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Abstract

The Underdamped Langevin Monte Carlo
(ULMC) is a popular Markov chain Monte
Carlo sampling method. It requires the com-
putation of the full gradient of the log-density
at each iteration, an expensive operation if
the dimension of the problem is high. We
propose a sampling method called Random
Coordinate ULMC (RC-ULMC), which se-
lects a single coordinate at each iteration to
be updated and leaves the other coordinates
untouched. We investigate the computa-
tional complexity of RC-ULMC and compare
it with the classical ULMC for strongly log-
concave probability distributions. We show
that RC-ULMC is always cheaper than the
classical ULMC, with a significant cost reduc-
tion when the problem is highly skewed and
high dimensional. Our complexity bound for
RC-ULMC is also tight in terms of dimension
dependence.

1 Introduction

Langevin Monte Carlo (LMC) is a popular Monte
Carlo sampling method, widely used in Bayesian
statistics and machine learning (Andrieu et al., 2003).
The goal is to construct a Markov chain that approxi-
mately generates i.i.d. samples from a target distribu-
tion given by (with some abuse of notation, we do not
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distinguish a distribution with its density)

pX(x) =
1

Z
e−f(x) , (1)

where Z is a normalizing constant that ensures∫
pX(x) dx = 1. Throughout the paper we assume

f(x) is a convex function on R
d, and thus pX(x) is a

log-concave probability distribution.

Among the many Monte Carlo sampling methods,
LMC (Rossky et al., 1978; Parisi, 1981; Roberts and
Tweedie, 1996) stands out for its simplicity: For each
iteration one updates the location of the particle by de-
scending along the gradient and adding properly scaled
Gaussian noise. For strongly log-concave distributions,
it has been established in recent years that the empir-
ical distribution of the iterate in LMC converges ex-
ponentially fast to the target distribution, with total
computational cost Õ(d2/ǫ2) to achieve ǫ accuracy in
Wasserstein distance (Dalalyan and Karagulyan, 2019;
Durmus et al., 2019). Here and throughout the paper,
we measure “cost” in terms of the total number of
evaluations of a single element of the gradient, and as-
sume that a full gradient evaluation requires about d
times as much computation as a single component of
the gradient.

To reduce the computational cost of sampling, the
underdamped version of Langevin dynamics has re-
cently been used to design the ULMC algorithm. By
augmenting the state space with velocity variables,
the underdamped Langevin dynamics converges to the
equilibrium faster than the classical Langevin dynam-
ics (Villani, 2006; Dolbeault et al., 2009; Baudoin,
2016; Monmarché, 2018; Cao et al., 2019). As a con-
sequence, ULMC, the discrete version of the under-
damped Langevin dynamics, also achieves faster con-
vergence than LMC, the discrete version of the classi-
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cal Langevin dynamics (Cheng et al., 2018a; Dalalyan
and Riou-Durand, 2018; Eberle et al., 2018). To be
more specific, to obtain ǫ-accuracy in sampling from
a log-concave pX, the computational complexity of
ULMC is Õ(d3/2/ǫ), whereas that of LMC is Õ(d2/ǫ2).
This is an improvement in both d and ǫ.

This work aims at further improving the algorithm
in terms of its dimension dependence, especially for
the very high dimensional problems that arise often
in practical applications (see (Ding et al., 2020b) for
discussions of several examples). For these problems,
ULMC requires a full evaluation of the gradient ∇f
at each iteration, which often costs a factor of O(d)
greater than evaluating of a single component of the
gradient. This factor arises when the expression of ∇f
is not known explicitly, such as in partial differential
equation (PDE) based inverse problems, where f is
given implicitly by solving the forward problem given
as a PDE, and finite-difference approximation to the
full gradient would be d times more expensive than
a single component. While automatic differentiation
techniques have been developed, the cost of evaluation
of the gradient often still leads to formidable compu-
tational and memory cost.

Other examples in which there is a factor-of-d differ-
ence in evaluation cost between a full gradient and
single component of the gradient come from problems
with particular structures, such as graph-based prob-
lems. Given a graph with nodes N = {1, 2, . . . , d}
and directed edges E ⊂ {(i, j) : i, j ∈ N}, suppose
there is a scalar variable xi associated with each node
i = 1, 2, . . . , d, and that the function f has the form
f(x) =

∑
(i,j)∈E fij(xi, xj). Then the partial deriva-

tive of f with respect to xi is given by

∂f

∂xi
=

∑

j:(i,j)∈E

∂fij
∂xi

(xi, xj) +
∑

l:(l,i)∈E

∂fli
∂xi

(xl, xi) .

