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Abstract—Recent advances in Deep Neural Networks (DNNs)
have demonstrated a promising potential in predicting the tempo-
ral and spatial proximity of time evolutionary data. In this paper,
we have developed an effective (de)compression framework called
TEZIP that can support dynamic lossy and lossless compression
of time evolutionary image frames with high compression ratio
and speed. TEZIP first trains a Recurrent Neural Network called
PredNet to predict future image frames based on base frames,
and then derives the resulting differences between the predicted
frames and the actual frames as more compressible delta frames.
Next we equip TEZIP with techniques that can exploit spatial
locality for the encoding of delta frames and apply lossless
compressors on the resulting frames. Furthermore, we introduce
window-based prediction algorithms and dynamically pinpoint
the trade-off between the window size and the relative errors of
predicted frames. Finally, we have conducted an extensive set of
tests to evaluate TEZIP. Our experimental results show that, in
terms of compression ratio, TEZIP outperforms existing lossless
compressors such as x265 by up to 3.2x and lossy compressors
such as SZ by up to 3.3x.

I. INTRODUCTION

Scientific simulations, remote sensing and IoT (Internet of
Things) networks can generate gigantic amounts of image
data in the form of time evolutionary images where scientific
phenomena and physical systems evolve as time progresses.
Major sources of such big time evolutionary data include
free-electron laser and synchrotron radiation facilities [21],
[23], [38]. For example, a large hadron collider (LHC) in
CERN is projected to generate 0.5 exabyte (EB, 1018 bytes)
of data per year from 2026 to 2029 [30]. The next generation
detector (CITIUS) in a large synchrotron radiation facility
(SPring-8) in Japan is expected to generate 1.3 EB of data per
year [21]. Such time evolutional data captured by sensors need
to be compressed before its transfer and storage at powerful
supercomputers for visualization and analysis.

Data compression has been a popular approach for combat-
ing the explosive volume of image datasets by reducing actual
data size to be transferred. General-purpose compression tech-
niques [9], [19], [20], [33], [41] are lossless and prioritize data
fidelity over compression ratio and speed, resulting in limited
usage for image datasets. However, they have recently gained
importance since high fidelity videos are increasingly popular

in medicine, science, entertainment and other areas. On the
other hand, lossy compression techniques [34], [37] have also
been very popular for videos and image datasets because of
their high compression ratio. Many lossy compression tech-

niques [8], [13], [24], [26], [27] have recently been developed
for scientific datasets due to their effectiveness in compressing
floating-point numbers.

A popular idea to achieve high compression ratio is to
exploit compressiblity by identifying redundant data and/or
regions with low entropy. Existing lossy and lossless compres-
sion techniques commonly adopt wavelet transform algorithms
and/or curve fitting models to exploit such compressibility
of target datasets. Time evolutionary data, i.e., a set of time
evolutionary image frames, is particularly rich in temporal
similarity since it captures how scientific phenomena and
physical systems change across temporally consecutive im-
age frames. For such temporal similarity where there are
small changes between consecutive image frames, it is very
important to accurately predict pixel values of next several
image frames, compute deltas (or errors) between predicted
and actual pixel values, and then store only the delta values.

For accurate prediction, deep neural networks (DNN), es-
pecially convolution neural networks (CNN) and recurrent
neural networks (RNN), have attracted immense interests
in many fields, including data compression. Several studies
have leveraged CNNs to enhance the existing compression
techniques such as [6], [7], [11]. Others have employed Long
Short-Term Memory (LSTM) networks to learn video repre-
sentations [35] and predict future frames [28]. PredNet [28] is
such a DNN architecture with convolutional feature extraction
layers designed to learn video encodings by predicting the
future movement of pixels in a time evolutionary dataset.
Therefore, PredNet can help robots, autonomous vehicles and
other machineries to recognize objects and facilitate their fu-
ture movements in an environment of complex image streams.

Effective data compression requires a good trade-off be-
tween compression speed (the amount of data compression
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in a second) and compression ratio (the ratio of the data

size before and after compression). Otherwise, complicated

(de)compression can achieve higher compression ratio with

lower speed while simple (de)compression may achieve lower

compression ratio with higher speed. Time evolutionary data

offer additional opportunities to apply predictive DNN tech-

niques. However, DNN techniques can take more time than

simple algorithms such as curve fitting models. Thus, applying

DNN for effective compression (good trade-off between com-

pression ratio and (de) compression time) of time evolutionary

data remains an interesting research challenge.

In this paper, we develop an efficient (de)compression

framework called TEZIP (Time Evolutionary ZIP) that can

support dynamic lossy and lossless compression of time evolu-

tionary image frames with high compression ratio and speed.

TEZIP employs PredNet to exploit the temporal locality of

time evolutionary data, predict the next image frames and

derive the resulting differences between the predicted frame

and the actual frame as a delta frame that is much more com-

pressible. Next, we apply three encoding techniques to exploit

the spatial similarities in the delta frames, point-wise relative
error-bounded quantization, density-based spatial encoding
and entropy encoding. Finally, we apply lossless compressors

to compress these encoded frames. To pinpoint the best trade-

off between (de)compression ratio and speed, we also propose

window-based prediction algorithms. Specifically, this paper

makes the following contributions:

• A new application of neural network technologies for data

compression through an extension to the PredNet model

that exploits the temporal locality of time evolutionary

image data and supports both integer and floating-point

value prediction of real-world datasets;

• Novel encoding techniques exploiting spatial similarities,

point-wise relative error-bounded quantization, density-

based spatial encoding and entropy encoding;

• Flexible window-based prediction algorithms to find the

best trade-off between compression ratio and compression

speed while maintaining the image quality.

