.-'

= Rt [1nr

usenix .
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

High Throughput Cryptocurrency Routing
in Payment Channel Networks

Vibhaalakshmi Sivaraman, Massachusetts Institute of Technology; Shaileshh
Bojja Venkatakrishnan, Ohio State University; Kathleen Ruan, Carnegie Mellon
University; Parimarjan Negi and Lei Yang, Massachusetts Institute of Technology;
Radhika Mittal, University of Illinois at Urbana-Champaign; Giulia Fanti, Carnegie
Mellon University; Mohammad Alizadeh, Massachusetts Institute of Technology

https://www.usenix.org/conference/nsdi20/presentation/sivaraman

This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI '20)
February 25-27, 2020 » Santa Clara, CA, USA
978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked
Systems Design and Implementation

(NSDI '20) is sponsored by

+

High Throughput Cryptocurrency Routing in Payment Channel Networks

Vibhaalakshmi Sivaraman”, Shaileshh Bojja Venkatakrishnan™, Kathleen Ruan, Parimarjan Negi",
Lei Yang *, Radhika Mittal ¥, Giulia Fanti’, Mohammad Alizadeh™

“Massachusetts Insititute of Technology, ** Ohio State University,
 Carnegie Mellon University, *University of Illinois at Urbana-Champaign

Abstract

Despite growing adoption of cryptocurrencies, making fast
payments at scale remains a challenge. Payment channel
networks (PCNs) such as the Lightning Network have emerged
as a viable scaling solution. However, completing payments on
PCNs is challenging: payments must be routed on paths with
sufficient funds. As payments flow over a single channel (link)
in the same direction, the channel eventually becomes depleted
and cannot support further payments in that direction; hence,
naive routing schemes like shortest-path routing can deplete
key payment channels and paralyze the system. Today’s PCNs
also route payments atomically, worsening the problem. In this
paper, we present Spider, a routing solution that “packetizes”
transactions and uses a multi-path transport protocol to achieve
high-throughput routing in PCNs. Packetization allows Spider
to complete even large transactions on low-capacity payment
channels over time, while the multi-path congestion control
protocol ensures balanced utilization of channels and fairness
across flows. Extensive simulations comparing Spider with
state-of-the-art approaches shows that Spider requires less
than 25% of the funds to successfully route over 95% of
transactions on balanced traffic demands, and offloads 4x
more transactions onto the PCN on imbalanced demands.

1 Introduction

Despite their growing adoption, cryptocurrencies suffer
from poor scalability. For example, the Bitcoin [5] network
processes 7 transactions per second, and Ethereum [14] 15
transactions/second, which pales in comparison to the 1,700
transactions per second achieved by the VISA network [56].
Scalability thus remains a major hurdle to the adoption of
cryptocurrencies for retail and other large-scale applications.
The root of the scalability challenge is the inefficiency of
the underlying consensus protocol: every transaction must
go through full consensus to be confirmed, which can take
anywhere from several minutes to hours [43].

A leading proposal among many solutions to improve
cryptocurrency scalability [23, 32, 40] relies on so-called
payment channels. A payment channel is a cryptocurrency
transaction that escrows or dedicates money on the blockchain
for exchange with a prespecified user for a predetermined
duration. For example, Alice can set up a payment channel
with Bob in which she escrows 10 tokens for a month. Now
Alice can send Bob (and only Bob) signed transactions from
the escrow account, and Bob can validate them privately in
a secure manner without mediation on the blockchain (§2).

If Bob or Alice want to close the payment channel at any point,
they can broadcast the most recent signed transaction message
to the blockchain to finalize the transfer of funds.

The versatility of payment channels stems from payment
channel networks (PCNs), in which users who do not share
direct payment channels can route transactions through
intermediaries for a nominal fee. PCNs enable fast, secure
transactions without requiring consensus on the blockchain
for every transaction. PCNs have received a great deal of
attention in recent years, and many blockchains are looking to
PCNs to scale throughput without overhauling the underlying
consensus protocol. For example, Bitcoin has deployed the
Lightning network [10, 15], and Ethereum uses Raiden [18].

For PCNs to be economically viable, the network must be
able to support high transaction throughput. This is necessary
for intermediary nodes (routers) to profitably offset the
opportunity cost of escrowing funds in payment channels, and
for encouraging end-user adoption by providing an appealing
quality of payment service. But, a transaction is successful
only if all channels along its route have sufficient funds. This
makes payment channel routing, the protocol by which a path
is chosen for a transaction, of paramount importance.

Existing payment channel routing protocols achieve poor
throughput, for two main reasons. First, they attempt to route
each incoming transaction atomically and instantaneously, in
full. This approach is harmful, particularly for larger transac-
tions, because a transaction fails completely if there is no path
to the destination with enough funds. Second, existing routing
protocols fail to keep payment channels balanced. A payment
channel becomes imbalanced when the transaction rate across
it is higher in one direction than the other; the party making
more transactions eventually runs out of funds and cannot send
further payments without “refilling” the channel via either
an on-chain transaction (i.e., committing a new transaction
to the blockchain) or coordinated cyclic payments between a
series of PCN nodes [39]. Most PCNs today route transactions
naively on shortest paths with no consideration for channel
balance; this can leave many channels depleted, reducing
throughput for everyone in the network. We describe a third
problem, the creation of deadlocks in certain scenarios, in §3.

In this paper we present Spider, a multi-path transport
protocol that achieves balanced, high-throughput routing in
PCNs, building on concepts in an earlier position paper [51].
Spider’s design centers on two ideas that distinguish it
from existing approaches. First, Spider senders “packetize”
transactions, splitting them into transaction-units that can

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 777

be sent across different paths at different rates. By enabling
congestion-control-like mechanisms for PCNs, this packet-
switched approach makes it possible to send large payments on
low-capacity payment channels over a period of time. Second,
Spider develops a simple multi-path congestion control
algorithm that promotes balanced channels while maximizing
throughput. Spider’s senders use a simple one-bit congestion
signal from the routers to adjust window sizes, or the number
of outstanding transaction-units, on each of their paths.

Spider’s congestion control algorithm is similar to multi-

path congestion control protocols like MPTCP [59] developed
for Internet congestion control. But the routing problem it
solves in PCNs differs from standard networks in crucial ways.
Payment channels can only route transactions by moving a
finite amount of funds from one end of the channel to the other.
Because of this, the capacity of a payment channel — the
transaction rate that it can support— varies depending on
how it is used; a channel with balanced demand for routing
transactions in both directions can support a higher rate than an
imbalanced one. Surprisingly, we find that a simple congestion
control protocol can achieve such balanced routing, despite
not being designed for that purpose explicitly.

We make the following contributions:

1. We articulate challenges for high-throughput routing
in payment channel networks (§3), and we formalize
the balanced routing problem (§5). We show that the
maximum throughput achievable in a PCN depends
on the nature of the transaction pattern: circulation
demands (participants send on average as much as they
receive) can be routed entirely with sufficient network
capacity, while demands that form Directed Acyclic
Graphs (DAGs) where some participants send more
than they receive cannot be routed entirely in a balanced
manner. We also show that introducing DAG demands
can create deadlocks that stall all payments.

2. We propose a packet-switched architecture for PCNs
(§4) that splits transactions into transaction-units and
multiplexes them across paths and time.

3. We design Spider (§6), a multi-path transport protocol
that (i) maintains balanced channels in the PCN, (ii) uses
the funds escrowed in a PCN efficiently to achieve high
throughput, and (iii) is fair to different payments.

4. We build a packet-level simulator for PCNs and validate
it with a small-scale implementation of Spider on the
LND Lightning Network codebase [15]. Our evaluations
(§7) show that (i) on circulation demands where 100%
throughput is achievable, compared to the state-of-the-art,
Spider requires 25% of the funds to route over 95% of the
transactions and completes 1.3-1.8x more of the largest
25% of transactions based on a credit card transactions
dataset [34]; (ii) on DAG demands where 100% through-
put is not achievable, Spider offloads 7-8x as many
transactions onto the PCN for every transaction on the
blockchain, a 4x improvement over current approaches.

2 Background

Bidirectional payment channels are the building blocks of a
payment channel network. A bidirectional payment channel
allows a sender (Alice) to send funds to a receiver (Bob) and
vice versa. To open a payment channel, Alice and Bob jointly
create a transaction that escrows money for a fixed amount
of time [46]. Suppose Alice puts 3 units in the channel, and
Bob puts 4 (Fig. 1). Now, if Bob wants to transfer one token
to Alice, he sends her a cryptographically-signed message
asserting that he approves the new balance. This message is
not committed to the blockchain; Alice simply holds on to it.
Later, if Alice wants to send two tokens to Bob, she sends a
signed message to Bob approving the new balance (bottom
left, Fig. 1). This continues until one party decides to close
the channel, at which point they publish the latest message
to the blockchain asserting the channel balance. If one party
tries to cheat by publishing an earlier balance, the cheating
party loses all the money they escrowed to the other party [46].

1) @

o, am (959 [0500) 2 = =
coper @ (000 JOOOO] Tt g (0000] 000]

Alice Bob Alice Bob

Alice Bob close @
channet i (QO_[00000) g
Alice Bob

®) @

Figure 1: Bidirectional payment channel between Alice and Bob.
A blue shaded block indicates a transaction that is committed to the
blockchain.

AgeCharlie n
E
- — -’

Figure 2: In a payment channel network, Alice can transfer money
to Bob by using intermediate nodes’ channels as relays. There are
two paths from Alice to Bob, but only the path (Alice, Charlie, Bob)
can support 3 tokens.

A payment channel network is a collection of bidirectional
payment channels (Fig. 2). If Alice wants to send three tokens
to Bob, she first finds a path to Bob that can support three
tokens of payment. Intermediate nodes on the path (Charlie)
will relay payments to their destination. Hence in Fig. 2, two
transactions occur: Alice to Charlie, and Charlie to Bob. To
incentivize Charlie to participate, he receives a routing fee.
To prevent him from stealing funds, a cryptographic hash
lock ensures that all intermediate transactions are only valid
after a transaction recipient knows a private key generated by
Alice [18]. ! Once Alice is ready to pay, she gives that key to

'The protocol called Hashed Timelock Contracts (HTLCs) can be
implemented in two ways: the sender generates the key, as in Raiden [18] or
the receiver generates the key, as in Lightning [46]. Spider assumes that the
sender generates the key.

778 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Bob out-of-band; he can either broadcast it (if he decides to
close the channel) or pass it to Charlie. Charlie is incentivized
to relay the key upstream to Alice so that he can also get paid.
Note that Charlie’s payment channels with Alice and Bob
are independent: Charlie cannot move funds between them
without going through the blockchain.

3 Challenges in Payment Channel Networks

A major cost of running PCNs is the collateral needed to set up
payment channels. As long as a channel is open, that collateral
is locked up, incurring an opportunity cost for the owner. For
PCNs to be financially viable, this opportunity cost should be
offset by routing fees, which are charged on each transaction
that passes through a router. To collect more routing fees,
routers try to process as many transactions as possible for
a given amount of collateral. A key performance metric is
therefore the transaction throughput per unit collateral where
throughput itself is measured either in number of transactions
per second or transaction value per second.

