Kaleido: Real-Time Privacy Control for Eye-Tracking Systems

Jingjie Li, Amrita Roy Chowdhury, Kassem Fawaz, and Younghyun Kim
University of Wisconsin—Madison
{jingjie.li, roychowdhur2, kfawaz, younghyun.kim}@wisc.edu

Abstract

Recent advances in sensing and computing technologies have
led to the rise of eye-tracking platforms. Ranging from mo-
biles to high-end mixed reality headsets, a wide spectrum
of interactive systems now employs eye-tracking. However,
eye gaze data is a rich source of sensitive information that
can reveal an individual’s physiological and psychological
traits. Prior approaches to protecting eye-tracking data suf-
fer from two major drawbacks: they are either incompatible
with the current eye-tracking ecosystem or provide no formal
privacy guarantee. In this paper, we propose Kalgido, an eye-
tracking data processing system that (1) provides a formal
privacy guarantee, (2) integrates seamlessly with existing eye-
tracking ecosystems, and (3) operates in real-time. Kaleido
acts as an intermediary protection layer in the software stack
of eye-tracking systems. We conduct a comprehensive user
study and trace-based analysis to evaluate Kalgido. Our user
study shows that the users enjoy a satisfactory level of utility
from Kaleido. Additionally, we present empirical evidence
of Kaleido’s effectiveness in thwarting real-world attacks on
eye-tracking data.

1 Introduction

Recent advances in sensing and computing technologies have
facilitated the rapid adoption of eye tracking as a hands-free
interface in augmented, virtual, and mixed reality settings. It
offers users control over virtual components [84], events [51],
and digital avatars [80], especially in settings where hand-
based control is either impractical or infeasible [89]. In-
teractive systems are now capable of performing continu-
ous eye tracking using off-the-shelf webcams [66], smart-
phones [61], tablets [32], desktops [62], wearable glasses [93],
and mixed reality headsets such as the HTC VIVE and Mi-
crosoft HoloLens.

From a stream of eye gaze positions in a scene, eye-tracking
applications precisely estimate what the user is viewing to
trigger events, prefetch scenes, or perform actions in the vir-

2 ¥ s
Low privacy (e=3) High privacy (=0.5)
(b) Noisy data from Kaleido

m m
No privacy (=)
(a) Raw data

Figure 1: Eye gaze heatmaps from an individual user with
and without Kaleido’s noising effect on a web page.

tual environment. One’s eye gaze streams, however, are vul-
nerable to potential privacy threats. Previous research has
demonstrated that psychological and physiological factors
direct the formation of unique patterns in the user’s eye gazes.
For instance, researchers were able to infer insights about
the user’s behavioral traits [49,75,77], diagnose Alzheimer’s
disease and autism spectrum disorder [30, 41], understand
the user’s familiarity of a scene [78], infer mental status dur-
ing social interaction [76], detect personality traits [10], and
deliver personalized advertisements [16,24,92].

Third-party applications that use eye gaze streams can ex-
tract information beyond their intended core functionality,
posing significant privacy threats to the users. For example,
Figure 1(a) shows the heatmap of eye gazes on a web page
from an individual user. While an application can help the
user scroll up/down the web page, the aggregated eye gaze
positions can reveal the user’s interest. Unfortunately, the
eye-tracking platforms do not offer users the ability to con-
trol their privacy. They relay the raw eye gaze streams to the
applications without much regard to the embedded sensitive
information.

Researchers have developed privacy-preserving mecha-
nisms for eye gaze streams [12, 13,29, 53,79] to alleviate
these concerns. These mechanisms share a similar working
principle: allowing access to only some high-level “features”
of the eye gaze streams, possibly with some added noise, in-
stead of the raw gaze streams. While some of them provide
formal privacy guarantees [12,53,79], they are mostly imprac-

tical to deploy due to multiple limitations. First, they require
modification of the eye-tracking application programming
interfaces (APIs) since the applications expect to receive a
sequence of raw eye gaze positions, not just features. Second,
processing eye gaze streams to extract features does not hap-
pen in real-time, affecting the user experience. Third, they
require the user to control a set of parameters that are hard to
understand for most users. In short, the question of how to pro-
vide a backward-compatible, easy-to-use privacy-preserving
system for real-time eye tracking is still an open one.

In this paper, we design, implement, and evaluate Kalgido
as an affirmative answer to the above question. Kalgido pro-
vides a formal privacy guarantee based on differential privacy
(DP) [21], the de-facto standard for achieving data privacy. To
the best of our knowledge, Kaleido is the first system to (1)
provide a privacy guarantee on raw eye gazes, (2) seamlessly
integrate with the existing eye-tracking ecosystem, and (3)
operate in real-time. Kalgido offers the following advantages:

o Formal privacy guarantee. Kalgido uses a differentially
private algorithm to release noisy eye gaze streams to the
applications, which protects the spatial distribution of a gaze
trajectory that is formed within any window of a specific
duration (as determined by the users). Kaleido achieves this
objective by bringing the privacy semantics from two distinct
contexts, absolute location data and streaming event data,
into the domain of eye gaze data (Section 4.3.3). Figure 1(b)
shows Kaleido’s privacy protection in action.

e Seamless integration with the eye-tracking ecosystem.
As Kaleido operates on raw eye gaze streams, it fits within
the existing ecosystem of eye-tracking applications. It is also
platform- and application-agnostic; it operates on popular
eye-tracking platforms and requires no modification of the
applications, making it more practical to deploy.

o Ease of use. As the parameters of Kaleido’s privacy guar-
antee are a function of the visual feed semantics, it reduces
the burden of complex privacy configuration on the user.

We integrate Kalgido as a Unity [26] plugin; it acts as a pro-
tection layer between untrusted applications and trusted plat-
forms. Unity is the mainstream engine for gaming and mixed
reality applications; it supports various peripherals such as
eye-tracking sensors. Kaleido’s architecture comprises four
major components: (1) context processing core, which extracts
scene semantics from keyframes of dynamic visual feed; (2)
configuration manager, which automatically configures the
parameters of the DP guarantee based on scene semantics
and user preferences; (3) noisy gaze generator which gener-
ates noisy gaze streams; and (4) noisy gaze processor, which
performs local post-processing on the noisy gaze streams.
The Kaleido plugin leverages off-the-shelf APIs and comput-
ing blocks, providing backward compatibility across a broad
spectrum of applications and platforms.

We conduct a user study and trace-based analysis to eval-
uate Kaleido. To understand perceived utility, we investigate

k

Figure 2: Example of fixations, saccades, and ROIs in a
scene [52], where the blue dots represent individual gazes and
purple (grey) dashed circles represent fixations (saccades).

the user experience of a real-time eye-tracking game with
Kaleido. The quantitative and qualitative feedback indicates
a minor impact on users’ game performance and satisfac-
tion. The users show a high incentive to adopt Kaleido and
its control knob for eye-tracking privacy. Furthermore, we
validate that Kaleido can successfully thwart various adver-
sarial analytics, aiming to identify unique traits from users’
eye gazes. Even with modest privacy levels, Kaleido can drive
the attacker’s accuracy close to random baselines.

2 Background on Eye Tracking

2.1 Properties of Eye Gaze

Eye gaze data, commonly represented as a stream of gaze
positions projected onto a visual scene, reflects how people
explore and process the visual content. Typically, eye gaze
data is abstracted as a scanpath, which captures the character-
istics of the user’s visual attention [68]. A scanpath is a time
sequence of fixations that are separated by saccades [8, 82].
Fixations represent clusters of gazes concentrated around spe-
cific regions in the scene (such as an object). Saccades denote
gazes traveling rapidly from one fixation to another. A re-
gion in the scene space that attracts human attention [58] is
referred to as a region of interest (ROI). Figure 2 illustrates
fixations, saccades, and ROIs in a scene.

2.2 Eye-Tracking Platform

Two of the most popular techniques for acquiring real-time
eye gaze [56] are: vision-based tracking and infrared pupil-
corneal reflection tracking. The former estimates gaze posi-
tions from the captured images of the eyes; the latter projects
infrared light onto the eyes and estimates the point of gaze
from the pupil and corneal reflections. The raw measurement
data is represented as a stream of tuples (x,y,7), where x and
y represent the 2D coordinates of its location on the visual
scene (corresponding to a pixel of the image), and ¢ is the
associated timestamp [47, 83, 86].

Eye-tracking platforms [37,45] incorporate eye-tracking
with development engines, such as Unity. The platform ex-

poses eye gaze streams to user applications through prede-
fined APIs. An application session is the duration of user
interaction with the platform to perform a task, such as play-
ing a game or browsing a document. Each session is a series of
scenes where the visual content remains relatively unchanged
(e.g., part of the same panoramic view).

Each application defines its interaction semantics based on
the eye gaze streams. Examples include eye gaze-based input
and selection [84], active event triggering by eye gaze ges-
tures [51], automatic scene switching during browsing [46],
foveated rendering [6,67], and virtual social interaction using
digital avatars [80].

2.3 Privacy Threats

Eye gaze patterns inherently reflect human traits and carry
sensitive information about the user. While the applications
would primarily process eye gaze streams for user interaction
purposes, accumulating the data over multiple sessions can
result in privacy threats. Below, we discuss some examples of
possible psychological and physiological inferences that can
be drawn from eye gaze streams.

Absolute gaze distribution on a scene. The spatial distri-
bution of absolute gaze positions on a scene can reveal in-
sights about the individual’s cognitive process of exploring
specific visual content. Fixations and saccades within and
between ROIs reflect how an individual’s attention moves
within a scene — revealing cues about one’s interest. For ex-
ample, gaze patterns on merchandise can enable precision
marketing and personalized recommendations in consumer
research [16,24,92]. Other researchers have attributed indi-
viduals’ fixation patterns to their psychological state, such
as lying about recognizing a face [60, 78]. Further, individ-
uals with different physiological and cultural backgrounds
demonstrate distinguishing characteristics depending on the
ROI features such as color, texture, and semantics [3,70].

Aggregate statistics on gaze distribution over time. The
statistical characteristics or features of scanpaths computed
over a period of time, such as fixation duration/rate and
saccade speed/acceleration, can reveal sensitive informa-
tion about an individual. For example, the length of sac-
cades can help in categorizing fixations into different func-
tional groups, including “locating,” “guiding,” “directing,”
and “checking,” which reveal one’s behavioral traits while
performing daily tasks, such as interpersonal communica-
tion [49, 75, 77]. Diseases such as autism spectrum disor-
der [30] and Alzheimer’s [41] can also be diagnosed from
fixation features. Additionally, fixation and saccade features
can be utilized as biometrics for user identification and authen-
tication [23,33] because of their uniqueness to individuals.
These features can also reveal information about a user’s phys-
iological conditions, such as vision correction conditions [63].

