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ABSTRACT

Few-shot intent detection is a challenging task due to the scare

annotation problem. In this paper, we propose a Pseudo Siamese

Network (PSN) to generate labeled data for few-shot intents and

alleviate this problem. PSN consists of two identical subnetworks

with the same structure but different weights: an action network

and an object network. Each subnetwork is a transformer-based

variational autoencoder that tries to model the latent distribution of

different components in the sentence. The action network is learned

to understand action tokens and the object network focuses on

object-related expressions. It provides an interpretable framework

for generating an utterance with an action and an object existing in

a given intent. Experiments on two real-world datasets show that

PSN achieves state-of-the-art performance for the generalized few

shot intent detection task.
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1 INTRODUCTION

Intelligent assistants have gained great popularity recently. Compa-

nies are striving to deliver their products either on speaker devices

such as Amazon Alexa, or smartphones such as Siri from Apple.

To provide an intelligent conversational interface, these assistants

need to understand the user’s input correctly. Among all the natural

language understanding tasks, intent detection is an important and

essential one. It aims at understanding the goals underlying input

utterances and classifying these utterances into different types of

intents. For example, given an input utterance, “How’s the weather

in Chicago tomorrow?”, the system needs to identify the intent is
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query weather. With the development of deep learning techniques,

intent detection has achieved great success by formalizing it as

a text classification task under the supervised learning paradigm

[3, 25]. These works rely on a large amount of labeled data to train

the intent detection model. Certain restrictions like requiring suffi-

cient labeled examples for each class limit these models’ ability to

adapt to previously unseen classes promptly. Recently, researchers

are interested in achieving decent performance with reduced hu-

man annotation and extending models’ ability to detect new classes.

Low-resource learning paradigms [22, 27] like Zero-shot learning

[21] and Few-shot learning [13, 18, 19] have drawn a lot of attention

recently. In this work, we focus on the task of identifying few-shot

intents which only have a few labeled examples.

The bottleneck for identifying few-shot intents is the lack of

annotations. If we can generate high-quality pseudo-labeled ex-

amples for these few-shot intents, we can effectively alleviate this

issue and improve the performance. There are only a few previous

works [11, 12, 16, 26] that try to augment the training data with

generation methods and alleviate the scarce annotation problem.

However, these models utilize simple neural networks with limited

model capacity, like LSTMs [7], to do text generation. Furthermore,

these methods do not consider the inner structure for an intent.

Naturally, an intent can be defined as an action with an object [24].

For example, the intent of the input “wake me up at 7 am” is to

set an alarm. This intent consists of an action “Set" and an object

“Alarm”. In this paper, we propose a Pseudo Siamese Network (PSN)

that generates labeled examples for few-shot intents considering

the inner structure of an intent. PSN consists of two identical sub-

networks with the same structure but different weights: an action

network and an object network. To utilize the powerful pre-trained

language models and capture the latent distribution of sentences

with different intents, we propose to use transformer-based [15]

variational autoencoders [10] as the sub-networks to model differ-

ent components in the sentences. The action network is learned

to understand action tokens and the object network focuses on

object-related expressions. During the inference, PSN generates an

utterance with a given intent by controlling the action generation

and the object generation separately in two subnetworks. It pro-

vides an interpretable framework for generating an utterance with

an action and an object existing in a given intent.

To quantitatively evaluate the effectiveness of PSN for augment-

ing training data in low-resource intent detection, experiments are

conducted for the generalized few-shot intent detection task (GF-

SID) [20]. GFSID is a more practical setting for few-shot intents. It

not only considers the few-shot intents with a few labeled examples,

but also includes existing intents with enough annotations. For-

mally, GFSID aims to discriminate a joint label space consisting of

both existing many-shot intents and few-shot intents. In summary,

the main contributions of our work are as follows. 1) We propose
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a Pseudo Siamese Network to generate high-quality labeled data

for few-shot intents and alleviate the scarce annotation problem.

2) PSN provides an interpretable framework for generating an ut-

terance with an action and an object belonging to a given intent

by controlling each part in a subnetwork. 3) Empirical experiments

conducted on two real-world datasets show the effectiveness of our

proposed model on the generalized few-shot intent detection task.