Current PCN designs exhibit poor throughput due to
naive design choices in three main areas: (1) how to route
transactions,(2) when to send them and, (3) deadlocks.
Challenge #1: How to route transactions? A central ques-
tion in PCNs is what route(s) to use for sending a transaction
from sender to destination. PCNs like the Lightning and
Raiden networks are source-routed. > Most clients by default
pick the shortest path from the source to the destination.

However, shortest-path routing degrades throughput in two
key ways. The first is to cause underutilization of the network.
To see this, consider the PCN shown in Fig. 3a. Suppose we
have two clusters of nodes that seek to transact with each
other at roughly the same rate on average, and the clusters are
connected by two paths, one consisting of channels a—b, and
the other channel c. If the nodes in cluster A try to reach cluster
B via the shortest path, they would all take channel ¢, as would
the traffic in the opposite direction. This leads to congestion
on channel ¢, while channels a and b are under-utilized.

A second problem is more unique to PCNs. Consider a
similar topology in Figure 3b, and suppose we fully utilize
the network by sending all traffic from cluster A—B on edge
a and all traffic from cluster B— A on edge b. While the rate
on both edges is the same, as funds flow in one direction over a
channel, the channel becomes imbalanced: all of the funds end
up on one side of the channel. Cluster A can no longer send
payments until it receives funds from cluster B on the edge
a or it deposits new funds into the channel a via an on-chain
transaction. The same applies to cluster B on edge b. Since
on-chain transactions are expensive and slow, it is desirable to
avoid them. Routing schemes like shortest-path routing do not
account for this problem, thereby leading to reduced through-
put (§7). In contrast, it is important to choose routes that

2This was done in part for privacy reasons: transactions in the Lightning net-
work use onion-routing, which is easy to implement with source routing [33].

actively prevent channel imbalance. For example, in Figure
3b, we could send half of the A—B traffic on edge a, and half
on edge b, and the same for the B—A traffic. The challenge
is making these decisions in a fully decentralized way.
Challenge #2: When to send transactions? Another
problem is when to send transactions. Most existing PCNs are
circuit-switched: transactions are processed instantaneously
and atomically upon arrival [18,46]. This causes a number of
problems. If a transaction’s value exceeds the available balance
on each path from the source to the destination, the transaction
fails. Since transaction values in the wild tend to be heavy-
tailed [29, 34], either a substantial fraction of real transactions
will fail as PCN usage grows, or payment channel operators
will need to provision higher collateral to satisfy demand.
Even when transactions do not fail outright, sending
transactions instantaneously and atomically exacerbates the
imbalance problem by transferring the full transaction value
to one side of the channel. A natural idea to alleviate these
problems is to “packetize” transactions: transactions can be
splitinto smaller transaction-units that can be multiplexed over
space (by traversing different paths) and in time (by being sent
at different rates). Versions of this idea have been proposed be-
fore; atomic multi-path payments (AMP) enable transactions
to traverse different paths in the Lightning network [3], and the
Interledger protocol uses a similar packetization to conduct
cross-ledger payments [54]. However, a key observation is that
it is not enough to subdivide transactions into smaller units:
to achieve good throughput, it is also important to multiplex
in time as well, by performing congestion control. If there is a
large transaction in one direction on a channel, simply sending
it out in smaller units that must all complete together doesn’t
improve the likelihood of success. Instead, in our design, we
allow each transaction-unit to complete independently, and a
congestion control algorithm at the sender throttles the rate of
these units to match the rate of units in the opposite direction
at the bottlenecked payment channel. This effectively allows
the tokens at that bottleneck to be replenished and reused
multiple times as part of the same transaction, achieving a
multiplicative increase in throughput for the same collateral.
Challenge #3: Deadlocks. The third challenge in PCNs is the
idea that the introduction of certain flows can actively harm the
throughput achieved by other flows in the network. To see this,
consider the topology and demand rates in Figure 3c. Suppose
nodes 1 and 2 want to transmit 1-unit transactions to node 3 at
rates of 1 and 2 units/second, respectively, and node 3 wants
to transact 2 units/sec with node 1.° Notice that the specified
transaction rates are imbalanced: there is a net flow of funds out
of node 2 and into nodes 1 and 3. Suppose the payment channels
are initially balanced, with 10 units on each side and we only
start out with flows between nodes 1 and 3. For this demand
and topology, the system can sustain 2 units/sec by only having
nodes 1 and 3 to send to each other at a rate of 1 unit/second.

3For simplicity, we show three nodes, but anode in this example could repre-
sent a cluster of many users who wish to transact at the rates shown in aggregate.

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 779

Cluster A

Cluster A Cluster B

(a) Underutilized channels

(b) Imbalanced channels

Before 1

Cluster B ey
Uio 0¥ 1 ®
8 — T 7
b After 2 1

20®

(c) Deadlock

Figure 3: Example illustrating the problems with state-of-the-art PCN routing schemes.

However, once transactions from node 2 are introduced, this
example achieves zero throughput at steady-state. The reason
is that node 2 sends transactions to node 3 faster than its funds
are being replenished, which reduces its funds to 0. Slowing
down 2’s transactions would only delay this outcome. Since
node 2 needs a positive balance to route transactions between
nodes 1 and 3, the transactions between 1 and 3 cannot be
processed, despite the endpoints having sufficient balance. The
network finds itself in a deadlock that can only be resolved by
node 2 replenishing its balance with an on-chain transaction.

Why these problems are difficult to solve. The above
problems are challenging because their effects are closely
intertwined. For example, because poor routing and rate-
control algorithms can cause channel imbalance, which
in turn degrades throughput, it is difficult to isolate the
effects of each. Similarly, simply replacing circuit switching
with packet-switching gives limited benefits without a
corresponding rate control and routing mechanism.

From a networking standpoint, PCNs are very different
from traditional communication networks: payment channels
do not behave like a standard communication link with a
certain capacity, say in transactions per second. Instead, the
capacity of a channel in a certain direction depends on two
factors normally not seen in communication networks: (a) the
rate that transactions are received in the reverse direction on
that channel, because tokens cannot be sent faster on average
in one direction than they arrive in the other, (b) the delay it
takes for the destination of a transaction to receive it and send
back the secret key unlocking the funds at routers (§2). Tokens
that are “in flight”, i.e. for which a router is waiting for the
key, cannot be used to service new transactions. Therefore
the network’s capacity depends on its delay, and queued up
transactions at a depleted link can hold up funds from channels
in other parts of the network. This leads to cascading effects
that make congestion control particularly critical.

4 Packet-Switched PCN

Spider uses a packet-switched architecture that splits trans-
actions into a series of independently routed transaction-units.
Each transaction-unit transfers a small amount of money
bounded by a maximum-transaction-unit (MTU) value.
Packetizing transactions is inspired by packet switching for the

Internet, which is more effective than circuit switching [41].
Note that splitting transactions does not compromise the
security of payments; each transaction-unit can be created
with an independent secret key. As receivers receive and
acknowledge transaction-units, senders can selectively reveal
secret keys only for acknowledged transaction-units (§2).
Senders can also use proposals like Atomic Multi-Path
Payments (AMP) [3] if they desire atomicity of transactions.
In Spider, payments transmitted by source end-hosts are
forwarded to their destination end-hosts by routers within the
PCN. Spider routers queue up transaction-units at a payment
channel whenever the channel lacks the funds to forward them
immediately. As a router receives funds from the other side of
its payment channel, it uses these funds to forward transaction-
units waiting in its queue. Current PCN implementations [15]
do not queue transactions at routers—a transaction fails imme-
diately if it encounters a channel with insufficient balance on
its route. Thus, currently, even a temporary lack of channel bal-
ance can cause many transactions to fail, which Spider avoids.

5 Modeling Routing

A good routing protocol must satisfy the following objectives:

1. Efficiency. For a PCN with a fixed amount of escrowed
capital, the aggregate transaction throughput achieved
must be as high as possible.

2. Fairness. The throughput allocations to different users
must be fair. Specifically, the system should not starve
transactions of some users if there is capacity.

Low latency, a common goal in communication networks,
is desirable but not a first order concern, as long as transaction
latency on the PCN is significantly less than an on-chain
transaction (which can take minutes to hours today). However,
as mentioned previously (§3), very high latency could hurt
the throughput of a PCN, and must therefore be avoided.
We assume that the underlying communication network is
not a bottleneck and PCN users can communicate payment
attempts, success and failures with one another easily since
these messages do not require much bandwidth.

To formalize the routing problem, we consider a fluid
model of the system in which payments are modeled as
continuous “fluid flows” between users. This allows us to cast
routing as an optimization problem and derive decentralized

780 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

algorithms from it, analogous to the classical Network Utility

Maximization (NUM) framework for data networks [45].

More specifically, for the fluid model we consider a PCN
modeled as a graph G(V, E) in which V denotes the set of
nodes (i.e., end-hosts or routers), and E denotes the set of
payment channels between them. For a path p, let x,, denote
the (fluid) rate at which payments are sent along p from a
source to a destination. The fluid rate captures the long-term
average rate at which payments are made on the path.

For maximizing throughput efficiency, routing has to be
done such that the total payment flow through each channel
is as high as possible. However, routers have limited capital
on their payment channels, which restricts the maximum
rate at which funds can be routed (Fig. 3a). In particular,
when transaction units are sent at a rate x,, , across a payment
channel between u and v with ¢,,, funds in total and it takes
A time units on average to receive the secret key from a
destination once a payment is forwarded, then x,, ,A credits
are locked (i.e., unavailable for use) at any point in time in
the channel. This implies that the average rate of transactions
(across both directions) on a payment channel cannot exceed
Cu,v/A. This leads to capacity constraints on channels.

Sustaining a flow in one direction through a payment
channel requires funds to be regularly replenished from the
other direction. This requirement is a key difference between
PCNs and traditional data networks. In PCNs if the long-term
rates x,, and x,, are mismatched on a channel (u,v), say
Xy,y > X, 4, then over time all the funds ¢, , will accumulate at v

deeming the channel unusable in the direction u to v (Fig. 3b).

This leads to balance constraints which stipulate that the total
rate at which transaction units are sent in one direction along a

payment channel matches the total rate in the reverse direction.

Lastly, for enforcing fairness across flows we assume
sources have an intrinsic utility for making payments, which
they seek to maximize. A common model for utility at a source
is the logarithm of the total rate at which payments are sent
from the source [31,37,38]. A logarithmic utility ensures that
the rate allocations are proportionally fair [38]—no individual
sender’s payments can be completely throttled. Maximizing
the overall utility across all source-destination pairs subject
to the capacity and balance constraints discussed above, can
then be computed as

maximize Z log(Z xp> (1
i,jev PED
s.t. Y x,<dij VijeVv 2)
PE®D,; j
X+ X < % Y(uy) €E 3)
Xu,y =Xyu V(M,V) <)) “4)
x,>0 VpeP, 5)

where for a source i and destination j, % ; is the set of all paths
fromito j, d; j is the demand from i to j, x,, is the total flow

1 ! ! 1
OO O, O @7
0 10°J70 10

(a) Payment graph (b) Circulation (c) DAG
Figure 4: Payment graph (denoted by blue lines) for a 3 node
network (left). It decomposes into a maximum circulation and DAG

components as shown in (b) and (c).

going from u to v for a channel (u,v), ¢, , is the total amount
of funds escrowed into (#,v), A is the average round-trip time
of the network taken for a payment to be completed, and P is
the set of all paths. Equation (2) specifies demand constraints
which ensures that the total flow for each sender-receiver pair
across all of their paths, is no more than their demand.