3 Related Work

In this section, we provide a summary of the related work.
One line of work proposes “recognizer’” systems that process
a sensor stream, such as a video, to “recognize” predefined
objects or features [38,69,73]. The principle underlying these
systems is to send only abstract features from the data stream
(possibly after obfuscation) to the untrusted applications in
place of the raw stream. However, this approach suffers from
a set of shortcomings when applied in the context of real-time
eye tracking. First, APIs of current user applications expect,
as inputs, raw eye gaze streams directly or basic gaze events
such as fixations. Second, this approach does not provide a
formal privacy guarantee and cannot defend against attacks
that consume only coarse-grained measurements (that can
be computed from the features) [53]. Last, such systems
introduce complications for permission control for both users
and application developers.

Another line of work uses adversarial machine learning-
based approaches to protect the raw eye gaze data [29]. How-
ever, such techniques operate on predetermined data streams
and require training. Hence, these solutions are not practi-
cally feasible for real-time interactions. Additionally, they
do not offer any formal privacy guarantee. In another work,
Bozkir et al. [13] use randomized encoding to privately train
an SVR model for gaze estimation. However, this method
would require significant changes, such as communication
with a third-party server, to existing eye-tracking ecosystems.

Differential privacy has been proposed in the context of eye
tracking [12,53,79]. However, the major problem with the
existing works is that they release noisy high-level features,
such as heatmap [53] and ratio of saccades [12,79]. Moreover,
their workflow involves collecting the dataset of eye gaze
streams from a group of users and then performing noisy fea-
ture extraction from it — the data release cannot be performed
in real-time. Also, the computation of the sensitivity [21] of
the features in two of the works [12,79] is dependent on the
dataset, leading to additional privacy leakage [64]. Further,
Bozkir et al. [12] adopt the central differential privacy set-
ting that requires the presence of a trusted data aggregator, an
infeasible proposition for most eye-tracking applications.

Thus, the solutions above are not directly comparable to
Kaleido, aiming to provide a formal privacy guarantee for raw
gaze streams in real-time interactions.

4 Privacy Model

As discussed in Section 2.3, we observe that the privacy
threats to eye-tracking data arise either from the analysis of
the absolute spatial distribution or the aggregate statistics of
gaze positions over time. Thus, the spatial information of the
gaze positions is the primary source of sensitive information.
Hence, in Kaleido, we choose to provide our formal guaran-
tee (Definition 4.5) on the spatial information of the gaze

positions. In what follows, we start with some background
on differential privacy, followed by the privacy definition for
Kaleido and its implications.

4.1 Differential Privacy Preliminaries

For Kaleido’s formal privacy guarantee, we leverage two
variants of differential privacy: geo-indistinguishability [5]
and w-event differential privacy [42].

Geo-indistinguishability. Geo-indistinguishability is a spe-
cialization of differential privacy that provides privacy guaran-
tees for geographical information in 2D space. It is formally
defined as follows:

Definition 4.1 ((&, r)-geo-indistinguishability). A mecha-
nism M : X — Zis defined to be (&, r) - geo-indistinguishable
iff for all pairs of inputs (x,x’) € X x X such that d(x,x") <r,

VS C Z,Pr[M(x) € S] < e*Pr(M (') € S] (1)
where d(-,-) denotes the Euclidean metric.

We refer to the pair (x,x’) in the above definition as the
r-Euclidean neighboring. Intuitively, the above definition
protects all pairs of r-Euclidean neighbors'.

w-event differential privacy. As discussed above, eye gaze
data in real-world interaction interfaces is obtained in the
form of streaming data. Hence, we also use a variant of the w-
event differential privacy guarantee [42], which is defined in
the context streaming data. In this context, the user’s behavior
breaks into a set of “events,” corresponding to data updates
in the stream due to user actions. Intuitively, this privacy
guarantee protects all event sequences of length w in a stream.

Let S be a stream of an infinite tuple S = (D1,Dy,--+)
where every data point D; at time stamp i is a database with
d columns and arbitrary rows (each row corresponds to an
unique user). Let S; denote a stream prefix of S up till time
stamp ¢, S; = (Dy,Dz,- -+ ,Dy), and S;[i],i € [t] denote the i-th
element of S;, D;.

Definition 4.2 (w-Neighboring Stream Prefixes [42]). Two
stream prefixes S;,S; are defined to be w-neighboring, if
e foreach S, [i], S}[i] such thati €] and D; = S, [i] # S}[i] =
D/, it holds that, D} can be obtained from D; by adding or
removing a single row, and
e for each S[i1],S:[i2],S/[i1],S}[iz] with iy < i2,8[i1] #
Si[i1] and S;[iz] # S}[i2], it holds that i, —i; +1 < w.

Using the above definition, w-event differential privacy is
defined formally as follows:

'We introduce some notational change from the original work [5]. Our
privacy parameter € is equivalent to the term € - d(x,x’) from the original
definition (see Section 4.3.3 for details). We adopt this change to improve
readability, which does not affect the semantics of the definition.

Definition 4.3 (w-Event Differential Privacy [42]). A mech-
anism M : S — C, where S is the domain of all stream pre-
fixes, satisfies w-event differential privacy if for all pairs of
w-neighboring stream prefixes {S;,S,} € § x S, we have

VO C C,Vt,Pr[M(S;) = O] < e Pr[M(S)) = 0] (2)

Note that w refers to the count of distinct “events” in a
stream in the above definition. In our definition, w refers to
the duration of the event window (as in Definition 4.5).

4.2 Privacy Definitions in Kaleido

We now discuss how the aforementioned privacy definitions
are used for protecting eye gaze streams. We observe that
in a 2D scene, the eye gaze data is analogous to geograph-
ical information as modeled in the geo-indistinguishability
framework [5]. Specifically, we can use the Euclidean dis-
tance as a metric for gaze data points. Keeping this in mind,
we model the eye gaze time series as a stream of an infi-
nite tuple S8 = ((g1,#1),(g2,%2)," -+), where each data point
gi = {xi,y;) gives the corresponding 2D gaze position, and #;
is the associated timestamp. Let Si' denote a stream prefix of
S8 of length £, i.e., Sf = ({g1,11),(g2:12), -, (gk-1x))- Using
this model of eye gaze positions, we present our notion of
(w, r)-neighboring for gaze stream prefixes.

Definition 4.4 ((w,r)-neighboring gaze stream prefixes).
Two gaze stream prefixes S{ = ((g1.71),-+, (gk.1x)), S =
((g1.11),-++ . (g)-1;)) are defined to be (w,r)-neighboring, if

o the timestamps of their elements are pairwise identical:
for i € [k], we have 1; =1/;

o the gaze positions of their elements are r-Euclidean neigh-
boring: for each g;,g; such that i € [k], it holds that
d(gi,g;) < r;and

e all of the neighboring gaze points can fit in a window
of time duration at most w: for each g;,,i,, g§1 , gfz, with
i1 <ixg # &, and g, # g, it holds that #;, —;, <w.

Leveraging the notion of neighboring gaze stream prefixes,
we present our formal privacy definition as follows. This
definition is a variant of the w-event differential privacy guar-
antee [42].

Definition 4.5 ((€,w,r)-differential privacy for gaze
stream prefixes). A mechanism M : §8 — 8, where S8 is
the domain of all stream prefixes, satisfies (€, w, r)-differential
privacy if for all pairs of (w,r)-neighboring gaze stream pre-

fixes {Sg,Si,} € 58 x S8, we have

YO € C8,Vk, PrM(S8) = 0] < &8 - Pr(M (S8) = 0] (3)

Based on this definition, we present a result that enables a
(e, w, r)-differentially private mechanism to allocate a privacy
budget of € for any sliding window of duration w in a given
stream prefix.

Theorem 1. Let M : S8 — C8 be a mechanism that takes
as input a gaze stream prefix S; = ((g1.11),"* , (gk.1x)) and
outputs a transcript O = (01, - ,0) € C. Additionally, let
M be decomposed into k mechanisms M, -- , My such that
M;(gi) = 0, and each M; generates independent randomness
while achieving (&;,r)-geo-indistinguishability. Let | € [1,i —
1] represent an index such that (t; —t;) = w. Then, M satisfies
(&, w, r)-differential privacy if

viel.Ye <e 0
=

The proof of Theorem | follows directly from the proof of

Theorem 3 in Kellaris et al. [42].
Discussion of privacy semantics. The idea behind (€/,r)-
geo-indistinguishability (Definition 4.1), in the context of eye-
tracking data, is that given a gaze position g, all points within a
circle of radius r centered at g (i.e., all -neighbors of g) would
be “indistinguishable” to an adversary who has access to the
corresponding “noisy” location. Thus, this privacy guarantee
provides a cloaking region of radius r around g. (e,w,r)-
differential privacy (Definition 4.5) extends this guarantee
to gaze stream prefixes. Specifically, an adversary cannot
distinguish” between any two gaze stream prefixes, which
(1) differ in gaze positions that are within a distance of r
from each other, and (2) all such differing pairs occur within
a window of duration w.

Additionally, from Theorem 1, we observe that a (€, w,r)-
differentially private mechanism can achieve two goals: for
every subsequence of duration w in the gaze stream S%, it (1)
allocates up to € privacy budget, and (2) takes budget allo-
cation decisions considering the entirety of the subsequence.
Thus, this privacy definition protects the spatial distribution
of any gaze trajectory that is formed over any window of a
duration w.

Further, we define and prove another result, which shows
that the privacy guarantee degrades gracefully if the r-
Euclidean neighbors in both stream prefixes are separated
by more than w duration. The proof of the following theorem
is in Appendix A.1.

Theorem 2 (Composition over multiple windows theo-
rem). Let M : S8 — (8 be a mechanism that takes as in-
put a gaze stream prefix S§ = ((g1,11),"++ , (k- 1x)), and out-
puts a transcript O = (01, ,0;) € C. Additionally, let M
be decomposed into k mechanisms M,---, My such that
M;(gi) = 0, and each M; generates independent random-
ness while achieving (€;,r)-geo-indistinguishability. Then for

!
two stream prefixes S‘,f and Sf , such that:

2with probability higher than what is allowed by the privacy parameter €

e foralli€ [k], t; =t;

e for each g;,g: such that i € [k] and g; # g/ it holds that
d(gi.g}) <r, ie., (gi,87) are r-Euclidean neighboring;
and

o foreachgi.gi,. 8} 8, withiy <iz,gi, # &}, and gi, # g,
it holds that t;, —t;, <m-w,m €N;

we have
YO € C8. Yk, PriM(S8) = 0] < " - PrM(SE) = O]. (5)

Another important result for differential privacy is that any
post-processing computation performed on the noisy output
does not cause any privacy loss. Thus, once Kalgido releases
the noisy gaze streams, all subsequent analyses by the adver-
sary enjoy the same privacy guarantee.

Theorem 3 (Post-processing). Let the randomized mech-
anism M : 58 — C8 satisfy (e,w,r)-differentially privacy.
Let f : C8 — R be an arbitrary randomized mapping. Then
foM : 58— Ris (g,w,r)- differential private.

4.3 Privacy Implications of Kaleido

In the following, we discuss the implications of the formal
privacy guarantee of Kalgido (Definition 4.5).

