(k)
j ;ϕk,j)−G(θk)

∥

∥

∥

∥

2

2

]

= E

[∥

∥

∥ϕk,j −G(θk)
∥

∥

∥

2

2

]

− 2ηk,jE
[

∇ℓ(z(k)j ;ϕk,j)
⊤(ϕk,j −G(θk))

]

+ η2k,jE
[

‖∇ℓ(z(k)j ;ϕk,j)‖22
]

.

Next, we examine the cross-term. By the first-order optimality conditions for convex functions

(Lemma B.3), we know that E
[

∇ℓ(z(k)j ;G(θk))
⊤(ϕk,j −G(θk))

]

> 0. Using this lemma along with

strong convexity, we can lower bound this term as follows,

E

[

∇ℓ(z(k)j ;ϕk,j)
⊤(ϕk,j −G(θk))

]

> E

[

(∇ℓ(z(k)j ;ϕk,j)−∇ℓ(z
(k)
j ;G(θk))

⊤(ϕk,j −G(θk))
]

> γE

[

‖ϕk,j −G(θk)‖22
]

.

For the final term, we use our assumption on the second moment of the gradients,

E

[

‖∇ℓ(z(k)j ;ϕk,j)‖22
]

6 σ2 +L2E
[

‖ϕk,j −G(θk)‖22
]

.

Putting everything together, we get the desired recursion,

E

[

‖ϕk,j+1 −G(θk)‖22
]

6 (1− 2ηk,jγ + η2k,jL
2)E

[

‖ϕk,j −G(θk)‖22
]

+ η2k,jσ
2.

Now we turn to proving the second part of the lemma. Similarly to Theorem 3.2, we prove
the result using induction. As in the theorem statement, we let ηk,j =

1
γ(j+k0)

, where we denote

k0 =
8L2

γ2 . The base case, j = 0, is trivially true by construction of the bound and choice of k0.

Now, we adopt the inductive hypothesis that

E

[

‖ϕk,j+1 −G(θk)‖22
]

6

max
{

1.2σ2,8L2E
[

‖θk −G(θk)‖22
]}

γ2(j + k0)
.

21

Then, by part (a) of this lemma, it is true that

E

[

‖ϕk,j+2 −G(θk)‖22
]

6

(

1− 2ηk,jγ + η2k,jL
2
)

E

[

‖ϕk,j+1 −G(θk)‖22
]

+ η2k,jσ
2

6
1

γ2

j + k0 − 2+ L2

γ2k0

(j + k0)2
max

{

1.2σ2,8L2E
[

‖θk −G(θk)‖22
]}

+
σ2

(j + k0)2

6
1

γ2

(

j + k0 − 15/8
(j + k0)2

max
{

1.2σ2,8L2E
[

‖θk −G(θk)‖22
]}

+
σ2

(j + k0)2

)

6
1

γ2

(

j + k0 − 1
(j + k0)2

max
{

1.2σ2,8L2E
[

‖θk −G(θk)‖22
]}

− 7/8 · 1.2σ2 +σ2

(j + k0)2

)

=
1

γ2
· j + k0 − 1
(j + k0)2

max
{

1.2σ2,8L2E
[

‖θk −G(θk)‖22
]}

6
1

γ2
· 1

j +1+ k0
max

{

1.2σ2,8L2E
[

‖θk −G(θk)‖22
]}

,

where the last step follows because (j + k0)
2 > (j + k0)

2 − 1 = (j + k0 +1)(j + k0 − 1). Therefore, we

have shown E

[

‖ϕk,j+2 −G(θk)‖22
]

6
Mlazy

γ2(j+1+k0)
, which completes the proof by induction. �

E.1 Proof of Theorem 3.3

First we state two deterministic identities used in the proof, which follow from Lemma B.4:

‖G(θ)−θPS‖2 6 ε
β

γ
‖θ −θPS‖2, (1)

‖θ −G(θ)‖2 6 ‖θ −θPS‖2 + ‖θPS −G(θ)‖2 6
(

1+ ε
γ

β

)

‖θ −θPS‖2. (2)

Note that identity (2) implies ‖θ −G(θ)‖2 < 2‖θ −θPS‖2 if ε < γ
β .