2 PSEUDO SIAMESE NETWORK

In this section, we introduce the details for the proposed Pseudo

Siamese Network (PSN). As illustrated in Figure 1, PSN consists

of two identical subnetworks: an action network and an object

network. These two subnetworks have the same structure with

different weights. Each subnetwork is utilized to model different

components in the utterances. The action network is used to learn

action tokens and the object network is proposed to focus on object-

related expressions. Specifically, each subnetwork is a transformer-

based variational autoencoder that consists of an encoder and a

decoder. Each encoder and decoder are a stack of multiple trans-

former layers.

2.1 Input Representation

Each training instance consists of an input sentence and a corre-

sponding intent. To capture the inner structure of the intent, we

define the intent as a pair of an action𝑦𝑎 and an object𝑦𝑜 . Given an

input sentence 𝑠 = (𝑤1,𝑤2, ...,𝑤𝑛) with 𝑛 tokens, we construct two
text pairs and feed them separately into two subnetworks. We feed

the action token together with the input sentence into the action

network, while the object token and the input sentence are fed into

the object network. To formalize the input for transformer-based

models, we add a special start-of-sequence ([CLS]) token at the be-

ginning of each input and a special end-of-sequence ([SEP]) token

at the end of each sequence.

Formally, the input for the action network is formatted as ([CLS],

𝑦𝑎 , [SEP], 𝑤1, 𝑤2, ..., 𝑤𝑛 , [SEP]) and the input for the object net-

work is ([CLS], 𝑦𝑜 , [SEP],𝑤1,𝑤2, ...,𝑤𝑛 , [SEP]). The input of each

subnetwork consists of two sentences. In this paper, we refer ([CLS],

𝑦𝑎 , [SEP]) and ([CLS],𝑦𝑜 , [SEP]) to as 𝑆1, and (𝑤1,𝑤2, ...,𝑤𝑛 , [SEP])

as 𝑆2 in each subnetwork. For each input in the subnetwork, they

are tokenized into subword units by WordPiece [17]. The input

embeddings of a token sequence are represented as the sum of

three embeddings: token embeddings, position embeddings [15],

and segment embeddings [5]. These embeddings for input repre-

sentation are shared between the action network and the object

network.

2.2 Network Structure

The overall framework of Pseudo Siamese Network is illustrated in

Figure 1. PSN consists of an action network and an object network.

The action network has an action encoder and an action decoder

while the object network has an object encoder and an object de-

coder. We will describe the encoders and the decoders separately

in this section.

2.2.1 Encoders. Two encoders including the action encoder and the
object encoder are contained in PSN. The action encoder encodes

the action and the input sentence into a latent variable 𝑧𝑎 while

the object encoder encodes the object and the input sentence into

a latent variable 𝑧𝑜 . Multiple transformer layers [15] are utilized

in the encoders. Each transformer layer models the self-attentions

among all the tokens. For the 𝑙-th transformer layer, the output of

a self-attention head 𝐴𝑙 is computed via:

𝐴𝑙 = softmax

(
𝑄𝐾⊤√︁
𝑑𝑘

)
𝑉 , (1)

where𝑄,𝐾,𝑉 are queries, keys, and values projected from the previ-

ous layer𝐻 𝑙−1 and parameterized bymatrices𝑊 𝑙
𝑄
,𝑊 𝑙

𝐾
,𝑊 𝑙

𝑉
∈R𝑑ℎ×𝑑𝑘 :

𝑄 = 𝐻 𝑙−1𝑊 𝑙
𝑄 , 𝐾 = 𝐻 𝑙−1𝑊 𝑙

𝐾 , 𝑉 = 𝐻 𝑙−1𝑊 𝑙
𝑉 . (2)

The embeddings for the [CLS] token that output from the last

transformer layer in the encoder are used as the encoded sentence-

level information. The encoded sentence-level information is de-

noted as 𝑒𝑎 in the action encoder and 𝑒𝑜 in the object encoder. 𝑒𝑜
and 𝑒𝑎 are encoded into 𝑧𝑎 and 𝑧𝑜 to model the distribution for the

action and the object separately.