4.3.1 Choice of Parameters

The aforementioned privacy guarantee involves three parame-
ters — the privacy budget, the window length, and the radius
of location indistinguishability:

Privacy budget €. € captures the privacy requirements of the
user which can be set at the user’s discretion [2, 35, 50].
Window length w. As explained above, the proposed privacy
definition protects the spatial distribution of a gaze trajectory
that is formed within any window of duration w. In a typ-
ical eye-tracking setting, gaze trajectories are formed over
individual visual scenes. Thus, a good choice for w could
be average scene lengths in a visual feed. Over the whole
session, which spans multiple windows, the resulting privacy
guarantee degrades gracefully (by Theorem 2).

Radius of location indistinguishability r. Recall that eye
gaze streams be abstracted to a series of fixations and saccades
within and between ROIs. Hence, we propose the following
two choices for the value of parameter r:

e Intra-region radius ;4. This measure captures the
radius of a single ROI (approximated by a circular area)
and is catered to protect gaze data positions corresponding
to fixations.

o Inter-region radius 7;,..,. This measures the distance
between a pair of ROIs (approximated by circular areas)
and protects gaze positions corresponding to inter-ROI
saccades.

=

See
Inter-region radius ==

Figure 3: Illustration of the two choices for the radius of
location indistinguishability parameter [52].

The two radii are illustrated in Figure 3. As a general rule, the
larger the value of r greater is the privacy enjoyed (at the cost
of lower utility). Note that we assume that the visual feeds
are publicly available (see Section 5.1).

Thus, in a nutshell, Kaleido’s privacy guarantee ensures that
an adversary cannot learn about the distinguishing features
of a user’s spatial distribution. Specifically, if » is chosen
as T'inrrq, then an adversary cannot distinguish3 between two
users gazing at the same ROI, within any window of length
w. Similarly, if r is chosen as rj,.,, then the adversary cannot
distinguish two users such that (1) user 1’s gaze moves from
ROI; to ROI,, and (2) user 2’s gaze moves from ROI; to
ROI3, within any window of length w.

4.3.2 Discussion on Temporal Information of Eye Gaze

Kalgido’s formal privacy guarantee focuses solely on the loca-
tion information of eye gaze streams. However, as discussed
in Section 2.3, some privacy attacks utilize both location and
temporal information (aggregate statistics) of gaze streams.
In these cases, the location information contained in the ag-
gregate statistics constructed over noisy gaze positions (Defi-
nition 4.5) will also be noisy (Theorem 3) — thereby reducing
the efficacy of the attacks. Our evaluation results in Section
7.3 provide empirical evidence for the above: Kaleido is able
to protect against analyses that exploit such spatio-temporal
statistics. Additionally, a formal guarantee on the temporal in-
formation would require interfering with the timeliness of the
release of gaze data points (noisy or otherwise), which might
adversely affect the utility [27]. Nevertheless, Section & dis-
cusses a possible extension of Kalgido for providing a formal
guarantee on the temporal information of eye gaze streams.

4.3.3 Contributions of Kalcido’s Privacy Definition

Here, we discuss the contributions of Kaleido’s formal privacy
definition (Definition 4.5).

First, this definition combines the privacy semantics from
two distinct contexts: absolute location data and the streaming
of event data. Specifically, Definition 4.5 provides (g, r)-geo-
indistinguishability guarantee for every gaze position within
a window of duration w in a gaze stream.

3with probability higher than what is allowed by privacy parameter €

Second, there are certain semantical differences in the
use of location perturbation techniques (such as (g,r)-geo-
indistinguishability guarantee) in the contexts of geographical
information and eye gaze data. Typically, ROISs (also known as
points of interest) for geographical information include physi-
cal units such as restaurants, shopping malls, or schools. On
the other hand, ROIs in the eye-tracking context are charac-
terized by visual stimuli such as the scene’s color and texture.
Consider a case where only a single ROI is located within
a circle of radius r centered at the true user location (or eye
gaze position). In the case of geographical information, the
adversary can conclude that the user is visiting the particular
ROI. Thus, this completely violates the user’s location pri-
vacy. However, the above-described scenario corresponds to
a fixation event (r;,,) in the context of eye-tracking, and eye
movements, even within a single ROI are a rich source of
sensitive information [70] (as discussed in Section 2.3). Thus,
even if the adversary learns the ROI'’s identity, the perturba-
tion still provides meaningful privacy protection.

Additionally, for the standard geo-indistinguishability guar-
antee [5], the privacy guarantee enjoyed is parameterized by
the multiplicative term €-d(x,x’), i.e., the privacy guarantee
degrades with the distance between the pair of points {x,x'}.
This makes the task of choosing the value of € tricky for ge-
ographical data [65]. The reason behind this is that, for any
given value of €, if the distance d(x,x') becomes too large,
then the subsequent privacy guarantee provided ceases to
be semantically useful. Hence, deciding on the size of the
cloaking region (d(x,x’)), such that any two points within the
region are sufficiently protected, is difficult for geographical
data in practice. However, in the context of eye gaze data,
sensitive information is captured in the form of fixations and
saccades. Thus here, we are primarily concerned about pro-
tecting pairs of gaze positions that are bounded by a specific
distance (7srq and 7., as discussed in Section 4.3.1). Hence,
our formulation (Definition 4.1) explicitly parameterizes the
size of the cloaking region, r, and its privacy parameter, €,
is equivalent to the term €- d(x,x") (equivalently, € - r where
d(x, x’) < r) from the original definition. This ensures that all
pairs of gaze positions within a distance of » from each other
enjoy a privacy guarantee of at least €, thereby mitigating the
aforementioned problem.

5 Kaleido System Design

We introduce the system design of Kaleido, starting with the
threat model followed by design goals. Next, we present the
architectural overview followed by detailed descriptions.

5.1 Threat Model

The software stack of real-time eye tracking comprises two
major parties: the eye-tracking platform and the third-party
application (Section 2.2). In our threat model, we assume the

0O 22 .
Application LAPp- 1] 1APR2T [.] *[App. V]

Trust boundary

Noisy gaze processor
Context Config. Noisy gaze
proc. core manager generator

Eye-tracking core

)

& J@ye—tracking cam.

User
o 5 interface

Kaleido

J— q
Platform "gDisplay] ﬁScene cam.]

Figure 4: Architectural overview of Kalgido.

eye-tracking platform to be trusted (a common assumption in
prior works [38,73]) and consider the untrusted third-party
application to be the adversary. The application can perform
analysis on the gaze streams to learn sensitive information
about the user (as described in Section 2.3). Additionally, we
assume that the visual feeds (image or video scenes users
look at) are publicly available. This assumption holds in most
practical eye-tracking applications such as movies and VR
games. Thus, attackers (untrusted third-party applications)
can access visual feeds and noisy gazes (output of Kaleido),
but not raw gazes.

5.2 Kaleido Design Principles

Kaleido relies on the following three design principles.

e Seamless integration with existing eye-tracking inter-
faces. Kaleido seamlessly integrates with the current eye-
tracking ecosystem. Specifically, it interacts with the dif-
ferent components of the eye-tracking framework using
their existing interfaces.

o Real-time system. Kalgido is capable of generating noisy
gaze streams (satisfying Definition 4.5) in real-time that
is suitable for interactive eye-tracking interfaces.

e Automatic privacy parameter configuration. Kaleido
automatically configures the privacy parameters, namely
w and r, based on the properties of the visual feed.

5.3 Architectural Overview

Figure 4 depicts the high-level architecture of the eye-tracking
framework with Kaleido. It comprises three layers: the eye-
tracking platform, Kaleido, and the applications. Kaleido is an
intermediary layer in this stack that defines the trust boundary.
Eye-tracking platform. The eye-tracking platform includes
a display, the eye-tracking camera, the eye-tracking core, and
potentially a scene camera. Users consume the visual feed via
the platform-specific display, generated either entirely digi-
tally (VR platforms) or from the scene camera (augmented

reality platforms). The eye-tracking camera captures eye im-
age frames, from which the eye-tracking core generates raw
gaze streams.

Kaleido. Kaleido processes the raw gaze stream obtained
from the eye-tracking platform in a privacy-preserving man-
ner. Based on the information from the visual feed and user-
specified guidelines, it automatically configures the param-
eters required for the privacy guarantee of Definition 4.5. It
then perturbs the raw gaze stream, sanitizes it, and feeds it to
the applications. Section 5.4 elaborates the design of Kaleido.
Applications. The applications use eye gaze streams for their
functionalities. They receive gaze streams (albeit noisy) from
Kaleido using the original APIs. Therefore, they need not be
modified in any way to be compatible with Kaleido.

5.4 Kaleido System Modules

Kaleido views user interaction with the eye-tracking platform
as a set of sessions with dynamic scenes. We elaborate on
Kaleido’s modules and how it achieves its privacy guarantee.

5.4.1 Context Processing Core

The context processing module extracts the size and locations
of the ROIs from individual frames (still images of a scene) of
the visual feed. Kaleido adopts off-the-shelf region and object
detectors [54,90] for ROI extraction. However, these detectors
are computationally heavy, and continuously running them
results in a high computational overhead that might hinder
real-time operation. Kaleido solves this challenge by incorpo-
rating a threshold-based keyframe detector. As frames remain
relatively consistent over short periods, Kaleido invokes the
object detector only at the instances of a scene change.

5.4.2 Configuration Manager

The configuration manager module automatically configures
the privacy parameters to satisfy the privacy guarantee of
Definition 4.5. It accepts as inputs the processed scene infor-
mation from the context processing core and the user’s privacy
preferences, and configures the parameters as follows:

Privacy budget €. For setting the value of €, Kaleido pro-
vides the users with a privacy scale ranging from no privacy
(releases raw gaze streams) to high privacy (releases noisy
gaze streams). Users can adjust this knob during an active
session through the configuration manager’s Ul, and Kalgido
interpolates the corresponding value of € in the background.
Window length w. As discussed in Section 4.2, w is set ac-
cording to scene lengths. Each scene corresponds to a period
during which the visual content, e.g., a video, remains rel-
atively static as defined in Section 2.2. The configuration
manager can compute this value either on the fly from the
context processing core’s scene detectors or offline profiling
and video metadata. Small values of w (of the order of a few

seconds) usually work well as most real-world interactive
scenes are rapidly changing and spatially heterogeneous.
Radius of location indistinguishability r. The configuration
manager module sets the value of r based on either r;;, or
Finter according to the user’s preference. It uses the set of
detected ROIs for each scene to compute r as follows. Let
{ROJ;},i € [N], denote the set of ROIs for a given scene where
N is the total number of ROIs. Let a tuple (x;,y;,d"",d") repre-
sent the output of the object (or region) detector, where (x;,y;)
is the position of a reference point (for example, the centroid)
of the bounding box of ROI;, and (d;”,d,h) is its width and
height, respectively. Thus, ROI; can be approximated by a
circular area centered at (x;,y;) and its radius that is computed
from the diagonal of the bounding box:

Fora=0.5x\/d" +d’ (6)

For any pair of regions of interest (approximated by circular
areas) ROI; and ROJ; i, j € [N],i # j, we have

i er = (=) 4 (1= 3)?)

