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Abstract

This work deals with the Cohen—Monk Perfectly Matched Layer (PML) model. We
first carry out the stability analysis of its equivalent form. Then we propose and anal-
yse a finite element scheme for solving this equivalent PML model. Discrete stability
and optimal error estimate are established. Numerical results are presented to justify
the analysis and effectiveness of this PML model. This paper presents the first math-
ematical analysis for this PML model and the corresponding numerical analysis for
the proposed finite element scheme.

Mathematics Subject Classification 65N30 - 35115 - 78-08

1 Introduction

Since the introduction of the Perfectly Matched Layer (PML) by Bérenger in 1994
[4] for solving the time-dependent Maxwell’s equations in unbounded domains, it has
become almost the exclusive choice for wave propagation simulation. Since 1994,
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many PML models have been proposed and studied, and its applications have been
extended to acoustic wave, elastodynamics wave, and electromagnetic wave propa-
gation in complex media [1,3]. Due to the complexity of PML governing equations,
compared to many engineering papers on PML models and their applications (see [17,
Ch.7], [14, Ch.8] and references therein), publications on the mathematical analysis
of PML and numerical analysis of various numerical methods developed for solving
the time-domain PML models are quite limited [2,5,6,8,11,13,15].

Back in 1999, by using the stretched coordinates approach, Cohen and Monk [7]
developed a PML model and proposed using mapped mass-lumped edge elements to
solve it. In 2014, we [9] carried out the well-posedness study of this Cohen—Monk
PML model by proving the existence and uniqueness, and stability of this PML model.
However, we were unable to establish the numerical stablity for both the original finite
element scheme proposed by Cohen and Monk [7] and a new scheme proposed by
us in [9]. This paper is our continuous effort on studying this PML model. More
specifically, by reformulating the Cohen—Monk PML model into another equivalent
form, we manage to prove its stability, which is different from that obtained in [9]. Then
we propose a finite element scheme for this equivalent PML model. By following the
proof technique developed for the continuous stability analysis, we establish a discrete
stability which has exactly the same form as the continuous stability. To the best of
our knowledge, this is the first paper which establishes a complete numerical stability
and error estimate for a finite element scheme developed to solve this PML model.

The rest of the paper is organized as follows. In Sect. 2, we first establish the equiv-
alent Cohen—Monk PML model, and then prove its stability. In Sect. 3, we propose a
fully-discrete finite element scheme for this equivalent PML model, and prove both
the discrete stability and optimal error estimate of the scheme. Numerical results are
presented in Sect. 4 to demonstrate the correct implementation of our scheme and the
performance of this equivalent PML model. We conclude the paper in Sect. 5.

2 The Cohen-Monk PML model and its analysis

The governing equations of the Cohen—-Monk PML model are given as follows [7]:

JE*

€0 —VxH=0, (1)
*

Ho—- +VxE=0, )
9’E oE 92E* OE*
WJFC,,,EJFDE:FJFGW, 3)
02H oH 92H* OH*
Bz YO +DH == + G “

where €g and g are the vacuum permittivity and permeability, respectively, E(X, )
and H (x, 1) are the electric and magnetic fields, respectively, and E*(x, ¢) and H* (x, )
are the auxiliary electric and magnetic fields, respectively. Moreover, the 3 x 3 diagonal
matrices Cy,, D and G are given by
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Cn =diag(o2+ 03,01 + 03,01+ 02), D = diag(0203, 0103, 0102),
G =diag(oy, 02,03), )

where o1, oo and 03 are nonnegative functions and represent the damping variations
along the x, y, and z directions, respectively.

To investigate the well-posedness of the model problem (1)—(4), we assume that
(1)—(4) hold in the domain [7]

Q= (R3\S)N([—L; =81, L1 + 811 x [La — 82, Ly 4 8] x [—L3 — 83, L3 + 83]),

where S denotes the perfectly conducting (PEC) scatter, §; > 0,i = 1, 2,3, is the
thickness of the PML in the x, y, and z directions, respectively. Furthermore, the
entire scatter is assumed to be contained in the hexahedron [—L1, L{] x [—L2, Ly] %
[—L3, L3], and the problem (1)—(4) satisfies the PEC boundary condition

nxE=0 on 0Q=T;UTl, (6)

where n is the unit outward normal to the scatter boundary I'y and the boundary '
of thebox [—Lj — 81, L1+81] x [—Ly— 383, Lo +82] X [—L3 — 83, L3+ 83]. Finally,
we assume that (1)—(4) is supplemented with the initial conditions

E(x,0) = Eo(x), H(x,0) = Hp(x), @
E*(x,0) = Ej(x), H*(x,0) = Hj(x),

where Eo(x), Ho(x), Ejj(x) and H{j(x) are some given functions.
We integrate the model Eqgs. (3) and (4) with respect to time once and obtain the
following PML equations:

0B G H=0 (8)
€ —VxH=0,
07%¢

*
Ho a1 +VXE=0, (9)
oE ! oE*
—+CmE+D/ Edi =2 4 GE* + f, (10)
at 0 at
OH ' OH* .
S HCull +D | Hdi = =+ GH" +. (11)
0

where f = 2£(x,0) + C,,E(x,0) — 2£*(x,0) — GE*(x,0) and g = ¥ (x,0) +
C,H(x,0) — %(X, 0) — GH*(x, 0) are time-independent function.