• An empirical evaluation showing effectiveness of TEZIP

with real-world time evolutionary data by comparing with

popular lossy and lossless compressors.

Especially, our evaluation on real-world time evolutionary

data generated from SPring-8 [21] shows that, in terms of

compression ratio, TEZIP outperforms existing lossless com-

pressors such as x265 by up to 3.2x and lossy compressors

such as SZ by up to 3.3x. To the best of our knowledge,

TEZIP is the first compressor that can accurately predict time

evolutionary data for effective data reduction and pinpoint a

good trade-off for balanced compression ratio and speed.

II. BACKGROUND

Time Evolutionary Data: Synchrotron radiation facilities

are used to elucidate microscopic structures of a varieties of

materials from physical, chemical, to biological and medical

domains. With bright X-rays in the synchrotron radiation fa-

cilities , scientists can observe the evolution of the structure in

time. Such capabilities shed light on the origin of various phe-

nomena such as the biological function of proteins, the causes

of battery deterioration, etc. Along with the improvement on

X-ray sources, X-ray imaging detector technologies are rapidly

developing. For example, a large synchrotron radiation facility

(SPring-8) with about 60 beamlines is planning to upgrade

these beamlines with the next generation detector (CITIUS).

In 2025, it is projected, that a single beamline will generate

1.3 Exabytes of data per year in raw format [21].

Predictive Coding Network (PredNet): To achieve fast

transfer of compressed data in synchrotron radiation and

similar facilities, effective prediction is important. For accurate

prediction, we use a deep convolutional recurrent neural net-

work which can exploit a key feature of time evolutionary

data which is the similarity between consecutive images.

The changes observed between consecutive time evolutionary

images are mostly rule-based changes, e.g., certain rules from

physical systems. PredNet (Predictive coding NETwork) is

such a deep convolutional recurrent neural network. PredNet

is a self-supervised neural network model designed to learn

predictive coding of video frames. PredNet can learn represen-

tations that are relatively tolerant to object transformations.

It can also efficiently decode latent object parameters (e.g.

pose) and identify objects with few training frames which

makes it a suitable candidate for our purpose. Given one

RGB image frame from time evolutionary dataset, the model

trained by PredNet can predict the next RGB image frame

for the inference phase. PredNet accepts both floating-point

and integer values for RGB values and predicts the next RGB

image in floating-point. For the training phase, PredNet is

designed to receive RGB values as the training data, and then

produce a trained model that can learn the hidden trends of the

pixel movement and predict future frames from base frames.

We leverage this prediction engine of PredNet for effective

compression of time evolutionary data.

III. TEZIP: (DE)COMPRESSION OF TIME EVOLUTIONARY

IMAGE FRAMES

B0 B1 B2 Bn

Fig. 1. Workflows of TEZIP (de)compression

We explain how to compress time evolutionary image

frames with high ratio in this section and elaborate how to

improve compression speed in Section IV.

More precisely, PredNet is a self-supervised neural network such that the
loss function of the (i + 1)th predicted frame from the ith frame uses the
actual (i+ 1)th frame as its supervisory image frame.



A. Overview of TEZIP

Figure 1 shows the workflows of (de)compression methods
of TEZIP. First, we train PredNet with time evolutionary data
beforehand (Step-1 in Figure 1).

In a compression phase, we predict future frames by this
trained model where Bi denotes the i-th original frame (i.e.,
a frame before compression) in the time evolutionary data
and Pi denotes a predicted frame of Bi (Step-2). Then, we
compute deltas between Bi and Pi where Di denotes the delta
frame (Step-3). Finally, we apply a series of our proposed
encoding methods where Ci denotes the final compressed
frame of Bi (Step-4). Since B0 is the first frame and does not
have its previous frame to be used for the prediction, we store
B0 as it is (Step-5). In the decompression phase, we apply a
series of decompression methods to Ci to restore Di (Step-6).
We regenerate a sequence of Pi via prediction from B0 (Step-
7) and restore each Bi from Pi and Di (Step-8). Since we
keep B0 as it is at Step-5, B0 is restored from the saved
copy (Step-9).

In the rest of the sections, we describe how we predict Bi

frames in Steps 2 and 7 in Section III-B, how we compute
deltas and restore original frames for Steps 3 and 8 in
Section III-C. A series of (de)compression methods for Steps
4 and 6 in Section III-D and III-E.

B. Frame Prediction and Extensions to PredNet

Given a set of frames, i.e., B0, B1, · · · , Bn, we first
predict values of each pixel of each frame. A straight forward
approach is to directly use an original frame, i.e., Bi, to predict
the values of Bi+1, that is, we use the Bi frame as a PredNet
input and PredNet outputs Pi+1 which is a predicted frame for
Bi+1. We call this straightforward approach direct prediction
(DP). Figure 2-(a) shows the data dependency among Bi, Pi,
Di (delta frame) and Ci (compressed frame). If data X is
computed from data Y through certain operations, we denote
this dependency (or happens-before relationship) as X → Y .
In Step-3 of Figure 1, for example, Pi is generated from Bi

through the PredNet model. The Bi → Pi relationship is held
in the prediction steps of the (de)compression phases as also
shown in Figure 2-(a).