Note that the number of terms in the summations in
this expression equals the number of edges in the graph
that touch node i, the expected value of which is about
2/d times the total number of edges in the graph.
Meanwhile, evaluation of the full gradient would re-
quire evaluation of both partial derivatives of each
component function fij for all edges in the graph, lead-
ing to a factor-of-d difference in evaluation cost.

In this work, we target these problems in which single
components of the gradient are much less expensive
than full gradients by incorporating the random coor-
dinate descent (RCD) method from optimization into
underdamped Langevin sampling algorithm. RCD dif-
fers from gradient descent (GD) in that it updates just
a single component, chosen at random, of the variable
vector x at each iteration. It takes a step in the nega-
tive gradient direction in just this component, leaving

other components unchanged. (By contrast, gradient
descent takes a step along the full negative gradient
direction.) When there is a factor-of-d difference in
cost between evaluating the full gradient and a sin-
gle component of the gradient, worst-case bounds for
convex problems are better for RCD than for GD, the
cost reduction being particularly significant when the
dimension d is high and f is “skewed” in a sense to
be defined later. Specifically, it was shown in Nes-
terov (2012) that when the coordinate is chosen from
a distribution weighted according to the directional
Lipschitz constants, the complexity is reduced from
dκ to dκmax, where κ and κmax are conditioning of
f and the maximum directional conditioning of f re-
spectively. Since κmax ≤ κ for all functions (Wright,
2015), RCD is always cheaper than GD. Further, when
the dimension of the problem is high and f is skewed
in the sense that κ ≈ dκmax, the reduction in cost
approaches a factor of d.

In this paper, we propose the random coordinate un-
derdamped Langevin Monte Carlo (RC-ULMC) algo-
rithm. We aim to improve the convergence of ULMC
by utilizing cheaper steps, as in RCD, so we establish
non-asymptotic convergence rates for RC-ULMC and
compare with classical ULMC. Our main results are
as follows:

1. The convergence rate of RC-ULMC depends on
directional conditioning; see Theorem 6.2.

2. Comparing with ULMC, RC-ULMC is always
cheaper than the classical ULMC, the change be-
ing d3/2κ3/2 → (d3/2+κ)κ1/2. This cost reduction
is significant when f is skewed and the dimension
is high; see the discussion following Corollary 6.3.

3. The complexity bound of the RC-ULMC we ob-
tain is tight in both d and ǫ; see Proposition 6.4.

The remainder of the paper is as follows. We review
literature in Section 2 and summarize basic notations
and assumptions in Section 3. In Section 4 we review
ULMC and its convergence properties. In Section 5 we
present our new method RC-ULMC. Our main results
are presented in Section 6, where we discuss the non-
asymptotic convergence rate, the numerical cost, the
cost saving compared to the classical ULMC, and the
tightness of the result. Computational results are pre-
sented in Section 7. Technical derivations and proofs
appear in Supplementary Materials.

2 Related works

The non-asymptotic analysis of LMC and ULMC sam-
pling methods has been an active area (Cheng et al.,
2018a; Dalalyan and Riou-Durand, 2018; Dalalyan and



Zhiyan Ding, Qin Li, Jianfeng Lu, Stephen J. Wright

Karagulyan, 2019; Durmus et al., 2019); and it has
been established that ULMC gives a faster convergence
under the same log-concavity and smoothness assump-
tions on the distribution (Cheng et al., 2018a; Dalalyan
and Riou-Durand, 2018). When ULMC is modified
with a better discretization scheme, e.g., the random
midpoint method, the computational complexity can
be even further reduced (Shen and Lee, 2019; He et al.,
2020).

For ULMC, it was established in (Dalalyan and Riou-
Durand, 2018) that it achieves ǫ error in Wasser-
stein metric within Õ

(
d1/2κ3/2/ǫ

)
iterations, where

Õ hides log factors. The total cost of ULMC is there-
fore Õ

(
d3/2κ3/2/ǫ

)
. In comparison, the RC-ULMC

method proposed in this paper is always cheaper and
the saving can be significant for highly skewed distri-
butions in high dimension.

The combination of RCD and LMC (based on over-
damped Langevin dyanmics) has been recently ex-
plored in works (Shen et al., 2019; Ding et al., 2020b).
This algorithm will be referred to as RC-OLMC (where
“O” stands for overdamped). Compared with their re-
sult, the method in this paper converges faster both in
terms of d and ǫ, similar to the saving obtained going
from LMC to ULMC. This will be discussed further
in Section 6.