By triangle inequality, we have

E

[

‖θk+1 −θPS‖22
]

= E

[

‖θk+1 −G(θk) +G(θk)−θPS‖22
]

6 E

[

‖θk+1 −G(θk)‖22
]

+2E [‖θk+1 −G(θk)‖2‖G(θk)−θPS‖2] +E

[

‖G(θk)−θPS‖22
]

. (3)

Denoting k0 =
8L2

γ2 , Lemma E.1 bounds the first term by

E

[

‖θk+1 −G(θk)‖22
]

= E

[

E

[

‖θk+1 −G(θk)‖22 | θk

]]

6

1.2σ2 +8L2E
[

‖θk −G(θk)‖22
]

γ2(n(k) + k0)

6

1.2σ2 +32L2E
[

‖θk −θPS‖22
]

γ2(n(k) + k0)
,

where in the last step we apply identity (2). Note also that by Jensen’s inequality, we know

E [‖θk+1 −G(θk)‖2] 6
1.1σ +6LE [‖θk −G(θk)‖2]

γ
√

n(k) + k0
.

22

We can use this inequality, together with identities (1) and (2), to bound the cross-term in
equation (3) as follows:

2E [‖θk+1 −G(θk)‖2‖G(θk)−θPS‖2]

6 2ε
β

γ
E [‖θk+1 −G(θk)‖2‖θk −θPS‖2]

6

2ε
β
γ

√

n(k) + k0
E

[(

6L

γ
‖θk −G(θk)‖2 +

1.1σ

γ

)

‖θk −θPS‖2
]

6

2ε
β
γ

√

n(k) + k0
E

[(

6L

γ

(

1+ ε
β

γ

)

‖θk −θPS‖2 +
1.1σ

γ

)

‖θk −θPS‖2
]

6
24εβL

γ2
√

n(k) + k0
E

[

‖θk −θPS‖22
]

+
2.2σεβ

γ2
√

n(k) + k0
E [‖θk −θPS‖2] .

We bound the latter term by applying the AM-GM inequality; in particular, for all α0 ∈ (0,1), it
holds that

2.2σεβ

γ2
√

n(k) + k0
E [‖θk −θPS‖2] 6

1.1σεβ

γ2

1

(n(k) + k0)α0
+
E

[

‖θk −θPS‖22
]

(n(k) + k0)1−α0

.

Thus, the final bound on the cross-term in equation (3) is

2E [‖θk+1 −G(θk)‖2‖G(θk)−θPS‖2] 6

24εβL

γ2
√

n(k) + k0
+

1.1σεβ

γ2(n(k) + k0)1−α0

E

[

‖θk −θPS‖22
]

+
1.1σεβ

γ2(n(k) + k0)α0
.

The final term in equation (3) can be bounded by identity (1):

E

[

‖G(θk)−θPS‖22
]

6

(

ε
β

γ

)2

E

[

‖θk −θPS‖22
]

.

Putting all the steps together, we have derived the following recursion, true for all α0 ∈ (0,1):

E

[

‖θk+1 −θPS‖22
]

6

32L2

γ2(n(k) + k0)
+

24εβL

γ2
√

n(k) + k0
+

1.1σεβ

γ2(n(k) + k0)1−α0
+

(

ε
β

γ

)2

E

[

‖θk −θPS‖22
]

+
1.2σ2

γ2(n(k) + k0)
+

1.1σεβ

γ2(n(k) + k0)α0

6 cE
[

‖θk −θPS‖22
]

+
1.2σ2

γ2(n(k) + k0)
+

1.1σεβ

γ2(n(k) + k0)α0
, (4)

where we define

c
def
=

32L2

γ2n0
+
24εβL

γ2√n0
+

1.1σεβ

γ2n
1−α0

0

+

(

ε
β

γ

)2

.