PredNet normally outputs only floating-point values for its
prediction even if we train the model with image frames
consisting of only integer RGB values. In practice, values of
compressing frames can be either integers or floating-point
values. If we allow the model to output floating-point values
when predicting integers, it introduces unnecessary errors and
also floating-point values are difficult to compress. Thus, we
extend PredNet to output either integer (int32) or floating-
point (float32) values from prediction, depending on the type
of input frames.

C. Delta Frame Generation

In the compression phase after the prediction, we compute
delta values between Bi and Pi as delta frames, i.e., D1, D2,
· · · , Dn, such that Di(c, p, q) = Bi(c, p, q)−Pi(c, p, q) where
Xi(c, p, q) denotes a value of column p, row q in channel c

of Di, Bi or Pi. The channel c is for three-dimensional RGB
values, i.e., values for red, green or blue. Since Di is computed
from Bi and Pi, there is data dependency of (Bi, Pi) → Di

as also shown in Figure 2-(a). Whereas, in the decompression
phase, we restore Bi by computing Bi(c, p, q) = Di(c, p, q)+
Pi(c, p, q). Thus, the decompression has data dependency of
(Di, Pi)→ Bi. A delta frame can also be generated by com-
puting the delta values between two consecutive base frames.
We refer to this as the Baseline approach. Each delta frame Di

is computed as Di(c, p, q) = Bi(c, p, q)−Bi+1(c, p, q). Thus,
for compression, there is no data dependency across a set of
delta frames, D1, D2, · · · , Dn−1, when the base frames are
available. For decompression, Bi+1 needs to be restored from
Bi and Di because Bi+1(c, p, q) = Di(c, p, q) + Bi(c, p, q).
Thus there exists data dependency during decompression with
the Baseline approach.

D. Quantization and Spatial Encoding for Delta Frames

Once we compute Di, we apply a series of encodings
to make Di more compressible by subsequent compressors.
Figure 3 shows the workflow of the encodings between Di and
Ci. The encodings consist of point-wise relative error-bounded
quantization (Section III-D1), density-based spatial delta en-
coding (Section III-D2) and entropy encoding (Section III-D3).
Finally, existing compressors are used to compress the data
further (Section III-E).

1) Point-wise Relative Error-bounded Quantization: First,
we apply our point-wise relative error-bounded quantization.
Our quantization makes values of Di more compressible by
increasing spatial similarities while ensuring the errors are
within user-specified point-wise relative error-bounded ratio,
ep. Point-wise relative error-bound ensures that the values
of each data point are within relative errors. For example,
if an original value is X and ep is 0.01, our quantization
ensures that the (de)compressed values are within a range of
[X − 0.01×X,X + 0.01×X] for all the data points.

We give an example in Figure 4 where Bi is an original
frame, Pi is a predicted frame for Bi and Di is a delta frame
between Bi and Pi. Figure 5 plots each delta value of Di

by blue ×. If ep is 0 (i.e., specified as lossless compression),
we simply pass Di to the next encoding, density-based spatial
encoding as is. If ep is more than 0 (ep is 0.1 in this example),
we quantize the delta values while ensuring the quantized
values are still within 10% of the error-bound. Under 10%
of the error-bound, the first element of Bi (i.e., 60) can be
changed from 54 to 66. This means that we are allowed to
change the first element of Di (i.e., 0) from -6 to 6. Likewise,
other values in Di also have allowable error ranges as shown
in Figure 4. Red error ranges in Figure 5 show the allowable
error ranges of each element of Di in this example.

The goal of our quantization is to increase spatial similari-
ties by rounding these values of Di to particular values within
these error ranges. More specifically, we find conjunctive sets
of consecutive error ranges, starting from the first element (d0)
of Di where di is the i-th element of a 1-D array expression
of Di. For example, d0 is 0 and d4 is 10 as shown in Figure 5.



Fig. 2. Data dependency in (a) Direct prediction and (b) Window-based indirect prediction

Fig. 3. Encoding workflow between Di and Ci
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Fig. 4. Example of point-wise relative error-bound quantization

We define ei as an allowable error range of di. For example,

e0 is [−6.0, 6.0] and e4 is [8.0, 12.0].
First, we find the first conjunctive set, E0, from d0 sequen-

tially. If e0∩e1∩· · ·∩en �= ∅ and e0∩e1∩· · ·∩en∩en+1 = ∅,

then we regard e0 ∩ e1 ∩ · · · ∩ en as E0. Then, we repeatedly

compute the next conjunctive set, E1, from en+1 until we scan

all ei. In the example of Figure 5, we can find three conjunctive

sets of error ranges: E0 = e0 ∩ e1 ∩ e2 ∩ e3 = [−4,−3], E1 =
e4 ∩ e5 = [8, 11] and E2 = e6 ∩ e7 ∩ e8 = [−3,−6]. Finally,

we round each di value into a median of Ej that di belongs

to. In the example, we quantize di to d0 = d1 = d2 = −3.5,

d4 = d5 = 9.5 and d6 = d7 = d8 = −4.5.

With our point-wise relative error-bound quantization, we

can increase spatial similarity, i.e., increasing sequences of the

same values within user-specified error-bound. In this paper,

we focus on point-wise relative error-bounded quantizations.