By modeling the true distributions, 𝑝 (𝑧𝑎 |𝑥,𝑦𝑎) and 𝑝 (𝑧𝑜 |𝑥,𝑦𝑜 ),
using a known distribution that is easy to sample from [9], we con-

strain the prior distributions, 𝑝 (𝑧𝑎 |𝑦𝑎) and 𝑝 (𝑧𝑜 |𝑦𝑜 ), as multivariate

standard Gaussian distributions. A reparametrization trick [10] is

used to generate the latent vectors 𝑧𝑎 and 𝑧𝑜 separately. Gaussian

parameters (𝜇𝑎 , 𝜇𝑜 , 𝜎
2
𝑎 , 𝜎

2
𝑜 ) are projected from 𝑒𝑎 and 𝑒𝑜 :

𝜇𝑎 = 𝑒𝑎𝑊𝜇𝑎 + 𝑏𝜇𝑎 , (3)

log(𝜎2𝑎 ) = 𝑒𝑎𝑊𝜎𝑎 + 𝑏𝜎𝑎 , (4)

𝜇𝑜 = 𝑒𝑜𝑊𝜇𝑜 + 𝑏𝜇𝑜 , (5)

log(𝜎2𝑜 ) = 𝑒𝑜𝑊𝜎𝑜 + 𝑏𝜎𝑜 , (6)

where𝑊𝜇𝑎 ,𝑊𝜇𝑜 ,𝑊𝜎𝑎 ,𝑊𝜎𝑜 ∈ R𝑑ℎ×𝑑ℎ and 𝑏𝜇𝑎 , 𝑏𝜇𝑜 , 𝑏𝜎𝑎 , 𝑏𝜎𝑜 ∈ R𝑑ℎ .
Noisy variables 𝜀𝑎 ∼ N(0, I), 𝜀𝑜 ∼ N(0, I) are utilized to sample 𝑧𝑎
and 𝑧𝑜 from the learned distribution:

𝑧𝑎 = 𝜇𝑎 + 𝜎𝑎 · 𝜀𝑎, 𝑧𝑜 = 𝜇𝑜 + 𝜎𝑜 · 𝜀𝑜 . (7)

2.2.2 Decoders. The decoder utilizes latent variables together with
labels to reconstruct the input sentence 𝑝 (𝑠 |𝑧𝑎, 𝑧𝑜 , 𝑦𝑎, 𝑦𝑜 ). As shown
in Figure 1, the action decoder takes 𝑧𝑎 , 𝑦𝑎 , and the sentence 𝑠 =

(𝑤1,𝑤2, ...,𝑤𝑛) as the input while the input of the object decoder
are 𝑧𝑜 ,𝑦𝑜 , and the sentence 𝑠 . The label components (𝑦𝑎 ,𝑦𝑜 ) and the

sentence 𝑠 are embedded with an embedding layer. The embedding

parameters are shared with the input representation.

To keep a fixed length and introduce the latent information 𝑧𝑎
and 𝑧𝑜 into the decoders, we replace the first [CLS] token with

𝑧𝑎 and 𝑧𝑜 in each sub-network. The decoders are also built with

multiple transformer layers. Text generation is a sequential process

that uses the left context to predict the next token. Inspired by [6]

that utilizes specific self-attention masks to control what context

the prediction conditions on, we apply the sequence-to-sequence

attention mask proposed in Dong[6] in the decoders to simulate the

left-to-right generation process. With the attention mask applied

in the decoders, tokens in 𝑆1 can only attend to tokens in 𝑆1, while

tokens in 𝑆2 can attend to tokens in 𝑆1 and all the left tokens in 𝑆2.

For the first tokens in two decoders, 𝑧𝑎 and 𝑧𝑎 , which hold latent

information, they are only allowed to attend to themselves due to

the vanishing latent variable problem. The latent information can
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Figure 1: The overall framework of Pseudo Siamese Network. FC is short for Fully-Connected layers.

be overwhelmed by the information of other tokens when adapting

VAE to natural language generators [28].

After the transformer layers in the decoders, we can obtain the

embedding outputs for these two sequences: (𝑧𝑎 , 𝑦𝑎 , [SEP],𝑤1, ...,

𝑤𝑛 , [SEP]) and (𝑧𝑜 , 𝑦𝑜 , [SEP],𝑤1, ...,𝑤𝑛 , [SEP]). To further increase

the impact of the latent information and alleviate the vanishing

latent variable problem, we concatenate the output embeddings of

𝑧𝑎 to other token embeddings in the first sequence and concatenate

𝑧𝑜 to other token embeddings in the second sequence. The hidden

dimension increases to 2 × 𝑑ℎ after the concatenation. To reduce

the hidden dimension to 𝑑ℎ and get the embeddings to decode the

vocabulary, two fully-connected (FC) layers followed by a layer

normalization [1] are applied on top of the transformer layers. Gelu

is used as the activation function in these two FC layers. For the

token at position 𝑖 in the sentence 𝑠 , the output representation from

the action decoder is denoted as 𝑎𝑖 and 𝑜𝑖 from the object decoder.