Denote J(x,t) = fé Edt and K(x,1) = fot Hdt, which imply that J(x,0) :=
Jo(x) =0and K(x, 0) := Ko(x) = 0. Hence, we obtain the following new equivalent
governing equations for the Cohen-Monk PML model:

oJ
o =F (12)
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K _n (13)
ar

O yxH=0 (14)
€ —VxH=0,

0751

JH*
Mo +VxE=0, (15)
IE IE*
E-FCmE-i-DJ: o1 +GE*+f, (16)
OH IH* i
- HCnH + DK = ——+GH" +¢, (17)

subject to the initial conditions

E(x,0) = Eo(x), H(x,0) = Hy(x), E*(x, 0) = E}(x), H* (x, 0)
= H}(x),J(x,0) = K(x,0) =0, (18)

where Eo(x), Ho(x), Ejj(x), H{j(x) are some given functions.
Some common notation are used in the rest paper [14,16]:

H(div, Q) = [u e (LX) V u e LQ(Q)},

H(curl; Q) = {u € (L*(Q)): V xu € (L*(Q))%},
Ho(curl; Q) ={u € H(curl; 2) :nxu =0, on dQ},

with equipped norms

2 2,1 2 2,1
lullg@iviey = Ululg + IV -ullg) 2, lulmewse = (ully + 11V < ullp)?,

where || - ||o denotes the standard L, norm in 2. Moreover, we denote C,, = e(lmo ~

3 % 10%m /s for the wave propagation speed in the free space.
In the rest of this section, we prove the following stability for the PML model
problem (12)—(17).

Theorem 1 For the solution (E, H, E*, H*, K, J) of (12)—(17), we denote the energy

€ %k I3 *
£@) =[5 (IR + 102103 + NwoH 1) + 5% (IHI + 1D 2KI + eoE" 1) | 0.
(19)

where DV/? .= diag((0203)1/2, (0103) V2, (5102)1/2). Then for any t € (0, T], we
have

C, G, Co+1 ("€ .o, Mo, 2
N =5 'eXp(cv— - Cstant) [S(O)Jrcv_]/O(3||f||o+7llgllo)ds], (20)

L1 1
where the constant Cgpqp := |€—’: +CoGlm + 1+ w.
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Proof To make our proof easy to follow, we divide it into three major parts.

(I Multiplying (16) by €oFE, multiplying (17) by noH, and integrating respective
result over domain £2, we obtain

€ d
305 IE|2 + €0(CnE, E) + €o(DJ , E)
= «(E}.E) + €o(GE*,E) + €o(f . E). 1)

and

wo d 2
TEIIHHO + no(CnH, H) + po(DK, H)
= po(H;, H) + no(GH*, H) + j10(g, H). (22)

Using (12) and (13), we have
€0o(DJ,E) = eo(DJ,J;) and  po(DK,H) = uo(DK,K;).  (23)

Multiplying (14) by E, integrating by part over domain €2 , and using PEC boundary
condition (6), we obtain

€E,E)=(V xH,E)=(VxE,H). (24)
Multiplying (15) by H, then integrating over domain €2 , we obtain
poHy, H) = —(V x E, H). (25)

Adding (21) and (22) together, and using (23)—(25), we obtain

d €0 2 m 5
dt [? (”E”O +(DJ, J)) += (IIHIIO + (DK, K))]
+ €0(CnE, E) + no(CnH, H) (26)

= €0(GE™, E) + €o(f. E) + po(GH", H) + po(g. H).

Integrating (26) with respect to ¢ from O to ¢, and dropping the non-negative terms
€o(C,E, E) and uo(C,,H, H), we have

€0 2 1240) 2
T (IR0 + 01D ®) + 5 (IH130) + (PK. K)0))

€0 Mo
= 3 (1E13O) + (01.0©) + 22 (IHI3O) + (PK.K)©)  (27)

t
+/0 [(GE, €0E*) + €o(f, E) + (GH, uoH") + po(g, H)] dt.
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(1)

To control the terms E* and H* in (27), we multiply (16) by €2 woE* and (17) by
€0 ,u%H *, and integrating the respective result over domain €2, we obtain

2 T IIEOE*||0+60M0(GE* E")

= eopo [(E. €0E™) + (CE + DJ — f.€E")], (28)

and

?_”MOH*HQ + oo (GH*, H")

= eopo [(Hy, oH™) + (CpH + DK — g, ioH™)] . (29)

Using property %(u, v) = (s, v) + (u, v;), (24) and (25), we have

d
eopo(E;, 0E™) = eopo [E(E’ eoE™) — (E, éoEf)]
d *
= 60#05(15, €E™) — eouo(V x E, H), (30)
and
* d * *
eopo(Hy, woH™) = €opro E(H’ woH™) — (H, woHy;)
d
=€0MOE(H, poH™) 4 eopo(V < E, H). (31

Adding (28) and (29) together, and substituting (30) and (31) into the result, we
obtain

,UvO

T |I60E*|Io+ 2 T IIMoH*Ilo+60Mo(GE* E*) + eoui(GH*, H*)
d
= €0 [(E. €0E*) + (H, uoH*)] + (€opt0(CnE + DJ — f), €0E¥)
+ (€ono(CnH + DK — g), woH™) . (32)

Integrating (32) with respect to ¢ from O to ¢ and dropping the non-negative terms
e(z)uo(GE*, E*) and eou%(GH*, H*), we obtain
Mo % €0 % Ho % €0 *
[ S 1€0E" 130 + ol 130) | = [ 5P 0B 13(0) + T ol 0)]
< eopo [(E, ©E*)(t) + (H, poH*) (1) — (E, €0E*)(0) — (H, joH*)(0)]

t
- /0 [(€0n0(CnE + DJ — f), €0E™) + (oro(CruH + DK — g), woH™)] dt.
(33)
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Adding (27) and (33) together, we have

Z (IEB O + 1D 27130 + Lol 13 )
2 (130 + 1D KI5 + B 15(0))
30 (||E||0<0) + D 2TI3(0) + loH I3(0))
+ 2 (IHI30) + 1D'2KI3(0) + leoE" 13(0))
+ €opto [(E. «B*) (@) + (H. 11oH") (1) = (E. oE")(0) — (H. j1oH*)(0)]
+ /o[ [((€0p0Cim + G)E + €opuoDJ — €oio f . €0E™) + €o(f . E)