Alternative sampling strategies have been developed
without using the full gradient ∇f at each step. A
standard approach is the Random Walk Metropolis al-
gorithm, which combines a random walk proposal with
Metropolis-Hastings acceptance-rejection step (Hast-
ings, 1970), and thus only uses f at each iteration.
However, they are less efficient in high dimensions
compared with gradient based methods (Mattingly
et al., 2012; Pillai et al., 2012). There have been re-
cent interests in ensemble based sampling methods,
in particular in the context of data assimilation, in-
spired by the ensemble Kalman filter (Evensen, 2006),
such as (Garbuno-Inigo et al., 2020; Iglesias et al.,
2013). Unfortunately, none of these methods can be
completely “gradient-free” and at the same time con-
sistent for non-Gaussian distributions (Ding and Li,
2019a,b). To achieve consistency, one can try to incor-
porate weights to particles, as is done in importance
sampling (Geweke, 1989) or sequential Monte Carlo
(Doucet et al., 2001), however such methods often face
the difficulty of high variance (Ding et al., 2020a).

When the log-density f(x) has the form of f(x) =∑N
i=1 fi(x), one can randomly select a representative

∇fr as a stochastic approximation to the full gradient,
where r is uniformly chosen from {1 , · · · , N}. This
leads to the stochastic gradient Langevin Monte Carlo
method (Welling and Teh, 2011). Note that in general

we can write the full gradient as ∇f =
∑d

i=1 ∂ifei
(where ei is the unit vector in i-th direction), and thus
RCD and stochastic gradient, while used for different
setups, share some similarity in reducing the cost of
gradient evaluation.

Throughout the paper we do assume the log-concavity
of pX (the convexity of f). For optimization prob-
lems, there are abundant works relaxing this assump-
tion (Gelfand and Mitter, 1991; Raginsky et al., 2017),
but to our knowledge, no results on non-asymptotic
convergence rate has been obtained for Bayesian sam-
pling problems. One exception is (Cheng et al., 2018b)
where the authors nevertheless require the convexity
of f outside a ball of finite-size.

3 Notations and assumptions

Throughout the paper we assume convexity and gra-
dient Lipschitz continuity of f .

Assumption 3.1. The function f is second-order dif-
ferentiable and µ-strongly convex for some µ > 0 and
the gradient ∇f is L-Lipschitz. Specifically, we have:
for all x, x′ ∈ R

d

f(x)− f(x′)−∇f(x′)⊤(x− x′) ≥ µ

2
|x− x′|2 (2)

and
|∇f(x)−∇f(x′)| ≤ L|x− x′| . (3)

Since the full gradient is Lipschitz continuous, so is its
directional derivative. We denote directional Lipschitz
constants by Li, i = 1, 2, . . . , d, meaning that

|∂if(x+ tei)− ∂if(x)| ≤ Li|t| , (4)

for any i = 1, 2, . . . , d, any x ∈ R
d, and any t ∈ R.

Denote ∇2f the Hessian, then the assumption implies
that

µId � ∇2f(x) � LId, |∂iif(x)| ≤ Li ,

where ∂iif(x) is the (i, i)-element of ∇2f(x). We also
define condition numbers:

κ = L/µ ≥ 1, κi = Li/µ ≥ 1, κmax = max
i
κi . (5)

As shown in Wright (2015), we have

κi ≤ κmax ≤ κ ≤ dκmax . (6)

We note that both inequalities, κmax ≤ κ and κ ≤
dκmax are sharp. If ∇2f is a diagonal matrix, then
Lmax = L, both being the largest eigenvalue of ∇2f ,
so that κmax = κ. This is the case when all co-
ordinates are independent of each other, for exam-
ple f =

∑
i λix

2
i . On the other hand, if f is highly
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skewed, such as f = (
∑

i xi)
2, so ∇2f = e · e⊤ (where

e = [1, 1, . . . , 1]⊤), then L = dLmax and κ = dκmax.

Furthermore, since κi ≥ 1, we have for p > 0 that

(d− 1) + κpmax ≤
d∑

i=1

κpi ≤ dκpmax ≤ dκp .

Both bounds are tight. In the case when f = κ1|x1|2+∑d
i=1 |x2|2 with κ1 > 1,

∑d
i=1 κ

p
i = (d − 1) + κp1 =

(d − 1) + κpmax. On the other hand, when f =
∑

i x
2
i ,

we have κi = κmax = 1, then
∑d

i=1 κ
p
i = dκpmax = dκp.

And we say f is highly skewed if

d∑

i=1

κpi ≈ (d− 1) + κpmax . (7)

The extreme example in this setting is to set f(x) =
1
2

(
dx21 +

∑d
i=2 x

2
i

)
with d ≫ 1. In this example,

κmax = d and
∑d

i=1 κ
p
i = (d− 1) + κpmax.

To measure the distance between two probability dis-
tributions, we use the Wasserstein distance.