As shown in the output box of Figure 1, the outputs from action

decoder and object decoder are fused together to predict the next

token. An FC layer is used to fuse these outputs:

𝑚𝑖+1 = 𝑔(𝑎𝑖𝑊𝑎 + 𝑜𝑖𝑊𝑜 + 𝑏), (8)

where𝑊𝑜 ,𝑊𝑎 ∈ R𝑑ℎ×𝑑ℎ and 𝑏 ∈ R𝑑ℎ are parameters, and 𝑔 is the

GELU activation function. The fused embeddings 𝑚𝑖+1 are used

to predict the token at position 𝑖 + 1 with another FC layer. The

inference process iteratively decodes the output till the [SEP] token

is generated.

2.3 Loss Function

In themodel, the loss function consists of two parts: the KL-divergence

that regularize the prior distributions for two latent variables to be

close to the Gaussian distributions and the reconstruction loss:

L = −E𝑞 (𝑧𝑎 |𝑥,𝑦𝑎),𝑞 (𝑧𝑜 |𝑥,𝑦𝑜 ) [log 𝑝 (𝑥 |𝑧𝑎, 𝑧𝑜 , 𝑦𝑎, 𝑦𝑜 )]
+DKL [𝑞(𝑧𝑎 |𝑠,𝑦𝑎), 𝑝 (𝑧𝑎 |𝑦𝑎)]
+DKL [𝑞(𝑧𝑜 |𝑠,𝑦𝑜 ), 𝑝 (𝑧𝑜 |𝑦𝑜 )] .

(9)

In the inference, utterances for few-shot intents are generated

by sampling two latent variables, 𝑧𝑎 and 𝑧𝑜 , separately from mul-

tivariate standard Gaussian distributions. Beam search is applied

to do the generation. To improve the diversity of the generated

utterances, we sample the latent variables for 𝑠 times and save the

top 𝑘 results for each time. These generated utterances are added

to the original training datasets to alleviate the scare annotation

problem.

Dataset SNIPS-NLU NLUED

Vocab Size 10,896 6,761

#Total Classes 7 64

#Few-shot Classes 2 16

#Few-shots / Class 1 or 5 1 or 5

#Training Examples 7,858 7,430

#Training Examples / Class 1571.6 155

#Test Examples 2,799 1,076

Average Sentence Length 9.05 7.68

Table 1: Data Statistics for SNIPS-NLU and NLUED. #Few-

shot examples are excluded in the #Training Exampels. For

NLUED, the statistics is reported for KFold_1.

3 EXPERIMENTS

3.1 Datasets

To demonstrate the effectiveness of our proposed model, we eval-

uate PSN on two real-word datasets for the generalized few-shot

intent detection task: SNIPS-NLU [4] and NLU-Evaluation-Data

(NLUED) [23]. These two datasets were collected to benchmark the

performance of natural language understanding services offering

customized solutions. Dataset details are illustrated in Table 1.

3.2 Baselines

We compare the proposed model with five baselines. 1) Prototypical

Network [14] (PN) is a distance-based few-shot learning model.