+ ((01t0Cm + G)H + €opo DK — €opiog, toH™) + po(g, H)]dt. (34)

(III) Now we need to bound those right hand terms of (34). Using the Cauchy—schwarz
inequality and the definition of C,, we have

€opo(E, €0E™) (1) = /eoro(VeoE, v/1ro(eoE™))(1)

1
< & [FIEIEO + Sk IB0)]. 69

By the same technique, we obtain

€opo(H, oH™)(t) = /eoro(V/1roH, «/_(,uoH*))(t)

1
< & [F Il 50 + FIHIEO . G6)

Similarly, we have

t t
A ((eot0Cm + G)E, egE™)d1t =/0 ((«/50M0Cm + )VeoE, «/lTo(éoE*)) dt

_G

Je€oro
Cn ! *

<12+ CuGlqey /O | (V. Viia(eoE™) ldr  (37)

C "eg 1o
<=2+ GGl / —||E||(2,dt+f lleoE* |3dt |,
C, 0 2

t t
/0 (eomoDJ, €gE™)dt = «/GOMO/O (VeoDJ, /mo(eoE™)) dt (38)
L L€ o122 " 1o )
= Fv _|D|Lw(§)/(; 3”D / J“odf“r/(; 7||€OE*”0dti|,
t t
/ —(eopo f, €oE™)dt = —\/GOMO/ (Veo f. Vio(eE")dt (39)
0 0
LT ["e ., " o
< — = dt 2 eoE||3de |,
<z A 2113 +/0 2 leok" I} ]
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and

t t t t
/0 co(f, E)dt = /0 (VaoS . JaoE) di < fo O + /0 D ENgar. @0

By the same technique, we obtain

! * ! G *
/O((GOMOCm + G)H, noH™)dt =/0 <(\/€0M0Cm + M)JPTOH, Veo(uoH )) dt

C t
<1 4 Ol /0 (ViioH . Vao(uoH™)) di
v
Chm " ¢ 5 " po 2
=lg +Glle@ [/0 3lluoH*Hodl+/0 - Hligdt |,
41)

t t
](;(GOMODK,MOH*)CJI =\/60M0/(; (VroDK, Jeo(oH™)) dt

1 "o g "€
< —|IDl; =@ —D/szdt—l—/— H*|2dt |,
=G |:| |L (Q)[) ) I ||() ) 2 o H()

(42)
t t
/0 —(eotog, poH™)dt = —«/60#0/0 (Vi0g. /o (uoH™)) di
1 ! €0 w2 ! 1220] 2
< c. |:/0 ?HMOH llodt +/0 7|\g||0dt} ; (43)

and
t t ' o 5 ' o )
/0 jo(g. Hydi = /O (VEog. /ol di < /0 £ gls + fo 2 iR,
(44)

Substituting the estimates (38)—(44) into (34), and using the definitions £(¢) and
Cstab, We can obtain

1 1 t ¢ !
(11— —)EM) < EO) + (1 + —)/ Q1712+ Eg12yar + csmb/ &dt,
Cy CyJo 2 2 0

which completes the proof by using the Gronwall inequality. O

3 The fully discrete finite element scheme and its analysis

To design the finite element method, we partition the physical domain €2 into a family of
regular cubic (or tetrahedral) meshes 7j,. We denote /1 ¢ for the diameter of element K €
T}, and set the maximum mesh size & = maxker, h k. Depending on the regularity
of the solution, an arbitrary /-th (I > 1) order Raviart-Thomas-Nédélec (RTN) finite
element space on a cubic mesh can be used [16]:
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Vi ={¥), € Hdiv: Q) : Y|, € Qri—r1-1 % Qi-1.10-1 X Qi—11-11.YK € T},
Up = {¢), € H(curl; Q) : ¢p| € Qi—1.01 % Qra—11 % Quii—1.YK € T},

where Q; ; « denote the space of polynomials whose degrees are less than or equal to
i, j and k in variables x, y and z, respectively. To accommodate the PEC boundary
condition, we denote the subspace

U2={¢h €Uy :nx¢,=0 ondQ}.

RTN elements on tetrahedral mesh can be defined accordingly [16].
To construct a fully discrete scheme, we divide the time interval I = [0, T'] into N
uniform subintervals I; = [t;_1, t;] by points t;, = it,i =0, 1,..., N, where t = %
In practical wave simulation, the initial wave fields are usually set to zero, which
makes the functions f and g in (16) and (17) zero. Hence, to simplify the rest analysis,
we will ignore f and g in the PML model equatons (16)—(17).

To solve (12)—(17), we propose the following leapfrog type scheme: given initial
l 1
approximations E, E;°, JO, H}, Hh K, forany n > 1, find E"‘H E*"‘H J”"’l

3 3
n+3 *n+35 n+3
eU),H, > H, > K, * eV suchthat

E*n+l _ E™ n+l
eo%, v, )= <Hh 2,V x \1:h>, V¥, € Uy, 45)
H*n+2 _H*n+2
(Mo%, o | = (VxE @), Ve, eV, (46)
/AR (e E"+1 . -
(Du,wh =|p=——"¥), V¥, eU), (47)
T
Kn+% rz+2 n+2 +Hn+%
Dh— —h, P, |, Vo, €V, (48)
EZ+1 En—H +En A n+1 —|—J" A
+{Cpy——— v,
T
E*n+l E*n E*n+l +E*n R
_ ( h h + V¥, e UY, (49)
T
Hn+% _Hn+% R % n+2 R Kn+2 +Kn+2 .
h h ) Qh ) ¢}’l + D—a q)h
T 2
H:n+‘2 _Hzn+% N *n+2 +H;kln+% . .
= , @y > @), VP, eV (50)
T
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This scheme can be implemented as follows:

1. Update EZ"‘H by solving (45) ;
2. From (47), we obtain

- ~ E LB L
(DJZ+1, \Ilh) = (DI}, ¥;) + T (D%, v, .