We pick n0 large enough such that there exists α0 > 0 for which c < 1.

23

Unrolling the recursion given by equation (4), we get

E

[

‖θk+1 −θPS‖22
]

6 ck‖θ1 −θPS‖22 +
1

γ2

k
∑

j=1

ck−j
(

1.2σ2

n(j) + k0
+

1.1σεβ

(n(j) + k0)α0

)

.

Since α0 < 1, we can upper bound the second term as

1

γ2

k
∑

j=1

ck−j
(

1.2σ2

n(j) + k0
+

1.1σεβ

(n(j) + k0)α0

)

6
1.2σ2

γ2

k
∑

j=1

ck−j
1

n(j) + k0
+
1.1σεβ

γ2

k
∑

j=1

ck−j
1

(n(j) + k0)α0

6
1

γ2(1− c)

(

1.2σ2

n0
(2k−α + c(1−2

−1/α)k) +
1.1σεβ

n
α0

0

(2k−α·α0 + c(1−2
−1/(αα0))k)

)

where in the second inequality we apply Lemma B.5 after plugging in the choice of n(k). Using

the fact that α0 ∈ (0,1) and hence c(1−2
−1/(αα0))k < c(1−2

−1/α)k , as well as ε <
γ
β and n0 > 1, gives

1

γ2(1− c)

(

1.2σ2

n0
(2k−α + c(1−2

−1/α)k) +
1.1σεβ

n
α0

0

(2k−α·α0 + c(1−2
−1/(αα0))k)

)

6
1.2σ2 +1.1σγ

γ2(1− c)
(

4k−αα0 +2c(1−2
−1/α)k

)

6
3(σ +γ)2

γ2(1− c)
(

2k−αα0 + cΩ(k)
)

.

It remains to set α0; we set α0 = max{δ ∈ (0,1) : c < 1} (note that the existence of such α0 is
guaranteed by the choice of n0). Clearly, α0→ 1 as n0 grows, and so putting everything together
gives

E

[

‖θk+1 −θPS‖22
]

6 ck‖θ1 −θPS‖22 +
3(σ +γ)2

γ2(1− c)

(

2

kα·(1−o(1))
+ cΩ(k)

)

,

as desired.

F Proof of Corollary 3.4

From Theorem 3.2, we know that for greedy deploy, E
[

‖θk+1 −θPS‖22
]

= O(1k) where k indexes
both the number of classifiers and the number of samples collected. By inverting this bound, we

see that to ensure E
[

‖θk+1 −θPS‖22
]

6 δ, it suffices to collect O(1δ) samples.

From our analogous convergence result for lazy deploy (Theorem 3.3), we know that after

the k-th deployment, it holds that E
[

‖θk+1 −θPS‖22
]

= O(1/kα·ω), for some ω = 1− o(1) which is

independent of k and tends to 1 as n0 grows. If we collect Θ(jα) samples for each deployment
j = 1 . . . k, after k deployments the total number of samples N is Θ(kα+1). Therefore,

E

[

‖θk+1 −θPS‖22
]

= O(1 / N
α·ω
α+1).

By inverting these bounds, we get our desired result for the asymptotics of lazy deploy.

24

	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Preliminaries
	2.1 The framework of performative prediction
	2.2 Population-level results

	3 Stochastic optimization results
	3.1 Greedy deploy
	3.2 Lazy deploy
	3.3 Discussion

	4 Experiments
	4.1 Synthetic data
	4.2 Strategic classification

	A Additional evaluations and details on experimental setup
	A.1 Synthetic Gaussian experiments
	A.2 Strategic classification simulator

	B Technical lemmas
	C Population-level results: proofs
	C.1 Proof of Proposition 2.5
	C.2 Proof of Proposition 2.6

	D Greedy deploy: proofs
	D.1 Proof of Lemma 3.1
	D.2 Proof of Theorem 3.2

	E Lazy deploy: proofs
	E.1 Proof of Theorem 3.3

	F Proof of Corollary 3.4

