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Abstract
This work deals with the Cohen–Monk Perfectly Matched Layer (PML) model. We
first carry out the stability analysis of its equivalent form. Then we propose and anal-
yse a finite element scheme for solving this equivalent PML model. Discrete stability
and optimal error estimate are established. Numerical results are presented to justify
the analysis and effectiveness of this PML model. This paper presents the first math-
ematical analysis for this PML model and the corresponding numerical analysis for
the proposed finite element scheme.

Mathematics Subject Classification 65N30 · 35L15 · 78-08

1 Introduction

Since the introduction of the Perfectly Matched Layer (PML) by Bérenger in 1994
[4] for solving the time-dependent Maxwell’s equations in unbounded domains, it has
become almost the exclusive choice for wave propagation simulation. Since 1994,
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many PML models have been proposed and studied, and its applications have been
extended to acoustic wave, elastodynamics wave, and electromagnetic wave propa-
gation in complex media [1,3]. Due to the complexity of PML governing equations,
compared to many engineering papers on PMLmodels and their applications (see [17,
Ch.7], [14, Ch.8] and references therein), publications on the mathematical analysis
of PML and numerical analysis of various numerical methods developed for solving
the time-domain PML models are quite limited [2,5,6,8,11,13,15].

Back in 1999, by using the stretched coordinates approach, Cohen and Monk [7]
developed a PML model and proposed using mapped mass-lumped edge elements to
solve it. In 2014, we [9] carried out the well-posedness study of this Cohen–Monk
PMLmodel by proving the existence and uniqueness, and stability of this PMLmodel.
However, we were unable to establish the numerical stablity for both the original finite
element scheme proposed by Cohen and Monk [7] and a new scheme proposed by
us in [9]. This paper is our continuous effort on studying this PML model. More
specifically, by reformulating the Cohen–Monk PML model into another equivalent
form,wemanage to prove its stability,which is different from that obtained in [9]. Then
we propose a finite element scheme for this equivalent PML model. By following the
proof technique developed for the continuous stability analysis, we establish a discrete
stability which has exactly the same form as the continuous stability. To the best of
our knowledge, this is the first paper which establishes a complete numerical stability
and error estimate for a finite element scheme developed to solve this PML model.

The rest of the paper is organized as follows. In Sect. 2, we first establish the equiv-
alent Cohen–Monk PML model, and then prove its stability. In Sect. 3, we propose a
fully-discrete finite element scheme for this equivalent PML model, and prove both
the discrete stability and optimal error estimate of the scheme. Numerical results are
presented in Sect. 4 to demonstrate the correct implementation of our scheme and the
performance of this equivalent PML model. We conclude the paper in Sect. 5.

2 The Cohen–Monk PMLmodel and its analysis

The governing equations of the Cohen–Monk PML model are given as follows [7]:

ε0
∂E∗

∂t
− ∇ × H = 0, (1)

μ0
∂H∗

∂t
+ ∇ × E = 0, (2)

∂2E
∂t2

+ Cm
∂E
∂t

+ DE = ∂2E∗

∂t2
+ G

∂E∗

∂t
, (3)

∂2H
∂t2

+ Cm
∂H
∂t

+ DH = ∂2H∗

∂t2
+ G

∂H∗

∂t
, (4)

where ε0 and μ0 are the vacuum permittivity and permeability, respectively, E(x, t)
andH(x, t) are the electric andmagnetic fields, respectively, andE∗(x, t) andH∗(x, t)
are the auxiliary electric andmagnetic fields, respectively.Moreover, the 3×3 diagonal
matrices Cm , D and G are given by
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Cm = diag(σ2 + σ3, σ1 + σ3, σ1 + σ2), D = diag(σ2σ3, σ1σ3, σ1σ2),

G = diag(σ1, σ2, σ3), (5)

where σ1, σ2 and σ3 are nonnegative functions and represent the damping variations
along the x , y, and z directions, respectively.

To investigate the well-posedness of the model problem (1)–(4), we assume that
(1)–(4) hold in the domain [7]

� = (R3 \ S) ∩ ([−L1 − δ1, L1 + δ1] × [−L2 − δ2, L2 + δ2] × [−L3 − δ3, L3 + δ3]),

where S denotes the perfectly conducting (PEC) scatter, δi > 0, i = 1, 2, 3, is the
thickness of the PML in the x , y, and z directions, respectively. Furthermore, the
entire scatter is assumed to be contained in the hexahedron [−L1, L1]× [−L2, L2]×
[−L3, L3] , and the problem (1)–(4) satisfies the PEC boundary condition

n × E = 0 on ∂� = �s ∪ �∞, (6)

where n is the unit outward normal to the scatter boundary �s and the boundary �∞
of the box [−L1 − δ1, L1 + δ1]× [−L2 − δ2, L2 + δ2]× [−L3 − δ3, L3 + δ3]. Finally,
we assume that (1)–(4) is supplemented with the initial conditions

E(x, 0) = E0(x), H(x, 0) = H0(x),
E∗(x, 0) = E∗

0(x), H∗(x, 0) = H∗
0(x),

(7)

where E0(x), H0(x), E∗
0(x) and H∗

0(x) are some given functions.
We integrate the model Eqs. (3) and (4) with respect to time once and obtain the

following PML equations:

ε0
∂E∗

∂t
− ∇ × H = 0, (8)

μ0
∂H∗

∂t
+ ∇ × E = 0, (9)

∂E
∂t

+ CmE + D
∫ t

0
Edt = ∂E∗

∂t
+ GE∗ + f , (10)

∂H
∂t

+ CmH + D
∫ t

0
Hdt = ∂H∗

∂t
+ GH∗ + g, (11)

where f = ∂E
∂t (x, 0) + CmE(x, 0) − ∂E∗

∂t (x, 0) − GE∗(x, 0) and g = ∂H
∂t (x, 0) +

CmH(x, 0) − ∂H∗
∂t (x, 0) − GH∗(x, 0) are time-independent function.

Denote J(x, t) = ∫ t
0 Edt and K(x, t) = ∫ t

0 Hdt , which imply that J(x, 0) :=
J0(x) = 0 and K(x, 0) := K0(x) = 0. Hence, we obtain the following new equivalent
governing equations for the Cohen–Monk PML model:

∂J
∂t

= E, (12)
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∂K
∂t

= H, (13)

ε0
∂E∗

∂t
− ∇ × H = 0, (14)

μ0
∂H∗

∂t
+ ∇ × E = 0, (15)

∂E
∂t

+ CmE + DJ = ∂E∗

∂t
+ GE∗ + f , (16)

∂H
∂t

+ CmH + DK = ∂H∗

∂t
+ GH∗ + g, (17)

subject to the initial conditions

E(x, 0) = E0(x),H(x, 0) = H0(x),E∗(x, 0) = E∗
0(x),H

∗(x, 0)
= H∗

0(x), J(x, 0) = K(x, 0) = 0, (18)

where E0(x), H0(x), E∗
0(x), H

∗
0(x) are some given functions.

Some common notation are used in the rest paper [14,16]:

H(div,�) =
{
u ∈ (L2(�))3; ∇ · u ∈ L2(�)

}
,

H(curl;�) = {u ∈ (L2(�))3 : ∇ × u ∈ (L2(�))3},
H0(curl;�) = {u ∈ H(curl;�) : n × u = 0, on ∂�},

with equipped norms

‖u‖H(div;�) = (‖u‖20 + ‖∇ · u‖20)
1
2 , ‖u‖H(curl;�) = (‖u‖20 + ‖∇ × u‖20)

1
2 ,

where ‖ · ‖0 denotes the standard L2 norm in �. Moreover, we denote Cv = 1√
ε0μ0

≈
3 ∗ 108m/s for the wave propagation speed in the free space.

In the rest of this section, we prove the following stability for the PML model
problem (12)–(17).