5.1 Implications for Throughput

A consequence of the balance constraints is that certain traffic
demands are more efficient to route than certain others. In
particular, demands that have a circulation structure (total
outgoing demand matches total incoming demand at a router)
can be routed efficiently. The cyclic structure of such demands
enables routing along paths such that the rates are naturally
balanced in channels. However, for demands without a
circulation structure, i.e., if the demand graph is a directed
acyclic graph (DAG), balanced routing is impossible to
achieve in the absence of periodic replenishment of channel
credits, regardless of how large the channel capacities are.

For instance, Fig. 4a shows the traffic demand graph for
a PCN with nodes {1,2,3} and payment channels between
nodes 1 —2 and 2 —3. The weight on each blue edge denotes
the demand in transaction-units per second between a pair
of users. The underlying black lines denote the topology and
channel sizes. Fig. 4b shows the circulation component of
the demand in Fig. 4a. The entire demand contained in this
circulation can be routed successfully as long as the network
has sufficient capacity. In this case, if the confirmation latency
for transaction-units between 1 and 3 is less than 10s, then
the circulation demand can be satisfied indefinitely. The
remaining component of the demand graph, which represents
the DAG, is shown in Fig. 4c. This portion cannot be routed
indefinitely since it shifts all tokens onto node 3 after which
the 2—3 channel becomes unusable.

App. A formalizes the notion of circulation and shows
that the maximum throughput achievable by any balanced
routing scheme is at most the total demand contained within
the circulation.

6 Design

6.1 Intuition

Spider routers queue up transactions at a payment channel
whenever the channel lacks funds to forward them immediately
(§5). Thus, queue buildup is a sign that either transaction-units

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 781

router u X Avaiable funds X router v
X, — 0000 —1y, y, —[0000 <« x,
qu 88 8 In-flight funds 88 8 Iy

(a) A capacity limited payment channel.

router u 00@ Avible funds ¥ router v

l 000
Xy —* — Wu Yy «— | 0000 Xy
Gu

OO Inflightfunds QOO0 Qv

(b) An imbalance limited payment channel.

Figure 5: Example of queue growth in a payment channel between
routers u and v, under different scenarios of transaction arrival rates
at u and v. (a) If the rate of arrival at v, x,, and the rate of arrival at
u, x,, are such that their sum exceeds the channel capacity, neither
router has available funds and queues build up at both u# and v. (b)
If the arrival rates are imbalanced, e.g., if x, > x,,, then u has excess
funds while v has none, causing queue build-up at v.

are arriving faster (in both directions) than the channel can
process (Fig. 5a) or that one end of the payment channel
lacks sufficient funds(Fig. 5b). It indicates that the capacity
constraint (Equation 3) or the balance constraint (Equation 4)
is being violated and the sender should adjust its sending rate.

Therefore, if senders use a congestion control protocol that
controls queues, they could detect both capacity and imbalance
violations and react to them. For example, in Fig. 5a, the proto-
col would throttle both x,, and x,. In Fig. 5b, it would decrease
X, to match the rate at which queue g, drains, which is precisely
Xy, the rate at which new funds become available at router v.

This illustrates that a congestion controller that satisfies two
basic properties can achieve both efficiency and balanced rates:

1. Keeping queues non-empty, which ensures that any avail-
able capacity is being utilized, i.e., there are no unused
tokens at any router.

2. Keeping queues stable (bounded), which ensures that (a)
the flow rates do not exceed a channel’s capacity, (b) the
flow rates are balanced. If either condition is violated,
then at least one of the channel’s queues would grow.

Congestion control algorithms that satisfy these properties
abound (e.g., Reno [19], Cubic [35], DCTCP [22], Vegas [27],
etc.) and could be adapted for PCNs.

In PCNes, it is desirable to transmit transaction-units along
multiple paths to better utilize available capacity. Conse-
quently, Spider’s design is inspired by multi-path transport pro-
tocols like MPTCP [59]. These protocols couple rate control de-
cisions for multiple paths to achieve both high throughput and
fairness among competing flows [58]. We describe an MPTCP-
like protocol for PCNs in §6.2—6.3. In §6.4 we show that the
rates found by Spider’s protocol for parallel network topolo-
gies, match the solution to the optimization problem in §5.

6.2 Spider Router Design

Fig. 6 shows a schematic diagram of the various components
in the Spider PCN. Spider routers monitor the time that each

router

end-host &

payment path 1
payment path 2
marked packet
unmarked packet

Figure 6: Routers queue up transaction-units and schedule them
based on priorities when funds become available. and transaction
priorities. If the delay through the queue for a packet exceeds a
threshold, they mark the packet. End-hosts maintain and adjust
windows for each path to a receiver based on the marks they observe.

packet spends in their queue and mark the packet if the time
spent exceeds a pre-determined threshold 7. If the transaction-
unit is already marked, routers leave the field unchanged
and merely forward the transaction-unit. Routers forward
acknowledgments from the receiving end-host back to the
sender which interprets the marked bit in the ack accordingly.
Spider routers schedule transaction-units from their queues
according to a scheduling policy, like Smallest-Payment-First
or Last-In-First-Out (LIFO). Our evaluations (§7.5) shows
that LIFO provides the highest transaction success rate. The
idea behind LIFO is to prioritize transaction units from new
payments, which are likely to complete within their deadline.

6.3 Spider Transport Layer at End-Hosts

Spider senders send and receive payments on a PCN by
interfacing with their transport layer. This layer is configured
to support both atomic and non-atomic payments depending
on user preferences. Non-atomic payments utilize Spider’s
packet-switching which breaks up large payments into
transaction-units that are delivered to the receiver indepen-
dently. In this case, senders are notified of how much of the pay-
ment was completed allowing them to cancel the rest or retry it
on the blockchain. While this approach crucially allows token
reuse at bottleneck payment channels for the same transaction
(§3), senders also have the option of requesting atomic pay-
ments (likely for a higher fee). Our results (§7) show that even
with packetization, more than 95% payments complete in full

The transport layer also involves a multi-path protocol
which controls the rates at which payments are transferred,
based on congestion in the network. For each destination host,
a sender chooses a set of k paths to route transaction-units
along. The route for a transaction-unit is decided at the
sender before transmitting the unit. It is written into the
transaction-unit using onion encryption, to hide the full route
from intermediate routers [17, 33]. In §7.5, we evaluate the
impact of different path choices on Spider’s performance and
propose using edge-disjoint widest paths [21] between each
sender and receiver in Spider.

To control the rate at which payments are sent on a path,
end-hosts maintain a window size w), for every candidate

782 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

path to a destination. This window size denotes the maximum
number of transaction-units that can be outstanding on path p
at any point in time. End-hosts track the transaction-units that
have been sent out on each path but have not yet been acked
or canceled. A new transaction-unit is transmitted on a path
p only if the total amount pending does not exceed w.

End-hosts adjust w, based on router feedback on congestion
and imbalance. In particular, on a path p between source i and
receiver j the window changes as

wp —w,—B,

_a
Z W/J’,

Pip'ER

on every marked packet and, (6)

Wp—wp+ on every unmarked packet. (7)

Here, o and P are both positive constants that denote the
aggressiveness with which the window size is increased and
decreased respectively. Eq. (6)—(7) are similar to MPTCP,
but with a multiplicative decrease factor that depends on the
fraction of packets marked on a path (similar to DCTCP [22]).

We expect the application to specify a deadline for every
transaction. If the transport layer fails to complete the payment
within the deadline, the sender cancels the payment, clearing
all of its state from the PCN. In particular, it sends a cancella-
tion message to remove any transaction-units queued at routers
on each path to the receiver. Notice that transaction-units that
arrive at the receiver in the meantime cannot be unlocked be-
cause we assume the sender holds the secret key (§2). Senders
can then choose to retry the failed portion of the transaction
again on the PCN or on the blockchain; such retries would be
treated as new transactions. Canceled packets are considered
marked and Spider decreases its window in response to them.

6.4 Optimality of Spider

Under a fluid approximation model for Spider’s dynamics,
we can show that the rates computed by Spider are an optimal
solution to the routing problem in Equations (1)—(5) for
parallel networks (such as Fig. 20 in App. B). In the fluid
model, we let x, (t) denote the rate of flow on a path p at time ¢;
for a channel (u,v), f,,(¢) denotes the fraction of packets that
are marked at router « as a result of excessive queuing. The
dynamics of the flow rates x,(¢) and marking fractions f,, (t)
can be specified using differential equations to approximate
the window update dynamics in Equations (6) and (7). We
elaborate more on this fluid model, including specifying how
the queue sizes and marking fractions evolve, in App. B.
Now, consider the routing optimization problem (Equa-
tions (1)—(5)) written in the context of a parallel network. If
Spider is used on this network, we can show that there is a map-
ping from the rates {x,} and marking fractions { f,,, } values
after convergence, to the primal and dual variables of the op-
timization problem, such that the Karush-Kuhn-Tucker (KKT)
conditions for the optimization problem are satisfied. This
proves that the set of rates found by Spider is an optimal solu-

tion to the optimization problem [26]. The complete and formal
mathematical proof showing the above is presented in App. B.

7 Evaluation

We develop an event-based simulator for PCNs, and use it to
extensively evaluate Spider across a wide range of scenarios.
We describe our simulation setup (§7.1), validate it via a
prototype implementation (§7.2), and present detailed results
for circulation demands (§7.3). We then show the effect of
adding DAG components to circulations (§7.4), and study
Spider’s design choices (§7.5).

7.1 Experimental Setup

Simulator. We extend the OMNET++ simulator (v5.4.1) [1]
to model a PCN. Our simulator accurately models the network-
wide effects of transaction processing, by explicitly passing
messages between PCN nodes (endhosts and routers).* Each
endhost (i) generates transactions destined for other endhosts
as per the specified workload, and (ii) determines when to send
a transaction and along which path, as per the specified routing
scheme. All endhosts maintain a view of the entire PCN topol-
ogy, to compute suitable source-routes. The endhosts can’t
view channel balances, but they do know each channel’s size
or total number of tokens (€). Endhosts also split generated
transactions into MTU-sized segments (or transaction-units)
before routing, if required by the routing scheme (e.g. by
Spider). Each generated transaction has a timeout value and
is marked as a failure if it fails to reach its destination by
then. Upon receiving a transaction, an endhost generates an
acknowledgment that is source-routed along its reverse path.
A router forwards incoming transactions and acknowledg-
ments along the payment channels specified in their route,
while correspondingly decrementing or incrementing the chan-
nel balances. Funds consumed by a transaction in a channel are
inflight and unavailable until its acknowledgment is received.
A transaction is forwarded on a payment channel only if the
channel has sufficient balance; otherwise the transaction is
stored in a per-channel queue that is serviced in a last in first
out (LIFO) order §7.5. If the queue is full, an incoming trans-
action is dropped, and a failure message is sent to the sender.
Routing Schemes. We implement and evaluate five different
routing schemes in our simulator.
(1) Spider: Every Spider sender maintains a set of up to k edge-
disjoint widest paths to each destination and a window size per
path. The sender splits transactions into transaction-units and
sends a transaction-unit on a path if the path’s window is larger
than amount inflight on the path. If a transaction-unit cannot
be sent, it is placed in a per-destination queue at the sender that
is served in LIFO order. Spider routers mark transaction-units
experiencing queuing delays higher than a pre-determined
threshold. Spider receivers echo the mark back to senders who
adjust the window size according to the equations in §6.3.