Definition 3.1. The Wasserstein distance Wp (for
any p ≥ 1) between probability measures µ and ν is
defined as

Wp(µ, ν) =

(
inf

(X,Y )∈Γ(µ,ν)
E|X − Y |p

)1/p

,

where Γ(µ, ν) is the set of distribution of (X,Y ) ∈ R
2d

whose marginal distributions, for X and Y respec-
tively, are µ and ν.

In this paper, we will use the 2-Wasserstein metricW2.

4 Classical ULMC

Underdamped Langevin dynamics is characterized by
the following SDE:

{
dXt = Vt dt ,

dVt = −2Vt dt− γ∇f(Xt) dt+
√
4γ dBt ,

(8)

where γ > 0 is a parameter to be tuned, and Bt is the
Brownian motion. Here we use the parametrization
form of Cheng et al. (2018a) (alternative parametriza-
tions are used in Dalalyan and Riou-Durand (2018);
Shen and Lee (2019)). Denoting by q(x, v, t) the prob-
ability density function of (Xt, Vt), we have that q sat-
isfies the Fokker-Planck equation

∂tq = ∇ ·
([

−v
2v + γ∇f

]
q +

[
0 0
0 2γ

]
∇q

)
.

It is well known that under mild conditions, q con-
verges to p(x, v) ∝ exp(−(f(x) + |v|2/2γ)) (see e.g.,

Villani (2006); Dolbeault et al. (2009); Baudoin (2016);
Cao et al. (2019)), and thus the marginal density func-
tion for x becomes the target distribution pX(x).

Denoting by h > 0 the time stepsize, we have that for
t ∈ [mh, (m+ 1)h], (8) is equivalent to

X(t) =X(mh) +
1− e−2t

2
V (mh)

− γ

2

∫ t

mh

(
1− e−2(t−s)

)
∇f (X(s)) ds

+
√
γ

∫ t

mh

(
1− e−2(t−s)

)
dBs ,

(9)

V (t) =V (mh)e−2t − γ

∫ t

mh

e−2(t−s)∇f (X(s)) ds

+
√

4γe−2t

∫ t

mh

e2s dBs .

(10)
The sampling method, ULMC, can be viewed as a
numerical solver for (9)-(10) based on the Euler ap-
proximation. Denoting by (xm, vm) the numerical ap-
proximation to (X(mh), V (mh)), and replacing X(s)
in (9)-(10) by xm, Euler approximation yields that
(xm+1, vm+1) ∈ R

2d are two Gaussian random vectors
with the following expectation and covariance:

Exm+1 = xm +
1

2

(
1− e−2h

)
vm

− γ

2

(
h− 1

2

(
1− e−2h

))
∇f(xm) ,

E vm+1 = vme−2h − γ

2

(
1− e−2h

)
∇f(xm) ,

Cov
(
xm+1

)
= γ

[
h− 3

4
− 1

4
e−4h + e−2h

]
· Id ,

Cov
(
vm+1

)
= γ

[
1− e−4h

]
· Id ,

Cov
(
xm+1 , vm+1

)
=
γ

2

[
1 + e−4h − 2e−2h

]
· Id .

(11)

Here E denotes the expectation, and Cov(a, b) denotes
the covariance of a and b (abbreviated to Cov(a) when
b = a), and Id is the identity matrix in R

d. We
thus draw xm+1, vm+1 from this Gaussian distribution
numerically to update the iteration. We summarize
ULMC in Algorithm 1.

The algorithm converges exponentially when f is
strongly convex with Lipschitz continuous gradient;
see Dalalyan and Riou-Durand (2018). The original
statement uses a different parametrization. We trans-
late the result to the current one in Supp. 1 and restate
the result here.

Theorem 4.1. [(Dalalyan and Riou-Durand, 2018,
Theorem 2)] Assume f satisfies Assumption 3.1 and



Zhiyan Ding, Qin Li, Jianfeng Lu, Stephen J. Wright

Algorithm 1 Underdamped Langevin Monte
Carlo (ULMC)

Input: h (time stepsize); γ (parameter); d (dimen-
sion); ∇f(x); M (stopping index).
Initial: (x0, v0) i.i.d. sampled from the initial dis-
tribution q0(x, v).
for m = 0 , 1 , · · · ,M do

1. Compute the expectation and the covariance
as in (11).

2. Sample (xm+1, vm+1) from the associated
Gaussian distribution.
end for
Output: {xm}.

that γ ≤ 4
µ+L , h ≤ γ1/2µ

8L . Then we have

Wm ≤
√
2 exp(−0.375µhγ1/2m)W0+(2d)1/2κh . (12)

Here Wm := W2(qm, p) and qm(x, v) denotes the
probability density function of iteration m of ULMC.
Moreover, suppose the initial W0 is O(1), then the
total number of iterations to achieve ǫ accuracy is

Õ
(

d1/2κ3/2

µ1/2ǫ

)
, and the cost is Õ

(
d3/2κ3/2

µ1/2ǫ

)
.