Theorem 1 For the solution (E,H,E∗,H∗,K, J) of (12)–(17), we denote the energy

E(t) =
[ ε0

2

(‖E‖20 + ||D1/2J||20 + ‖μ0H∗‖20
) + μ0

2

(‖H‖20 + ||D1/2K||20 + ‖ε0E∗‖20
)]

(t),

(19)

where D1/2 := diag((σ2σ3)1/2, (σ1σ3)1/2, (σ1σ2)1/2). Then for any t ∈ (0, T ], we
have

E(t) ≤ Cv

Cv − 1
· exp( Cv

Cv − 1
· Cstabt)

[
E(0) + Cv + 1

Cv − 1

∫ t

0
(
ε0

2
‖ f ‖20 + μ0

2
‖g‖20)ds

]
, (20)

where the constant Cstab := |Cm
Cv

+ CvG|L∞(�) + 1 + |D|L∞ (�)
Cv

.
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Proof To make our proof easy to follow, we divide it into three major parts.

(I) Multiplying (16) by ε0E, multiplying (17) by μ0H, and integrating respective
result over domain �, we obtain

ε0

2

d

dt
‖E‖20 + ε0(CmE,E) + ε0(DJ,E)

= ε0(E∗
t ,E) + ε0(GE∗,E) + ε0( f ,E). (21)

and

μ0

2

d

dt
‖H‖20 + μ0(CmH,H) + μ0(DK,H)

= μ0(H∗
t ,H) + μ0(GH∗,H) + μ0(g,H). (22)

Using (12) and (13), we have

ε0(DJ,E) = ε0(DJ, Jt ) and μ0(DK,H) = μ0(DK,K t ). (23)

Multiplying (14) byE, integrating by part over domain� , and usingPECboundary
condition (6), we obtain

ε0(E∗
t ,E) = (∇ × H,E) = (∇ × E,H). (24)

Multiplying (15) by H, then integrating over domain � , we obtain

μ0(H∗
t ,H) = −(∇ × E,H). (25)

Adding (21) and (22) together, and using (23)–(25), we obtain

d

dt

[ε0

2

(
‖E‖20 + (DJ, J)

)
+ μ0

2

(
‖H‖20 + (DK,K)

)]

+ ε0(CmE,E) + μ0(CmH,H)

= ε0(GE∗,E) + ε0( f ,E) + μ0(GH∗,H) + μ0(g,H).

(26)

Integrating (26) with respect to t from 0 to t , and dropping the non-negative terms
ε0(CmE,E) and μ0(CmH,H), we have

ε0

2

(
‖E‖20(t) + (DJ, J)(t)

)
+ μ0

2

(
‖H‖20(t) + (DK,K)(t)

)

≤ ε0

2

(
‖E‖20(0) + (DJ, J)(0)

)
+ μ0

2

(
‖H‖20(0) + (DK,K)(0)

)

+
∫ t

0

[
(GE, ε0E∗) + ε0( f ,E) + (GH, μ0H∗) + μ0(g,H)

]
dt .

(27)
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(II) To control the terms E∗ and H∗ in (27), we multiply (16) by ε20μ0E∗ and (17) by
ε0μ

2
0H

∗, and integrating the respective result over domain �, we obtain

μ0

2

d

dt
‖ε0E∗‖20 + ε20μ0(GE∗,E∗)

= ε0μ0
[
(Et , ε0E∗) + (CmE + DJ − f , ε0E∗)

]
, (28)

and

ε0

2

d

dt
‖μ0H∗‖20 + ε0μ

2
0(GH∗,H∗)

= ε0μ0
[
(Ht , μ0H∗) + (CmH + DK − g, μ0H∗)

]
. (29)

Using property d
dt (u, v) = (ut , v) + (u, vt ), (24) and (25), we have

ε0μ0(Et , ε0E∗) = ε0μ0

[
d

dt
(E, ε0E∗) − (E, ε0E∗

t )

]

= ε0μ0
d

dt
(E, ε0E∗) − ε0μ0(∇ × E,H), (30)

and

ε0μ0(Ht , μ0H∗) = ε0μ0

[
d

dt
(H, μ0H∗) − (H, μ0H∗

t )

]

= ε0μ0
d

dt
(H, μ0H∗) + ε0μ0(∇ × E,H). (31)

Adding (28) and (29) together, and substituting (30) and (31) into the result, we
obtain

μ0

2

d

dt
‖ε0E∗‖20 + ε0

2

d

dt
‖μ0H∗‖20 + ε20μ0(GE∗,E∗) + ε0μ

2
0(GH∗,H∗)

= ε0μ0
d

dt

[
(E, ε0E∗) + (H, μ0H∗)

] + (
ε0μ0(CmE + DJ − f ), ε0E∗)

+ (
ε0μ0(CmH + DK − g), μ0H∗) . (32)

Integrating (32) with respect to t from 0 to t and dropping the non-negative terms
ε20μ0(GE∗,E∗) and ε0μ

2
0(GH∗,H∗), we obtain

[μ0

2
‖ε0E∗‖20(t) + ε0

2
‖μ0H∗‖20(t)

]
−
[μ0

2
‖ε0E∗‖20(0) + ε0

2
‖μ0H∗‖20(0)

]

≤ ε0μ0
[
(E, ε0E∗)(t) + (H, μ0H∗)(t) − (E, ε0E∗)(0) − (H, μ0H∗)(0)

]

+
∫ t

0

[(
ε0μ0(CmE + DJ − f ), ε0E∗) + (

ε0μ0(CmH + DK − g), μ0H∗)] dt .
(33)
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Adding (27) and (33) together, we have

ε0

2

(
‖E‖20(t) + ‖D1/2J‖20(t) + ‖μ0H∗‖20(t)

)

+ μ0

2

(
‖H‖20(t) + ‖D1/2K‖20(t) + ‖ε0E∗‖20(t)

)

≤ ε0

2

(
‖E‖20(0) + ‖D1/2J‖20(0) + ‖μ0H∗‖20(0)

)

+ μ0

2

(
‖H‖20(0) + ‖D1/2K‖20(0) + ‖ε0E∗‖20(0)

)

+ ε0μ0
[
(E, ε0E∗)(t) + (H, μ0H∗)(t) − (E, ε0E∗)(0) − (H, μ0H∗)(0)

]

+
∫ t

0

[(
(ε0μ0Cm + G)E + ε0μ0DJ − ε0μ0 f , ε0E∗) + ε0( f ,E)

+ (
(ε0μ0Cm + G)H + ε0μ0DK − ε0μ0g, μ0H∗) + μ0(g,H)

]
dt . (34)

(III) Nowwe need to bound those right hand terms of (34). Using theCauchy–schwarz
inequality and the definition of Cv , we have

ε0μ0(E, ε0E∗)(t) = √
ε0μ0(

√
ε0E,

√
μ0(ε0E∗))(t)

≤ 1

Cv

[ε0

2
‖E‖20(t) + μ0

2
‖ε0E∗‖20(t)

]
. (35)

By the same technique, we obtain

ε0μ0(H, μ0H∗)(t) = √
ε0μ0(

√
μ0H,

√
ε0(μ0H∗))(t)

≤ 1

Cv

[ε0

2
‖μ0H∗‖20(t) + μ0

2
‖H‖20(t)

]
. (36)

Similarly, we have

∫ t

0
((ε0μ0Cm + G)E, ε0E∗)dt =

∫ t

0

(
(
√

ε0μ0Cm + G√
ε0μ0

)
√

ε0E,
√

μ0(ε0E∗)
)
dt

≤ |Cm

Cv

+ CvG|L∞(�)

∫ t

0
| (√ε0E,

√
μ0(ε0E∗)

) |dt (37)

≤ |Cm

Cv

+ CvG|L∞(�)

[∫ t

0

ε0

2
‖E‖20dt +

∫ t

0

μ0

2
‖ε0E∗‖20dt

]
,

∫ t

0
(ε0μ0DJ, ε0E∗)dt = √

ε0μ0

∫ t

0

(√
ε0DJ,

√
μ0(ε0E∗)

)
dt (38)

≤ 1

Cv

[
|D|L∞(�)

∫ t

0

ε0

2
‖D1/2J‖20dt +

∫ t

0

μ0

2
‖ε0E∗‖20dt

]
,

∫ t

0
−(ε0μ0 f , ε0E∗)dt = −√

ε0μ0

∫ t

0

(√
ε0 f ,

√
μ0(ε0E∗)

)
dt (39)