“https://github.com/spider-pcn/spider-omnet

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 783

(2) Waterfilling: Waterfilling uses balance information explic-
itly in contrast to Spider’s 1-bit feedback. As with Spider, a
sender splits transactions into transaction-units and picks up
to k edge-disjoint widest paths per destination. It maintains
one outstanding probe per path that computes the bottleneck
(minimum) channel balance along it. When a path’s probe is
received, the sender computes the available balance based on
its bottleneck and the in-flight transaction-units. A transaction-
unit is sent along the path with the highest available balance.
If the available balance for all of the k paths is zero (or less),
the transaction-unit is queued and retried after the next probe.
(3) Shortest Path: This baseline sends transactions along the
shortest path to the destination without transaction splitting.
(4) Landmark Routing: Landmark routing, as used in prior
PCN routing schemes [42,47,50], chooses k well-connected
landmark nodes in the topology. For every transaction, the
sender computes its shortest path to each landmark and
concatenates it with the shortest path from that landmark to the
destination to obtain k distinct paths. Then, the sender probes
each path to obtain its bottleneck balance, and partitions the
transaction such that each path can support its share of the
total transaction. If such a partition does not exist or if any of
the partitions fail, the transaction fails.

(5) LND: The PCN scheme currently deployed in the Lightning
Network Daemon (LND) [15] attempts first send a transaction
along the shortest path to its destination. If the transaction fails
due to insufficient balance at a channel, the sender removes
that channel from its local view, recomputes the shortest path,
and retries the transaction on the new path until the destination
becomes unreachable or the transaction times out. A channel
is added back to the local view 5 seconds after its removal.
(6) Celer: App. C.1 compares Spider to Celer’s cRoute as
proposed in a white-paper [11]. Celer is a back-pressure
routing algorithm that routes transactions based on queue and
imbalance gradients. Due to computation overheads associated
with Celer’s large queues, we evaluate it on a smaller topology.
Workload. We generate two forms of payment graphs to
specify the rate at which a sender transacts with every other re-
ceiver: (i) pure circulations, with a fixed total sending rate x per
sender generated by adding x random permutation matrices;
(ii) circulations with a DAG component, having a total rate y
generated by sampling y different sender-receiver pairs where
senders and receivers are chosen from two separate exponen-
tial distributions. The distribution’s skew is set proportional
to the desired DAG component in the total traffic matrix.

We translate the rates from the payment graph to discrete
transactions with a Poisson arrival process The transaction
size distribution (Fig. 7a) is drawn from credit card transaction
data [34], and has a mean of 88€ and median 25€ with the
largest transaction being 3930€. Each sender sends 30 tx/sec
on average shared across 10 destinations. Note that a sender
represents a router in our setup, sending transactions to other
routers on behalf of many users.

Topology. We set up an LND node [15] to retrieve the Light-

1.00 1.00
0.75 0.75
L [T
0 0.50 0 0.50
O O
0.25 0.25
0.00 0.00
1 8 64 512 0 500 1000 1500
Size (€) Channel Size (€)

(a) Transaction Size Distribution (b) LN Channel Size Distribution

Figure 7: Transaction dataset and channel size distribution used for
real-world evaluations.

ning Network topology on July 15, 2019. We snowball sam-
ple [36] the full topology (which has over 5000 nodes and
34000 edges), resulting in a PCN with 106 nodes and 265 pay-
ment channels. For compatibility with our transaction dataset,
we convert LND payment channel sizes from Satoshis to €, and
set the minimum channel size to the median transaction size of
25€. The distribution of channel sizes for this topology has a
mean and median size of 421€ and 163€ respectively (Fig. 7b).
This distribution is highly skewed, resulting in a mean that is
much larger than the median or the smallest payment channels.
We refer to this distribution as the Lightning Channel Size
Distribution (LCSD). We draw channel propagation delays
based on ping times from our LND node to all reachable nodes
in the Lightning Network, resulting in RTTs of about a second.
We additionally simulate two synthetic topologies: a
Watts-Strogatz small world topology [20] with 50 nodes
and 200 edges, and a scale-free Barabasi-Albert graph [4]
with 50 nodes and 336 edges. We set the per-hop delay to
30ms in both cases, resulting in RTTs of 200-300ms. For
payment channel sizes, we use real capacities in the Lightning
topology and sample capacities from LCSD for synthetic
topologies. We vary the mean channel size across experiments
by proportionally scaling up the size of each payment channel.
All payment channels are initialized with perfect balance.
Parameters. We set the MTU as 1€. Every transaction has
a timeout of 5 seconds. Schemes with router queues enabled
have a per-channel queue size of 12000€. The number of path
choices is set to k =4 for schemes that use multiple paths. We
vary both the number of paths and the nature of paths in §7.5.
For Spider, we set o (window increase factor) to 10, B (mul-
tiplicative decrease factor) to 0.1, and the marking threshold
for the queue delay to 300ms. For the experiments in §7.4, we
set this threshold to 75ms to for faster response to congestion.
Metrics. We use the following evaluation metrics: (i) transac-
tion success ratio: the number of completed transactions over
the number of generated transactions. A packetized transaction
is complete when all of its transaction-units are successful,
(i1) normalized throughput: the total amount of payments (in
€) completed over the total amount of payments generated,
(iii) transaction latency: time between arrival and completion
for successful transactions, and (iv) offload factor: number
of transactions offloaded to the PCN for every on-chain trans-
action. All of these metrics are computed over a measurement

784 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

LND e Spider

Implementation Simulator

et PP

100 200 300 400 0 100 200 300 400
Channel Size (€)

N
~N o
g o

N
a

Success Ratio (%)
o & 8

o

Figure 8: Comparison of performance on simulator and implemen-
tation for LND and Spider on a 10 node scale-free topology with 1€
transactions. Spider outperforms LND in both settings. Further, the
average success ratio on the simulator and implementation for both
schemes are within 5% of each other.

interval when all schemes are in steady-state. Unless specified
otherwise, we use a measurement interval of 800-1000s,
run experiments for 1010s, and denote the maximum and
minimum statistic across five runs using error-bars.

7.2 Prototype Implementation

To support Spider, we modify the Lightning Network Daemon
(LND) [15] which is currently deployed on the live Bitcoin
Network. We repurpose the router queues to queue up
transactions (or HTLCs) that cannot be immediately serviced.
When a transaction spends more than 75ms in the queue,
Spider marks it. The marking is echoed back via an additional
field in the transaction acknowledgement (Fulfil1HTLC) to
the sender. We maintain a per-receiver state at the sender to
capture the window and number inflight on each path, as well
as the queue of unattempted transactions. Each sender finds
4 edge-disjoint shortest paths to every destination. We do not
implement transaction-splitting.

We deploy our modified LND implementation [15] on
Amazon EC2’s ¢5d. 4x1arge instances with 16 CPU cores, 16
GB of RAM, 400 GB of NVMe SSD, and a 10 Gbps network in-
terface. Each instance hosts one end-host and one router. Every
LND node is run within a docker container with a dedicated bit-
coin daemon [6]. We create our own regtest [8] blockchain for
the nodes. Channels are created corresponding to a scale-free
graph with 10 nodes and 25 edges. We vary the mean channel
size from 25€ to 400€. Five circulation payment graphs are
generated with each sender sending 100 tx/s (each 1€). Re-
ceiving nodes communicate invoices via etcd [13] to sending
nodes who then complete them using the appropriate scheme.
We run LND and Spider on the implementation and measure
the transaction RTTs to inform propagation delays on the
simulator. We then run the same experiments on the simulator.

Fig. 8 shows the average success ratio that Spider and LND
achieve on the implementation and the simulator. There are
two takeaways: (i) Spider outperforms LND in both settings
and, (ii) the average success ratio on the simulator is within
5% of the implementation for both schemes. Our attempts
at running experiments at larger scale showed that the LND
codebase is not optimized for high throughput. For example,
persisting HTLC state on disk causes IO bottlenecks and

variations of tens of seconds in transaction latencies even
on small topologies. Given the fidelity and flexibility of the
simulator, we chose to use it for the remaining evaluations.

7.3 Circulation Payment Graph Performance

Recall that on circulation payment graphs, al/l the demand
can theoretically be routed if there is sufficient capacity (§5.1
and App. A). However, the capacity at which a routing scheme
attains 100% throughput depends on the scheme’s ability to
balance channels: the more balanced a scheme is, the less
capacity it needs for high throughput.

Efficiency of Routing Schemes. We run five circulation traffic
matrices on our three topologies (§7.1). Notice that the channel
sizes are much larger on the Lightning Topology compared
to the other two due to the highly skewed nature of capacities
(Fig. 7b). We measure success ratio for the transactions across
different channel sizes. Fig. 9 shows that on all topologies,
Spider outperforms the state-of-the-art schemes. Spider suc-
cessfully routes more than 95% of the transactions with less
than 25% of the capacity required by LND. At lower capacities,
Spider completes 2-3 x more transactions than LND. This is be-
cause Spider maintains balance in the network by responding
quickly to queue buildup at payment channels, thus making bet-
ter use of network capacity. The explicit balance-aware scheme,
Waterfilling, also routes more transactions than LND. However,
when operating in low capacity regimes, where many paths are
congested and have near-zero available balance, senders are
unable to use just balance information to differentiate paths. As
aresult, Waterfilling’s performance degrades at low capacity
compared to Spider which takes into account queuing delays.
Size of Successful Payments. Spider’s benefits are most
pronounced at larger transaction sizes, where packetization
and congestion control helps more transactions complete.
Fig. 10 shows success ratio as a function of transaction size.
We use mean channel sizes of 4000€ and 16880 € for the
synthetic and real topologies, respectively. Each shaded
region denotes a different range of transaction sizes, each
corresponding to about 12.5% of the transactions in the
workload. A point within a range represents the average
success ratio for transactions in that interval across 5 runs.
Spider outperforms LND across all sizes, and is able to route
5-30% more of the largest transactions compared to LND.
Impact on Latency. We anticipate Spider’s rate control
mechanism to increase latency. Fig. 11 shows the average
and 99" percentile latency for successful transactions on the
Lightning topology as a function of transaction size. Spider’s
average and tail latency increase with transaction size because
larger transactions are multiplexed over longer periods of
time. However, the tail latency increases much more than the
average because of the skew in channel sizes in the Lightning
topology: most transactions use large channels while a few
unfortunate large transactions need more time to reuse tokens
from smaller channels. Yet, the largest Spider transactions
experience at most 2 seconds of additional delay when

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 785

> Shortest Path # Landmark Routing #® Waterfilling

LND @ Spider

Small World Scale Free Lightning Network

<. ’I/_a.,—/——-=—-—f‘v'
8 75
©
X 5o _
%)
4 W
§ o / I
S =
mn O

1000 2000 4000 8000 1000 2000 4000 8000 4000 8000 16000 32000 64000

Mean Channel Size (€)

Figure 9: Performance of different algorithms on small-world, scale-free and Lightning Network topologies, for different per sender transaction
arrival rates. Spider consistently outperforms all other schemes achieving near 100% average success ratio. Note the log scale of the x-axes.