The cost depends on both the dimensionality d and
condition number κ with 3/2 power for both.

5 Randomized Coordinate

Underdamped Langevin Monte

Carlo

We integrate the RCD idea into ULMC to yield our
method RC-ULMC. Instead of updating every entry
of the process as is done in (9)–(10), we randomly
select one direction rm ∈ {1, 2, . . . , d} and evolve
only (Xrm , Vrm)(t). Correspondingly, we would only
change one single entry (xmrm , v

m
rm) according to expec-

tation and covariance, analogous to (11).

We denote the discrete distribution from which rm is
chosen by Φ, with φi being the probability of compo-
nent i being chosen, that is,

Φ := {φ1, φ2, . . . , φd} , (13)

where φi > 0 for all i and
∑d

i=1 φi = 1. Denoting by
hi the stepsize when i-th direction is chosen, we choose
hi to be inversely proportional to φi, as follows:

hi =
h

φi
, i = 1, 2, . . . , d , (14)

where h > 0 is a parameter that can be viewed as
the expected stepsize. We also define the total elapsed

time after m steps as

Tm =

m−1∑

n=0

hrn .

The initial iterate (x0, v0) is drawn from a distribution
q0, which can be any distribution that is easy to draw
from (e.g., a normal distribution).

Because only component rm is updated at iterationm,
we have for t ∈ [Tm, Tm+1] that

Xrm(t) = Xrm(Tm) +
1− e−2t

2
Vrm(Tm)

− γ

2

∫ t

Tm

(
1− e−2(t−s)

)
∂rmf(X(s)) ds

+
√
γ

∫ t

Tm

(
1− e−2(t−s)

)
dBs , (15)

Vrm(t) = Vrm(Tm)e−2(t−Tm)

− γ

∫ t

Tm

e−2(t−s)∂rmf(X(s)) ds

+
√

4γ

∫ t

Tm

e−2(t−s) dBs , (16)

Xi(t) = Xi(T
m), Vi(t) = Vi(T

m) , i 6= rm . (17)

We call (15)-(17) Random Coordinate Underdamped
Langevin dynamics (RC-ULD). To obtain a practi-
cal algorithm, we apply the Euler approximation to
these dynamics. Denoting by (xmrm , v

m
rm) the numer-

ical approximation to (X(Tm) , V (Tm)), we replace
∂rmf(X(s)) in (15)-(17) by ∂rmf (x

m), so that xm+1
i =

xmi , vm+1
i = vmi for i 6= rm, and (xm+1

rm , vm+1
rm ) are two

Gaussian random variables with the following expec-
tation and covariance:

Exm+1
rm = xmrm +

1

2

(
1− e−2hrm

)
vmrm

− γ

2

(
hrm − 1

2

(
1− e−2hrm

))
∂rmf(x

m) ,

Evm+1
rm = vmrme

−2hrm − γ

2

(
1− e−2hrm

)
∂rmf(x

m) ,

Cov
(
xm+1
rm

)
= γ

[
hrm − 3

4
− 1

4
e−4hrm + e−2hrm

]
,

Cov
(
vm+1
rm

)
= γ

[
1− e−4hrm

]
,

Cov
(
xm+1
rm , vm+1

rm
)
=
γ

2

[
1 + e−4hrm − 2e−2hrm

]
.

(18)

Then, (xm+1
rm , vm+1

rm ) is drawn according to this Gaus-
sian distribution for the update. We summarize the
RC-ULMC approach in Algorithm 2.

6 Main results

We have three main results regarding the underlying
dynamics (RC-ULD), and the RC-ULMC algorithm.
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Algorithm 2 Random Coordinate Under-
damped Langevin Monte Carlo (RC-ULMC)

Input: h (time stepsize); γ (parameter); d (dimen-
sion); ∇f(x); probability set Φ := {φ1, φ2, . . . , φd};
M (stopping index).
Initial: (x0, v0) i.i.d. sampled from the initial dis-
tribution induced by q0(x, v).
for m = 0 , 1 , · · · ,M do

1. Draw r randomly from 1, 2, . . . , d according
to Φ;

2. Update (xm+1, vm+1) as follows:

• xm+1
i = xmi , v

m+1
i = vmi for i 6= r;

• sample (xm+1
r , vm+1

r ) as Gaussian variables ac-
cording to (18).

end for
Output: {xm}.