After computing the radii of all ROIs, the configuration man-
ager has two default modes for r: ry,,;;, which is the median
of {rf,,.}, and rizre, which is the median of {r;’ }.

5.4.3 Noisy Gaze Generator

The noisy gaze generator module perturbs the raw gaze
streams generated by the eye-tracking core. This perturba-
tion entails allocating a privacy budget for each gaze position
and then generating its corresponding noisy position in a
(g, w,r)-differential private manner (Definition 4.5).

The raw measurement frequency is very high (~ 120 Hz),
especially for interactive settings. Even for low values of w,
the number of individual gaze positions could be relatively
high. Therefore, naive budget allocation strategies such as
uniform allocation or fixed-rate sampling are likely to provide
poor utility [42]. To this end, we use an adaptive budget allo-
cation strategy that considers the dynamics of the human eye
gaze. We observe that the human gaze is relatively localized
during fixations. Based on this observation, we identify two
optimizations for the budget allocation strategy. Let g’ denote
the last published noisy gaze position.

e Gaze data points generated in quick succession of g’ can
be skipped over.

o The last released g’ can be used as a proxy for data points
that lie in its spatial proximity.
These optimizations are akin to (1) performing a simple fixa-
tion detection (in a privacy-preserving manner) based on the
spatio-temporal gaze data points, and (2) publishing a noisy
gaze position only when a new fixation is detected. This re-
quires the privacy budget to be distributed between two tasks:

testing the proximity of the gaze positions and the publication
of noisy gaze positions. The temporal check (for skipping
data points) consumes no privacy budget since our formal
guarantee (Definition 4.5) applies to spatial information only.

Kaleido uses an adaptive budget allocation strategy that

(1) starts with a total privacy budget € for every window of
duration w, (2) allocates no budget for the gaze data points
to be skipped over, (3) allocates a fixed budget for testing
all other data points, (4) distributes publication budget in an
exponentially decreasing manner to the data points which
have been decided to publish, and (5) recycles the budget
spent in timestamps falling outside the active window. Algo-
rithm 1, based on the BD algorithm [42], outlines the above
method; similar ideas have also been presented in the context
of location sequences [18].
Adaptive budget allocation. The algorithm proceeds in three
stages. In the first stage (Steps 1-4), every gaze position that
is generated up to duration #yq;, after iy is skipped, where
iresr denotes the timestamp of the last tested gaze position. A
good choice for #;, can be the minimum duration of fixations
~ 50 ms [48]. Thus, this stage reuses the last published noisy
gaze (gﬁpuh) and consumes no privacy budget (Step 3).

The second stage (Steps 5—11) is the testing phase, where
all the “not-skipped” gaze positions are tested for their prox-
imity to ggpu ,- Specifically, it checks whether the current gaze
position g; (not-skipped) is within a certain noisy threshold
(Lihresn +m)* from gépub (Steps 6-8). In case this is satisfied,

the algorithm again reuses gépub. The total privacy budget al-

located for testing for any window duration of w is €/h. Each
individual test consumes a budget €. = €/(h - fye), Where
Nsest 18 the number of gaze positions to be tested per window,
and & is a parameter with a value greater than 2. The first
two stages of the algorithm can be interpreted as a simple
(g/h,w,r)-differentially private fixation detection scheme.
Finally, in the third stage (Steps 12-16), the algorithm pub-
lishes a noisy gaze position corresponding to g; only if it
is sufficiently distant from gﬁpuh. For this, it computes the
remaining budget for the active window (Step 13) as follows

i—1

_ pub
Com= € — e/h — Y ¢
Total priva ~ k=i—npgy+1
otal privacy Bydget consumed
budget for for testing in Budget consumed

each window acti i . .
the active window for noisy publication in

the active window
Next, the algorithm assigns half of it (€,,,/2) for the noisy
publication (Step 14). Thus, the publication budget is allo-
cated in an exponentially decreasing manner. The rationale
behind this is that investing a high budget (i.e., injecting low
noise) in the current measurement g; would result in better
approximation (test and reuse) for the future ones. Addition-
ally, note that €, considers the budget consumed only in the

4The value of Ljyesh impacts utility and is chosen empirically depending
onr.

Algorithm 1 Adaptive Budget Allocation

Parameters: w - Time duration of a single window in seconds (s), € - Total privacy budget per window of size w
DPraw - Rate of raw gaze data generation in samples/s, lijesn - Threshold for distance
Iskip - Time duration for skipping after every gaze data point testing, r - Radius of indistinguishability

h - Ratio of privacy budget used for testing
Initialization:
Nraw = W* Praw
Niest = {W/tskip]
Erest = 8/ (h : nzest)
itest = I
i pub =0
Input: g; - True gaze position for timestamp i

> Number of raw gaze data points generated in a single window
> Number of raw gaze data points tested in a single window

> Privacy budget allocated for every test in a single window

> Timestamp of the last tested gaze position

> Timestamp of the last published noisy gaze position

gglmb - Output for the last timestamp, initialized to @ when ip,,;, = &

{sp ub .- ,El’.’flf} - Privacy budget consumed for publication in last 7,4, timestamps, initialized to 0 if i < 1,4y

i—Nyay+17"
Output: gg - Noisy gaze position released for timestamp i
el “ _ Privacy budget consumed in publications
Stage I: Check whether to skip or test the gaze data point

1: if (ires # @ and time(i) — time(irest) < tskip) then
. ! o
z 8= &y,
3: Ef)ub =0
4: Return {g/,&;}
Stage II: Test whether current gaze data point should be published
5: ileSf = l
6 lais = d(8i.8;)
7: M~ Lap(1/&ex)
8: if (lyis # @ and lyjs < lipresy +1) then
9: gi = g;pub
10: Sf)ub =0
11: Return {gg,sf”b}
Stage III: Publish noisy gaze point
120 ipyp =i
13: &rem=€—g/h—Yit , e

14: sf’”h = Erom/2
15: g} = PlanarLap(g;.&;/r)
16: Return {g},e""}

> Fixation detection based on timestamp of data

> Reuse last published gaze position

> Fixation detection based on location of data

> Euclidean distance between last published gaze position and current gaze position with d(-, &) = @

> Lap(+) denotes the Laplace distribution

> Test whether current gaze position is in the proximity of the last published gaze position

> Remaining privacy budget for the active window

> PlanarLap(-) is a geo-indistinguishable mechanism from [5]

active window [i — n,q, + 1,1]. Thus, the publication budget
of older timestamps (preceding the active window) is recycled
for future usage. The generation of the noisy gaze position is
done via the PlanarLap() mechanism (Step 15), which satisfies
geo-indistinguishability [5] (with the notational difference of
using €/ “> /1 as the privacy budget).

Total budget for active window
Current publication budget
Current testing budget

E (LR[S TLY
S O Nim
A1t 00lm oof
S O o

ENCENTIPNES

® Published Noisy eye gaze —@—0—0—O0—0—O0—0—> +
o Tested only + }W— W

O Skipped | Raw eye gaze —O0—O0—0—0—0—0—0—,
o Raw 1 2 3 4 5 6 7

Figure 5: Illustrative example of Kaleido’s budget allocation
(nruw =4, ey =2, h = 2)

Illustrative example. Figure 5 presents an illustrative ex-

ample of Algorithm 1. Here we consider n,4,, = 4, fyesr = 2
and h = 2. Hence, the budget for testing per gaze position
is €/4. For the first window (timestamps 1-4), the algo-
rithm publishes at timestamps 1 and 3 and skips at times-
tamps 2 and 4. Hence, timestamps 1 and 3 consume budget
€/4 each for testing. Additionally, the publication budgets
aree; = (¢/2—0)/2=¢/4,e3=(e/2—¢/4)/2 =¢/8 and
€, = €4 = 0. Thus, the total privacy budget consumed in this
window is €/2 (budget for testing) +¢€/4+¢/8 =7¢/8 <e.
For the second window (timestamps 2-5), the algorithm
reuses g5 at timestamp 5. Hence, its total privacy budget is
€/2+¢/8 =5¢/8 < &. For the third window (timestamps 3-6),
the algorithm skips the gaze position at timestamp 6 and the
total privacy budget is €/2 4 €/8 = 5¢/8 < €. A noisy gaze
position is published at timestamp 7 in the fourth window
(timestamp 4-7) with €7 = (¢/2 —0)/2 = €/4. Thus, the total
privacy budget for this window is €/2+¢/4 =3¢/4 <e.

FINAL SCORe 130 T Configuration control
GAze connecrion: on panel (e keyboard)

[Configuration user feedback |

PRIVACY l-e\lel- 3

Figure 6: Basic template of Kaleido’s user interface.

Theorem 4. Algorithm I satisfies (€,r,w)-differential pri-
vacy.

Proof. First, note that Stage I (Steps 1-4, Algorithm 1) do not
consume any privacy budget. Next, from Fact I in [18], Stage
II consumes privacy budget €. for every test. Specifically,
the output of the test mechanism (Step 8) is a binary decision
and hence, its sensitivity is 1. Finally, Stage III consumes bud-
gete! =1/2(e—e/h—Yi !, . el)ifitpublishes,and
0 otherw1se. Next, we prove that the total budget consumed in
every window is at most €. For this note that the total budget
consumed for testing is €/h. Hence, it suffices to show that
0< Zk iyt 1 € el W< g €/h which follows directly from
the proof of Theorem 4 in Kellaris et al. [42]. O

5.4.4 Noisy Gaze Processor

The noisy gaze processor takes as input the noisy gaze streams
generated in real-time and performs post-processing opera-
tions on it before releasing it to the applications. This module
is identical to any local post-processing unit existing in cur-
rent eye-tracking systems, except for noisy inputs. Examples
of such post-processing include data sanitization, such as
bounding of off-screen points and data smoothing. Moreover,
Kaleido’s noisy gaze processor can support local feature ex-
traction similar to that in the “recognizer” framework [38]
(Section 3). Kaleido is thus compatible with applications
with APIs expecting specific features as input, such as fix-
ation/saccade statistics. By Theorem 3, this step does not
impact the privacy guarantee of Kalgido.

6 Implementation

We implement Kaleido as a C# plugin in Unity [26], a cross-
platform engine for developing interactive applications, such
as games and mixed reality content. Unity allows developers
to integrate plugins that generate visual content and commu-
nicate with peripherals, including eye trackers. In our imple-
mentation, Kaleido acts as an intermediate protection layer
between applications and the platform.

Stream acquisition. Kaleido acquires real-time eye gaze
streams from the eye-tracking core and forwards them to
the noisy gaze generator. To synchronize these gaze streams,
we implement the eye gaze receiver using the TCP/IP pro-
tocol, which is the most common communication channel

Table 1: Properties of eye gaze traces, with a video dataset
highlighted.

Num. Num. Sampling Avg.