However, the same theory can be applied to other error-

bounded quantizations, e.g., absolute error bound.

2) Density-based Spatial Encoding: After our quantization

is performed, we empirically found that there are clusters

where neighboring values of both Di in a cluster are very

close to each other. This fact provides the opportunity to

convert Di into more compressible. We define a cluster, Gl

as {dkl
, dkl+1, . . . , dkl+ml

}. We find clusters based on three
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Fig. 5. Example of values of Di with (Red ×) and without (Blue ×) point-
wise relative error-bound quantization

rules: (i) The first element of G0 is d0, i.e., k0 is 0; (ii)

dkl
, dkl+1, . . . , dkl+ml

belongs to Gl if |dkl
−dkl+t| ≤ tc (0 ≤

∀t ≤ ml) and |dkl
−dkl+ml+1| > tc; (iii) dkl+ml+1 is the first

element of Gl+1. tc is a threshold for accepted spatial delta

to adjust for the optimal compression ratio.

-3.5 -3.5 -3.5 -3.5 9.5 9.5 -4.5 -4.5 -4.5

-3.5 0 0 0 9.5 0 -4.5 0 0 4 6

Fig. 6. Example of density-based spatial encoding

Once we detect all the clusters, we compute the differences

from the first element (dkl
) of each cluster (Gl). We store the

difference instead of actual values. Figure 6 gives the example

when 0 ≤ tc < 13, e.g., tc = 3. After the density-based

spatial encoding, more values in Di become close to zero,

which is a more compressible data format. The density-based

spatial encoding involves an additional overhead of storing the

starting indices of each cluster. In our experience, the storage

overhead of these indices is negligibly small compared to the

entire data size.
3) Entropy Encoding: After our density-based spatial en-

coding, most values become closer to zero in the encoded

delta frames. Hence, we apply entropy encoding to replace



TABLE I
CRITICAL PATHS OF (DE)COMPRESSION IN DP AND WP

Compression Decompression
DP 4 2× n+ 1
WP w + 3 n+ d n

w
e+ 1

these highly recurrent values with smaller bits and replace less
recurrent values with longer bits. In Figure 6, for example,
0 appears six times while -3.5, 9.5 -4.5, 4 and 6 appear
once. In our entropy encoding, we assign integers, i.e., 0, 1,
. . . , to these values from the highest recurrent values. In the
evaluation, we replace 0, 3.5, 9.5 -4.5, 4 and 6 with 0, 1,
2, 3, 4 and 5 respectively. For clarity, only a few recurrent
floating-point values are shown in the example. The actual
encoding data has more recurrent values. With our entropy
encoding, less compressible floating-point values are replaced
with more compressible integer values. To map the values with
their integers, we also store a mapping table with the actual
encoding data.

E. Further Compression with Existing Lossless Compressors
After the entropy encoding, we pass the encoded data to an

existing lossless compressor. As the values become very small
after the entropy encoding, the frames are highly compressible
for lossless compression. In the end, after a combination of
encoding and compression techniques, B0, B1, . . . , Bn are
compressed into B0, C1, . . . , Cn (Figure 2). If an error-bound
is enabled at our quantization, we need to compute error ranges
for delta values. In that case, additional data dependency
happens, i.e., Bi → Ci.

IV. ACCELERATION OF COMPRESSION AND
DECOMPRESSION

In this section, we elaborate how to accelerate the compres-
sion speed through a window-based prediction that can further
exploit the predictive power of PredNet while balancing the
trade-offs between compression speed and ratio.

A. Issues in Direct Prediction (DP)
As explained in Section III-B, the DP scheme directly uses

an original frame, i.e., Bi, to predict the values of Bi+1. As
shown in data dependency in Figure 2-(a), the critical path
is Bi → Pi+1 → Di+1 → Ci+1 with a length of four in
the compression phase. In the decompression phase, since DP
uses Bi frames for the prediction, the DP scheme needs to
wait for Bi to be decompressed in order to generate the next
predicted frame, Pi+1. This chain of data dependency leads to
a long series of computation. The length of the critical path is
(2 × n+ 1) where n is the number of original frames to be
(de)compressed. While the rest of the computation steps are
independent and can be done in parallel, the computation of
a critical path, i.e., a chain of steps with dependencies, have
to be serialized. In the DP scheme, while the critical path
for the compression phase is short, its decompression phase
suffers from huge overhead due to the long critical path. For
example, let the number of frames n = 10, then the critical
path for decompression will be: B0 → P1 → B1 → P2 →
B2 → · · · → P9 → B9 → P10 → B10. Thus, the number of
frames in the critical path is 21 = 2 × 10 + 1.

B. Static Window-based Prediction (SWP)
To alleviate the overhead in the DP scheme due to the

data dependency, we propose a window-based prediction (WP)
scheme to enhance the compression speed. Figure 2-(b) shows
the workflows and the data dependency of the WP scheme.
Both of the DP and WP schemes use B0 to generate a
prediction frame for B1, i.e., P1. The main difference is that
the WP scheme uses Pi (i > 0) to predict the next frame,
i.e., Pi+1, while the DP scheme always uses a base frame
Bi. Therefore, in the compression phase, the critical path
becomes Bi → Pi+1 → · · · → Pi+w → Di+w → Ci+w

whose length is w + 3 where w (> 0) is prediction window
size, i.e., the number of predicted frames in a window. In a
prediction window, Pi is used to generate the next prediction
frame, Pi+1. Since there is no internal data dependency on a
base frame, i.e., no Bi → Pi+1, within a prediction window,
the length of the critical paths in the decompression phase is
shortened to n + d n

w e + 1. For example, let the number of
frames n = 10 and the window size w = 5, the path will be:
B0 → P1 → P2 → P3 → P4 → P5 → B5 → P6 → P7 →
P8 → P9 → P10 → B10. Thus, the number of frames in the
critical path for decompression is 13 = (10+d 10

5 e+1). Other
computation steps (e.g., delta computation) can be overlapped
with this critical path. The DP scheme is actually a special
case of the WP scheme with w = 1.