» Shortest Path # Landmark Routing = Waterfilling
Scale Free

Small World

100
75
25

0

o

Success Ratio (%)

QO b vy Ao S
NN W c%/(o 5
~ oy

&)
© 88T &S

LND - Spider
Lightning Network

&)
© 88T &S

3930

S
&
™

Transaction Size (€)

Figure 10: Breakdown of performance of different schemes by size of transactions completed. Each point reports the success ratio for
transactions whose size belongs to the interval denoted by the shaded region. Each interval corresponds roughly to a 12.5% weight in the
transaction size CDF shown in Fig. 7a. The graphs correspond to the midpoints of the corresponding Lightning sampled channel sizes in Fig. 9.

compared to LND, a small hit relative to the 20% increase in
overall success ratio at a mean channel size of 16880<€. LND’s
latency also increases with size since it retries transactions,
often upto 10 times until it finds a single path with enough
capacity. In contrast, Landmark Routing and Shortest path are
size-agnostic in their path-choice for transactions.

Waterfilling pauses transactions when there is no available
balance and resumes sending when balance becomes available.
Small transactions are unlikely to be paused in their lifetime
while mid-size transactions are paused a few times before
they complete. In contrast, large transactions are likely to be
paused many times, eventually getting canceled if paused too
much. This has two implications: (i) the few large transactions
that are successful with Waterfilling are not paused much and
contribute smaller latencies than mid-size transactions, and
(i) Waterfilling’s conservative pause and send mechanism
implies there is less contention for the large transactions that
are actually sent into the network, leading to smaller latencies
than what they experience with Spider.

7.4 Effect of DAGs

Real transaction demands are often not pure circulations:
consumer nodes spend more, and merchant nodes receive

= Shortest Path = Landmark Routing = Waterfiling « LND < Spider

5 .
£ g 5000
> 3000 N
) B 4000
g]
5 2000 g 3000
5 2
£ 1000 R 2000
o 1o
=4 [}

TR

v oohE 8 g

3930
3930

Transaction Size (Euros) Transaction Size (Euros)
Figure 11: Average and 99%ile transaction latency for different
routing schemes on the Lightning topology. Transactions experience
1-2s of additional latency with Spider relative to LND for a 20%
improvement in throughput.

more. To simulate this, we add 5 DAG payment graphs (§7.1)
to circulation payment graphs, varying the relative weight
to generate effectively 5%, 20% and 40% DAG in the total
demand matrix. We run all schemes on the Lightning topology
with a mean channel size of 16880<€; results on the synthetic
topologies are in App. C.4.

Fig. 12 shows the success ratio and normalized throughput.
We immediately notice that no scheme achieves the theoretical
upper bound on throughput (i.e., the % circulation demand).
However, throughput is closer to the bound when there is a
smaller DAG component in the demand matrix. This suggests

786 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

» Shortest Path = Landmark Routing = Waterfilling LND < Spider + Circulation

_100 100 =<, _

Success Ratio (%
(&2 ~
o (&3]
//
Norm. Throughput (%,

0 F+

0 10 20 30 40 0 10 20 30 40
DAG Amount (%) DAG Amount (%)

Figure 12: Performance of different algorithms on the Lightning
topology as the DAG component in the transaction demand matrix is
varied. As the DAG amount is increased, the normalized throughput
achieved is further away from the expected optimal circulation
throughput.

that not only is the DAG itself unroutable, it also alters the PCN
balances in a way that prevents the circulation from being fully
routed. Further, the more DAG there is, the more affected the
circulation is. This is because the DAG causes a deadlock (§3).

To illustrate this, we run two scenarios: (i) a pure circulation
demand X for 3000s, and (ii) a traffic demand (X +Y) con-
taining 20% DAG for 2000s followed by the circulation X for
1000s after that. Here, each sender sends 200€/s of unit-sized
transactions in X. We observe a time series of the normalized
throughput over the 3000s. The mean channel size is 4000€
and 16990<€ for the synthetic and real topologies respectively.

Fig. 13 shows that Spider achieves 100% throughput
(normalized by the circulation demand) at steady state for the
pure circulation demand on all topologies. However, when
the DAG component is introduced to the demand, it affects the
topologies differently. Firstly, we do not observe the expected
80% throughput for the circulation in the presence of the DAG
workload suggesting that the DAG affects the circulation.
Further, even once the circulation demand is restored for the
last 1000s, in the scale free and Lightning Network topology,
the throughput achieved is no longer 100%. In other words, in
these two topologies, the DAG causes a deadlock that affects
the circulation even after the DAG is removed.

As described in §3, the solution to this problem involves
replenishing funds via on-chain rebalancing, since DAG
demands continuously move money from sources to sinks. We
therefore implement a simple rebalancing scheme where every
router periodically reallocates funds between its payment
channels to equalize their available balance. The frequency of
rebalancing for a router, is defined by the number of successful
transaction-units (in €) between consecutive rebalancing
events. In this model, the frequency captures the on-chain
rebalancing cost vs. routing fee trade-off for the router.

Fig. 14 shows the success ratio and normalized throughput
achieved by different schemes when rebalancing is enabled
for the traffic demand with 20% DAG from Fig. 12, or Fig. 13.
Spider is able to achieve 90% success ratio even when its
routers rebalance only every 10,000€ routed while LND is
never able to sustain more than 85% success ratio even when
rebalancing for every 10€ routed. This is because LND deems

— Pure Circulation — DAG + Circulation

Small World

e

Scale Free Lightning Network

LT

NN O
o © a o

Norm. Throughput(%)
o

0 1000 2000 3000 O 1000 2000 3000 O

Time (s)

1000 2000 3000

Figure 13: Comparing throughput when a pure circulation demand
is run for 3000s to a scenario where a circulation demand is restored
for 1000s after 2000s of a demand with 20% DAG. The throughput
achieved on the last 1000s of circulation is not always the expected
100% even after the DAG is removed.

» Shortest Path = Landmark Routing = Waterfilling ~ LND < Spider

100

=
o
o

- — "\; g x
IS = -
S 75 g5 = Y §
£ £ N 3 °
o =3 S
g 0 2 50 \ 2 4
Q =
g 25 5
=1 £ c 2
(7] S 25 3]

0 z 5

1 100 10000 1 100 10000 0

Rebalancing Interval (€) Rebalancing Interval (€) Scheme

Figure 14: Performance of different algorithms on the Lightning
topology when augmented with on-chain rebalancing. Spider needs
less frequent rebalancing to sustain high throughput. Spider offloads
3-4x more transactions onto a PCN per blockchain transaction than
LND.

a channel unusable for 5 seconds every time a transaction
fails on it due to lack of funds and this is further worsened by
its lack of transaction splitting. This implies that when using
Spider, routers need to pay for only one on-chain transaction
typically costing under 1€ [7] for every 10,000€ routed. Thus,
for a router to break even, it would have to charge 1€ for every
10000€ routed. This translates into significantly lower routing
fees for end-users than today’s payment systems [12]. Fig. 14
also captures the same result in the form of the best offloading
or number of off-chain PCN transactions per blockchain trans-
action achieved by each algorithm. Transactions that fail on the
PCN as well as rebalancing transactions are counted towards
the transactions on the blockchain. Spider is able to route 7-8
times as many transactions off-chain for every blockchain
transaction, a 4x improvement from the state-of-the-art LND.

7.5 Spider’s Design Choices

In this section, we investigate Spider’s design choices with re-
spect to the number of paths, type of paths, and the scheduling
algorithm that services transaction-units at Spider’s queues.
We evaluate these on both the real and synthetic topologies
with channel sizes sampled from the LCSD, and scaled to have
mean of 16880€ and 4000 € respectively .

Choice of Paths. We vary the type of paths that Spider uses by
replacing edge-disjoint widest paths with edge-disjoint short-
est paths, Yen’s shortest paths [60], oblivious paths [48] and

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 787

. Edge-disjoint Widest . Shortest (Yen's) [] Oblivious

= [Edge-disjoint Shortest [] Heuristic

>

° 100

= 75

C 50

@ 25

3

o O

(?) Small World Scale Free Lightning Topology
Topology

Figure 15: Performance of Spider as the type of paths considered
per sender-receiver pair is varied. Edge-disjoint widest outperforms
others by 1-10% on the Lightning Topology without being much
worse on the synthetic topologies.

O3+l

75
25
0

Small World Lightning Topology

Success Ratio (%)
()
o

Scale Free

Topology

Figure 16: Performance of Spider as the number of edge-disjoint
widest paths considered per sender-receiver pair is varied on different
topologies. Increasing the number of paths increases success ratio,
but the gains are low in going from 4 to 8 paths.

a heuristic approach. For the widest and oblivious path com-
putations, the channel size acts as the edge weight. The heuris-
tic picks 4 paths for each flow with the highest bottleneck
balance/RTT value. Fig. 15 shows that edge-disjoint widest
paths outperforms other approaches by 1-10% on the Lightning
Topology while being only 1-2% worse that edge-disjoint short-
est paths on the synthetic topologies. This is because widest
paths are able to utilize the capacity of the network better when
there is a large skew (Fig. 7b) in payment channel sizes.

Number of Paths. We vary the maximum number of edge-
disjoint widest paths Spider allows from 1 to 8. Fig. 16 shows
that, as expected, the success ratio increases with an increase
in number of paths, as more paths allow Spider to better utilize
the capacity of the PCN. While moving from 1 to 2 paths
results in 30-50% improvement in success ratio, moving from
4 to 8 paths has negligible benefits (<5%). This is because the
sparseness of the three PCN topologies causes most flows to
have at most 5-6 edge-disjoint widest paths. Further, Spider
prefers paths with smaller RTTs since they receive feedback
faster resulting in the shortest paths contributing most to the
overall rate for the flow. As a result, we use 4 paths for Spider.

Scheduling Algorithms. We modify the scheduling algo-
rithm at the per-destination queues at the sender as well as
the router queues in Spider to process transactions as per
First-In-First-Out (FIFO), Earliest-Deadline-First (EDF)
and Smallest-Payment-First (SPF) in addition to the LIFO
baseline. Fig. 17 shows that LIFO achieves a success ratio
that is 10-28% higher than its counterparts. This is because

B First-In-First-Out

[Smallest-Payment—First
B Last-In—First—Out

B Earliest-Deadline—First

Success Ratio (%)
N
(6]

Small World Scale Free

Topology

Lightning Topology

Figure 17: Performance of Spider as the scheduling algorithm at
the sender and router queues is varied. Last in first out outperforms
all other approaches by over 10% on all topologies.