Dataset of stimuli of users rate (Hz) duration (s)
Natural [91] 10 19 100 6.0
Web page [91] 10 22 100 16.8
Human [39] 10 60 100 3.7
VR video [4] 12 13 120 64.9

for off-the-shelf eye-tracking cores, such as Tobii [83], Gaze-
Pointer [25], and PupilLab [47].

ROI extraction. Kaleido identifies the instances of scene
change and extracts the ROIs from each scene. For determin-
istic visual content (such as movies), Kaleido acquires the
timing of keyframes (instances of scene changes) from either
the video decoding process or keyframe properties obtained
from Unity’s Animation feature or content providers [88]. As
for online content, Kaleido identifies the keyframes using an
on-the-fly scene change detector [94]. In particular, we im-
plement a threshold-based real-time keyframe detector using
the mean absolute frame difference method. First, Kaleido
fetches the current frame from Unity’s rendering process.
Next, it takes the pixel-wise difference between the current
frame and the last keyframe. Kaleido detects a new keyframe
by comparing the pixel values of the binarized difference
matrix against a pre-calibrated threshold. We set the default
update interval of keyframe detection to 500 ms, which is the
typical response latency of human attention to visual stim-
uli [14].

Kaleido identifies the spatial information of ROIs for dig-

itally rendered frames using Unity’s GameObject API. For
all other types of frames, Kaleido uses YOLOv3-tiny [71], a
light-weight neural network. To study the impact of YOLO
on real-time performance, we make an exception and use it
for digitally rendered frames as well in our user study.
User Interface. Kaleido offers the users with an interface to
adjust their privacy-utility trade-off. Users can control the pri-
vacy budget € on-the-fly through pre-defined triggers, such as
keypress, as illustrated in Figure 6. We chose a basic interface
for our prototype implementation since UI design is not the
focus of this work.

7 Evaluation

We evaluate three aspects of Kaleido: (1) user-perceived util-
ity, (2) real-time performance, and (3) effectiveness against
spatio-temporal attacks. We perform a trace-based evaluation
to measure the effectiveness of Kaleido against attackers using
four popular eye-tracking datasets. These datasets, described
in Table 1, include the scenarios of natural environment, web
pages, human, and virtual reality (VR) videos. In particular,
our evaluation answers these questions:

SCORe: 50

Gaze-controlled ray

Player’s avatar

Figure 7: A scene of the “Survival Shooter” game with the
player’s avatar, target, and gaze-controlled ray annotated.

Q1: How do users perceive the utility of real-time interac-
tions with Kaleido?
We conduct a remote user study with 11 participants to
assess the user-perceived utility while playing a real-time
PC game with Kaleido.

0Q2: How much latency overhead does Kaleido incur?
We measure the latency overhead of the main modules of
Kaleido to assess its real-time performance.

03: Can Kaleido thwart attacks that rely on spatio-temporal
analysis of eye gaze streams?
We perform a trace-based evaluation of Kaleido on popu-
lar eye-tracking datasets. We investigate the effectiveness
of Kaleido’s formal privacy guarantee against real-world
adversarial analytics.

7.1 User Perception in Real-Time Interaction

We conducted a user study to evaluate Kaleido’s impact on
utility, as perceived by the users, while playing a real-time PC
game. Our objective is to understand the impact of Kaleido
on user experience at different settings of privacy. To this end,
we adapted the game “Survival Shooter” [87] from Unity to
be eye-tracking compatible. Participants shot targets (Zom-
bie Bunnies) by gazing at the target position on a computer
screen, as shown in Figure 7. They used the keyboard to move
their digital avatar in the game. We used this PC game be-
cause of the requirement to perform the study remotely at
the users’ places. An in-person lab session with state-of-art
eye-tracking or virtual/augmented reality was not possible
during the study”.

Setup. To accommodate a commodity PC setup, we utilize
the webcam-based eye-tracking core, GazePointer [25], for
detecting the participant’s gaze on the screen. The remote
user study design was approved by the Institutional Review
Board (IRB) of our institution. We recruited 11 individu-

SWe conducted this study during the state of Wisconsin’s Safer at Home
order due to the COVID-19 pandemic.

als from the mailing list of our department. The recruitment
email provided no details about the study’s privacy objectives
and mentioned only user experience with eye-tracking games.
Each remote session took 35 minutes on average, and we pro-
vided each participant with $15 worth of supplies as a token
of appreciation for participating.

Limitations. We acknowledge the following limitations in
our study setup resulting from the imposed lockdown. First,
the demographic diversity of the participants, as well as the
number of participants, might be limited. Hence, one caveat
is that the confidence interval of the quantitative analysis
is relatively large. Thus, we treat our presented results as a
preliminary study. Second, an in-person study using state-of-
the-art eye-tracking devices was not possible, which hindered
our ability to study diverse scenarios, such as foveated ren-
dering in VR and video watching. We carefully designed our
study protocol to reduce the impact of the low accuracy of
the webcam-based eye-tracking core; its accuracy is sensitive
to posture and lighting conditions. Before starting every new
session, the participants were instructed to calibrate the eye
tracking using GazePointer’s panel. Finally, the constraints
of a remote user study also hindered us from conducting a
qualitative study via in-person interviews and behavioral ob-
servation. An additional caveat is that we did not perform
coded analysis for the qualitative study of user responses (via
techniques such as open or axial coding [81]) of the free text.
Design. Each study session consisted of five tasks (conducted
over a video call using a separate device). The first is a pre-
study survey to collect the participant’s demographic informa-
tion using a Qualtrics survey. The second is the calibration
of the webcam-based eye-tracker to map the eye gazes to the
computer screen using GazePointer’s calibration interface.
The participants were asked to familiarize themselves with
the game by practicing eye gaze-based shooting until they
felt confident. The third covers the within-subject evaluation
sessions. The fourth task tests the privacy control knob. The
last task is the post-session survey.

To reduce individual differences in gaming behavior and
perception, we conducted the within-subject study [17] to
test four game settings: (1) No privacy (NOPV) — Kalgido
layer disabled; (2) Low privacy-high utility (LPHU) — € = 3,
w=0.5s, rgnar; (3) Medium privacy-medium utility (MPMU)
—e=1.5,w=1.5s, rgnu; and (4) High privacy-low utility
(HPLU) — € = 0.5, w =2 S, riqrg.". Bach setting lasted for
90 s’, and we randomized their order for every participant.
Additionally, the participants had no knowledge about the
setting to which they were exposed. After the completion of
each setting, we recorded: the subjective game enjoyment [57]

These values were chosen based on a parameter sweep to represent
different points along the privacy-utility spectrum (Appendix A.2.1). In the
trace-based analysis of offline datasets, the root mean square error (RMSE)
serves as a proxy for measuring application-specific utility loss.

"The interval value was chosen during calibration to balance the validity
of the session and user fatigue.

20

N

N O O O
¢ o

(a) Game enjoyment

0®9©

7
6
©5 w15
S 4 S
Q Q
2
1

5
N O
OQ\SQ@QQ\@\}C%&\”

(b) Game score

Figure 8: Scores obtained in different conditions.

as a 7-item Likert scale, the game score, and the qualitative
feedback.

After the four randomized settings, the objective of Kaleido
was revealed, and the participants were offered an adjustable
knob to control the tradeoff between privacy and utility. We
asked each participant to interact with the control knob; we
observed how frequently they adjusted the knob and solicited
qualitative feedback about their experience. This part of the
study follows a technology-probe-based approach [36]. Our
objective is to probe the participants to elicit their opinion
about the missing design elements that need to be introduced.
Results. We asked the participants to report their subjective
experience to evaluate the validity of our game’s adaptation.
To this end, we asked each participant to report their level
of agreement (or disagreement) with this statement: “You en-
joyed the game in this session.” on a 7-item Likert scale with
1 being “Strongly Agree” and 7 being “Strongly Disagree”.
Figure 8(a) shows that for all of the game settings, the partici-
pants enjoyed their experience — at least 82% of them reported
a score of 3 or lower.

Next, we study the effect of the privacy level on the partic-
ipants’ game scores. Figure 8(b) shows these scores for the
different settings. We observe that the game scores decrease
with a stronger privacy guarantee. However, the decrease in
the score is not significant from the no privacy (NOPV) set-
ting to the low privacy (LPHU) setting (only 3.2%). Even the
decrease from the NOPV setting to the high privacy (HPLU)
setting is modest (12.0%). These results show that Kalgido’s
noise does not adversely affect users’ utility in this scenario.

The qualitative feedback that we obtained from the users
aligned with our quantitative observations. Some participants
were unable to distinguish between the LPHU and NOPV
settings — (P8: “The second (NOPV) and third (LPHU) configurations
are almost the same for me.”) The majority of the participants
found the highest privacy (HPLU) setting to be the hardest to
control. Some participants had a surprisingly different view.
For example, P7 enjoyed the conditions with higher noise
because it was more challenging to play.

Finally, we performed a preliminary analysis of the privacy
control knob (setting: CNTL). In the last task of the study,
we introduced the control knob to the participants and asked
them to control the privacy level as per their desired level of
utility. Figure 8(b) shows that the adjustment of the control

ROI
detection: {

o1 l;ey fr.am‘e RQ0ms = 30
—_ etection:
o 225
2 Noising'33{‘ns = 20
£0.05 : Q
g 8 us p

= 1 2 4 8 16
Context update rate (Hz)
(b) Performance impact with
varying context update rates

Noising Context proc.
(a) Latency breakdown
of individual modules

Figure 9: Performance breakdown and trend. ROI detection
is the most expensive operation. The frame rate remains rela-
tively steady even for a high context update rate of 8 Hz.

knob does not affect the game scores. However, we find a
large variation in the frequency of knob adjustment and the
privacy level (€) across the participants.

The qualitative feedback also indicated that while such a
knob might be useful, they had some suggestions for improve-
ment. For example, P8 and P11 proposed adding flexibility for
an offline calibration of the privacy level for each application.
Other participants commented that frequently adjusting the
knob during intense gameplay is suboptimal.

7.2 System Performance

We evaluate Kalgido’s real-time performance and measure its
processing delay on a commodity PC with an Intel i7-7700
CPU and Nvidia GTX 1080 GPU. Figure 9 shows the latency
overheads incurred by the three main operations of Kaleido:
noisy gaze generation (noising), keyframe detection, and ROI
detection. We run 100 trials for each of the operations and
report the average running time. The latency of the noising
operation is only 8 s, and thus, has no discernible impact on
the user’s real-time experience.

ROI detection takes 80 ms on average, but it only runs when
a new keyframe is detected. Based on our offline game cali-
bration, a new keyframe is detected only every 2.3 s (similar
to the timing from the VR videos dataset). Thus, the overall
impact of ROI detection in Kaleido is not significant.

Keyframe detection takes 33 ms on average. The frequency
of keyframe detection (context update rate) is comparatively
higher (2 Hz in our implementation). Figure 9(b) shows its
performance impact on effective frame rates of the game used
in the study. We observe that, even with a high context update
rate of 8 Hz, the frame rate degrades only slightly to 25 Hz.