Substituting this equation into (49), we can update E ZH by solving the new equation
(49);

3
3. Update J ZH by solving (47); Update H Zn+2 by solving (46). Note that these two
updates can be done in parallel.
4. From (48), we obtain

3 1
3 1o H 2yt
(DKZ+2, q>h> - (DKZ+2, <1>h) . D%, 3,

3
Substituting this equation into (50), we can update H Z+2 by solving the updated
equation (50).

3
5. Update KZ+2 by solving (48).

3.1 The stability analysis

We dedicate this section to the stability analysis for the proposed finite element scheme
(45)—(50). First, let us introduce the average the operator and central difference oper-
ator for a time sequence solution u":

. Mn+l 4oyt

n+l _ .n
7"t = woo—w

D=

, 8tun+
2 T

For the stability analysis, we need the following lemma.

Lemma 1 For any two sequences u" and v, n =0, 1,2, ..., M + 1, we have
M 1 1 1 M 1 1
Zi”Jr?S,u"Jr? = —(MFyMHTL _ 00y Zﬂ”Jr?S,v”Jr?.

T
n=0 n=0

Proof 1t is easy to check that
M 1 1 M 1 1
Yo asu 4y was" Tl
n=0 n=0

M
1
— § : 27 [(Mn+lvn+1 _ unvn-H + un+1vn _ unvn) + (un-HUn-H + u" vn+1 _ un+1 ot unvn):|
T
n=0
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1 1
7(un+lvn+1 —u"") = 7(uM+lvM+l _ MOUO),
T T

Il
1=

which completes the proof. O
With the above preparations, now we can peove the following numerical stability.

Theorem 2 Under the CFL constraint

h 1
7 < min e , (51
2CvCinv 2|C—'Z + CUG|L00(§)

where the positive constant Ci,, comes from the standard inverse estimate [14,16]:
—1
IV xupllo < Cinvh™ llunllo, ¥Yu € Uy, (52)

then the solution (Eh, H,,E; Hy, J, Kh) of (45)—(50) satisfies the following stabil-
ity: For any N > 0,

N+
<||EN+l 13+ IDV2IN N2 + o, 2 ||0>
Mo N+3 +3
+5 (th 224 1DV2K) 2R + BNt ||3)
<cC [ (nE 12+ IDV2I3 + |loH,? ||0)
Mo 302 1253 12 02
+ (IG5 + 102K 15 + o715 ) | - (53)

where the positive constant C is independent of T and h.

Proof Our proof follows the proof developed for the continuous stability given in
Theorem 1 closely. To make the proof clearly, we partition our proof into three major
parts also.

1

n+7 YH»E
(D Letting \Ilh = E()TE ] in (49) and <I>h = ,uotli in (50), respectively,
we have
0 1 2 n+5 +35
D (U1~ IELIR) + o NGBy 1 + ov (DJh \E, )
; (eoa,E*"+2 El! +E") T et (GE nt E”+2>, (54)
and
Mno + 1 2 +1 +1
= (uH,, 15— IH, 2||o> + ot |Gy *H 1 + ot (DK, H )
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T +3 + —snt3 —nt1

= (MoatH*"“ H, > +H, 2) + 1ot (GHZ" H), ) . (55)

~ Jn+1+Jn ~ n+%+ "+%
Letting W), = et ~——"in (47) and @), = po7 ~———"— in (48), respectively,
we have

€T <DJh+2 En+2) _ EO (D(Jl;l+1 _JZ)“]Z-Fl +JZ)
€0
= 2 (I 25 =102 E) . 66

and

n+1 n+l)

Ko
2

Ho
2

0 +3 +
(MDWKZ 22— |DYK, 2||0). (57)

1
+1+E" Hn+2+Hn+2

Choosing ¥, = ‘L'Eh in (45) and ®;, = T ————"— in (46), respectively,

we have

T 1 T
5 (6061E2n+2 ,Ez+l +EZ> = —

> (H”+2 V x (Bt +E) )) (58)

and
; (MoatH*"“ H"+2 +H"+2> = (v x BNt H"+2 +H"+2> . (59)
Adding (54) and (55) together, and substituting (56)—(59) into the reult, we obtain

+
[ (||E”“||0+||Dl/2J"+1||o)+—(nH 3+ 10Ky ||%)}

€0 +3 +1
- [5 (||EZ||<% +ID2131R) + & <||H" 5+ 102K )}
1 2 1 2 +1
et ICLE R 4 ot CPE 2
_ % [(H"+2 V x (B + E} )) (v x Bl H"+2 +H”+2)}
. 1 _ 41
. (GEZ"+2,EZ+2> + wot (GHZ"H HZ“) . (60)
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It is easy to check that

2 [(H"+2 V x (Bl 4 E] )) (v x Bl H"+2 +H”+2>}

2
;[(v E”,Hn+2> (V x Mt H"+2>] 61)

Substituting (61) into (60), dropping the non-negative terms €o7 || C,, ) ||0 and

HoT ||C1/2 ||0 and summing up the result fromn = 0 to N, we have

0 N+
5(||EN“||0+||D1/ZJN+1||0)+—(nH I3+ 10K, 2||2)

0 = l
= 3 (1IR3 + 10 2515) + (nH,if I3+ ID'2K;, ||%>

1
n % [(v x EO,H;) (v x BN HN+2>:|
al —n+1 E—— al = 1
+3 ¢ <GEh 2 B} 2) + Yt (GH, ol ) (62)
n=0 n=0