LIFO prioritizes transactions that are newest or furthest from
their deadlines and thus, most likely complete especially when
the PCNs is overloaded. Spider’s rate control results in long
wait times in the sender queues themselves. This causes FIFO
and EDF that send out transactions closest to their deadlines
to time out immediately in the network resulting in poor
throughput. When SPF deprioritizes large payments at router
queues, they consume funds from other payment channels for
longer, reducing the effective capacity of the network.

7.6 Additional Results

In addition to the results described so far, we run additional
experiments that are described in the Appendices.

1. We compare Spider to Celer, as proposed in a white-
paper [11], and show that Spider outperforms Celer’s
success ratio by 2x on a scale free topology with 10 nodes
and 25 edges (App. C.1).

2. We evaluate the schemes on the synthetic and real
topologies with a simpler channel size distribution where
all channels have equal numbers of tokens. Even in
this scenario, Spider is able to successfully route more
than 95% of the transactions with less than 25% of the
capacity required by LND (App. C.2).

3. We evaluate the schemes for their fairness across multiple
payments and show that Spider does not hurt small
payments to gain on throughput (App. C.3).

4. We show the effect of DAG workloads on synthetic
topologies. In particular, we identify deadlocks with those
topologies too and show that Spider requires rebalancing
only every 10,000€ successfully routed to sustain high
success ratio and normalized throughput (App. C.4).

8 Related Work

PCN Improvements. Nodes in current Lightning Network
implementations, maintain a local view of the network
topology and source-route transactions along the shortest
path [2, 15]. Classical max-flow-based alternatives are
impractical for the Lightning Network that has over 5000
nodes and 30,000 channels [9, 16] due to their computational
complexity. Recent proposals have used a modified version
of max-flow that differentiates based on the size of transac-
tions [57]. However, inferring the size of payments is hard in

788 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

an onion-routed network like Lightning.

Two main alternatives to max-flow routing have been
proposed: landmark routing and embedding-based routing.
In landmark routing, select routers (landmarks) store routing
tables for the rest of the network, and nodes only route trans-
actions to a landmark [55]. This approach is used in Flare [47]
and SilentWhispers [42, 44]. Embedding-based or distance-
based routing learns a vector embedding for each node, such
that nodes that are close in network hop distance are also
close in embedded space. Each node relays each transaction to
the neighbor whose embedding is closest to the destination’s
embedding. VOUTE [49] and SpeedyMurmurs [50] use
embedding-based routing. Computing and updating the embed-
ding dynamically as the topology and link balances change is
a primary challenge of these approaches. Our experiments and
prior work [51] show that Spider outperforms both approaches.

PCN improvements outside of the routing layer focus on
rebalancing existing payment channels more easily [28, 39].
Revive [39] leverages cycles within channels wanting to
rebalance and initiates balancing off-chain payments between
them. These techniques are complementary to Spider and can
be used to enhance overall performance. However, §7.4 shows
that a more general rebalancing scheme that moves funds at
each router independently fails to achieve high throughput
without a balanced routing scheme.

Utility Maximization and Congestion Control. Network
Utility Maximization (NUM) is a popular framework for de-
veloping decentralized transport protocols in data networks to
optimize a fairness objective [37]. NUM uses link “prices” de-
rived from the solution to the utility maximization problem, and
senders compute rates based on these router prices. Congestion
control algorithms that use buffer sizes or queuing delays as
router signals [22,30,53] are closely related. While the Internet
congestion control literature has focused on links with fairly
stable capacities, this paper shows that they can be effective
even in networks with capacities dependent on the input rates
themselves. Such problems have also been explored in the
context of ride-sharing, for instance [24,25], and require new
innovation in both formulating and solving routing problems.

9 Conclusion

We motivate the need for efficient routing on PCNs and
propose Spider, a protocol for balanced, high-throughput
routing in PCNs. Spider uses a packet-switched architecture,
multi-path congestion control, and and in-network scheduling.
Spider achieves nearly 100% throughput on circulation
payment demands across both synthetic and real topologies.
We show how the presence of DAG payments causes deadlocks
that degrades circulation throughput, necessitating on-chain
intervention. In such scenarios, Spider is able to support 4x
more transactions than the state-of-the-art on the PCN itself.
This work shows that Spider needs less on-chain rebalanc-
ing to relieve deadlocked PCNs. However, it remains to be
seen if deadlocks can be prevented altogether. Spider relies on

routers signaling queue buildup correctly to the senders, but
this work does not analyze incentive compatibility for rogue
routers aiming to maximize fees. A more rigorous treatment
of the privacy implications of Spider routers relaying queuing
delay is left to future work.

Acknowledgments

We thank Andrew Miller, Thaddeus Dryja, Evan Schwartz,
Vikram Nathan, and Aditya Akella for their detailed feed-
back. We also thank the Sponsors of Fintech@CSAIL,
the Initiative for CryptoCurrencies and Contracts (IC3),
Distributed Technologies Research Foundation, the Cisco
Research Center, the National Science Foundation grants
CNS-1718270, CNS-1563826, CNS-1910676, CCF-1705007
and CNS-1617702, and the Army Research Office under grant
WO11INF1810332 for their support.

References
[1] http://omnetpp.org/.

[2] Amount-independent payment routing in Lightning Net-
works. https://medium.com/coinmonks/amount-
independent-payment-routing-in-lightning-
networks-6409201£ff5ed.

[3] AMP: Atomic Multi-Path Payments over Lightning.
https://lists.linuxfoundation.org/pipermail/
lightning-dev/2018-February/000993.html.

[4] Barabasi Albert Graph.
networkx.github.io/documentation/
networkx-1.9.1/reference/generated/
networkx.generators.random_graphs.
barabasi_albert_graph.html.

https://

[5] Bitcoin Core. https://bitcoin.org/en/bitcoin-
core/.

[6] Bitcoin Core Daemon. https://bitcoin.org/en/
full-node#other-linux-daemon.

[7] Bitcoin historical fee chart. https://
bitinfocharts.com/comparison/bitcoin-
median_transaction_fee.html.

[8] Bitcoin Regtest Mode. https://bitcoin.org/en/
developer-examples#regtest-mode.

[9] Blockchain caffe. https://blockchaincaffe.org/
map/.

[10] c-lightning: A specification compliant Light-
ning Network implementation in C. https:
//github.com/ElementsProject/lightning.

[11] Celer Network: Bring Internet Scale to Every Blockchain.
https://www.celer.network/doc/CelerNetwork-
Whitepaper.pdf.

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 789

[12] Credit Card Merchant Processing Fees. https:
//paymentdepot.com/blog/average-credit-
card-processing-fees/.

[13] etcd: A distributed, reliable key-value store for
the most critical data of a distributed system.
https://github.com/etcd-io/etcd.

[14] Ethereum. https://www.ethereum.org/.

[15] Lightning Network Daemon. https://github.com/
lightningnetwork/1lnd.

[16] Lightning Network Search and Analysis Engine.
https://1ml.com.

[17] Onion Routed Micropayments for the Lightning Net-
work. https://github.com/lightningnetwork/
lightning-onion.

[18] Raiden network. https://raiden.network/.

[19] The NewReno Modification to TCP’s Fast Recovery Al-
gorithm. https://tools.ietf.org/html/rfc6582.

[20] Watts Strogatz ~ Graph.
networkx.github.io/documentation/
networkx-1.9/reference/generated/
networkx.generators.random_graphs.watts_
strogatz_graph.html.

https://

[21] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network
Flows: Theory, Algorithms and Applications. Prentice
Hall, 1993.

[22] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center tcp (dctcp). ACM SIGCOMM computer
communication review, 41(4):63-74, 2011.

[23] V.Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath.
Deconstructing the blockchain to approach physical
limits. arXiv preprint arXiv:1810.08092, 2018.

[24] S. Banerjee, R. Johari, and C. Riquelme. Pricing in
ride-sharing platforms: A queueing-theoretic approach.
In Proceedings of the Sixteenth ACM Conference on Eco-
nomics and Computation, pages 639-639. ACM, 2015.

[25] S. Banerjee, R. Johari, and C. Riquelme. Dynamic
pricing in ridesharing platforms. ACM SIGecom
Exchanges, 15(1):65-70, 2016.

[26] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[27] L.S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
Vegas: New techniques for congestion detection and
avoidance, volume 24. ACM, 1994.

[28] C. Burchert, C. Decker, and R. Wattenhofer. Scalable
funding of bitcoin micropayment channel networks.
Royal Society open science, 5(8):180089, 2018.

[29] C.N. Cordi. Simulating high-throughput cryptocurrency
payment channel networks. PhD thesis, 2017.

[30] N.Dukkipati. Rate Control Protocol (RCP): Congestion
control to make flows complete quickly. Citeseer, 2008.

[31] A. Eryilmaz and R. Srikant. Joint congestion control,
routing, and mac for stability and fairness in wire-
less networks. IEEE Journal on Selected Areas in
Communications, 24(8):1514-1524, 2006.

[32] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zel-
dovich. Algorand: Scaling byzantine agreements for
cryptocurrencies. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 51-68. ACM,
2017.

[33] D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM, 42(2):39-41, 1999.

[34] U. M. L. Group. Credit card fraud detection,
2018. https://www.kaggle.com/mlg-ulb/
creditcardfraud.

[35] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly
high-speed tcp variant. ACM SIGOPS operating systems
review, 42(5):64-74, 2008.

[36] P.Huand W. C. Lau. A survey and taxonomy of graph
sampling. arXiv preprint arXiv:1308.5865, 2013.

[37] F.Kelly and T. Voice. Stability of end-to-end algorithms
for joint routing and rate control. ACM SIGCOMM
Computer Communication Review, 35(2):5-12,2005.

[38] F.P. Kelly, A. K. Maulloo, and D. K. Tan. Rate control for
communication networks: shadow prices, proportional
fairness and stability. Journal of the Operational
Research society, 49(3):237-252, 1998.

[39] R. Khalil and A. Gervais. Revive: Rebalancing
off-blockchain payment networks. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 439-453. ACM, 2017.

[40] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,
E. Syta, and B. Ford. Omniledger: A secure, scale-out,
decentralized ledger via sharding. In 2018 IEEE Sym-
posium on Security and Privacy (SP), pages 583-598.
1IEEE, 2018.

[41] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn,
L. Kleinrock, D. C. Lynch, J. Postel, L. G. Roberts, and
S. Wolff. A brief history of the internet. SIGCOMM
Comput. Commun. Rev., 39(5):22-31, Oct. 2009.

790 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

[42] G.Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maf-
fei. SilentWhispers: Enforcing Security and Privacy
in Decentralized Credit Networks. IACR Cryptology
ePrint Archive, 2016:1054, 2016.

[43] R. McManus. Blockchain speeds & the scalability
debate. Blocksplain, February 2018.

[44] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina.
Privacy preserving payments in credit networks. In
Network and Distributed Security Symposium, 2015.

[45] D. P. Palomar and M. Chiang. A tutorial on decom-
position methods for network utility maximization.