Table I summarizes the critical paths. If we increase w in
the WP scheme, we can accelerate the decompression phase
through window-based prediction at the cost of a slightly
increased compression time. The WP scheme uses a predicted
frame, Pi to perform another prediction for the next frame.
Multiple predictions then accumulate more errors for the
later predicted frames, compared to the DP scheme, i.e.,
Pi → Pi+1 (WP) v.s. Bi → Pi+1 (DP). The aggregated
errors are bigger with an increasing window size w, resulting
in lower compression ratios. Thus, we need to carefully tune
w to pinpoint a good trade-off between compression ratio and
speed, and achieve fast data transfer.

When a fixed window size is used for all prediction win-
dows, we refer to it as static window-based prediction (SWP).
However, the optimal window size may vary across different
prediction windows. Thus using a static window size can limit
the overall performance of TEZIP.

C. Dynamic Window-based Prediction (DWP)
To determine the optimal w values dynamically for dif-

ferent prediction windows, we propose dynamic window-
based prediction (DWP) in Algorithm 1. The DWP scheme
continuously generates predicted frames, Pi, Pi+1, . . . , until
the mean squared error (MSE) between one predicted frame
Pi+wi+1 and the original frame, Bi, exceeds a threshold, tmse.
Then we denote wi as the window size for this window of
predicted frames Pi, Pi+1, . . . , Pi+wi

from Bi (Line 2). Then
the DWP scheme continues to predict the next window of
frames, Pi+wi+1, Pi+wi+2, . . . , from Bi+wi

, util Pi+wi+wj+1

also exceeds tmse when compared to Bi+wi . The new window
is then set as wj . The DWP scheme iterates predictions until



Algorithm 1 Dynamic Window-based Prediction (DWP)
Input: B0, B1, . . . , Bn (Original frames)
Output: P1, P2, . . . , Pn (Prediction frames)
MSE (Bi, Pi): Compute and return MSE, w: window size,
tmse: MSE threshold
Begin

1: i=0;
2: Compute predicted frames, Pi+1, Pi+2, . . . , Pi+w,

from Bi where MSE(Bi+w−1, Pi+w−1) < tmse <
MSE(Bi+w, Pi+w);

3: i = w;
4: goto 2;

End

all the predicted frames, P1, P2, . . . , Pn are created. With the
DWP scheme, we generate predicted frames with dynamic
window sizes while controlling errors within a specified
threshold. In so doing, DWP maximizes the predicted windows
within the allowable error-bound and increases the average
window size compared to SWP, resulting in a shorter critical
path in the decompression phase.

V. EVALUATION

A. Evaluation Settings

1) Environmental Configurations: We conduct our evalua-
tion on a server with Intel(R) Xeon(R) E5-2650 v3 processors
(2.30 GHz) and an Nvidia Tesla K40m GPU (with 12GB of
GPU memory), along with CUDA version 10.1. We implement
TEZIP using Tensorflow (1.14.0) and Keras (2.2.4).

2) Dataset: Seven different datasets are described below.
KITTI [17]: It is an autonomous driving dataset which
contains the benchmarks for odometry and 3D object detec-
tion. KITTI 1 and KITTI 2 are color stereo sequences (0.5
Megapixels) of a city street and a street in the residential
area, respectively. The image sequences of these datasets are
synchronized at 10 Hz. KITTI 1 and KITTI 2 contain 634
frames (180 used for training, 380 used for compression) and
1165 frames (700 used for compression), respectively.
XPCS [21]: This is an image dataset obtained from the X-
ray Photon Correlation Spectroscope (XPCS) experiment. This
sequence consists of 1,065 time-evolutional frames.
XCT2K/4K: These are image datasets obtained from X-ray
computed tomography (XCT). XCT2K dataset consists of 904
images obtained by using a camera with 2k × 2k pixels, and
XCT4K dataset contains 1804 images from a camera with
4k × 4k pixels.
Victoria [18]: Victoria is a video sequence captured in the
Victoria Park, Sydney, for a trail path of 4KM. This dataset
consists of 300 frames.
Malaga [4]: Malaga contains different urban scenarios in the
city of Malaga, Spain. This was recorded as a single sequence
of high resolution stereo images at a rate of 20 frames per
second (fps). This is a dataset of 800 frames.
Eumet 18 [14] and Eumet 19 [15]: These are the weather
datasets received from EUMETSTAT(European Organisation

for the Exploitation of Meteorological Satellites) in 2018
and 2019, respectively. Each dataset contains visualization of
global weather in an Ultra-high resolution (4k). The image
frames have been captured by various geostationary satellites
and later combined with data from Metop satellites launched
by EUMETSAT . Finally, the infrared data layer of the
satellites has been superimposed over NASA’s “Blue Marble
Next Generation” ground maps to generate the visualization
of the changing weather. We have used 820 time evolutionary
frames of each year for our experiments.