(I) To bound Ej; and Hj in (62), we follow the similar technique developed

E*n+l EM . ~
in the contmuous case. Letting \Ilh = €0M0T i in (49) and ®;, =

1
+3 +
o H, Z4H, Z . .
€opyT ————"— in (50), respectively, we have

n+ ]
2 (1eoB5" ' I = o5 1) + ot G20y I

:teop,o[(&EZ eoE*”“)qL(CmE . €E)" *2) (DJ"+2 eoE*”“)],

(63)
and

€0 *n+3 st —sxn+1
5(||uoH 2113 = llmoH, 2||%>+eor||61/2 o, I3

o[ ) () ()]
(64)

Adding (63) and (64) together dropping the non-negative terms wot |G e

+1 .
E*n 2|13 and €ot]|G'/?p oH," ||g, and summing up the result from n = 0 to
N we have

*N+,,

o | €0 - o
(—nuoH,, 15 + 5 eo; ||%> - (5llulo2 5+ 7||60EZ°||%)
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1
< teouo Z K(w E, +2> + (a,H \ o H;j”“)]

— 1
+r2€0uo|:(C E 407t eoE;”“) + (Culy " + DR, OHZ”+'>].
(65)

Using Lemma 1, we have

TGOMOZ (51 LB, ) = €opo [(EZVH, GoEZNH) - (EO’ EOEZO)]

N (66)
— T€glo Z (EZ 608,E*n+2)
n=0
and
l n+1 Fpn+1 N+ *N+2 % *%
TGOMOZ((StHh s ol ) =e€opo | | Hp, ,MOH —|Hj, noH,,
=0 67)

N
—n+1
— T€OMO Z (H;, , /LO&HZ"H) .
n=0

Adding (66) and (67) together, using (58), (59) and (61), we have

N
féOM—OZ[(‘StEZ 60E*n+2)+<5tHZ+],lL0HZn+1):|
n=0
N+3 N+3 3 3
= €0/0 |:(E;lv+1,eoEZN+l> + (Hh Z,MQHZ 2) - <E2, EOEI()) - <H;»MOHZZ>i|
N 7n+% *n+% —=n+1 #n+1
—eomo Y |7 (B, 2 oy ) 4o (G s H (68)
n=0
N+3 N+ 3 3
:eouo[(E/[:’H,eoEZNH)—i-(Hh 2 o, 2)—(Eg,eOE;())—(H;,,uOHZZ)}
N T
—amo) 5 [(v XEZ,HHZ) (v x Bl H"+2>}
n=0
= BV o N 4 (HYE ol — (B, B0 — (HE pol’?
= €010 €0k, +\H, °,poH, > €0E}, i Mot

T 1
+ Egﬂo |:<VXEN+1 HN+2) - (Vng,H}f)].

Substituting (68) into (65) and adding the result with (62), we have

*N+3
(||EN+1 13+ IDYV2IN T3 + woH, ||3)
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N+ N+
(nH 213+ DK, R+ leoERN ! ||%)
€0 0,2 1/2 40 12 ¥3.2
< = (IERIG + 1DV2T3IG + o, 13

1o 1 1
+5 (nH,f I3+ 1IDV2K 2 115 + ||eoEz°||6)

_ (E _ “0“0) x EN*1 HN+2 (vxE*H
2 2 Pk

3 3
T oo |:(E;ZV+1’€0E2N+1) + <H;IZV+27M0HZN+2> _ (EO, EOEZO)

-

N 1
+Ty ((Gouocm +GIE, * +eonoDJ), GoE*n+2>
n=0
et — +1
3 ((eonoCn + GH, + couoDK, L oty ). (69)

(III) Now we need to bound those right hand side terms of (69). By the inverse estimate
(52) and the Cauchy—Schwarz inequality, we have

T Teouo Nil pN+3 Cy T\ Cinv N+7
(= — VxE) H) < - . E H,
(5 )( )_( ‘ 2@) NNl - ol

TCyCiny TCiny €0\ N+12 N+3
< - —|E H, 2
< ( o 2hCU> < > IE, ™ IIg + 20 H 15

(70)

and

T TEQMO 0 % Cy T Ciny
- — VxE;, H - — E H
-5 )( x E), ,,)s( T Vel lo - Vi IH Tl

7CyCiny Ciny
< — 2E? — H2
_( 7 2hcu>< I ||0+ || ||o>
(71)
Using the Cauchy—Schwarz inequality, we have
coro BV, by ) = 2 VaIEY o - e o

1

< & (ST + ek R (72)
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N+3 *N+ 1 *N+3 N+3
€010 (Hh Ry 2) < & VeolluoH,, “lo - /mollHy, " llo
v
1 *N+ N+3
< ol (*IIMOH 213+ *IIH z IIO) ; (73)
v

— eopo (EY, «E;0) < C—feonE‘zno - JoleoE o

1

< & (SIENE + S 1o 15) (74)

and

IA

1 1 1 1 1
—€0140 (H,f , MOHZZ) — JeollioH, lo - /o1 H; llo
v
1

€0
— | = H —||H? 75
c. ( ) Il o ||o +£ || IIO) (75)

IA

Similarly, we have

N N

—n+1 —snt L C
tZ((eo,uoCm-i-G)Eh ? E, 2>5r2\c—’:+cv

n=0 n=0

C, €0
<ty |C—’: + CGliegm (5

11+2

)
0 EZ 2‘ “ 1o

Gth

o

0

L2 ek
B +% B,
0

2
0)
N
Cn n+1 €0 n )2 sn—+1 Ho %12
< r2|— +CuGlyq (BRI + SUERIE + 5213 1F + S o3 13)

=0

Cp c,G
< r\— + — \me) (f“ENH Ho 4+ = \|eoE*N+1”3)

C
+rZ\C—'" +Co6lin (S IEME + 5P B3 1F) (76)
n=0 v

KN+ 2

| DT, "? «FE,

N
1 1
—n+ 5 —=*n+5

IZ (éouoDJ,, ’,&E, 2) =

n=0

O-W
2
)
N

> (ID1w@ FID 2T IE + 1Dy S IDYAIE + 52 o 1F + 2 o3 1)

n=0

3c (1Pl F DM + 5 heoks 1)