In Section 6.1, we discuss convergence of the RC-
ULD (15)-(17). This SDE can be viewed as the contin-
uum version of the RC-ULMC algorithm. Only with
the convergence of this SDE can we hope for the con-
vergence of RC-ULMC. In Section 6.2, we describe the
non-asymptotic convergence properties of RC-ULMC.
From this result, we can determine an optimal strat-
egy for selecting the coordinate rm at each iteration.
We will also compare our results with those for clas-
sical ULMC, showing that the bounds for RC-ULMC
are always better. Moreover, when f is highly skewed
— for example when κ1 = κmax ≫ 1 and κi ≈ 1 for
i ≥ 2 — the total cost is Õ

((
d3/2 + κmax

)
κ1/2/ǫ

)
, as

compared to Õ
(
d3/2κ3/2/ǫ

)
for ULMC.

We provide an example in Section 6.3 to show that our
bounds are tight.

6.1 Convergence of RC-ULD

Our first result is on the convergence of (15)-(17), the
RC-ULD that incorporates random coordinate selec-
tion.

Denote Xm = X(Tm), V m = V (Tm) and denote the
probability filtration by Fm =

{
x0, v0, rn≤m, Bs≤Tm

}
.

Then we have the following result about its geometric
ergodicity.

Theorem 6.1. Suppose that f satisfies Assump-

tion 3.1 and γ ≤ 1
L , h ≤ γµmin{φi}

312+12γ+8L+432L2 , then

{(Xm, V m)}∞m=0 is a Markov chain. Denoting by
qm(x, v) the probability density function of (Xm, V m),
we have the following:

• The stationary distribution has density p(x, v) ∝
exp(−(f(x) + |v|2/2γ)).

• When the initial distribution q0 has finite second

moments, there exist constants R > 0 and r > 1
independent of m such that

∫

R2d

|qm(x, v)− p(x, v)| dx dv ≤ Rr−m . (19)

The proof, which can be found in Supp. 3, uses the
convergence analysis framework of (Mattingly et al.,
2002), based on construction of a special Lyapunov
function. This theorem suggests that the TV distance
between qm and p decays exponentially, meaning that
(Xm, V m) can be seen to be drawn from the target
distribution p as m → ∞. Since the RC-ULMC al-
gorithm is its Euler approximation, the samples gen-
erated by this algorithm are drawn from p as well —
approximately, up to a discretization error.

Note that R and r are independent of m in Theo-
rem 6.1, but we do not have explicit control on its de-
pendence on parameters such as h, d, and L. This is
worse in comparison with the results in (Cheng et al.,
2018a; Cao et al., 2019) for the underdamped Langevin
dynamics, where the convergence rate is characterized
explicitly in terms of all parameters. The difficulty
of our case comes mainly from the complicated pro-
cess of coordinate selection, which prevents us from
applying the synchronous coupling approach of Cheng
et al. (2018a); Dalalyan and Karagulyan (2019) di-
rectly to the dynamics (15)–(17) to establish contrac-
tion. Whether the hypocoercity estimate of Cao et al.
(2019) can be applied remains an interesting future
research direction.

6.2 Convergence of RC-ULMC

Regarding the non-asymptotic error analysis of RC-
ULMC, we have the following result (cf. Theorem 4.1).

Theorem 6.2. Suppose that f satisfies Assump-
tion 3.1 and that

γ ≤ 1

L
, h ≤ min

{
γµmin{φi}

240

}
. (20)

Denote qm(x, v) the probability density function of it-
eration m of RC-ULMC and define Wm =W2(qm, p).
Then we have

Wm ≤ 4 exp

(
−µγmh

8

)
W0+40γ1/2h

√√√√
d∑

i=1

κ2i
φ2i

. (21)

The proof can be found in Supp. 4. This result indi-
cates that the Wasserstein distance between qm and
the target distribution decays exponentially except for
an error term of size O(h). The convergence rate is
given by µγ, and with the choice γ = 1/L, this quan-
tity is the inverse condition number 1/κ of the objec-
tive function (see (5)). The second term in (21) reflects
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the discretization error, with its size being determined
by the directional condition number κi (see (5)) and
the random selection probability distribution Φ.

This theorem not only allows us to estimate the num-
ber of iterations required to achieve a preset accuracy,
but also suggests that we choose {φi} in a way that
minimizes the bound.

Corollary 6.3. Suppose that the conditions of The-
orem 6.2 hold and γ = 1/L. We have the following
estimates.

• For any ǫ > 0, the number of needed iterations M
to attain WM ≤ ǫ is

M = Θ


κ1/2

√∑d
i=1 κ

2
i /φ

2
i

µ1/2ǫ
log

(
W0

ǫ

)
 . (22)

• The optimal choice of φi is

φi =
L
2/3
i∑d

j=1 L
2/3
j

, i = 1, 2, . . . , d. (23)

In this case, the number of iterations required is

M = Θ



κ1/2

(∑d
j=1 κ

2/3
j

)3/2

µ1/2ǫ
log

(
W0

ǫ

)

 .