Dataset Entropy: For a quantitative analysis of how fast
the frames are changing in these datasets, we measure the
entropy in a time-evolutionary set of frames. To this end, we
first compute the delta values between two consecutive frames,
similar to the Baseline method described in Section III.C. Then
we compute the shanon’s entropy (H(x)) of the delta values
for consecutive pairs of frames and take the average.

H(x) = −
n∑

i=1

pilog2(pi) (1)

If we consider the intensity levels of RGB values to be between
0 to 255, pi is then calculated as pi = (Ni/256), where Ni=
number of instances at a certain intensity level i. Table II
shows the average entropy between consecutive frames in
different datasets.

B. Initial Evaluation of TEZIP

1) Training the Neural Network Model: To predict future
time evolutionary frames we train the neural network model
for PredNet at the beginning. We divide each dataset into three
segments and use 30%, 10% and 60% of frames for training,
validation and compression, respectively. In training PredNet,
we use a configuration with 150 epochs and a batch size of
4. We set the learning rate at 0.001 and gradually drop it to
0.0001. On average, the time for each epoch is 228s and the
total training time is 570 minutes. We observe that a training
set with 30% of the total frames gives us a decent testing
accuracy. Increasing the training set leads to little improvement
on the testing accuracy. In addition, for smaller datasets, saving
60% of the frames for compression allows us to evaluate the
performance of TEZIP. In our current implementation, both
training and testing frames need to be of the same size which
can be extended for different frame sizes in future.

To compare the testing accuracy, we measure the Mean
Squared Error (MSEpixels) between the original pixels and
predicted pixels.

MSEpixels =
1

n

n∑
i=1

(pi − p̂)2 (2)

Here, pi =original pixel values, p̂ = predicted pixel values,
n = total number of pixels in the frame.

In Table III, we compare the testing accuracy using one
dataset with different training sets in the DP scheme. The
rows indicate the name of the dataset used for training and
validation. The columns indicate the name of the dataset used



TABLE II
DATASET ENTROPY

KITTI 1 KITTI 2 XPCS XCT2K XCT4K Malaga Victoria Eumet 18 Eumet 19
5.25 5.96 3.91 3.93 3.35 5.94 6.15 4.64 4.54