≤ 1

Cv

[∫ t

0

ε0

2
‖ f ‖20dt +

∫ t

0

μ0

2
‖ε0E∗‖20dt

]
,
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and

∫ t

0
ε0( f ,E)dt =

∫ t

0

(√
ε0 f ,

√
ε0E

)
dt ≤

∫ t

0

ε0

2
‖ f ‖20dt +

∫ t

0

ε0

2
‖E‖20dt . (40)

By the same technique, we obtain

∫ t

0
((ε0μ0Cm + G)H, μ0H∗)dt =

∫ t

0

(
(
√

ε0μ0Cm + G√
ε0μ0

)
√

μ0H,
√

ε0(μ0H∗)
)
dt

≤ |Cm

Cv

+ CvG|L∞(�)

∫ t

0

(√
μ0H,

√
ε0(μ0H∗)

)
dt

≤ |Cm

Cv

+ CvG|L∞(�)

[∫ t

0

ε0

2
‖μ0H∗‖20dt +

∫ t

0

μ0

2
‖H‖20dt

]
,

(41)∫ t

0
(ε0μ0DK, μ0H∗)dt = √

ε0μ0

∫ t

0

(√
μ0DK,

√
ε0(μ0H∗)

)
dt

≤ 1

Cv

[
|D|L∞(�)

∫ t

0

μ0

2
‖D1/2K‖20dt +

∫ t

0

ε0

2
‖μ0H∗‖20dt

]
,

(42)∫ t

0
−(ε0μ0g, μ0H∗)dt = −√

ε0μ0

∫ t

0

(√
μ0g,

√
ε0(μ0H∗)

)
dt

≤ 1

Cv

[∫ t

0

ε0

2
‖μ0H∗‖20dt +

∫ t

0

μ0

2
‖g‖20dt

]
, (43)

and

∫ t

0
μ0(g,H)dt =

∫ t

0

(√
μ0g,

√
μ0H

)
dt ≤

∫ t

0

μ0

2
‖g‖20dt +

∫ t

0

μ0

2
‖H‖20dt .

(44)

Substituting the estimates (38)–(44) into (34), and using the definitions E(t) and
Cstab, we can obtain

(1 − 1

Cv

)E(t) ≤ E(0) + (1 + 1

Cv

)

∫ t

0
(
ε0

2
‖ f ‖20 + μ0

2
‖g‖20)dt + Cstab

∫ t

0
Edt,

which completes the proof by using the Gronwall inequality. �


3 The fully discrete finite element scheme and its analysis

Todesign thefinite elementmethod,wepartition the physical domain� into a family of
regular cubic (or tetrahedral)meshesTh .WedenotehK for the diameter of element K ∈
Th and set the maximum mesh size h = maxK∈Th hK . Depending on the regularity
of the solution, an arbitrary l-th (l ≥ 1) order Raviart-Thomas-Nédélec (RTN) finite
element space on a cubic mesh can be used [16]:
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Vh = {
ψh ∈ H(div;�) : ψh

∣∣
K ∈ Ql,l−l,l−l × Ql−l,l,l−l × Ql−l,l−l,l ,∀K ∈ Th

}
,

Uh = {
φh ∈ H(curl;�) : φh

∣∣
K ∈ Ql−l,l,l × Ql,l−l,l × Ql,l,l−l ,∀K ∈ Th

}
,

where Qi, j,k denote the space of polynomials whose degrees are less than or equal to
i , j and k in variables x , y and z, respectively. To accommodate the PEC boundary
condition, we denote the subspace

U0
h = {

φh ∈ Uh : n × φh = 0 on ∂�
}
.

RTN elements on tetrahedral mesh can be defined accordingly [16].
To construct a fully discrete scheme, we divide the time interval I = [0, T ] into N

uniform subintervals Ii = [ti−1, ti ] by points ti = iτ , i = 0, 1, . . . , N , where τ = T
N .

In practical wave simulation, the initial wave fields are usually set to zero, which
makes the functions f and g in (16) and (17) zero. Hence, to simplify the rest analysis,
we will ignore f and g in the PML model equatons (16)–(17).

To solve (12)–(17), we propose the following leapfrog type scheme: given initial

approximations E0
h , E

∗0
h , J0h , H

1
2
h , H

∗ 1
2

h , K
1
2
h , for any n ≥ 1, find En+1

h , E∗n+1
h , Jn+1

h

∈ U0
h , H

n+ 3
2

h , H
∗n+ 3

2
h , K

n+ 3
2

h ∈ Vh such that

(
ε0
E∗n+1
h − E∗n

h

τ
,�h

)
=
(
H

n+ 1
2

h ,∇ × �h

)
, ∀�h ∈ U0

h, (45)

⎛
⎝μ0

H
∗n+ 3

2
h − H

∗n+ 1
2

h

τ
,�h

⎞
⎠ = −

(
∇ × En+1

h ,�h

)
, ∀�h ∈ V h, (46)

(
D
Jn+1
h − Jnh

τ
, �̃h

)
=
(
D
En+1
h + En

h

2
, �̃h

)
, ∀�̃h ∈ U0

h, (47)

⎛
⎝D

K
n+ 3

2
h − K

n+ 1
2

h

τ
, �̃h

⎞
⎠ =

⎛
⎝D

H
n+ 3

2
h + H

n+ 1
2

h

2
, �̃h

⎞
⎠ , ∀�̃h ∈ V h, (48)

(
En+1
h − En

h

τ
, �̂h

)
+
(
Cm

En+1
h + En

h

2
, �̂h

)
+
(
D
Jn+1
h + Jnh

2
, �̂h

)

=
(
E∗n+1
h − E∗n

h

τ
, �̂h

)
+
(
G
E∗n+1
h + E∗n

h

2
, �̂h

)
, ∀�̂h ∈ U0

h, (49)

⎛
⎝H

n+ 3
2

h − H
n+ 1

2
h

τ
, �̂h

⎞
⎠ +

⎛
⎝Cm

H
n+ 3

2
h + H

n+ 1
2

h

2
, �̂h

⎞
⎠ +

⎛
⎝D

K
n+ 3

2
h + K

n+ 1
2

h

2
, �̂h

⎞
⎠

=
⎛
⎝H

∗n+ 3
2

h − H
∗n+ 1

2
h

τ
, �̂h

⎞
⎠ +

⎛
⎝G

H
∗n+ 3

2
h + H

∗n+ 1
2

h

2
, �̂h

⎞
⎠ , ∀�̂h ∈ V h . (50)
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This scheme can be implemented as follows:

1. Update E∗n+1
h by solving (45) ;

2. From (47), we obtain

(
DJn+1

h , �̃h

)
= (

DJnh, �̃h
) + τ

(
D
En+1
h + En

h

2
, �̃h

)
.

Substituting this equation into (49),we canupdateEn+1
h by solving thenewequation

(49);

3. Update Jn+1
h by solving (47); Update H

∗n+ 3
2

h by solving (46). Note that these two
updates can be done in parallel.

4. From (48), we obtain

(
DK

n+ 3
2

h , �̃h

)
=
(
DK

n+ 1
2

h , �̃h

)
+ τ

⎛
⎝D

H
n+ 3

2
h + H

n+ 1
2

h

2
, �̃h

⎞
⎠ .

Substituting this equation into (50), we can update H
n+ 3

2
h by solving the updated

equation (50).

5. Update K
n+ 3

2
h by solving (48).

3.1 The stability analysis

Wededicate this section to the stability analysis for the proposed finite element scheme
(45)–(50). First, let us introduce the average the operator and central difference oper-
ator for a time sequence solution un :

un+ 1
2 = un+1 + un

2
, δt u

n+ 1
2 = un+1 − un

τ
.

For the stability analysis, we need the following lemma.

Lemma 1 For any two sequences un and vn, n = 0, 1, 2, . . . , M + 1, we have

M∑
n=0

vn+ 1
2 δt u

n+ 1
2 = 1

τ
(uM+1vM+1 − u0v0) −

M∑
n=0

un+ 1
2 δtv

n+ 1
2 .

Proof It is easy to check that

M∑
n=0

v
n+ 1

2 δt u
n+ 1

2 +
M∑
n=0

un+ 1
2 δtv

n+ 1
2

=
M∑
n=0

1

2τ

[
(un+1vn+1 − unvn+1 + un+1vn − unvn) + (un+1vn+1 + unvn+1 − un+1vn − unvn)

]
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=
M∑
n=0

1

τ
(un+1vn+1 − unvn) = 1

τ
(uM+1vM+1 − u0v0),

which completes the proof. �

With the above preparations, now we can peove the following numerical stability.