In this paper, we evaluate a research prototype of Kaleido,
which shows its real-world potential. Nevertheless, to deploy
in scale, Kaleido can leverage various performance optimiza-
tions, such as GPU offloading, model compression, and re-
source sharing. These optimizations would enable fast context
processing even on resource-constrained platforms.

7.3 Effectiveness Against Attacks

Recall that post-processing operations on the outputs of a DP
algorithm do not result in additional privacy loss (Theorem
3). Thus, Kaleido’s formal DP guarantee for the spatial in-
formation of gaze streams holds for every attacker (even for
one with full knowledge of Kalgido’s protocols). However,
Kaleido does not provide a formal guarantee on the tempo-
ral information of gaze streams (Section 4.3.2). Hence, we
perform a trace-based evaluation to study the effectiveness
of Kaleido against spatio-temporal attacks using the datasets
in Table 1. These attacks exploit the spatio-temporal features
of gaze streams, such as fixation durations and saccade ve-
locity [31,74]. We select two representative analyses of gaze
streams: (1) similarity and outlier analysis of a scanpath for
an individual, and (2) biometric inferences. We use (1) Multi-
Match [20] for computing the scanpath similarity scores, and
(2) F1 score, which considers both precision and recall, to
measure attackers’ classification accuracy.

Note that the attackers considered in this section are knowl-
edgeable; they have complete knowledge of the target visual
scenes and Kalgido’s noise generation protocols. Further, they
use a noise-robust fixation detection [31]. Additionally, all
the classifiers used in this section are trained on noisy gaze
streams from Kalgido (for the same privacy configurations).

7.3.1 Similarity and Outlier Analysis of Scanpath

Given a dataset of gaze streams for single scenes, this attack
constructs a feature vector of the scanpath for each individ-
ual in the dataset. Since the visual stimulus is the same, the
hypothesis is that the differences in the scanpath features
arise from distinguishing psychophysiological traits. Thus,
this type of analysis aims at distinguishing individuals based
on their scanpath features [9].
Setup. We use the image datasets (the first three rows of
Table 1: natural, web page, and human) to evaluate the distin-
guishability of the scanpath features on static image frames.
This evaluation assesses the accuracy of the analysis of raw
and noisy gaze streams. For each stream, we extract the scan-
paths using an offline algorithm [31]. Next, we perform simi-
larity analysis and outlier identification as follows.
Similarity analysis. The adversary here has a priori knowl-
edge of a user’s scanpath on a certain image. It attempts to
re-identify the user by measuring the similarity between this
scanpath and a newly observed one formed on the same image.
For each dataset, we compute the similarity between the scan-
paths of the same user, before and after adding noise. We use
the standardized similarity metric, MultiMatch [20], which
ranges from O to 1. This score measures scanpath similarity
by considering features about the shape (the length, shape,
and direction of saccade vectors) and the spatial distribution
(position and duration of aligned fixations) of gaze data.
Outlier identification. In this attack, the adversary tries to
identify the outlier users whose scanpath features are signif-

. =2 s w=0.5s Inter-subject ~ ----- Random scanpath
=2 1 1 1
=B I I
25 ogtF & ogr® 0.8
ol BN B N i
05 15 3 05 15 3 05 15 3
€ € €
52 1 1 1
SE ST T R 08T 2T @ 08
o 061‘1 061.1 W E
05 1.5 3 0.5 1.5 3 05 1.5 3
€ €
Natural ‘Web page Human

Figure 10: Similarity scores between noisy and raw scan-
paths. Kaleido reduces the similarity scores to be close to
the inter-subject threshold (black lines) even at low privacy
configurations (7gya). The scores are reduced further to be
close to the random scanpath baseline (red dash lines) at high
privacy configurations (€ = 0.5, rjgrge, and w =2 s).

icantly different from that of the rest. This attack utilizes a
density-based clustering model DBSCAN [28], where inter-
scanpath distances are computed via dynamic time warping
(DTW) over the scanpaths on a single image. We use the
F1 score to report the attacker’s success in identifying the
outlier users from the dataset containing noisy gaze streams.
We show the F1 scores of outlier identification compared to
random guessing as a baseline (“Random guess”).

. =2 s Random guess

R 5 P %
1.5 3
€

S e P % B
1.5 3
€

Natural ‘Web page Human

Figure 11: F1 scores of outlier identification among scan-
paths. At high privacy configurations (low values of €, 7/4/ge,
and w = 2 s), Kaleido thwarts outlier identification attacks
in all three datasets by reducing F1 scores to be close to the
random guess baseline (red dash lines).

Results. Similarity analysis. In Figure 10, we compare
the measured similarity with two thresholds: (1) mean inter-
subject similarity score (“Inter-subject”) in each dataset, and
(2) the similarity of two randomly synthesized scanpaths pre-
sented in [20] (“Random scanpath”). Figure 10 shows a con-
sistent trend in all three image datasets: the scanpath similarity
decreases with higher privacy level (i.e., smaller €, larger w,
and larger r). Kaleido degrades the similarity score below the
inter-subject threshold, even though it perturbs the spatial data
only; at € = 0.5, Kaleido brings the similarity score close to
the random scanpath baseline.

Outlier identification. ~As observed from Figure 11,

Kaleido degrades the effectiveness of outlier identification
for all of the privacy settings. For the natural and human im-
age datasets, Kaleido reduces the attacker’s F1 scores to the
random guess using ry,.. With € as high as 3. Although the
attacker’s F1 score remains relatively high in the web page
dataset, it is reduced significantly for € = 0.5.

7.3.2 Biometric Inferences

Setup. We construct attacks that attempt to predict (1) users’
identities and (2) whether the users wore contact lenses for
vision correction (use of contact lenses leads to distinguishing
eye gaze patterns [63]).

For this experiment, we use the VR video dataset (last row
in Table 1). The associated classification labels are provided
in the dataset. This attack uses aggregate statistics of fixa-
tion/saccade features over several VR video sessions as train-
ing data and predicts users’ identities and vision conditions
for an unseen session. Specifically, each video session uses a
different VR context for the same user. Hence, the evaluation
of biometric inferences here assesses Kaleido’s effectiveness
against linkability attacks across different contexts (this has
been exploited in prior work [22]). We adopt the features
suggested by the Cluster Fix toolbox [44], which are then used
to train a discriminant analysis classifier [19]. This evaluation
includes 11 users from the VR video dataset who comfortably
completed all 12 video sessions. Additionally, the training
and test sets correspond to the same privacy configuration,
i.e., either raw gaze streams or noisy gaze streams. We report
the F1 scores for leave-one-out cross-validation.

. =2 s

w=0.5s —— Rawdata ----- Random guess
1

005715 3 05 15 3 005715 3 05 15 3
€ € € €
Identity Vision corr. Identity Vision corr.
(a) Fsmall (b) rlurgt‘

Figure 12: F1 scores of predicting user identity and vision
correction. Kaleido reduces the F1 scores of biometric infer-
ences to be close to random guess baselines (red dash lines)
even for low privacy configurations (high values of € or ;).

Results. Figure 12 shows the F1 scores obtained from both
the raw and noisy gaze streams. For both classifiers (identity
and vision correction), the raw gaze streams enable accurate
classification — the F1 score is close to 1 (“Raw data” in Fig-
ure 12) and is much higher than that of random guess. This
indicates that the attacker can successfully predict users’ iden-
tities and vision correction conditions, even across different
contexts. On the other hand, we observe that Kaleido signif-
icantly degrades the attacker’s classification accuracy to be

close to the random baseline even for low privacy configura-
tions (high values of € or rgq;).

8 Discussion

Kaleido is a first step toward designing real-time eye-tracking
systems that provide a formal privacy guarantee. Here, we
discuss several possible avenues for future research:
Support for more data formats and types. An eye-tracking
platform may offer eye-tracking data in various formats
such as 2D gaze positions and 3D gaze positions. Currently,
Kaleido is designed for 2D gaze streams and supports head-
and-eye gaze streams as well (discussed in Appendix A.2.2).
Extension to 3D gaze streams is possible and would involve
extending the PlanarLap mechanism (Algorithm | to 3D po-
sitions. Additionally, some eye-tracking cores collect data
including blink timing and pupil dilation. Kaleido’s scope of
privacy can be further broadened to address these data types.
Privacy guarantee for temporal information. Kaleido can
be extended to protect the temporal information of eye gaze
streams by interfering with the timeliness of gaze releases.
For example, for fixation duration (a popular aggregate statis-
tic), Kaleido can decide on a predefined threshold T based
on standard human gaze fixations [34]. Next, stage I and II
from Algorithm | can be replaced by a sophisticated fixation
detection approach such as online differentially private clus-
tering [43,55], which (1) releases a single noisy position in
the first 7 duration of a fixation and (2) stops any further data
release for the given fixation. This ensures that the duration
for all fixation events in the noisy gaze stream is fixed to 7.
Optimization for long scenes. Although visual content in an
eye-tracking application is typically dynamic, it might remain
relatively static for long periods in some cases. Such long
scenes that span multiple windows may lead to a large pri-
vacy budget consumption. Techniques including noisy data
caching can be used to help address this issue. Specifically,
Kaleido can check online if the current ROI has been visited
previously, and it can reuse the corresponding noisy gazes
from recent history. Additionally, for applications where inter-
actions are sporadic, Kaleido can skip releasing new gazes for
scenes when the user is inactive to save the privacy budget.
Optimizations for context processing. One interesting fu-
ture direction can be optimizing Kalgido’s context processing
core. The overhead of Kaleido’s context processing can be re-
duced by sharing the detection module with other applications.
Kaleido can leverage other models for ROI detection, includ-
ing Selective Search [85] and Faster R-CNN [72], which
may be implemented by the platform already. For instance,
eye-tracking platforms, such as Hololens [59], provide certain
context information that Kalgido can use directly for perfor-
mance optimization. Additionally, smart calibration of the
frequency of key frame detection can also reduce the over-
head of context processing.

Optimizations for privacy budget allocation. In this paper,

the presented composition theorem (Theorem 2) is based
on the simple k-fold composition of the DP guarantee [21].
However, a tighter analysis might be possible via advanced
composition [21] and moment-based accounting [1].
Evaluation of other utility metrics. In this paper, we pri-
marily focus on qualitatively evaluating Kaleido’s utility for
the use case of a real-time game (as demonstrated in Section
7). However, as mentioned in Section 2.2, eye-tracking data
is used for diverse purposes. Hence, an important future direc-
tion is to investigate user perception for other online applica-
tions and quantitatively evaluate Kalgido’s utility for offline
gaze data analysis (Kaleido’s impact on fixation saliency maps
is presented in Appendix A.2.3). Another direction could be
exploring application-specific utility optimizations. For in-
stance, data-smoothing techniques can be used to improve the
accuracy of the noisy gaze streams.