TABLE III
TESTING MSEpixels COMPARISON FOR ONE TRAINING SET WITH DIFFERENT TESTING DATASETS (RED DENOTES THE LOWEST IN EACH COLUMN).
`````````Training

Compress KITTI 1 KITTI 2 XPCS XCT2K Malaga Victoria Eumet 19

KITTI 1 0.46 1.24 0.13 0.02 0.62 0.59 0.25
KITTI 2 1.88 1.04 0.15 0.07 1.64 0.56 0.96
XPCS 3.33 4.09 0.01 0.02 4.19 0.71 0.25
Malaga 3.01 4.08 0.20 0.19 0.38 0.63 0.26
Victoria 2.88 5.37 0.11 0.18 3.40 0.53 0.49

for compression, i.e., testing. The value in each cell provides
the prediction MSEpixels for the corresponding combination.

Obviously, if we use the same dataset for training and
prediction, we can get the lowest prediction MSEpixels .
However, the results in Table III suggest that a model trained
with one dataset can also accurately predict future image
frames of other datasets. Particularly, a model trained with
KITTI 1 can predict more accurately than the models trained
with other datasets. Since a trained model is ubiquitously
applicable to the other datasets, we use the same model trained
with KITTI 1 to compress the other datasets for the rest of
the evaluations.

Note that decompression on a different site requires the
trained model. Our trained model from KIITI 1 is about
27MB, applicable to all datasets in our case. Since our datasets
are several GB or bigger, our calculation of compression ratio
has included the model size to avoid an inflation of 1%.

2) Selection of Lossless Compressor for TEZIP: After
all our encoding steps, TEZIP employs an existing lossless
compressor to compress the dataset. To find the most suitable
lossless compressor, we have evaluated the compression ratio
of TEZIP with Zstd, Gzip, and blosc [3]. Our experiments
show that Zstd performs the best for all datasets. For all the
datasets, Zstd outperforms Gzip and blosc, respectively, by
about 43% and 50% on average in terms of compression ratio.
Hence, we use Zstd in TEZIP in the rest of our evaluation.
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Fig. 7. Compression ratio with different prediction techniques

3) Comparison of DP, SWP and DWP: We evaluate TEZIP
under different prediction schemes, DP, SWP and DWP with
different datasets. Figure 7 shows the compression ratios for
these schemes. Compression ratio is defined as So

Sc
where So

denotes the size of the original dataset and Sc the size of
compressed dataset. From our preliminary experiments, we
observe that around 80% of delta values fall within a small

range of 6% values around 0. So for choosing tc we calculate
the range (r) of values of original dataset and set the tc as
0.06r. For example, if the range of values in original dataset
is [0, 255] then we set tc = 15. This helps us adjust for the
optimal compression ratio. Our experiments show that there
is a substantive (about 20%) reduction of compression ratio
when we switch from DP to SWP. In contrast, DWP achieves
compression ratios comparable to DP due to its strength in
minimizing the errors of predicted frames within an error-
bound for high compressibility.

In the SWP scheme, we choose a window size of 5 (i.e.,
w = 5) which offers a good tradeoff between compression
ratio and compression speed in our initial tests. In the DWP
scheme, we set the threshold MSE at 0.002 (i.e., tmse = 0.002)
because our experiments show that higher MSE value lead
to adverse effects on the overall compression ratio and lower
MSE values cause many fluctuations in the dynamically deter-
mined window size, which prolongs the prediction time. The
compression time consists of five steps including frame predic-
tions, delta frame computation, density-based spatial encoding,
entropy coding and Zstd compression. The compression time
of DP is slightly shorter compared to SWP and DWP since
the critical paths for SWP and DWP are slightly longer than
that of DP as shown in Table I.

On the other hand, the decompression time of SWP and
DWP is much shorter than DP. As explained in Section IV-A,
the regeneration of predicted frames in DP must be sequential
due to data dependency while we can regenerate predicted
frames in parallel with the window-based prediction schemes,
SWP and DWP. For decompression, DWP is slightly worse
than SWP because it achieves a smaller window size w on
average for making compression ration comparable to DP.

Overall, the compression ratio of DWP is comparable
to DP while its combined (de)compression speed is much
faster (52%) than DP. In the rest of the evaluations, we use
DWP as the prediction scheme in TEZIP.

C. Comparisons to Other Existing Compressors

1) Lossless Compressors: We configure TEZIP to use DWP
as the prediction scheme and Zstd as the compressor, and
set tmse = 0 for lossless compression. We compare the
compression ratio of TEZIP to other lossless compressors,
Zstd [9], HFYU [32], FFV1 [29] and x265 (lossless) [1].



Fig. 8. Compression ratio with lossless compressors.

In our evaluation, we select the lossless option of x265. All

other lossless compressors have been configured with default

settings. Figure 8 shows that TEZIP outperforms these lossless

compressors in terms of compression ratio for all our datasets.

TEZIP achieves an improvement up to 3.2× in terms of

compression ratio for these datasets. On average (shown as

arithmetic mean or AMEAN in Figure 8), lossless TEZIP

delivers 2.1× better compression ratio compared to the second

best lossless compressor, x265 (lossless).

These results show that Baseline depends heavily on the

entropy between consecutive frames. Varying entropy levels

lead to fluctuating compression ratios for Baseline, lower than

TEZIP on average. In contrast, TEZIP predicts frames with

high accuracy even when the entropy is high. For example,

multiple transforming objects in a frame lead to high entropy

and low compression ratios for Baseline. In TEZIP, our trained

PredNet can predict the next frames with higher accuracy,

resulting in high compression ratios.

Fig. 9. (De)compression time with lossless compressors.

We have also compared TEZIP with lossless compressors.

From our evaluation, x265 (lossless) and FFV1 performs

better than other lossless compressors in terms of compression

ratio. Thus, we only show (de)compression times of x265

and FFV1 with TEZIP (Figure 9). TEZIP outperforms other

lossless compressors for four datasets with a large number

of frames(≥ 800) while it performs comparably for the other

four smaller datasets. Our experiments show that, in terms

of decompression time, TEZIP is generally better than x265

for most of the datasets, while FFV1 generally outperforms

TEZIP. In terms of the overall combined time (compression

and decompression) TEZIP performs 28% better than x265,

while being comparable to FFV1.

Fig. 10. Compression ratio with different lossy compressors

2) Lossy Compression: For lossy compression, we config-

ure TEZIP to handle different point-wise relative error bounds.

In our experiments we have varied the point-wise relative

error bound (α) for different datasets based on the technique

described later in this section. We compare our lossy TEZIP

scheme with lossy compressors like SZ [13] and ZFP [26].

No comparisons are made to lossy video codecs (e.g. MPEG4,

X264) because they cannot be tuned with point-wise relative

error bounds and they are also not suitable for lossy floating-

point RGB value compression.

ZFP uses a block-based floating-point representation. In a

single block, all values are represented with respect to a single

common exponent. For a block with a wide range of values,