Theorem 2 Under the CFL constraint

τ ≤ min

{
h

2CvCinv

,
1

2|Cm
Cv

+ CvG|L∞(�)

}
, (51)

where the positive constant Cinv comes from the standard inverse estimate [14,16]:

‖∇ × uh‖0 ≤ Cinvh
−1‖uh‖0, ∀ u ∈ Uh, (52)

then the solution
(
Eh,Hh,E∗

h,H
∗
h, Jh,Kh

)
of (45)–(50) satisfies the following stabil-

ity: For any N ≥ 0,

ε0

2

(
‖EN+1

h ‖20 + ‖D1/2JN+1
h ‖20 + ‖μ0H

∗N+ 3
2

h ‖20
)

+ μ0

2

(
‖HN+ 3

2
h ‖20 + ‖D1/2K

N+ 3
2

h ‖20 + ‖ε0E∗N+1
h ‖20

)

≤ C

[
ε0

2

(
‖E0

h‖20 + ‖D1/2J0h‖20 + ‖μ0H
∗ 1
2

h ‖20
)

+μ0

2

(
‖H

1
2
h ‖20 + ‖D1/2K

1
2
h ‖20 + ‖ε0E∗0

h ‖20
)]

. (53)

where the positive constant C is independent of τ and h.

Proof Our proof follows the proof developed for the continuous stability given in
Theorem 1 closely. To make the proof clearly, we partition our proof into three major
parts also.

(I) Letting �̂h = ε0τ
En+1
h +En

h
2 in (49) and �̂h = μ0τ

H
n+ 3

2
h +H

n+ 1
2

h
2 in (50), respectively,

we have

ε0

2

(
‖En+1

h ‖20 − ‖En
h‖20

)
+ ε0τ‖C1/2

m E
n+ 1

2
h ‖20 + ε0τ

(
DJ

n+ 1
2

h ,E
n+ 1

2
h

)

= τ

2

(
ε0δtE

∗n+ 1
2

h ,En+1
h + En

h

)
+ ε0τ

(
GE

∗n+ 1
2

h ,E
n+ 1

2
h

)
, (54)

and

μ0

2

(
‖Hn+ 3

2
h ‖20 − ‖Hn+ 1

2
h ‖20

)
+ μ0τ‖C1/2

m H
n+1
h ‖20 + μ0τ

(
DK

n+1
h ,H

n+1
h

)
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= τ

2

(
μ0δtH

∗n+1
h ,H

n+ 3
2

h + H
n+ 1

2
h

)
+ μ0τ

(
GH

∗n+ 3
2

h ,H
n+1
h

)
. (55)

Letting �̃h = ε0τ
Jn+1
h +Jnh

2 in (47) and �̃h = μ0τ
K
n+ 3

2
h +K

n+ 1
2

h
2 in (48), respectively,

we have

ε0τ

(
DJ

n+ 1
2

h ,E
n+ 1

2
h

)
= ε0

2

(
D(Jn+1

h − Jnh), J
n+1
h + Jnh

)

= ε0

2

(
‖D1/2Jn+1

h ‖20 − ‖D1/2Jnh‖20
)

, (56)

and

μ0τ
(
DK

n+1
h ,H

n+1
h

)
= μ0

2

(
D(K

n+ 3
2

h − K
n+ 1

2
h ),K

n+ 3
2

h + K
n+ 1

2
h

)

= μ0

2

(
‖D1/2K

n+ 3
2

h ‖20 − ‖D1/2K
n+ 1

2
h ‖20

)
. (57)

Choosing �h = τ
En+1
h +En

h
2 in (45) and �h = τ

H
n+ 3

2
h +H

n+ 1
2

h
2 in (46), respectively,

we have

τ

2

(
ε0δtE

∗n+ 1
2

h ,En+1
h + En

h

)
= τ

2

(
H

n+ 1
2

h ,∇ × (En+1
h + En

h)

)
, (58)

and

τ

2

(
μ0δtH

∗n+1
h ,H

n+ 3
2

h + H
n+ 1

2
h

)
= −τ

2

(
∇ × En+1

h ,H
n+ 3

2
h + H

n+ 1
2

h

)
. (59)

Adding (54) and (55) together, and substituting (56)–(59) into the reult, we obtain

[
ε0

2

(
‖En+1

h ‖20 + ‖D1/2Jn+1
h ‖20

)
+ μ0

2

(
‖Hn+ 3

2
h ‖20 + ‖D1/2K

n+ 3
2

h ‖20
)]

−
[
ε0

2

(
‖En

h‖20 + ‖D1/2Jnh‖20
)

+ μ0

2

(
‖Hn+ 1

2
h ‖20 + ‖D1/2K

n+ 1
2

h ‖20
)]

+ ε0τ‖C1/2
m E

n+ 1
2

h ‖20 + μ0τ‖C1/2
m H

n+1
h ‖20

= τ

2

[(
H

n+ 1
2

h ,∇ × (En+1
h + En

h)

)
−
(

∇ × En+1
h ,H

n+ 3
2

h + H
n+ 1

2
h

)]

+ ε0τ

(
GE

∗n+ 1
2

h ,E
n+ 1

2
h

)
+ μ0τ

(
GH

∗n+1
h ,H

n+1
h

)
. (60)
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It is easy to check that

τ

2

[(
H

n+ 1
2

h ,∇ × (En+1
h + En

h)

)
−
(

∇ × En+1
h ,H

n+ 3
2

h + H
n+ 1

2
h

)]

= τ

2

[(
∇ × En

h,H
n+ 1

2
h

)
−
(

∇ × En+1
h ,H

n+ 3
2

h

)]
. (61)

Substituting (61) into (60), dropping the non-negative terms ε0τ‖C1/2
m E

n+ 1
2

h ‖20 and
μ0τ‖C1/2

m H
n+1
h ‖20 and summing up the result from n = 0 to N , we have

ε0

2

(
‖EN+1

h ‖20 + ‖D1/2JN+1
h ‖20

)
+ μ0

2

(
‖HN+ 3

2
h ‖20 + ‖D1/2K

N+ 3
2

h ‖20
)

≤ ε0

2

(
‖E0

h‖20 + ‖D1/2J0h‖20
)

+ μ0

2

(
‖H

1
2
h ‖20 + ‖D1/2K

1
2
h ‖20

)

+ τ

2

[(
∇ × E0

h,H
1
2
h

)
−
(

∇ × EN+1
h ,H

N+ 3
2

h

)]

+
N∑

n=0

τ

(
GE

n+ 1
2

h , ε0E
∗n+ 1

2
h

)
+

N∑
n=0

τ
(
GH

n+1
h , μ0H

∗n+1
h

)
. (62)

(II) To bound E∗
h and H∗

h in (62), we follow the similar technique developed

in the continuous case. Letting �̂h = ε20μ0τ
E∗n+1
h +E∗n

h
2 in (49) and �̂h =

ε0μ
2
0τ

H
∗n+ 3

2
h +H

∗n+ 1
2

h
2 in (50), respectively, we have

μ0

2

(
‖ε0E∗n+1

h ‖20 − ‖ε0E∗n
h ‖20

)
+ μ0τ‖G1/2ε0E

∗n+ 1
2

h ‖20

= τε0μ0

[(
δtE

n+ 1
2

h , ε0E
∗n+ 1

2
h

)
+
(
CmE

n+ 1
2

h , ε0E
∗n+ 1

2
h

)
+
(
DJ

n+ 1
2

h , ε0E
∗n+ 1

2
h

)]
,

(63)

and

ε0

2

(
‖μ0H

∗n+ 3
2

h ‖20 − ‖μ0H
∗n+ 1

2
h ‖20

)
+ ε0τ‖G1/2μ0H

∗n+1
h ‖20

= τε0μ0

[(
δtH

n+1
h , μ0H

∗n+1
h

)
+
(
CmH

n+1
h , μ0H

∗n+1
h

)
+
(
DK

n+1
h , μ0H

∗n+1
h

)]
.