2 et L
+ B lE 2
o 2

IA

N
T 1ot
FZ('D‘LWQ) ) HD Ty

Y p=0

A

- 2C,

I A

€0 1/2 I
+ C—U n; (|D\LM@?HD 2rE + —IleoE 13)- (77)
By the same technique, we can obtain

N
- +1
23 ((eo,uoCm +OH ol ) <7 Z |— +GCulm

n=0 n=0 v
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<@l e,

C GC N+3 *«N+
< I3 ”|m>( 1, 13+ 5 o, 2||0)
v

N
C + +
+’Z'c_m+GC"'L°°<Q>< o, 2||0+—||H” 2||0) (78)

v

and

N
T Z <€0MODI_{Z ()HZH-H)
n=0

s*n+1

N
T —n+1
£ 5 oR | ala,
Y =0

T N43 *«N+3
< |D|Loo(m %Dk, I3+ —Il,uoH 2115
2C,
N
T +1 +
= <|D|Lm(m CIDV2K, 3 + —IIMoH , 2||0). (79)
Y =0

Substituting the above estimates (70)—(79) into (69), we have
*N+3
(MEN+1 13+ 1D 2TV 3 + ol 2 ||é)
N+3 N+3
<||H I3+ IDY2K;, "2 115 + lleoEFN ! ||%)

7C,C; 7C; 1
< [1+( v ) + —} - (nE I3 + 1D I3 + llwoH uo)

2h 2hCy Cy

TCyCiny TCiny 1 1/2 2
1 - — H} D/ K E;°
[ +( o thv)+ Cv] (n 2y 12 + leoE} 13

tCyCiny  TCinv 1 Cn GC, €0\ N1 N+3
- — ikl E 2w, 2
+[( 2h thv)+ Cu +T|2CU + 2 ‘L (Q)] ( ” H0+ H ”0

€0 N+
+7|D‘L°‘J(§)?”Dl/2_];lv+1”(2)+ |D‘LOQ(Q) 2 ||D1/2K ZHZ

1 ch *N+12 *N+2
+[C—v+r\—+ @+ 5e ]<7||eth I3+ ot 13

€0 +
+rCZ[5( \EL I3 + 1 D2I513 + lloH,," 2||0)
Hn+2 1/2K"+2 E*n 80
I, 213 + 1D I3 + lleoE5" 13 ) | (80)

where the constant C absorbs the explicit dependence on other physical parameters
Note that C, = 3 x 108 > 1, which guarantees that the coefficients C s 2C < 1.
Hence, we can choose t small enough so that the left hand side term of (80) can control

the corresponding terms on the right hand side. A specific choice can be
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TCyCiny

1 Cnm 1
A SE, T|C_U+GCU|L00(§)§§a

which leads to a choice of T as (51). Applying the discrete Gronwall inequality to (80)
completes the proof. O

3.2 The error estimate

For clarity, we use the script letters to descript the corresponding errors. For example,
we define the errors between the exact solutions of (12)—(17) and its finite element
solutions of (45)—(50):

EM = E*(ty) — E}" = (E™(ta) — TIE™ (1))
+(ILE*(ty) — E}") := (E™ — II.E™) + &,",

*n+%

1
H 2 = H*(tn+%) —-H, = (H*(tn+%) - l‘ldH*(tH%))
1
+HTH (1, ) — H,' )

*n+%

— (H*n—l-% _ HdH*n-F%) + Hh ,

where we denote I1.E and I1;H for the H (curl; 2) and H (div; 2) interpolations of
E and H, respectively. Also for simplicity, we denoted E*" := E*(t,) and H ity

H*(t, 1 ). Other errors J*", S &, H”+% can be definited similarly.

Integrating (14) from ¢, to t,,41, multiplying the result by %\Ilh and integrating over
2, then subtracting (45), we obtain

g*n+l _ g 1 tht1 1
(60—, \Ilh> = <_ Hds —H, 2,V x q:h) ,
T T

In

which leads to the error equation

g*n+l _ g*n 1
<eou, v, | — (thﬂ_z, V x \Ilh>
T

€0 th1
— (-/ 3 (II.E* — E*)ds, \Ilh)
T Js

n

1 In+t1 1
+ (—/ (H — TIyH" 2)ds, V x \Ilh> .V, eUY. @8
T ty

Similarly, integrating (15) from 7, 1 toz, ., 3 multiplying the result by %tbh and
integrating over €2, then subtracting (46), we obtain
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3 1
H*n-‘ri _ H*n+§ 1 tn 3
(Mo—,% = —/ PV xEds -V xE* &, |,
t t tn+%
which leads to the error equation
H*n+% . H*n—i—%

In 3
= @/ 2 o, (MuH* — HY)ds, &),
T Jt

1

n+s
1 tn-%—% n+1
. V x (E—T.E"™Yds, ®,|. V®,eV,. (82)
T t 1
nts

Integrating (12) from ¢, to t,,41, multiplying the result by %{Ivlh and integrating over
2, then subtracting (47), we obtain

n+l _ gn 1 1 En+1 —I—En N
(Du, \I'h) - (D(—/ Eds — 2 0§,
T T Js 2

from which we obtain the third error equation

n+1 _ no_ £n+1 +€n -
T 2
D Int1 ~
In
D thtl En+1 + E" - o 0
+ (?f (E — HC(T))CIS, \I’h> , vV, € U,. (83)
In

Following exactly the same way as deriving (83), we have the fourth error equation