(24)

The proof can be found in Supp. 5. Suppose the ob-
jective function f is well-conditioned in every direc-
tion, so that κi = O(1) for all i. Then according to
both (22) and (24), we see that the cost is roughly

Õ(d3/2/ǫ). This order is the same as for the classical
ULMC shown in Theorem 4.1.

When f is not as well-conditioned, meaning κi are not
uniformly small in every direction, then RC-ULMC
can have a significant advantage over the classical
ULMC. In practice, if we have some a priori estimate
of κi, we can choose the optimal Φ and the cost esti-
mate will be given by (24). Of course, such a priori
information might not be available, in such case, we
can choose uniformly the coordinate at each iteration:
φi = 1/d. We compare below the cost of RC-ULMC in

these two scenarios with Õ(d3/2κ3/2/µ1/2ǫ), the cost
of the classical ULMC, as shown in Theorem 4.1.

Case 1: Uniform sampling, where we choose φi = 1/d.
From (22), we found that the cost is

Õ


dκ1/2

√∑d
i=1 κ

2
i

µ1/2ǫ


 , (25)

where the Õ ignores log terms. Since
∑d

i=1 κ
2
i ≤

dκ2max ≤ dκ2, we observe that RC-ULMC is always
cheaper than ULMC. Furthermore, when f is highly
skewed (7) with p = 2, then (25) is reduced to

Õ
(

d(
√
d+κmax)κ

1/2

µ1/2ǫ

)
. This bound indicates that RC-

ULMC is significantly cheaper than ULMC when both
d and κ are large.

Case 2: With the optimal choice of Φ (using (23)),
the cost of RC-ULMC is equivalent to M in (24).
We still have that RC-ULMC is always cheaper than
ULMC. Furthermore, when f is highly skewed (7) with

p = 3/2, then we have upper bound
(∑d

j=1 κ
2/3
j

)3/2

≈
(
(d− 1) + κ

2/3
max

)3/2

≤ 2(d3/2 + κmax). By substitut-

ing this bound into (24), we get the following bound:

Õ

(
(d3/2 + κmax)κ

1/2

µ1/2ǫ

)
. (26)

The reduction over ULMC is significant when either d
or κ is large.

We also compare RC-ULMC with RC-OLMC dis-
cussed in (Shen et al., 2019; Ding et al., 2020b).
To achieve ǫ-accuracy, the total cost of RC-OLMC

is Õ
(∑d

i=1
κ2

i /φi

µǫ2

)
. Noting that

√∑d
i=1 κ

2
i /φ

2
i ≤

∑d
i=1 κi/φi ≤ ∑d

i=1 κ
2
i /φi, (22) is always smaller,

meaning RC-ULMC is always cheaper than RC-OLMC
when ǫ < 1/L1/2. Furthermore, if we choose uniform
sampling (φi = 1/d) and assume γ, µ, κi are O(1), then

the cost of RC-ULMC is Õ
(
d3/2/ǫ

)
while the cost of

RC-OLMC is Õ
(
d2/ǫ2

)
. We have a significant im-

provement in both d and ǫ.

Finally, we note that in (Shen and Lee, 2019), ran-
domzied midpoint method (RMM) is used to discretize
SDE (8). According to (He et al., 2020), RMM needs

Õ(d1/3κ/ǫ2/3) iteration steps to achieve ǫ-accuracy,

which equates to a cost of Õ(d4/3κ/ǫ2/3). By compar-
ison, (26) is smaller in some extreme regimes, such as
d2/9ǫ−2/3 < κ < ǫ2/3d8/3 . We note that the compari-
son between RC-ULMC and RMM is not entirely fair
since RMM uses a better discretization scheme than
the Euler approximation (11) used in RC-ULMC. It is
possible to include the RCD idea to RMM on ULMC
as well, for a potentially better convergence rate. We
leave that topic to future investigation.

6.3 Tightness of the bound

Corollary 6.3 shows that the numerical cost is roughly
Õ(d3/2/ǫ) when the problem is well conditioned. We
show by use of an example that this bound is tight
with respect to d and ǫ.
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Proposition 6.4. Let the target distribution be a
standard Gaussian pX(x) = 1

(2π)d/2
exp(−|x|2/2),

which is the marginal distribution of the target distri-
bution p(x, v) = 1

(2π)d
exp(−|x|2/2 − |v|2/2). Suppose

the initial distribution q0 is chosen to be q0(x, v) =
1

(2π)d
exp(−|x − u|2/2 − |v|2/2) with u ∈ R

d and

ui = 1/400 for all i. Then if we choose h so that
h < 10−8/d, we have

Wm ≥ exp (−4hm)

8002
d

8
+

d3/2h

320− 464dh
, (27)

where Wm :=W2(qm, p), and qm is the probability dis-
tribution of (xm, vm) generated by Algorithm 2 with
γ = 1/L = 1 using uniform coordinate sampling.
Furthermore, to have Wm ≤ ǫ, one needs at least
M = Õ(d3/2/ǫ) iterations.