(64)

Adding (63) and (64) together, dropping the non-negative terms μ0τ‖G1/2ε0

E
∗n+ 1

2
h ‖20 and ε0τ‖G1/2μ0H

∗n+1
h ‖20, and summing up the result from n = 0 to

N , we have

(
ε0

2
‖μ0H

∗N+ 3
2

h ‖20 + μ0

2
‖ε0E∗N+1

h ‖20
)

−
(

ε0

2
‖μ0H

∗ 1
2

h ‖20 + μ0

2
‖ε0E∗0

h ‖20
)
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≤ τε0μ0

N∑
n=0

[(
δtE

n+ 1
2

h , ε0E
∗n+ 1

2
h

)
+
(
δtH

n+1
h , μ0H

∗n+1
h

)]

+ τ

N∑
n=0

ε0μ0

[(
CmE

n+ 1
2

h + DJ
n+ 1

2
h , ε0E

∗n+ 1
2

h

)
+
(
CmH

n+1
h + DK

n+1
h , μ0H

∗n+1
h

)]
.

(65)

Using Lemma 1, we have

τε0μ0

N∑
n=0

(
δtE

n+ 1
2

h , ε0E
∗n+ 1

2
h

)
= ε0μ0

[(
EN+1
h , ε0E

∗N+1
h

)
−
(
E0
h, ε0E

∗0
h

)]

− τε0μ0

N∑
n=0

(
E
n+ 1

2
h , ε0δtE

∗n+ 1
2

h

)
,

(66)

and

τε0μ0

N∑
n=0

(
δtH

n+1
h , μ0H

∗n+1
h

)
= ε0μ0

[(
H

N+ 3
2

h , μ0H
∗N+ 3

2
h

)
−
(
H

1
2
h , μ0H

∗ 1
2

h

)]

− τε0μ0

N∑
n=0

(
H

n+1
h , μ0δtH

∗n+1
h

)
.

(67)

Adding (66) and (67) together, using (58), (59) and (61), we have

τε0μ0

N∑
n=0

[(
δtE

n+ 1
2

h , ε0E
∗n+ 1

2
h

)
+
(
δtH

n+1
h , μ0H

∗n+1
h

)]

= ε0μ0

[(
EN+1
h , ε0E

∗N+1
h

)
+
(
H

N+ 3
2

h , μ0H
∗N+ 3

2
h

)
−
(
E0
h, ε0E

∗0
h

)
−
(
H

1
2
h , μ0H

∗ 1
2

h

)]

− ε0μ0

N∑
n=0

[
τ

(
E
n+ 1

2
h , ε0δtE

∗n+ 1
2

h

)
+ τ

(
H

n+1
h , μ0δtH

∗n+1
h

)]
(68)

= ε0μ0

[(
EN+1
h , ε0E

∗N+1
h

)
+
(
H

N+ 3
2

h , μ0H
∗N+ 3

2
h

)
−
(
E0
h, ε0E

∗0
h

)
−
(
H

1
2
h , μ0H

∗ 1
2

h

)]

− ε0μ0

N∑
n=0

τ

2

[(
∇ × En

h,H
n+ 1

2
h

)
−
(

∇ × En+1
h ,H

n+ 3
2

h

)]

= ε0μ0

[(
EN+1
h , ε0E

∗N+1
h

)
+
(
H

N+ 3
2

h , μ0H
∗N+ 3

2
h

)
−
(
E0
h, ε0E

∗0
h

)
−
(
H

1
2
h , μ0H

∗ 1
2

h

)]

+ τε0μ0

2

[(
∇ × EN+1

h ,H
N+ 3

2
h

)
−
(

∇ × E0
h,H

1
2
h

)]
.

Substituting (68) into (65) and adding the result with (62), we have

ε0

2

(
‖EN+1

h ‖20 + ‖D1/2JN+1
h ‖20 + ‖μ0H

∗N+ 3
2

h ‖20
)

123



Development and analysis of a new finite element method for… 141

+ μ0

2

(
‖HN+ 3

2
h ‖20 + ‖D1/2K

N+ 3
2

h ‖20 + ‖ε0E∗N+1
h ‖20

)

≤ ε0

2

(
‖E0

h‖20 + ‖D1/2J0h‖20 + ‖μ0H
∗ 1
2

h ‖20
)

+ μ0

2

(
‖H

1
2
h ‖20 + ‖D1/2K

1
2
h ‖20 + ‖ε0E∗0

h ‖20
)

−
(τ

2
− τε0μ0

2

) [(
∇ × EN+1

h ,H
N+ 3

2
h

)
−
(

∇ × E0
h,H

1
2
h

)]

+ ε0μ0

[(
EN+1
h , ε0E

∗N+1
h

)
+
(
H

N+ 3
2

h , μ0H
∗N+ 3

2
h

)
−
(
E0
h, ε0E

∗0
h

)

−
(
H

1
2
h , μ0H

∗ 1
2

h

)]

+ τ

N∑
n=0

(
(ε0μ0Cm + G)E

n+ 1
2

h + ε0μ0DJ
n+ 1

2
h , ε0E

∗n+ 1
2

h

)

+ τ

N∑
n=0

(
(ε0μ0Cm + G)H

n+1
h + ε0μ0DK

n+1
h , μ0H

∗n+1
h

)
. (69)

(III) Now we need to bound those right hand side terms of (69). By the inverse estimate
(52) and the Cauchy–Schwarz inequality, we have

−
( τ

2
− τε0μ0

2

)(
∇ × EN+1

h ,H
N+ 3

2
h

)
≤
(

τCv

2
− τ

2Cv

)
Cinv

h
· √

ε0‖EN+1
h ‖0 · √

μ0‖HN+ 3
2

h ‖0

≤
(

τCvCinv

2h
− τCinv

2hCv

)(
ε0

2
‖EN+1

h ‖20 + μ0

2
‖HN+ 3

2
h ‖20

)
,

(70)

and

( τ

2
− τε0μ0

2

)(
∇ × E0

h,H
1
2
h

)
≤
(

τCv

2
− τ

2Cv

)
Cinv

h
· √

ε0‖E0
h‖0 · √

μ0‖H
1
2
h ‖0

≤
(

τCvCinv

2h
− τCinv

2hCv

)(
ε0

2
‖E0

h‖20 + μ0

2
‖H

1
2
h ‖20

)
.

(71)

Using the Cauchy–Schwarz inequality, we have

ε0μ0

(
EN+1
h , ε0E

∗N+1
h

)
≤ 1

Cv

√
ε0‖EN+1

h ‖0 · √
μ0‖ε0E∗N+1

h ‖0

≤ 1

Cv

( ε0

2
‖EN+1

h ‖20 + μ0

2
‖ε0E∗N+1

h ‖20
)

, (72)
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ε0μ0

(
H

N+ 3
2

h , μ0H
∗N+ 3

2
h

)
≤ 1

Cv

√
ε0‖μ0H

∗N+ 3
2

h ‖0 · √
μ0‖HN+ 3

2
h ‖0

≤ 1

Cv

(
ε0

2
‖μ0H

∗N+ 3
2

h ‖20 + μ0

2
‖HN+ 3

2
h ‖20

)
, (73)

− ε0μ0
(
E0
h, ε0E

∗0
h

) ≤ 1

Cv

√
ε0‖E0

h‖0 · √
μ0‖ε0E∗0

h ‖0

≤ 1

Cv

( ε0

2
‖E0

h‖20 + μ0

2
‖ε0E∗0

h ‖20
)

, (74)

and

−ε0μ0

(
H

1
2
h , μ0H

∗ 1
2

h

)
≤ 1

Cv

√
ε0‖μ0H

∗ 1
2

h ‖0 · √
μ0‖H

1
2
h ‖0

≤ 1

Cv

(
ε0

2
‖μ0H

∗ 1
2

h ‖20 + μ0

2
‖H

1
2
h ‖20

)
. (75)

Similarly, we have

τ

N∑
n=0

(
(ε0μ0Cm + G)E

n+ 1
2

h , ε0E
∗n+ 1

2
h

)
≤ τ

N∑
n=0

|Cm

Cv

+ CvG|L∞(�)

√
ε0

∥∥∥∥En+ 1
2

h

∥∥∥∥
0

· √
μ0

∥∥∥∥ε0E∗n+ 1
2

h

∥∥∥∥
0

≤ τ

N∑
n=0

|Cm

Cv

+ CvG|L∞(�)