IEEE Journal on Selected Areas in Communications,
24(8):1439-1451, 2006.

[46] J. Poon and T. Dryja. The Bitcoin Lightning Network:
Scalable Off-chain Instant Payments. draft version 0.5,
9:14,2016.

[47] P.Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and
O. Osuntokun. Flare: An approach to routing in lightning
network. 2016.

[48] H.Racke. Minimizing congestion in general networks.
In The 43rd Annual IEEE Symposium on Foundations
of Computer Science, 2002. Proceedings., pages 43-52.
IEEE, 2002.

[49] S.Roos, M. Beck, and T. Strufe. Anonymous addresses
for efficient and resilient routing in f2f overlays. In
Computer Communications, IEEE INFOCOM 2016-The

35th Annual IEEE International Conference on, pages
1-9. IEEE, 2016.

[50] S.Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg.
Settling Payments Fast and Private: Efficient Decen-
tralized Routing for Path-Based Transactions. arXiv
preprint arXiv:1709.05748, 2017.

[51] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh,
G. Fanti, and P. Viswanath. Routing cryptocurrency
with the spider network. In Proceedings of the 17th
ACM Workshop on Hot Topics in Networks, pages 29-35.
ACM, 2018.

[52] R. Srikant. The mathematics of Internet congestion
control. Springer Science & Business Media, 2012.

[53] C.-H. Tai, J. Zhu, and N. Dukkipati. Making large scale
deployment of rcp practical for real networks. In IEEE
INFOCOM 2008-The 27th Conference on Computer
Communications, pages 2180-2188. IEEE, 2008.

[54] S. Thomas and E. Schwartz. A protocol for interledger
payments. URL https.//interledger. org/interledger. pdyf,
2015.

[55] P.F. Tsuchiya. The landmark hierarchy: a new hierarchy
for routing in very large networks. In ACM SIGCOMM
Computer Communication Review, volume 18, pages
35-42. ACM, 1988.

[56] Visa. Visa acceptance for retailers. https:
//usa.visa.com/run-your-business/small-
business-tools/retail.html.

[57] P. Wang, H. Xu, X. Jin, and T. Wang. Flash: efficient
dynamic routing for offchain networks. arXiv preprint
arXiv:1902.05260, 2019.

[58] D. Wischik, M. Handley, and M. B. Braun. The
resource pooling principle. ACM SIGCOMM Computer
Communication Review, 38(5):47-52,2008.

[59] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley.
Design, Implementation and Evaluation of Congestion
Control for Multipath TCP. In NSDI, volume 11, pages
8-8,2011.

[60] J. Y. Yen. Finding the k shortest loopless paths in a
network. management Science, 17(11):712-716, 1971.

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 791

@/@1@61@1@ ® B

(a) Payment graph (b) Circulation (c) DAG
Figure 18: Example payment graph (denoted by blue lines) for a
five node network (left). It decomposes into a maximum circulation

and DAG components as shown in (b) and (c).

Appendices
A Circulations and Throughput Bounds

For a network G(V, E) with set of routers V, we define a
payment graph H(V,Ep) as a graph that specifies the payment
demands between different users. The weight of any edge (i, /)
in the payment graph is the average rate at which user i seeks
to transfer funds to user j. A circulation graph C(V,Ec) of a
payment graph is any subgraph of the payment graph in which
the weight of an edge (i,) is at most the weight of (i,) in the
payment graph, and moreover the total weight of incoming
edges is equal to the total weight of outgoing edges for each
node. Of particular interest are maximum circulation graphs
which are circulation graphs that have the highest total demand
(i.e., sum of edge weights), among all possible circulation
graphs. A maximum circulation graph is not necessarily
unique for a given payment graph.

Proposition 1. Consider a payment graph H with a maximum
circulation graph C*. Let v(C*) denote the total demand in C*.
Then, on a network in which each payment channel has at least
V(C*) units of escrowed funds, there exists a balanced routing
scheme that can achieve a total throughput of v(C*). However,
no balanced routing scheme can achieve a throughput greater
than v(C*) on any network.

Proof. Let we+(i, j) denote the payment demand from any
user i to user j in the maximum circulation graph C*. To see
that a throughput of v(C*) is achievable, consider routing the
circulation demand along the shortest paths of any spanning
tree T of the payment network G. In this routing, for any pair of
nodes i, j €V there exists a unique path fromito jin 7 through
which we+ (i, j) amount of flow is routed. We claim that such
a routing scheme is perfectly balanced on all the links. This
is because for any partition S,V\S of C*, the net flow going
from S to V\S is equal to the net flow going from V\S to S in
C*. Since the flows along an edge e of T correspond precisely
to the net flows across the partitions obtained by removing e in
T , it follows that the flows on e are balanced as well. Also, for
any flow (7,) in the demand graph C*, the shortest path route
fromito jin T can cross an edge e at most once. Therefore
the total amount of flow going through an edge is at most the
total amount of flow in C*, which is v(C*).

Next, to see that no balanced routing scheme can achieve
a throughput greater than v(C*), assume the contrary and

quv
3 ATTIT=— ™

y'!.li) y'l)'!.l
® m=m

Figure 19: Model of queues at a payment channel between nodes
u and v. x,, and y,, denote the rates at which transaction-units for
v arrive into and get serviced at the queue at u respectively. ¢, is the
capacity of the payment channel and ¢, denotes the total number
of transaction-units waiting in u’s queue to be serviced.

suppose there exists a balanced routing scheme SCH with a
throughput greater than v(C*). Let Hscy C H be a payment
graph where the edges represent the portion of demand that
is actually routed in SCH. Since V(Hscy) > V(C*), Hscy is not
a circulation and there exists a partition S,V \S such that the
net flow from S to V'\ S is strictly greater than the net flow from
V\Sto S in Hscy. However, the net flows routed by SCH across
the same partition S,V\S in G are balanced (by assumption)
resulting in a contradiction. Thus we conclude there does
not exist any balanced routing scheme that can achieve a
throughput greater than v(C*). O

B Optimality of Spider
B.1 Fluid Model

In this section we describe a fluid model approximation of the
system dynamics under Spider’s protocol. Following a similar
notation as in §5, for a path p we let x,(7) denote the rate of
flow on it at time ¢. For a channel (u,v) and time ¢, let g, (¢)
be the size of the queue at router u, f; ,(¢) be the fraction of
incoming packets that are marked at u, x,,(¢) be the total
rate of incoming flow at u, and y, ,(¢) be the rate at which
transactions are serviced (i.e., forwarded to router v) at u. All
variables are real-valued. We approximate Spider’s dynamics
via the following system of equations

"
ip(f) = fo’(’)x(t) Y fun)| vper
P'EP, jp P (uv)ep (1)

(8)

Guy (1) = [xun(2) —yu.v(t)];y([) V(u,v) €E 9

fu.,v (t) = [qu(t) *‘Ithresh}ﬁ‘,(,) V(uv)€E, (10)

where y,, (1) =y, (t) =

S if Gu(t) >0 & guu(t) >0
min{ 5% x,. (1)} if gy (1) >0& qyu(t)=0
min{ 5% x,., (1)} if Guy(t) =0 & qyu(t) >0
min{ 32 X () Xvu (1)} 1f Guy (1) =0 & (1) =0

(11)

for each (u,v) € E. Let i, and j, denote the source and

destination nodes for path p respectively. Then, %, ; denotes

792 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

the set of all paths i), uses to route to j,. Equation (8) models
how the rate on a path p increases upon receiving successful
acknowledgements or decreases if the packets are marked,
per Equations (6) and (7) in §6.3. If the fraction of packets
marked at each router is small, then the aggregate fraction of
packets that return marked on a path p can be approximated
by the sum Z(u_y)e » fuv [52]. Hence the rate which marked
packets arrive for a path p is Y., ,)cp fuvXp. Similarly, the
rate which successful acknowledgements are received on a
path p is x,(1 — Y (4)ep fuv), Which can be approximated
as simply x,, if the marking fractions are small. Since Spider
increases the window by 1/(Y,¢ 2,.,W) for each successful
acknowledgement received, the average rate at which x,
increases is x,/ (¥, en, ., X). Lastly, the rate x, cannot
become negative; so if x, = 0 we disallow X, from being
negative. The notation (x); means xif y>0and 0if y=0.
Equations (9) and (10) model how the queue sizes and
fraction of packets marked, respectively, evolve at the routers.
For a router u in payment channel (u,v), by definition y,,,
is the rate at which transactions are serviced from the queue
qu,v» While transactions arrive at the queue at a rate of x,,
(Figure 19). Hence the net rate at which g,, ,, grows is given by
the difference x,, , —y, . The fraction of packets marked at a
queue grows if the queue size is larger than a threshold gyesh,
and drops otherwise, as in Equation (10). This approximates
the marking model of Spider (§6.2) in which packets are
marked at a router if their queuing delay exceeds a threshold.
To understand how the service rate y,, evolves (Equa-
tion (11)), we first make the approximation that the rate at
which transactions are serviced from the queue at a router u is
equal to the rate at which tokens are replenished at the router,
i.e., yuy=yvu forall (u,v) € E. The precise value fory, ,, at any
time, depends on both the arrival rates and current occupancy of
the queues atrouters u and v. If both ¢, ,, and ¢,,, are non-empty,
then there are no surplus of tokens available within the chan-
nel. A token when forwarded by a router is unavailable for A
time units, until its acknowledgement is received. Therefore the
maximum rate at which tokens on the channel can be forwarded
is CILV/A’ implying yy v +Yvu = Cu,y OF Yup = Yyu = CuA,v/(ZA) in
this case. If g, , is non-empty and g, is empty, then there are
no surplus tokens available at u’s end. Router v however may
have tokens available, and service transactions at the same rate
at which they are arriving, i.e., y,, =x,,. This implies tokens
become available at router u at arate of x,,, and hence y,, , = x,, ..
However, if the transaction arrival rate x,,, is too large at v, it
cannot service them at a rate more than ¢, /(2A) and a queue
would start building up at g, ,. The case where ¢, , is empty
and g, , is non-empty follows by interchanging the variables u
and v in the description above. Lastly, if both ¢, , and g,,, are
empty, then the service rate y, ,, can at most be equal to the ar-
rival rate x,,,. Similarly y,,, can be at most x,, .. Since y, , = y,.,
by our approximation, we get the expression in Equation (11).
We have not explicitly modeled delays, and have made
simplifying approximations in the fluid model above. Nev-

end-host router

payment channel

() () e

Figure 20: Example of a parallel network topology with bidirectional
flows on each payment channel.

ertheless this model is useful for gaining intuition about the
first-order behavior of the Spider protocol. In the following
section, we use this model to show that Spider finds optimal
rate allocations for a parallel network topology.