ZFP has no means to control the point-wise relative error

bound for each value. So we devise a method to compare

our point-wise relative error bounded TEZIP to other lossy

compressors with an equivalent amount of errors. This method

includes three steps: (1) We run ZFP with a certain absolute

error-bound. (2) Then, we measure the maximum of point-wise

errors for the decoded data; (3) Finally, we use the maximum

error as the error bound in TEZIP to evaluate its compression

ratio for each dataset.

With this method, we configure SZ and TEZIP with the

same maximum point-wise relative decompression errors as

ZFP, for a fair comparison among the three. Figure 10 shows

that, for different datasets, TEZIP achieves an improvement

up to 3.3x than the second best (SZ) in terms of compression

ratio. On average, TEZIP delivers an improvement of 1.7x

compared to SZ in terms of compression ratio.

We also compare TEZIP with SZ (Best Compressor mode).

As mentioned earlier, ZFP does not have a point-wise relative

error feature which is the primary error control feature of

TEZIP. So we do not consider ZFP as a candidate for com-

paring (de)compression time. Our evaluation shows that SZ

performs better than other lossy compressors/codecs in terms

of compression ratio. Thus, we only show the (de)compression

times of SZ with TEZIP (Figure 11). Our evaluation shows

that lossy TEZIP has a compression time comparable to SZ.

But in case of decompression, SZ is much faster compared to

TEZIP. As a future study, we plan to parallelize the prediction
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Fig. 11. (De)compression times with different lossy compressors.

TABLE IV
COMPARISON OF IMAGE QUALITY BETWEEN TEZIP AND ZFP

Dataset TEZIP ZFP
KITTI 1 0.9459 0.9126
KITTI 2 0.9348 0.9182

XPCS 0.9976 0.9576
XCT2K 0.9331 0.9172
XCT4k 0.9394 0.9096
Malaga 0.9629 0.9291
Victoria 0.9897 0.9683

Eumet 18 0.9296 0.9019
Eumet 19 0.9197 0.9051

scheme in TEZIP to achieve better performance in terms of
decompression time.

Using the MS-SSIM [39] metric, we also compare TEZIP
and ZFP in terms of the image quality of the decom-
pressed frames for the same maximum point-wise relative
error bounds. MS-SSIM index is calculated by combining the
SSIM (structural similarity index measure) between different
versions of the image and reference image at various scales.
We measure the MS-SSIM score for each frame and then
calculate the mean across all frames. Table IV lists the mean
MS-SSIM scores for all datasets and validates that TEZIP
achieves high-quality images while improving compression.

VI. RELATED WORK

There is a large body of literature on data compression. In
this section, we review prior studies that are closely related to
our work on image and video compression.
Lossy Compression: Lossy compression techniques have
been extensively studied including many image and video
coding standard formats such as JPEG [34], MPEG-4 AVC
(H.264) [37], HEVC (H.265) [36], etc. These techniques are
commonly based on Discrete Cosine Transformation (DCT) or
Discrete Wavelet Transformation (DWT) algorithms for spatial
coding in image or video frames. In contrast, we leverage a
deep recurrent neural network to predict future frames and
calculate deltas for temporal encoding, on which we apply the
density-based spatial encoding.

The x264 and x265 libraries are two related open-source en-
coders of the MPEG-4 AVC and HEVC formats respectively.
H.266 (Versatile Video Encoding) is the next generation video
coding standard. Our evaluation shows that TEZIP performs
better than x264 encoders in lossy mode in terms of encoding
latencies and compression ratios.

Lossy compressors (SZ, ZFP) have mainly focused on
improving the compression of scientific data by setting a
user given error-bound. SZ [13] is an error-bounded lossy
compression algorithm for effective compression of scientific
data. ZFP [26] is a library that compresses floating-point arrays
with high-throughput. None of them have tried to exploit the
time evolutionary nature of scientific simulation data. TEZIP
considers temporal similarity of time evolutionary data besides
spatial similarity as considered in SZ and ZFP. The TEZIP
outperforms both SZ and ZFP in terms of compression ratios
in the evaluation.
Lossless Compression: Lossless compression algorithms are
also popular because high fidelity video data became increas-
ingly important in different branches of science. FFV1 (FF
video codec 1) [29] is a lossless intra-frame video codec
known for competitive compression speed and ratio. Lossless
compression formats were also available as an optional feature
in several video compression formats such as Dirac [5], H.264
and HEVC. Our evaluation has shown that TEZIP outperforms
FFV1 and x265 encoder (lossless mode) as leading lossless
encoders.

Lossless compressors such as gzip [12] and bzip2 [33]
are often avoided for large scale data due to suboptimal
compression ratios and costly compression time. Compared
to these techniques, TEZIP preprocesses original data and
optionally allows small encoding errors, achieves significant
performance improvements for time evolutionary data. Collet
et al. developed Zstandard (Zstd) [9] as an alternative to
common lossless compression algorithms such as gzip [12].
DNN Based Compression: Recently, convolution neural net-
works and recurrent neural networks have gained significant
interests in data compression. Some were developed based
on the state-of-art HEVC standard and contributed to one or
more of its five major modules, e.g., intra-prediction [10],
[16], [25], inter-prediction [11], [40], quantization [2], entropy
encoding [31] and loop filtering [22]. Most works achieved
improvement over HEVC codec from 0.5% to 5%. A few oth-
ers have employed deep neural networks without adopting the
HEVC framework. Chen et al. proposed DeepCoder [6] and
achieved similar quality to low-profiled x264 decoder. Chen
et al. proposed PixelMotionCNN [7] with comparable results
to H.264 codec. [35] employed a Long short-term memory
(LSTM) framework to learn video representations. Srivastava
et al. [28] employed a CNN-LSTM predictive network to learn
video representations and predict future frames. These works
focused on enhancing existing mainstream video compression
approaches and generally belonged to the lossy type. In these
works, improvement over x264 encoder were reported to have
averaged below 10% in terms of bitrate saving. Our approach
achieves much better performance than all these compressors
in terms of compression ratio.

VII. CONCLUSION

In this paper, we have employed a predictive neural network
to design a compression framework for time evolutionary
images. In the resulting TEZIP tool, we have developed salient



encoding techniques to exploit the temporal and spatial simi-
larities inside the time evolutionary data. In addition, we have
carefully balanced the trade-offs between (de)compression
time and compression ratios. With a good variety of time
evolutionary image datasets, we have evaluated TEZIP in
comparison to several contemporary lossy and lossless com-
pression techniques. Our results have demonstrated that TEZIP
delivers better performance with both higher compression
ratios and faster compression speeds. In future, we would like
to improve the neural network of PredNet to predict future
frames more accurately, further improving the compression
ratios for time evolutionary data.
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