(
ε0

2

∥∥∥∥En+ 1
2

h

∥∥∥∥
2

0
+ μ0

2

∥∥∥∥ε0E∗n+ 1
2

h

∥∥∥∥
2

0

)

≤ τ

N∑
n=0

|Cm

Cv

+ CvG|L∞(�)

( ε0

4
‖En+1

h ‖20 + ε0

4
‖En

h‖20 + μ0

4
‖ε0E∗n+1

h ‖20 + μ0

4
‖ε0E∗n

h ‖20
)

≤ τ | Cm

2Cv

+ CvG

2
|L∞(�)

( ε0

2
‖EN+1

h ‖20 + μ0

2
‖ε0E∗N+1

h ‖20
)

+ τ

N∑
n=0

|Cm

Cv

+ CvG|L∞(�)

( ε0

2
‖En

h‖20 + μ0

2
‖ε0E∗n

h ‖20
)

, (76)

τ

N∑
n=0

(
ε0μ0DJ

n+ 1
2

h , ε0E
∗n+ 1

2
h

)
≤ τ

Cv

N∑
n=0

√
ε0

∥∥∥∥DJ
n+ 1

2
h

∥∥∥∥
0

· √
μ0

∥∥∥∥ε0E∗n+ 1
2

h

∥∥∥∥
0

≤ τ

Cv

N∑
n=0

(
|D|L∞(�)

ε0

2

∥∥∥∥D1/2J
n+ 1

2
h

∥∥∥∥
2

0
+ μ0

2

∥∥∥∥ε0E∗n+ 1
2

h

∥∥∥∥
2

0

)

≤ τ

2Cv

N∑
n=0

(
|D|L∞(�)

ε0

2
‖D1/2Jn+1

h ‖20 + |D|L∞(�)

ε0

2
‖D1/2Jnh‖20 + μ0

2
‖ε0E∗n+1

h ‖20 + μ0

2
‖ε0E∗n

h ‖20
)

≤ τ

2Cv

(
|D|L∞(�)

ε0

2
‖D1/2JN+1

h ‖20 + μ0

2
‖ε0E∗N+1

h ‖20
)

+ τ

Cv

N∑
n=0

(
|D|L∞(�)

ε0

2
‖D1/2Jnh‖20 + μ0

2
‖ε0E∗n

h ‖20
)

. (77)

By the same technique, we can obtain

τ

N∑
n=0

(
(ε0μ0Cm + G)H

n+1
h , ε0H

∗n+1
h

)
≤ τ

N∑
n=0

|Cm

Cv

+ GCv|L∞(�)
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·√ε0

∥∥∥Hn+1
h

∥∥∥
0
· √

μ0

∥∥∥ε0H∗n+1
h

∥∥∥
0

≤ τ | Cm

2Cv

+ GCv

2
|L∞(�)

(
μ0

2
‖HN+ 3

2
h ‖20 + ε0

2
‖μ0H

∗N+ 3
2

h ‖20
)

+τ

N∑
n=0

|Cm

Cv

+ GCv|L∞(�)

(
ε0

2
‖μ0H

∗n+ 1
2

h ‖20 + μ0

2
‖Hn+ 1

2
h ‖20

)
, (78)

and

τ

N∑
n=0

(
ε0μ0DK

n+1
h , μ0H

∗n+1
h

)

≤ τ

Cv

N∑
n=0

√
μ0

∥∥∥DK
n+1
h

∥∥∥
0
· √

ε0

∥∥∥μ0H
∗n+1
h

∥∥∥
0

≤ τ

2Cv

(
|D|L∞(�)

μ0

2
‖D1/2K

N+ 3
2

h ‖20 + ε0

2
‖μ0H

∗N+ 3
2

h ‖20
)

+ τ

Cv

N∑
n=0

(
|D|L∞(�)

μ0

2
‖D1/2K

n+ 1
2

h ‖20 + ε0

2
‖μ0H

∗n+ 1
2

h ‖20
)

. (79)

Substituting the above estimates (70)–(79) into (69), we have

ε0

2

(
‖EN+1

h ‖20 + ‖D1/2JN+1
h ‖20 + ‖μ0H

∗N+ 3
2

h ‖20
)

+μ0

2

(
‖HN+ 3

2
h ‖20 + ‖D1/2K

N+ 3
2

h ‖20 + ‖ε0E∗N+1
h ‖20

)

≤
[
1 +

(
τCvCinv

2h
− τCinv

2hCv

)
+ 1

Cv

]
ε0

2

(
‖E0

h‖20 + ‖D1/2J0h‖20 + ‖μ0H
∗ 1
2

h ‖20
)

[
1 +

(
τCvCinv

2h
− τCinv

2hCv

)
+ 1

Cv

]
μ0

2

(
‖H

1
2
h ‖20 + ‖D1/2K

1
2
h ‖20 + ‖ε0E∗0

h ‖20
)

+
[(

τCvCinv

2h
− τCinv

2hCv

)
+ 1

Cv

+ τ | Cm

2Cv

+ GCv

2
|L∞(�)

](
ε0

2
‖EN+1

h ‖20 + μ0

2
‖HN+ 3

2
h ‖20

)

+ τ

2Cv

|D|L∞(�)

ε0

2
‖D1/2JN+1

h ‖20 + τ

2Cv

|D|L∞(�)

μ0

2
‖D1/2K

N+ 3
2

h ‖20

+
[

1

Cv

+ τ | Cm

2Cv

+ GCv

2
|L∞(�) + τ

2Cv

](
μ0

2
‖ε0E∗N+1

h ‖20 + ε0

2
‖μ0H

∗N+ 3
2

h ‖20
)

+τC
N∑

n=0

[
ε0

2

(
‖En

h‖20 + ‖D1/2Jnh‖20 + ‖μ0H
∗n+ 1

2
h ‖20

)

+ μ0

2

(
‖Hn+ 1

2
h ‖20 + ‖D1/2K

n+ 1
2

h ‖20 + ‖ε0E∗n
h ‖20

)]
, (80)

where the constant C absorbs the explicit dependence on other physical parameters.
Note that Cv = 3× 108 � 1, which guarantees that the coefficients 1

Cv
, τ
2Cv

� 1.
Hence, we can choose τ small enough so that the left hand side term of (80) can control
the corresponding terms on the right hand side. A specific choice can be
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τCvCinv

h
≤ 1

2
, τ |Cm

Cv

+ GCv|L∞(�) ≤ 1

2
,

which leads to a choice of τ as (51). Applying the discrete Gronwall inequality to (80)
completes the proof. �


3.2 The error estimate

For clarity, we use the script letters to descript the corresponding errors. For example,
we define the errors between the exact solutions of (12)–(17) and its finite element
solutions of (45)–(50):

E∗n := E∗(tn) − E∗n
h = (E∗(tn) − �cE∗(tn))

+(�cE∗(tn) − E∗n
h ) := (E∗n − �cE∗n) + E∗n

h ,

H∗n+ 1
2 := H∗(tn+ 1

2
) − H

∗n+ 1
2

h = (H∗(tn+ 1
2
) − �dH∗(tn+ 1

2
))

+(�dH∗(tn+ 1
2
) − H

∗n+ 1
2

h )

:= (H∗n+ 1
2 − �dH∗n+ 1

2 ) + H∗n+ 1
2

h ,

where we denote �cE and �dH for the H(curl;�) and H(div;�) interpolations of

E and H, respectively. Also for simplicity, we denoted E∗n := E∗(tn) and H∗n+ 1
2 :=

H∗(tn+ 1
2
). Other errors J ∗n,K∗n+ 1

2 En,Hn+ 1
2 can be definited similarly.

Integrating (14) from tn to tn+1, multiplying the result by 1
τ
�h and integrating over

�, then subtracting (45), we obtain

(
ε0
E∗n+1 − E∗n

τ
,�h

)
=
(
1

τ

∫ tn+1

tn
Hds − H

n+ 1
2

h ,∇ × �h

)
,

which leads to the error equation

(
ε0
E∗n+1
h − E∗n

h

τ
,�h

)
−
(
Hn+ 1

2
h ,∇ × �h

)

=
(

ε0

τ

∫ tn+1

tn
∂t (�cE∗ − E∗)ds,�h

)