+§ ,H_l n+§ n_;,_l
K, =K, 7 ~ Hy, P+ M, P~
“hTh @, | - D

T 4 2 h

D

D tn+% ~
- = 3, (MK — K)ds, &),
r tn+§
D tn 3 Hn+% Hn+% - -
+1 =" - Hd(+))ds, 3,|, Vve®,ev, 64
T )

n+z
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Similarly, integrating (16) from #, to f,4;, multiplying the result by %@h and
integrating over €2, then subtracting (49), we obtain

entl _gn Cp [+ E' v B
(f’ Wh) + (Tm/ (E — %)d& L 7
In

sl n+1 n .
+(2/ i (J—M)ds,\llh>
T Ji, 2

gxntl _ gxn G [+ E*n+1+ *n R
:<f"“>+(?/ (B = =5 s W)
t

n

which leads to the fifth error equation
gn+l _&n €n+1 +E n+1 + T
e Ty, + e, vy, |+ Du,\ph
T 2 2
g*n+1 _em 5*n+1 Lo
— (u v, | - G%, W),
T

1 In+1 ~
- (;/ 3, (T.E — E)ds, \Ilh)
t’l

C o1 En+1 En R
4 (—’" / M50 By, \Ifh)
n

T 2

D tht1 n+1 n -
+ (— / (nc(J—”) — J)ds, \yh)

T Ji, 2

1 Int1 ~
+ (; / 8,(E* — TI.E")ds, \Ifh)
1,

n

G thl E*n-‘rl E*" . N
+ (?/ E* — HC(+))ds, \Ilh> . YU, e U0 (85)
In

Following exactly the same way as deriving (85), we have the sixth error equation:
For any &, € V,,

3 1 3 1 3 1
My P M My P+ H, T Ky 24107
—_— % |+ | O |+ | D—F——, Py,

T 2 2
*n—i—% *n—i—% *n+% *n+%
T ’ 2 ’
1 tll ; —~~
- —/ "2 5,(TIyH — H)ds, ®,
TJ
nty
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C, [he3 _ H" 3 4 H'3 .
& e T Hyas @,
T Ji 2
n+7
D (L3 _ K"t 4 Kvts _
+ —/ S ks @,
T Ji 2
n+y
1 ln+% % % o~
+| - o,(H™ — IIyH™)ds, ®p
t tn+%
G tn 3 H*n-‘r% H*n+% e
I f - s, B | (86)
i,
nty

Note that the error equations (81)—(86) have exactly the same form as the finite
element scheme (45)—(50), except those extra terms added to the right hand sides of
(81)—(86) due to the time and spatial discretization. Moreover, by the interpolation error
extimates of [T, and I, these extra terms have the local truncation errors O (72 + h! ),
where [ > 1 is the degree of the basis function in the finite element spaces V,
and Uj,. Hence, by following the same technique developed for proving the discrete
stability given in Theorem 2, we can prove the following error estimate between the
interpolation and the finite element solution:

€0 N+3
> (nshN“n% FIDV2IN R 4 oK, ||3>
Mo N+3 N+3
+7<||Hh 2|5 + I1DY2K, 2||%+||e06;’v+‘||%>
€0 02 1/2 702 ¥3.10
= C 5 (161G + 1DV 15 + o™, g
Ko 3 3
+ (HH; I3+ 1D 13 + ||eo€,’:°||é) +(? + hl)z} 1))
By choosing the following initial conditions

E) = TILE(0), E;° = II.E*(0), J§, = I1.J (0),
H) = T;H(0), H;° = TI;H*(0), K) = ;K (0),
then using the triangle inequality and the interpolation error extimates of I, and I1y

to (87), we can obtain the following optimal error estimate between the analytical
solution and the finite element solution:

€0 3
= (1€Y11 + 1D 2TV + b+ 1)

"o 3 3
+ 52 (V20 4+ 1D 2N + o1
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< C@?+hH. (88)

4 Numerical results

In this section, we present some numerical results to demonstrate the performance of
this Cohen—-Monk PML model. For simplicity, we focus on solving the 2D version
of the numerical scheme (45)—(50). More specifically, we consider the so-called T E,
mode, which has unknowns E = [Ey, Ey1", H;,E* = [E}, EX)", H,J = [Jy, Jy]",
K, and the governing equations are given as follow:

oJ
Y _E. 89
” (89)
K,
=H, 90
o1 f4 (90)
oE*
€0 —VxH,=0, ©n
at
*
o atz +VXxE=0, (92)
E E* .
m + CoyE + Doyl = o + GoE* + f, (93)
dH, dH? .
9 + CiaH; + DiaK; = at' + G H; + gz, (94)

9E, 8 ..
where the curls V x E = 3 y _ OEx , VX H, = [ﬂ, —a[H‘]T, and the definitions
X dy dy dx

of f =1[f:, fy]'. g = g can be derived similarly from the 3D model. Moreover,

Crq =diag(o2,01), Dyg =diag(0,0), Gyg =diag(oy,02),
Cig =01 +02, Diy=o0102, Gig=0.

Since Dyy = diag(0, 0), the function J is not used in (93). Hence the equation
(89) is not needed in the 2D model. For simplicity, we only employ the lowest order
Raviart-Thomas-Nédélec mixed spaces on rectangular elements [14]:

Vi = {un € L2 : ¥l = Qoo VK € Th},
Up = {¢n € H(curl: Q) : ¢p|, = Qo1 x 01,0.VK € T},

where Q; ; denotes the set of polynomials of degrees of i and j in the x and y
directions, respectively.

Example 1 This example is used to justify the convergence rate of our scheme. To
construct an analytical solution, we add extra source terms f = [ f, fy]T, g and g7
to the model equations (89)—(94), and choose the physical domain 2 = [0, 11 and

co=po=1 oi(x)=sin*(rx), o2(y) =sin’(xy).
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More specifically, we solve the following governing equations:

IK.
=H,, 95
o1 z (95)
oE*
€0— —V x H, =0, (96)
at
*
Ho o1 +VxE—gZ, 97
oE oE* A
8—+C2¢E= —+ Gl + f + f, (98)
0H. BHZ* ¥ .
8 +GiaH; +g:+ 8z, 99)

such that the exact solution is given as follows:

£ <Ex> _ (e”_’ cos.(nx) sin(ry) ) B —E.