BERT-PN is a variation of PN by using BERT as the encoder, which

is referred to as BERT-PN. 2) BERT. We over-sampled the few-shot

intents for this baseline. 3) SVAE [2] is a variational autoencoder

built with LSTMs. 4) CGT [8] adds a discriminator based on SVAE

to classify the sentence attributes. 5) EDA [16] uses simple data

augmentations rules for language transformation. We apply three

rules in the experiment, including insert, delete and swap. 6) CG-

BERT [20] is the first work that combines CVAE with BERT to do



Seen Unseen H-Mean Seen Unseen H-Mean

SNIPS-NLU 5-shot NLUED 5-shot

BERT-PN 95.96 ± 1.13 86.03 ± 2.00 90.71 ± 1.19 83.41 ± 2.62 60.28 ± 4.19 69.93 ± 3.49

BERT 98.34 ± 0.10 81.82 ± 6.16 89.22 ± 3.74 94.12 ± 0.89 51.69 ± 3.19 66.67 ± 2.51

BERT + SVAE 98.34 ± 0.06 82.10 ± 4.06 89.49 ± 2.47 93.60 ± 0.63 54.03 ± 3.91 68.42 ± 3.06

BERT + CGT 98.32 ± 0.14 82.65 ± 4.31 89.78 ± 2.83 93.61 ± 0.63 54.70 ± 4.06 68.96 ± 3.17

BERT + EDA 98.09 ± 0.18 82.00 ± 3.47 89.30 ± 2.12 93.71 ± 0.64 57.22 ± 4.35 70.95 ± 3.35

BERT + CG-BERT 98.30 ± 0.17 86.89 ± 4.05 92.20 ± 2.32 93.80 ± 0.60 61.06 ± 4.29 73.88 ± 3.10

BERT + PSN 98.16 ± 0.12 88.17 ± 1.19 92.89 ± 0.67 92.82 ± 0.90 64.16 ± 3.94 75.81 ± 2.87

Table 2: Generalized few shot experiments with 5-shot setting on SNIPS-NLU and NLUED.

Query Alarm

R1: what time is my alarm set for G1: is my alarm set for seven am

R2: what time is my alarm set for tomorrow morning G2: tell me the alarm for saturday morning

R3: tell me when it is five pm (Set Alarm) B3: tell me when it is five pm

Recommendation Events

R4: show latest events around new york G4: what ’ s the show around new york

R5: what are all the event in area G5: check for all the event

R6: is there anything to do tonight B6: what show is there anything to do tonight

Table 3: Generation examples from PSN. Rs are real examples, Gs are good generation examples and Bs are bad cases.

few-shot text generation. BERT is fine-tuned with the augmented

training data for these generation baselines. The whole pipelines

are referred to as BERT + SVAE, BERT + CGT, BERT + EDA and

BERT + CG-BERT in Table 2.

For PSN, we use the first six layers in BERT-base to initialize

the weights in the encoders transformer layers while the latter

six layers are used to initialize the decoders. PSN is trained with

a learning rate equal to 1e-5 in 100 epochs and each epoch has

1000 steps. The batch size is 16. New utterances are generated by

sampling the latent variables 𝑠 = 10 times and choosing the top

𝑘 = 30 utterances.

3.3 Results

For SNIPS-NLU, the performance is calculated with the average

and the standard deviation over 5 runs. The results on NLUED

are reported over 10 folds. Three metrics are used to evaluate the

model performances, including the accuracy on existing intents

(Seen), the accuracy on few-shot intents (Unseen) together with

their harmonic mean (H-mean) [20]. The harmonic mean is high

onlywhen the accuracy on both existing intents (Seen) and few-shot

intents (Unseen) are high. As illustrated in Table 2, PSN achieves

state-of-the-art performance on Unseen accuracy and H-mean and

comparable performance on Seen accuracy. Compared to the few-

shot learning baseline, BERT-PN, PSN improves the F1 score by 2.4%

from 90.71% to 92.89% for the NULED 5-shot setting. Compared to

other data augmentation baselines, we improve the best baseline

CG-BERT by 2.6% from 73.88% to 75.81%. The improvement mainly

stems from the high quality of the generated examples for few-shot

intents, which leads to significantly increased Unseen accuracy and

H-mean.

To evaluate the quality of the generated utterances and interpret

how can PSN generate examples for few-shot intents, we show

some examples generated by PSN. As illustrated in Table 3, PSN

generates good examples by providing new slot values either for

objects or new words for actions. For example, G1 generates “seven

am” for the alarm object and G4 provides “the show” for the event

object. Another type of augmentation comes from the action tokens.

For example, G2 utilizes “tell me” for the “Query” action in the intent

of “Query Alarm”, while G5 generates “check” for recommendation.

There are also bad cases like B3 that is generated for “Query Alarm”

but comes from a similar intent “Set Alarm”. The other type of bad

case, like B6, has syntax errors.

4 CONCLUSIONS

In this paper, we propose a Pseudo Siamese Network (PSN) to

generate labeled data for few-shot intents. PSN consists of two sub-

networks (an action network and an object network) with the same

structure but different weights. Each sub-network is a transformer-

based variational autoencoder. They are trained to learn either

the action or the object existing in the intent. It provides an inter-

pretable framework for generating an utterance for a given intent.

Experiments on two real-world datasets show that PSN achieves

state-of-the-art performance for the generalized few shot intent

detection task.
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