+
(
1

τ

∫ tn+1

tn
(H − �dHn+ 1

2 )ds,∇ × �h

)
, ∀�h ∈ U0

h . (81)

Similarly, integrating (15) from tn+ 1
2
to tn+ 3

2
, multiplying the result by 1

τ
�h and

integrating over �, then subtracting (46), we obtain
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(
μ0

H∗n+ 3
2 − H∗n+ 1

2

τ
,�h

)
= −

⎛
⎝1

τ

∫ t
n+ 3

2

t
n+ 1

2

∇ × Eds − ∇ × En+1
h ,�h

⎞
⎠ ,

which leads to the error equation

⎛
⎝μ0

H∗n+ 3
2

h − H∗n+ 1
2

h

τ
,�h

⎞
⎠ +

(
∇ × En+1

h ,�h

)

=
⎛
⎝μ0

τ

∫ t
n+ 3

2

t
n+ 1

2

∂t (�dH∗ − H∗)ds,�h

⎞
⎠

−
⎛
⎝1

τ

∫ t
n+ 3

2

t
n+ 1

2

∇ × (E − �cEn+1)ds,�h

⎞
⎠ . ∀�h ∈ V h . (82)

Integrating (12) from tn to tn+1, multiplying the result by 1
τ
�̃h and integrating over

�, then subtracting (47), we obtain

(
D
J n+1 − J n

τ
, �̃h

)
=
(
D(

1

τ

∫ tn+1

tn
Eds − En+1

h + En
h

2
), �̃h

)
,

from which we obtain the third error equation

(
D
J n+1
h − J n

h

τ
, �̃h

)
−
(
D
En+1
h + En

h

2
, �̃h

)

=
(
D

τ

∫ tn+1

tn
∂t (�cJ − J)ds, �̃h

)

+
(
D

τ

∫ tn+1

tn
(E − �c(

En+1 + En

2
))ds, �̃h

)
, ∀�̃h ∈ U0

h . (83)

Following exactly the same way as deriving (83), we have the fourth error equation

⎛
⎝D

Kn+ 3
2

h − Kn+ 1
2

h

τ
, �̃h

⎞
⎠ −

⎛
⎝D

Hn+ 3
2

h + Hn+ 1
2

h

2
, �̃h

⎞
⎠

=
⎛
⎝D

τ

∫ t
n+ 3

2

t
n+ 1

2

∂t (�dK − K)ds, �̃h

⎞
⎠

+
⎛
⎝D

τ

∫ t
n+ 3

2

t
n+ 1

2

(H − �d(
Hn+ 1

2 + Hn+ 3
2

2
))ds, �̃h

⎞
⎠ , ∀�̃h ∈ V h . (84)
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Similarly, integrating (16) from tn to tn+1, multiplying the result by 1
τ
�̂h and

integrating over �, then subtracting (49), we obtain

(En+1 − En

τ
, �̂h

)
+
(
Cm

τ

∫ tn+1

tn
(E − En+1

h + En
h

2
)ds, �̂h

)

+
(
D

τ

∫ tn+1

tn
(J − Jn+1

h + Jnh
2

)ds, �̂h

)

=
(E∗n+1 − E∗n

τ
, �̂h

)
+
(
G

τ

∫ tn+1

tn
(E∗ − E∗n+1

h + E∗n
h

2
)ds, �̂h

)
,

which leads to the fifth error equation

(
En+1
h − En

h

τ
, �̂h

)
+
(
Cm

En+1
h + En

h

2
, �̂h

)
+
(
D
J n+1
h + J n

h

2
, �̂h

)

−
(
E∗n+1
h − E∗n

h

τ
, �̂h

)
−
(
G
E∗n+1
h + E∗n

h

2
, �̂h

)

=
(
1

τ

∫ tn+1

tn
∂t (�cE − E)ds, �̂h

)

+
(
Cm

τ

∫ tn+1

tn
(�c(

En+1 + En

2
) − E)ds, �̂h

)

+
(
D

τ

∫ tn+1

tn
(�c(

Jn+1 + Jn

2
) − J)ds, �̂h

)

+
(
1

τ

∫ tn+1

tn
∂t (E∗ − �cE∗)ds, �̂h

)

+
(
G

τ

∫ tn+1

tn
(E∗ − �c(

E∗n+1 + E∗n

2
))ds, �̂h

)
, ∀�̂h ∈ U0

h . (85)

Following exactly the same way as deriving (85), we have the sixth error equation:
For any �̂h ∈ V h ,

⎛
⎝Hn+ 3

2
h − Hn+ 1

2
h

τ
, �̂h

⎞
⎠ +

⎛
⎝Cm

Hn+ 3
2

h + Hn+ 1
2

h

2
, �̂h

⎞
⎠ +

⎛
⎝D

Kn+ 3
2

h + Kn+ 1
2

h

2
, �̂h

⎞
⎠

−
⎛
⎝H∗n+ 3

2
h − H∗n+ 1

2
h

τ
, �̂h

⎞
⎠ −

⎛
⎝G

H∗n+ 3
2

h + H∗n+ 1
2

h

2
, �̂h

⎞
⎠

=
⎛
⎝1

τ

∫ t
n+ 3

2

t
n+ 1

2

∂t (�dH − H)ds, �̂h

⎞
⎠
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+
⎛
⎝Cm

τ

∫ t
n+ 3

2

t
n+ 1

2

(�d(
Hn+ 3

2 + Hn+ 1
2

2
) − H)ds, �̂h

⎞
⎠

+
⎛
⎝D

τ

∫ t
n+ 3

2

t
n+ 1

2

(�d(
Kn+ 3

2 + Kn+ 1
2

2
) − K)ds, �̂h

⎞
⎠

+
⎛
⎝1

τ

∫ t
n+ 3

2

t
n+ 1

2

∂t (H∗ − �dH∗)ds, �̂h

⎞
⎠

+
⎛
⎝G

τ

∫ t
n+ 3

2

t
n+ 1

2

(H∗ − �d(
H∗n+ 3

2 + H∗n+ 1
2

2
))ds, �̂h

⎞
⎠ . (86)

Note that the error equations (81)–(86) have exactly the same form as the finite
element scheme (45)–(50), except those extra terms added to the right hand sides of
(81)–(86) due to the time and spatial discretization.Moreover, by the interpolation error
extimates of�c and�d , these extra terms have the local truncation errors O(τ 2+hl),
where l ≥ 1 is the degree of the basis function in the finite element spaces V h

and Uh . Hence, by following the same technique developed for proving the discrete
stability given in Theorem 2, we can prove the following error estimate between the
interpolation and the finite element solution:

ε0

2

(
‖EN+1

h ‖20 + ‖D1/2J N+1
h ‖20 + ‖μ0H∗N+ 3

2
h ‖20

)

+ μ0

2

(
‖HN+ 3

2
h ‖20 + ‖D1/2KN+ 3

2
h ‖20 + ‖ε0E∗N+1

h ‖20
)

≤ C

[
ε0

2

(
‖E0

h‖20 + ‖D1/2J 0
h ‖20 + ‖μ0H∗ 1

2
h ‖20

)

+μ0

2

(
‖H

1
2
h ‖20 + ‖D1/2K

1
2
h ‖20 + ‖ε0E∗0

h ‖20
)

+ (τ 2 + hl)2
]

. (87)

By choosing the following initial conditions

E0
h = �cE(0), E∗0

h = �cE∗(0), J0h = �cJ(0),

H0
h = �dH(0), H∗0

h = �dH∗(0), K0
h = �dK(0),

then using the triangle inequality and the interpolation error extimates of �c and �d

to (87), we can obtain the following optimal error estimate between the analytical
solution and the finite element solution:

ε0

2

(
‖EN+1‖20 + ‖D1/2J N+1‖20 + ‖μ0H∗N+ 3

2 ‖20
)

+ μ0

2

(
‖HN+ 3

2 ‖20 + ‖D1/2KN+ 3
2 ‖20 + ‖ε0E∗N+1‖20

)
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≤ C(τ 2 + hl)2. (88)