The proof can be found in Supp. 6. For this partic-
ular initialization, we have W0 =

√
d/400. According

to (27), we can guarantee Wm ≤ ǫ only if both terms
are smaller than ǫ, meaning that (ignoring a log term)

h . 320ǫ
d3/2 ,m & 1

4h , which implies a cost of Õ(d3/2/ǫ).

7 Numerical experiments

We present numerical evidence to demonstrate the im-
provement of RC-ULMC over the classical ULMC. In
this section we only present a toy problem, and we
leave a more practical example to Supp. 2.

In the examples, we repeat the Markov chain for N
independent trials and denote {x(i),M}Ni=1 the list of N
samples at M -th iteration. Since Wasserstein distance
is difficult to measure directly numerically, especially
when the underlying distribution function is presented
by a list of particles, we evaluate the following error as
a surrogate:

Error =

∥∥∥∥∥
1

N

N∑

i=1

ψ(x(i),M )− EpX
(ψ)

∥∥∥∥∥
2

, (28)

where ψ(x) is a matrix-valued function and referred
to as the test function, ‖ · ‖2 means the spectral norm
of the matrix, and EpX

(ψ) is the expected value of ψ
with respect to the target distribution pX.

In the first example, we set the target distribution
function to be pX(x) ∝ p1(x)p2(x) with p2(x) =

exp
(
−∑d

i=11
|xi|2
2

)
and p1(x) = exp

(
− 1

2x
⊤Γ⊤Γx

)
,

where x = (x1, x2, . . . , x10)
⊤

is the list of first 10 en-
tries, and Γ = T + d

10I. Here I is the 10 × 10 iden-
tity matrix and T is a random matrix whose entries
are i.i.d. standard Gaussian random variables. This
example has an ill-conditioned f . The Lipschitz con-

stants are E(L1≤i≤10) = d2

100 and Li≥10 = 1. Thus

µ = 1, and E(κ1≤i≤10) =
d2

100 . When d ≫ 1, we have∑d
j=1 κ

p
i ≪ dκp for p ≥ 1.

In the simulation we set d = 100, N = 105, and let
ψ(x) = xx

⊤ ∈ R
10×10.

Initially, all particles are drawn from the density dis-
tribution p0(x, v) ∝ p1(x− 0.5e10)p2(x) exp

(
−|v|2/2

)
,

where e10 is a vector in R
10 and all entries equal to 1.

It is expected that the density of the target distribu-
tion is p(x, v) ∝ pX(x) exp

(
−|v|2/2

)
, making pX the

marginal probability density.

The result is plotted in Figure 1. To run RC-ULMC,
we use time stepsize h = 10−4. For comparison we also
run ULMC, however, due to the cost difference per
iteration, there is no standard choice of h for ULMC
for a fair comparison. Since d = 100 in this example,
per iteration, the cost of ULMC is 100 times of that of
RC-ULMC, we first experiment ULMC with h = 10−2.
It is clear that RC-ULMC, presented by the purple
line achieves a lower error than ULMC with the same
amount of cost.

We then test ULMC with different choices of h, hop-
ing to find its best performance. As one decreases h,
the error plateau is also lower, but the decay rate of
error with respect to the cost decreases, as one can
see by comparing the yellow, red and blue lines in Fig-
ure 1, all produced by ULMC with different values of h.
None of them, however, can compete with RC-ULMC
regarding the level of error at the same cost.

✵ ✵�✁ ✵�✂ ✵�✄ ✵�☎ ✶ ✶�✁ ✶�✂ ✶�✄ ✶�☎ ✁
❈✆✝✞ ✶✵✺

✶✵✲✟

✶✵✲✠

✶✵✲✡

✶✵✲☛

✶✵☞

✶✵☛

❊
✌✌
✍✌

❯✎✏✑✒✓✔✕✖
✗✘

❯✎✏✑✒✓✔✙✚✕✖
✗✛

❯✎✏✑✒✓✔✜✚✕✖
✗✛

❘✑✢❯✎✏✑✒✓✔✕✖
✗✣

Figure 1: The decay of error with respect to the cost
(the number ∂f calculations).
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