9 Conclusion

We have designed and implemented Kalgido, an eye gaze pro-
cessing system that (1) provides a formal privacy guarantee on
the spatial distribution of raw gaze positions, (2) seamlessly
integrates with existing eye-tracking ecosystems, and (3) is
capable of operating in real-time. Kal€ido acts as an interme-
diary protection layer between the eye-tracking platform and
the applications. Our evaluation results show that users enjoy
a satisfactory level of utility while deploying Kaleido for an
interactive eye-tracking game. Additionally, it is successful in
thwarting real-world spatio-temporal attacks on gaze streams.

Acknowledgments

We thank our user study participants, the anonymous review-
ers, and the shepherd, Apu Kapadia, for their contributions
and valuable suggestions. This project is supported in part
by NSF under grants 1719336, 1845469, 1838733, 1942014,
2003129, and 1931364.

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov,
K. Talwar, and L. Zhang. Deep learning with differential pri-
vacy. In ACM CCS, 2016.

[2] J. M. Abowd and I. M. Schmutte. An economic analysis of

privacy protection and statistical accuracy as social choices.

American Economic Review, 109(1):171-202, 2019.

A. Acik, A. Sarwary, R. Schultze-Kraft, S. Onat, and P. Konig.

Developmental changes in natural viewing behavior: bottom-

up and top-down differences between children, young adults

and older adults. Frontiers in Psychology, 1:207, 2010.

I. Agtzidis, M. Startsev, and M. Dorr. 360-degree video gaze

behaviour: A ground-truth data set and a classification algo-

rithm for eye movements. In ACM MM, 2019.

3

—

[4

—_

[5] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi. Geo-indistinguishability: Differential privacy
for location-based systems. In ACM CCS, 2013.

[6] E. Arabadzhiyska, O. T. Tursun, K. Myszkowski, H. Seidel,
and P. Didyk. Saccade landing position prediction for gaze-
contingent rendering. ACM TOG, 36(4):1-12, 2017.

[7] K. Bannier, E. Jain, and O. Le Meur. Deepcomics: Saliency
estimation for comics. In ACM ETRA, 2018.

[8] W. Becker and A. F. Fuchs. Further properties of the human
saccadic system: eye movements and correction saccades with
and without visual fixation points. Vision Research, 9(10):1247—
1258, 1969.

[9] S. A. Beedie, D. M. St. Clair, and P. J. Benson. Atypi-
cal scanpaths in schizophrenia: evidence of a trait-or state-
dependent phenomenon? Journal of Psychiatry & Neuro-
science, 36(3):150, 2011.

[10] S. Berkovsky, R. Taib, I. Koprinska, E. Wang, Y. Zeng, J. Li,
and S. Kleitman. Detecting personality traits using eye-
tracking data. In ACM CHI, 2019.

[11] A. Borji, D. N. Sihite, and L. Itti. Quantitative analysis of
human-model agreement in visual saliency modeling: A com-
parative study. IEEE TIP, 22(1):55-69, 2012.

[12] E. Bozkir, O. Giinlii, W. Fuhl, R. F. Schaefer, and E. Kasneci.
Difterential privacy for eye tracking with temporal correlations.
arXiv:2002.08972, 2020.

[13] E. Bozkir, A. B. Unal, M. Akgiin, E. Kasneci, and N. Pfeifer.
Privacy preserving gaze estimation using synthetic images via
a randomized encoding based framework. arXiv:1911.07936,
2019.

[14] F. Broz, H. Lehmann, B. Mutlu, and Y. Nakano. Gaze in
Human-Robot Communication, volume 81. John Benjamins
Publishing Company, 2015.

[15] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand.
What do different evaluation metrics tell us about saliency
models? IEEE TPAMI, 41(3):740-757, 2018.

[16] S. Castagnos, N. Jones, and P. Pu. Eye-tracking product rec-
ommenders’ usage. In ACM RecSys, 2010.

[17] G. Charness, U. Gneezy, and M. A. Kuhn. Experimental meth-
ods: Between-subject and within-subject design. Journal of
Economic Behavior & Organization, 81(1):1-8, 2012.

[18] K. Chatzikokolakis, C. Palamidessi, and M. Stronati. A pre-
dictive differentially-private mechanism for mobility traces. In
PETS, 2014.

[19] A. Coutrot, J. H. Hsiao, and A. B. Chan. Scanpath model-
ing and classification with hidden markov models. Behavior
Research Methods, 50(1):362-379, 2018.

[20] R. Dewhurst, M. Nystrom, H. Jarodzka, T. Foulsham, R. Jo-
hansson, and K. Holmgqvist. It depends on how you look at
it: Scanpath comparison in multiple dimensions with multi-
match, a vector-based approach. Behavior Research Methods,
44(4):1079-1100, 2012.

[21] C. Dwork and A. Roth. The algorithmic foundations of dif-
ferential privacy. Found. Trends Theor. Comput. Sci., 9(Nos.
3-4):211-407, 2014.

[22] S.Eberz, G. Lovisotto, A. Patane, M. Kwiatkowska, V. Lenders,
and I. Martinovic. When your fitness tracker betrays you: Quan-
tifying the predictability of biometric features across contexts.
In IEEE S&P, 2018.

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

[38]

(39]

[40]

[41]

[42]

S. Eberz, G. Lovisotto, K. B. Rasmussen, V. Lenders, and
I. Martinovic. 28 blinks later: Tackling practical challenges of
eye movement biometrics. In ACM CCS, 2019.

S. Eraslan, Y. Yesilada, and S. Harper. Scanpath trend analysis
on web pages: Clustering eye tracking scanpaths. ACM TWEB,
10(4):1-35, 2016.

GazeRecorder. GazeRecorder—webcam eye tracking, 2020.
https://gazerecorder.com.

A. Gibaldi, M. Vanegas, P. J. Bex, and G. Maiello. Evaluation
of the tobii eyex eye tracking controller and matlab toolkit for
research. Behavior Research Methods, 49(3):923-946, 2017.

S. R. Gulliver and G. Ghinea. The perceptual and attentive
impact of delay and jitter in multimedia delivery. IEEE Trans-
actions on Broadcasting, 53(2):449-458, 2007.

M. J. Haass, L. E. Matzen, K. M. Butler, and M. Armenta. A
new method for categorizing scanpaths from eye tracking data.
In ACM ETRA, 2016.

I. Hagestedt, M. Backes, and A. Bulling. Adversarial attacks
on classifiers for eye-based user modelling. In ACM ETRA,
2020.

R. S. Hessels, C. Kemner, C. van den Boomen, and 1. T. C.
Hooge. The area-of-interest problem in eyetracking research:
A noise-robust solution for face and sparse stimuli. Behavior
Research Methods, 48(4):1694-1712, 2016.

R. S. Hessels, D. C. Niehorster, C. Kemner, and I. T. C. Hooge.
Noise-robust fixation detection in eye movement data: Identi-
fication by two-means clustering (i2mc). Behavior Research
Methods, 49(5):1802-1823, 2017.

C. Holland, A. Garza, E. Kurtova, J. Cruz, and O. Komogortsev.
Usability evaluation of eye tracking on an unmodified common
tablet. In ACM CHI EA, 2013.

C. Holland and O. V. Komogortsev. Biometric identification
via eye movement scanpaths in reading. In /EEE [JCB, 2011.
I. TH. C. Hooge and C. J. Erkelens. Adjustment of fixation
duration in visual search. Vision Research, 38(9):1295-IN4,
1998.

J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan,
B. C. Pierce, and A. Roth. Differential privacy: An economic
method for choosing epsilon. In IEEE CSF, 2014.

H. Hutchinson and et al. Technology probes: Inspiring design
for and with families. In ACM CHI, 2003.

S. Jalaliniya, D. Mardanbegi, I. Sintos, and D. G. Garcia. Eye-
droid: an open source mobile gaze tracker on android for eye-
wear computers. In ACM UbiComp, 2015.

S. Jana, A. Narayanan, and V. Shmatikov. A scanner darkly:
Protecting user privacy from perceptual applications. In IEEE
S&P, 2013.

M. Jiang, S. Huang, J. Duan, and Q. Zhao. Salicon: Saliency
in context. In /EEE CVPR, 2015.

B. John, P. Raiturkar, O. Le Meur, and E. Jain. A benchmark
of four methods for generating 360° saliency maps from eye
tracking data. IJSC, 13(03):329-341, 2019.

Z. Kapoula, Q. Yang, J. Otero-Millan, S. Xiao, S. L. Macknik,
A.Lang, M. Verny, and S. Martinez-Conde. Distinctive features
of microsaccades in alzheimer’s disease and in mild cognitive
impairment. Age, 36(2):535-543, 2014.

G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias. Dif-
ferentially private event sequences over infinite streams. In
VLDB, 2014.

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

M. Khavkin and M. Last. Preserving differential privacy and
utility of non-stationary data streams. In /[EEE ICDMW, 2018.
S. D. Konig and E. A. Buffalo. A nonparametric method for
detecting fixations and saccades using cluster analysis: Remov-
ing the need for arbitrary thresholds. Journal of Neuroscience
Methods, 227:121-131, 2014.

K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar,
W. Matusik, and A. Torralba. Eye tracking for everyone. In
IEEE CVPR, 2016.

M. Kumar, T. Winograd, and A. Paepcke. Gaze-enhanced
scrolling techniques. In ACM CHI EA, 2007.

Pupil Labs. Gaze Datum Format, 2020. https :
//docs .pupil-labs.com/developer/core/overview/
#gaze-datum-format.

D. Lamas, F. Loizides, L. Nacke, H. Petrie, M. Winckler, and
P. Zaphiris. Human-Computer Interaction—-INTERACT 2019,
volume 11748. Springer, 2019.

M. F. Land and M. Hayhoe. In what ways do eye movements
contribute to everyday activities? Vision Research, 41(25-
26):3559-3565, 2001.

J. Lee and C. Clifton. How much is enough? choosing € for
differential privacy. In ISC, 2011.

Y. Li, Z. Cao, and J. Wang. Gazture: Design and implementa-
tion of a gaze based gesture control system on tablets. ACM
IMWUT, 1(3):1-17, 2017.

TY. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dolldr, and C. L. Zitnick. Microsoft coco: Common
objects in context. In ECCV, 2014.

A. Liu, L. Xia, A. Duchowski, R. Bailey, K. Holmqvist, and
E. Jain. Differential privacy for eye-tracking data. In ACM
ETRA, 2019.

L. Liu, H. Li, and M. Gruteser. Edge assisted real-time object
detection for mobile augmented reality. In ACM MobiCom,
2019.

Z. Lu and H. Shen. Differentially private k-means clustering
with guaranteed convergence. arXiv:2002.01043, 2020.

P. Majaranta and A. Bulling. Eye tracking and eye-based
human—computer interaction. In Advances in Physiological
Computing, pages 39—65. Springer, 2014.

S. Marwecki, A. D. Wilson, E. Ofek, M. Gonzalez Franco,
and C. Holz. Mise-unseen: Using eye tracking to hide virtual
reality scene changes in plain sight. In ACM UIST, 2019.