4 Numerical results

In this section, we present some numerical results to demonstrate the performance of
this Cohen–Monk PML model. For simplicity, we focus on solving the 2D version
of the numerical scheme (45)–(50). More specifically, we consider the so-called T Ez

mode,which has unknownsE = [Ex , Ey]T , Hz ,E∗ = [E∗
x , E

∗
y ]T , H∗

z , J = [Jx , Jy]T ,
Kz , and the governing equations are given as follow:

∂J
∂t

= E, (89)

∂Kz

∂t
= Hz, (90)

ε0
∂E∗

∂t
− ∇ × Hz = 0, (91)

μ0
∂H∗

z

∂t
+ ∇ × E = 0, (92)

∂E
∂t

+ C2dE + D2dJ = ∂E∗

∂t
+ G2dE∗ + f , (93)

∂Hz

∂t
+ C1d Hz + D1d Kz = ∂H∗

z

∂t
+ G1d H

∗
z + gz, (94)

where the curls ∇ × E = ∂Ey
∂x − ∂Ex

∂ y , ∇ × Hz = [ ∂Hz
∂ y ,− ∂Hz

∂x ]T , and the definitions

of f = [ fx , fy]T , g = gz can be derived similarly from the 3D model. Moreover,

C2d = diag(σ2, σ1), D2d = diag(0, 0), G2d = diag(σ1, σ2),

C1d = σ1 + σ2, D1d = σ1σ2, G1d = 0.

Since D2d = diag(0, 0), the function J is not used in (93). Hence the equation
(89) is not needed in the 2D model. For simplicity, we only employ the lowest order
Raviart-Thomas-Nédélec mixed spaces on rectangular elements [14]:

Vh =
{
ψh ∈ L2(�) : ψh

∣∣
K = Q0,0,∀K ∈ Th

}
,

Uh = {
φh ∈ H(curl;�) : φh

∣∣
K = Q0,1 × Q1,0,∀K ∈ Th

}
,

where Qi, j denotes the set of polynomials of degrees of i and j in the x and y
directions, respectively.

Example 1 This example is used to justify the convergence rate of our scheme. To
construct an analytical solution, we add extra source terms f̂ = [ f̄x , f̂ y]T , ĝz and g∗

z
to the model equations (89)–(94), and choose the physical domain � = [0, 1]2 and

ε0 = μ0 = 1, σ1(x) = sin2(πx), σ2(y) = sin2(π y).
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More specifically, we solve the following governing equations:

∂Kz

∂t
= Hz, (95)

ε0
∂E∗

∂t
− ∇ × Hz = 0, (96)

μ0
∂H∗

z

∂t
+ ∇ × E = g∗

z , (97)

∂E
∂t

+ C2dE = ∂E∗

∂t
+ G2dE∗ + f + f̂ , (98)

∂Hz

∂t
+ C1d Hz + D1d Kz = ∂H∗

z

∂t
+ G1d H

∗
z + gz + ĝz, (99)

such that the exact solution is given as follows:

E =
(
Ex

Ey

)
=
(
e−π t cos(πx) sin(π y)
−e−π t sin(πx) cos(π y)

)
, E∗ = E,

Hz = e−π t cos(πx) cos(π y), Kz = − 1

π
e−π t cos(πx) cos(π y), H∗

z = Hz .

(100)

The corresponding source terms are given as:

f =
(

fx
fy

)
=
(
cos(πx) sin(π y)

(
sin2(π y) − sin2(πx)

)
sin(πx) cos(π y)

(
sin2(π y) − sin2(πx)

)
)

,

f̂ =
(

f̂x
f̂ y

)
=
(
e−π t cos(πx) sin(π y)

(
sin2(π y) − sin2(πx)

)
e−π t sin(πx) cos(π y)

(
sin2(π y) − sin2(πx)

)
)

− f ,

gz = cos(πx) cos(π y)
(
sin2(πx) + sin2(π y)

)
,

ĝz = e−π t cos(πx) cos(π y)

[(
sin2(πx) + sin2(π y)

) − 1

π
sin2(πx) sin2(π y)

]
− gz,

g∗
z = −3πe−π t cos(πx) cos(π y).

(101)

Modification of the 3D numerical scheme (45)–(50) to solve (95)–(99) leads to the

following 2D scheme: find En+1
h , E∗n+1

h ∈ U0
h , H

n+ 3
2

h , H
∗n+ 3

2
h , K

n+ 3
2

h ∈ Vh such that

⎛
⎝σ1σ2

K
n+ 3

2
h − K

n+ 1
2

h

τ
, 
̃h

⎞
⎠ =

⎛
⎝σ1σ2

H
n+ 3

2
h + H

n+ 1
2

h

2
, 
̃h

⎞
⎠ , ∀
̃h ∈ V h , (102)

(
ε0

E∗n+1
h − E∗n

h

τ
,�h

)
=
(
H
n+ 1

2
h ,∇ × �h

)
, ∀�h ∈ U0

h , (103)

⎛
⎝μ0

H
∗n+ 3

2
h − H

∗n+ 1
2

h

τ
, 
h

⎞
⎠ = −

(
∇ × En+1

h ,
h

)
+ (

g∗
z (tn+1), 
h

)
, ∀
h ∈ V h , (104)

(
En+1
h − En

h

τ
, �̂h

)
+
(
C2d

En+1
h + En

h

2
, �̂h

)
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Fig. 1 Snapshots of the magnetic field Hz : (top left) 300 steps; (top right) 400 steps; (bottom left) 500
steps; and (bottom right) 10,000 steps
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We solve this model problemwith a time step size τ = 10−5 and varyingmesh sizes
h from 1

10 to 1
160 and runs for 1000 time steps. The convergence rates are presented

in Table 1, which clearly shows O(h2) in both L∞ and the discrete L2 norms (the
numerical quadrature calculated at element centers). Note that O(h2) in both L∞
and the discrete L2 norms is a superconvergence result, which has been proved and
observed for the lowest-order rectangular and cubic edge element [10,12].
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Fig. 2 Magnetic field Hz at various time steps: (top left) 200 steps; (top right) 500 steps; (bottom left) 700
steps; and (bottom right) 1000 steps

In Table 2, we present the numerical results obtained with varying mesh sizes h
from 1

10 to 1
160 , time step size τ = h/4, and the final simulation time T = 1. Table 2

shows O(τ 2) in both L∞ and discrete L2 norms.

Example 2 In this example, we choose the same benchmark problem developed in our
previous paper [9] to compare how the current algorithm works. More specifically, we
choose the physical domain � = [0, 0.5]m × [0, 0.5]m, which is divided by uniform
rectangles with mesh size h = 2.5× 10−3m and time step size τ = 2.5× 10−12s. We
surround the physical domain by a PML with thickness dd = 20h. In our simulation,
the damping function σ1 is chosen as a fourth-order polynomial function given as:

σ1(x) =
⎧⎨
⎩

σmax (
x−0.5
dd )4, if x ≥ 0.5,

σmax (
x
dd )4, if x ≤ 0.0,

0, elsewhere,

where σmax = −log(err) ∗ 5 ∗ 0.07 ∗ Cv/(2 ∗ dd) with err = 10−7. Recall that Cv

denotes the wave propagation speed in vacuum. The damping function σ2 has exactly
the same form but varies in y variable.
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In this example, we solve the scheme (102)–(106) with no added source terms f̂ ,
ĝz , g∗

z , and zero initial fields (which means that f = 0, gz = 0). We choose a point
incident source wave located at point (0.25, 0.25) and imposed as

Hz = 0.1 sin(2πνt), where ν = 3GHz.

In Fig. 1, we plot some snapshots of the magnetic field Hz obtained by our scheme.
To see the long time stability of our scheme, we plot the field Hz up to 10,000 time
steps.

To see how the PML performs, we solve this example again by stopping the source
wave after 200 time steps. The computed magnetic fields Hz at various time steps are
plotted in Fig. 2, which shows that the source wave exits the domain without obvious
reflections. Small remaining wave inside the physical domain is due to the numerical
error caused by the mesh size and the low accuracy of the scheme.

5 Conclusion

In this paper, we first reformulated an equivalent Cohen–Monk PML model and then
proved its stability. A finite element method is proposed to solve this equivalent PML
model, and its numerical stability and optimal error estimate are proved. Numerical
results demonstrating the effectiveness of this PMLmodel are presented. In the future,
we can consider the 3D implementation of this PML model and its application.
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