-t
E, e sin(mwx) cos(rr)l)) (100)
H. =e " cos(rx)cos(ny), K, = ——e " cos(mx)cos(wy), H = H-.
T
The corresponding source terms are given as:
fe fe\ _ [ cos(x)sin(ry) (sin(ry) — sin®(x))
“\fy ) \lsin(zx)cos(ry) (sinz(ny) - sinz(nx)) ’
A fx (e cos(rx) sin(ry) (sin?(ry) — sin®(7rx))
f= fy) — \e ™ sin(rx)cos(ry) (sin’(my) —sin*(zx)) ) ! 0
(101)

g, = cos(mx) cos(mwy) (sinz(ﬂx) + sinz(rry)) R
8. =e ™ cos(mx) cos(mwy) [(sinz(nx) + sinz(ny)) - %sinz(ﬂx) sinz(ny)] - gz,

g¥ = —3me ™ cos(mwx) cos(wy).

Modification of the 3D numerical scheme (45)—(50) to solve (95)—(99) leads to the
. n+1 n+1 0 +% *n—t—% +%
following 2D scheme: find E, ", E, e Uy, HZ , H), , Knh € Vy, such that

3 1 3 1
K3 gt P I _
(omhth,cp,, - am%,@h . VB, e Vi, (102)

E*n+l E*n 1
W, :( h+2,V><\Ilh>, v, € UY, (103)

~

H *n+35 _ *n+2
ot @ | = — (VX B ) + (g tusn) @4), Y € Vi, (104)
= :

EZ-H EZ ah) (Cszn+l+En ah)
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Fig. 1 Snapshots of the magnetic field H;: (top left) 300 steps; (top right) 400 steps; (bottom left) 500
steps; and (bottom right) 10,000 steps

E*n+l _Em E*n+l +E*n . " > .
=<h bWy )+ G ———L W, +((f+f)(f,,+%),‘l’h)’ V¥, € Uy,

T 2
(105)
B gt WLt
b b @ |+ | (o1 +02) 2 h ),
T 2
3 1 1
Kn+§ Kn+§ N H*n+§ _H*n+§ N
+ | o102 & , Dp h b 3,
2 T
+ ((8z + 82) (tag 1), 6;,), vd;, € V. (106)

We solve this model problem with a time step size T = 10~ and varying mesh sizes
h from % to ﬁ and runs for 1000 time steps. The convergence rates are presented
in Table 1, which clearly shows O(h?) in both Ly, and the discrete L, norms (the
numerical quadrature calculated at element centers). Note that O(h?) in both Lo
and the discrete L, norms is a superconvergence result, which has been proved and
observed for the lowest-order rectangular and cubic edge element [10,12].

@ Springer



Development and analysis of a new finite element method for... 153

0.015 0.015
05
0.01 0.01
0.4
0.005 0.005
0.3
0 0
0.2
-0.005 -0.005
0.1
-0.01 -0.01
0
0 01 02 03 04 05 -0.015 -0.015
0.01 %10
. -
0.5
5
0.4 0.005
4
0.3 5
0
0.2 5
0.1 -0.005 1
0 0
- »
-0.01
0 01 02 03 04 05 0 01 02 03 04 05

Fig.2 Magnetic field H; at various time steps: (top left) 200 steps; (top right) 500 steps; (bottom left) 700
steps; and (bottom right) 1000 steps

In Table 2, we present the numerical results obtained with varying mesh sizes h
from 11—0 to 11@, time step size T = h/4, and the final simulation time 7" = 1. Table 2
shows O(t?) in both L and discrete L, norms.

Example 2 In this example, we choose the same benchmark problem developed in our
previous paper [9] to compare how the current algorithm works. More specifically, we
choose the physical domain 2 = [0, 0.5]m x [0, 0.5]m, which is divided by uniform
rectangles with mesh size & = 2.5 x 10™3m and time step size 7 = 2.5 x 10~1%5. We
surround the physical domain by a PML with thickness dd = 20A. In our simulation,
the damping function o7 is chosen as a fourth-order polynomial function given as:

O'max(x;_gj){ if x>0.5,
01(x) = { omax ()%, if x 0.0,
0, elsewhere,

where 0y,0x = —log(err) x5 % 0.07 x Cy /(2 x dd) with err = 10~7. Recall that C,
denotes the wave propagation speed in vacuum. The damping function o7 has exactly
the same form but varies in y variable.
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A

In this example, we solve the scheme (102)—(106) with no added source terms f,
8z, g}, and zero initial fields (which means that f = 0, g. = 0). We choose a point
incident source wave located at point (0.25, 0.25) and imposed as

H, =0.1sin(2mvt), where v =3GHz.

In Fig. 1, we plot some snapshots of the magnetic field H, obtained by our scheme.
To see the long time stability of our scheme, we plot the field H, up to 10,000 time
steps.

To see how the PML performs, we solve this example again by stopping the source
wave after 200 time steps. The computed magnetic fields H; at various time steps are
plotted in Fig. 2, which shows that the source wave exits the domain without obvious
reflections. Small remaining wave inside the physical domain is due to the numerical
error caused by the mesh size and the low accuracy of the scheme.

5 Conclusion

In this paper, we first reformulated an equivalent Cohen—-Monk PML model and then
proved its stability. A finite element method is proposed to solve this equivalent PML
model, and its numerical stability and optimal error estimate are proved. Numerical
results demonstrating the effectiveness of this PML model are presented. In the future,
we can consider the 3D implementation of this PML model and its application.
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