S. A. McMains and S. Kastner. Visual attention. Encyclopedia
of Neuroscience, 1:4296-4302, 2009.

Microsoft. Scene understanding SDK
overview, 2020. https : / / docs . microsoft .
com / en-us / windows / mixed-reality /
develop / platform-capabilities-and-apis /

scene-understanding-SDK.

A. E. Millen and P. J. B. Hancock. Eye see through you! eye
tracking unmasks concealed face recognition despite counter-
measures. Cognitive Research: Principles and Implications,
4(1):23, 2019.

E. Miluzzo, T. Wang, and A. T. Campbell. Eyephone: activating
mobile phones with your eyes. In ACM MobiHeld, 2010.

C. H. Morimoto and M. R. M. Mimica. Eye gaze tracking
techniques for interactive applications. Computer Vision and
Image Understanding, 98(1):4-24, 2005.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

(791

(80]

C. Miiller, W. Stoll, and F. Schmél. The effect of optical devices
and repeated trials on the velocity of saccadic eye movements.
Acta Oto-Laryngologica, 123(4):471-476, 2003.

K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity
and sampling in private data analysis. In ACM SOTC, 2007.
S. Oya, C. Troncoso, and F. Pérez-Gonzdlez. Is geo-
indistinguishability what you are looking for? In ACM WPES,
2017.

A. Papoutsaki, P. Sangkloy, J. Laskey, N. Daskalova, J. Huang,
and J. Hays. Webgazer: Scalable webcam eye tracking using
user interactions. In IJCAI, 2016.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman,
N. Benty, D. Luebke, and A. Lefohn. Towards foveated ren-
dering for gaze-tracked virtual reality. ACM TOG, 35(6):179,
2016.

R. Pieters, E. Rosbergen, and M. Wedel. Visual attention to
repeated print advertising: A test of scanpath theory. Journal
of Marketing Research, 36(4):424-438, 1999.

N. Raval, A. Srivastava, K. Lebeck, L. Cox, and A. Machanava-
jjhala. Markit: Privacy markers for protecting visual secrets.
In ACM UbiComp, 2014.

K. Rayner, M. S. Castelhano, and J. Yang. Eye movements
when looking at unusual/weird scenes: Are there cultural differ-
ences? Journal of Experimental Psychology: Learning, Mem-
ory, and Cognition, 35(1):254, 2009.

J. Redmon and A. Farhadi. Yolov3: An incremental improve-
ment. arXiv:1804.02767, 2018.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, 2015.

F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J. Wang.
World-driven access control for continuous sensing. In ACM
CCS, 2014.

D. D. Salvucci and J. H. Goldberg. Identifying fixations and
saccades in eye-tracking protocols. In ACM ETRA, 2000.

A. Sanchez, C. Vazquez, C. Marker, J. LeMoult, and J. Joor-
mann. Attentional disengagement predicts stress recovery in
depression: An eye-tracking study. Journal of Abnormal Psy-
chology, 122(2):303, 2013.

J. S. Silk, L. R. Stroud, G. J. Siegle, R. E. Dahl, K. H. Lee,
and E. E. Nelson. Peer acceptance and rejection through the
eyes of youth: pupillary, eyetracking and ecological data from
the chatroom interact task. Social Cognitive and Affective
Neuroscience, 7(1):93-105, 2012.

M. Siqueiros Sanchez, E. Pettersson, D. P. Kennedy, S. Bolte,
P. Lichtenstein, B. M. D’Onofrio, and T. Falck-Ytter. Visual
disengagement: Genetic architecture and relation to autistic
traits in the general population. Journal of Autism and Devel-
opmental Disorders, 2019.

P. C. Stacey, S. Walker, and J. D. M. Underwood. Face pro-
cessing and familiarity: Evidence from eye-movement data.
British Journal of Psychology, 96(4):407-422, 2005.

J. Steil, I. Hagestedt, M. X. Huang, and A. Bulling. Privacy-
aware eye tracking using differential privacy. In ACM ETRA,
2019.

W. Steptoe, R. Wolff, A. Murgia, E. Guimaraes, J. Rae,
P. Sharkey, D. Roberts, and A. Steed. Eye-tracking for avatar
eye-gaze and interactional analysis in immersive collaborative
virtual environments. In ACM CSCW, 2008.

[81] A. Strauss and J. Corbin. Basics of Qualitative Research
Techniques. Sage, 1998.

[82] P. Termsarasab, T. Thammongkolchai, J. C. Rucker, and S. J.
Frucht. The diagnostic value of saccades in movement disorder
patients: a practical guide and review. Journal of Clinical
Movement Disorders, 2(1):14, 2015.

[83] Tobii. Scripting APl of Tobii Unity SDK, 2020.
https://developer.tobii.com/pc-gaming/unity-sdk/
scripting-api/.

[84] T. Toyama, D. Sonntag, A. Dengel, T. Matsuda, M. Iwamura,
and K. Kise. A mixed reality head-mounted text translation
system using eye gaze input. In ACM 1UI, 2014.

[85] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and
A. W. M. Smeulders. Selective search for object recognition.
1JCV, 104(2):154-171, 2013.

[86] Unity. Scripting Reference of XR.Eyes, 2020. https://docs.
unity3d.com/ScriptReference/XR.Eyes.html.

[87] Unity. Survival shooter tutorial, 2020. https://learn.
unity . com / project / survival-shooter-tutorial /
?tab=overview.

[88] Unity. Unity Scripting API: Keyframe, 2020. https://docs.
unity3d.com/ScriptReference/Keyframe.html.

[89] J. Varona, C. Manresa-Yee, and F. J. Perales. Hands-free vision-
based interface for computer accessibility. Journal of Network
and Computer Applications, 31(4):357-374, 2008.

[90] R.J. Wang, X. Li, and C. X. Ling. Pelee: A real-time object
detection system on mobile devices. In NIPS, 2018.

[91] N. Wilming, S. Onat, J. P. Ossanddn, A. Acik, T. C. Kietzmann,
K. Kaspar, R. R. Gameiro, A. Vormberg, and P. Konig. An
extensive dataset of eye movements during viewing of complex
images. Scientific Data, 4(1):1-11, 2017.

[92] S. Xu, H. Jiang, and F. C. M. Lau. Personalized online docu-
ment, image and video recommendation via commodity eye-
tracking. In ACM RecSys, 2008.

[93] Z. Ye, Y. Li, A. Fathi, Y. Han, A. Rozga, G. D. Abowd, and
J. M. Rehg. Detecting eye contact using wearable eye-tracking
glasses. In ACM Ubicomp, 2012.

[94] X. Yiand N. Ling. Fast pixel-based video scene change detec-
tion. In IEEE ISCAS, 2005.

A Appendix

A.1 Proof of Theorem 2

Theorem 2 (Composition over multiple windows theo-
rem). Let M : S8 — C8 be a mechanism that takes as in-
put a gaze stream prefix S§ = ((g1.11),++ , (8k-1x)), and out-
puts a transcript O = (01, ,0r) € C. Additionally, let M
be decomposed into k mechanisms M,,--- , My such that
Mi(gi) = 0, and each M; generates independent random-
ness while achieving (€;,r)-geo-indistinguishability. Then for
two stream prefixes Sf and S‘,f such that
e forallic [k], t; =t
e for each g;,g! such that i € [k] and g; # g it holds that
d(gi.g}) <r, ie, (gi.gr) are r-Euclidean neighboring,
and

- . =2 s . w=15s m w=1s w=0.5s
< £ 500 500 500
S &
S 200
=2 il I L I
=g o N (1 | (I [T o i ((F (1R 0 o |10 (101 0 AR MR ME R
~ 05 1 15 2 25 3 05 1 15 2 25 3 05 1 15 2 25 3 05 1 15 2 25 3
— € €
L 400 1000
¢ 2 500! | soo JRE! HEN l
N o |11l T | SRR oo R R R R R oo R R g g g
o
E 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3
€ € € €
Natural ‘Web page Human VR video
Figure 13: Privacy-accuracy trade-off of Kaleido.
-~ . =2 s . v=15s . w=1s w=0.5s -W_2$ w—OSs
#1000 <E 1]
= 1000 £, I I
2 "l i i s B il - Ty
5) S 0 |
1 05 15 3 3
@ o (6) 7y 5 !
0 05
. . : 2 E
Figure 14: Privacy-accuracy trade-off of Kaleido on head- < S OM—ES 5 5 15 3
€ €

and-eye gaze data.

o foreachgi,,gi,,8i -8, withiy < iz, gi # g;, and gi, # &,
it holds that t;) —t;, <m-w,m € N
YO € O,k PrM(S8) = 0] < &™ - PrIM (S5) = 0] (8)
Proof. Let m =2 and i; be the least index such that g;, #
g/, and iy be the highest index such that g;, # g},. Addi-
tionally, let ix € [i},ip] such that time(ix) — time(i;) = w.
Let S%, = ((g1,11) -+ (8is: 1)) .85, = ((is15tincr1) -+~ (8ho k)
andO 01]|02,101| = |S%.],|02| = |85, |, O € C8. Now using
the independence of noise generation for each gaze position,

Pr{M (S) = O] = Pr[M(S,) = O1] - Pr[M(S},) = O]
<8 PrIM(SE) = 01]- - PrIM(SE,) = 0,
= PrM(SY) = 0]

The rest of the proof follows trivially using induction using
the above case as the base. O

A.2 Additional Experimental Results

A.2.1 Privacy-Accuracy Trade-off

In Figure 13, we study the privacy-accuracy trade-off for vary-
ing configurations of Kaleido. The utility is measured by the
root mean square error (RMSE) in pixel. We vary the param-
eters as follows: € € {0.5,1,1.5,2,2.5,3}, w € {0.5,1,1.5,2}
and 7 € {Fgnati, Tiarge }. We generate 100 random trials for
each combination and report the mean observation. In all the

Natural Web page Human
Figure 15: Kaleido’s impact on saliency map at varying pri-

vacy configurations.

datasets, we observe a clear trend of accuracy improvement
(lower RMSE) with increasing privacy budget € or decreasing
window duration w. At the same value of € and w, using 7/4,g.
gives lower accuracy than rgyy;.

A.2.2 Kaleido’s Effect on Head-and-Eye Gaze Data

We show the privacy-accuracy trade-off for Kaleido for head-
and-eye gaze data for the VR video dataset in Figure 14. The
observations are consistent with Figure 13 of just eye gazes.

A.2.3 Kalcido’s Effect on Fixation Saliency Map

In some cases, the application utility might require extracting
the saliency maps [7,40] from users’ fixations. Figure 15
shows Kalgido’s impact on the saliency maps. We compute
the correlation coefficient, a standard metric for saliency map
similarity [15], between each user’s clean and noisy maps.
For all the datasets, Kaleido’s accuracy (higher correlation
coefficient) [11] increases with increase in the privacy budget
€ or decrease in window duration w. At the same value of
€ and w, using 7y,,¢. gives lower accuracy than 7. These
results are consistent was Kaleido’s premise: it attempts to
hide the spatial patterns of the user’s fixations. A lower value
of € would result in less accurate extraction of the saliency
maps.