B.2 Proof of Optimality

Consider a PCN comprising of two sets of end-hosts
{ei,...,em} and {€],..., €}, } that are connected via k parallel
payment channels (r{,7}),..., (rx,7}) as shown in Figure 20.
The end-hosts from each set have demands to end-hosts on
the other set. The end-hosts within a set, however, do not have
any demands between them. Let the paths for different source-
destination pairs be such that for each path p, if p contains
a directed edge (r;,r}) for some i then there exists another
path (for a different source-destination pair) that contains the
edge (r},r;). We will show that running Spider on this network
results in rate allocations that are an optimal solution to the op-
timization problem in Equations (1)—(5). Under a fluid model
for Spider as discussed in §B.1, assuming convergence, we
observe that in the steady-state the time derivatives of the rate
of flow of each path (Equation (8)) must be non-positive, i.e.,

1 Sy g {zo if x5 >0
* u,v : *
Zp/ei)ip,./p xp’ (u,v)ep <0 lfo =0

VpeP, (12)

where the superscript * denotes values at convergence (e.g.,
x, is the rate of flow on path p at convergence). Similarly, the
rate of growth of the queues must be non-positive, or

% {:y;,v ifq;,v>0

Xy V(u,v)€E. (13)

Vuy ifq,=0

Now, consider the optimization problem in Equations (1)—(5)
for this parallel network. For simplicity we will assume
the sender-receiver demands are not constrained. From
Equation (13) above, the transaction arrival rates xj, , and
x%, for a channel (u,v) satisfy the capacity constraints in
Equation (3). This is because x;, , <y, , from Equation (13)
and y, ,(r) is at most CZ“—'AV from Equation (11). Similarly the

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation 793

transaction arrival rates also satisfy the balance constraints
in Equation (4). To see this, we first note the that the queues
on all payment channels through which a path (corresponding
to a sender-receiver pair) passes must be non-empty. For
otherwise, if a queue g, ,, is empty then the fraction of marked
packets on a path p through (u,v) goes to 0, and the rate of
flow x}, would increase as per Equation (8). Therefore we have
X, =5, (from Equation (13)) for every channel. Combining
this with Yu(t) =y (t) (Equation (11)), we conclude that the
arrival rates are balanced on all channels. Thus the equilibrium
rates {x),: p € P} resulting from Spider are in the feasible set
for the routing optimization problem.

Next, let A, > 0 and u,, € R be the dual variables
corresponding to the capacity and balance constraints,
respectively, for a channel (u, v). Consider the following
mapping from f;;, to Auy and

My = (fupth) /2 V(uy) €E (14)
My fun/2 V(uv)€E, 5)

where the superscript * on the dual variables indicate that they
have been derived from the equilibrium states of the Spider
protocol. Since f,, ,(¢) is always non-negative (Equation (10)),
we see that A;; , >0 for all (u,v). Therefore {A;, ,: (u,v) EE}
and {u; , : (u,v) € E} are in the feasible set of the dual of the
routing optimization problem.

Next, we have argued previously that the queues on all pay-
ment channels through which a path (corresponding to a sender-
received pair) passes must be non-empty. While we used this
observation to show that the channel rates x;, ,, are balanced, it
also implies that the rates are at capacity, i.e., x;, , =cy/(24),
or x; ,+x} , = cu,y/Afor all (u,v). This directly follows from
Equation (13) and the first sub-case in Equation (11). It follows
that the primal variables {x}, : p € P} and the dual variables
{A,(u,v) €EY {u; 2 (u,v) € E} satisfy the complementary
slackness conditions of the optimization problem.

Last, the optimality condition for the primal variables on
the Lagrangian defined with dual variables {A; ,: (u,v) €E}
and {y, ,: (u,v) € E} stipulates that

1 =0 ifx,>0
Lyen,;, (u%:ep LT T <0 ifx, =0
(16)

for all p € P. However, note that for any path p

Y (it = Y, Lol Ju
v 2 2 2
(uv)ep (uv)€p
=Y fin (17)

(uy)ep

where the first equation above follows from our mapping
for A* and 4, in Equations (14), (15). Combining this

u,v

with Equation (12), we see that x;, «— x), forall p € P is

Celer = Spider
100 //v_,-a——*—“
75

50

100

75////-"

50

25

N
a1

Success Ratio (%)
Norm. Throughput (%)

0 0

200 400 800 1600 3200 6400 200 400 800 1600 3200 6400
Mean Channel Size (€) Mean Channel Size (€)

Figure 21: Spider’s performance relative to Celer on a 10 node scale
free topology. Spider achieves a 2x improvement in success ratio
even at Celer’s peak performance. Celer’s performance dips after a
peak since it maintains larger queues at higher capacities, eventually
causing timeouts.

a valid solution to the Equation (16). Hence we conclude
that {x), : p € P} and {A;,, : (u,v) € E}, {n, : (u,v) EE}
are optimal primal and dual variables, respectively, for the
optimization problem. The equilibrium rates found by Spider
for the parallel network topology are optimal.

C Additional Results

C.1 Comparison with Celer

We run five circulation traffic matrices for 610s on a scale free
topology with 10 nodes and 25 edges to compare Spider to
Celer [11], a back-pressure based routing scheme. Each node
sends 30 txns/s and we vary the mean channel size from 200€
to 6400 €. We measure the average success ratio and success
volume for transactions in the 400-600s interval and observe
that Spider outperforms Celer at all channel sizes. Celer splits
transactions into transaction-units at the source but does not
source-route individual transaction-units. Instead, transaction-
units for a destination are queued at individual routers and
forwarded on the link with the maximum queue and imbalance
gradient for that destination. This approach tries to maximize
transaction-units in queues to improve network utilization.
However, queued-up and in-flight units in PCNs hold up tokens
in other parts of the network while they are in-flight waiting
for acknowledgements, reducing its capacity. Celer transac-
tions also use long paths, sometimes upto 18 edges in this
network with 25 edges. Consequently, tokens in Celer spend
few seconds in-flight in contrast to the hundreds of millisec-
onds with Spider. The time tokens spent in-flight also increases
with channel size since Celer tries to maintain larger queues.
Celer’s performance dips once the in-flight time has increased
to the point where transactions start timing out before they can
be completed. Due to computational constraints associated
with large queues, we do not run Celer on larger topologies.

C.2 Circulations on Synthetic Topologies

We run five circulation traffic matrices for 1010s on our three
topologies with all channels having exactly the tokens denoted
by the channel size. Fig. 22 shows that across all topologies,

794 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

> Shortest Path # Landmark Routing #® Waterfilling

Small World
8\0, 100
.g 75
©
X 5o
1%}
0
8 25
S
N 0
100 200 400 800 1600 3200 100 200

Scale Free

400

LND @ Spider

Lightning Network

800 1600 3200 400 800 1600 3200 6400 12800

Mean Channel Size (€)

Figure 22: Performance of different algorithms on different topologies with equal channel sizes with different per sender transaction arrival
rates. Spider consistently outperforms all other schems achieving near 100% average success ratio. Error-bars denote the maximum and minimum

success ratio across five runs. Note the log scale of the x-axes.

» Shortest Path = Landmark Routing = Waterfilling
Scale Free

0 ! ! $

Small World

Success Ratio (%)

[o QU)
S N~

LND - Spider
Lightning Network

%)
'\,

S
&
&

3930

Transaction Slze (€)

Figure 23: Breakdown of performance of different schemes by size of transactions completed. Each point reports the success ratio for
transactions whose size belongs to the interval denoted by the shaded region. Each interval corresponds roughly to 12.5% of the CDF denoted
in Fig. 7a. The graphs correspond to the (right) midpoints of the corresponding Lightning sampled channel sizes in Fig. 9.

— Shortest Path — Landmark Routing — Waterfilling LND — Spider - Demand

Small World

Scale Free Lightning Network

A/

0.25 4.00 64.00
Throughput of a flow (€/5)

1.00

0.75

0 0.50

0.25

0.00

4.00 64.00

Figure 24: CDF of normalized throughput achieved by different flows
under different schemes across topologies. Spider achieves close to
100% throughput given its proximity to the black demand line. Spider
is more vertical line than LND because it is fairer: it doesn’t hurt the
throughput of smaller flows to attain good overall throughput.

Spider outperforms the state-of-the-art schemes on success
ratio. Spider is able to successfully route more than 95% of
the transactions with less than 25% of the capacity required by
LND. Further Fig. 23 shows that Spider completes nearly 50%
more of the largest 12.5% of the transactions attempted in the
PCN across all three topologies. Even the waterfilling heuristic
outperforms LND by 15-20% depending on the topology.

C.3 Fairness of Schemes

In §7.3, we show that Spider outperforms state-of-the art
schemes on the success ratio achieved for a given channel
capacity. Here, we break down the success volume by flows
(sender-receiver pairs) to understand the fairness of the scheme
to different pairs of nodes transacting on the PCN. Fig. 24
shows a CDF of the absolute throughput in €/s achieved by
different protocols on a single circulation demand matrix when
each sender sends an average of 30 tx/s. The mean channel
sizes for the synthetic topologies and the real topologies with
LCSD channel sizes are 4000€ and 16880< respectively. We
run each protocol for 1010s and measure the success volume
for transactions arriving between 800-1000s. We make two
observations: (a) Spider achieves close to 100% throughput
in all three scenarios, (b)Spider is fairer to small flows (most
vertical line) and doesn’t hurt the smallest flows just to benefit
on throughput. This is not as true for LND.

C.4 DAG Workload on Synthetic Topologies

Fig. 25 shows the effect of adding a DAG component to
the transaction demand matrix on the synthetic small world
and scale free topologies. We observe the success ratio and

USENIX Association

17th USENIX Symposium on Networked Systems Design and Implementation

795

> Shortest Path # Landmark Routing #® Waterfilling LND e Spider # Circulation

Small World Scale Free
100
S
o 75 i
= \
L 50
17}
1}
2 m
8 %
=3
(%2}
0
0 10 20 30 40 0 10 20 30 40

Norm. Throughput (%)

0 10 20 30 40 0 10 20 30 40
DAG Amount (%)

Figure 25: Performance of different algorithms across all topologies
as the DAG component in the transaction demand matrix is varied. As
the DAG amount is increased, the normalized throughput achieved

is further away from the expected optimal circulation throughput.

The gap is more pronounced on the real topology.

»* Shortest Path # Landmark Routing = Waterfilling LND e Spider
Small World Scale Free
100
S
o 75
I
X 50 z
)
0
Q
8 25
>
(%2}
0
1 100 10000 1 100 10000
100
<
s
5 75
Q.
<
=]
3 50
2
c
|_
I ®
£
<]
P
0
1 100 10000 1 100 10000

Rebalancing Interval (€)

Figure 26: Performance of different algorithms across all topologies
as the DAG component in the transaction demand matrix is varied. As
the DAG amount is increased, the normalized throughput achieved

is further away from the expected optimal circulation throughput.

The gap is more pronounced on the real topology.

normalized throughput of different schemes with five different
traffic matrices with 30 transactions per second per sender

under 5%, 20%, 40% DAG components respectively. No
scheme is able to achieve the maximum throughput. However,
the achieved throughput is closer to the maximum when there
is a smaller component of DAG in the demand matrix. This
suggests again that the DAG affect PCN balances in a way
that also prevents the circulation from going through. We
investigate what could have caused this and how pro-active
on-chain rebalancing could alleviate thisin §7.4.

Fig. 26 shows the success ratio and normalized throughput
achieved by different schemes when rebalancing is enabled
for the 20% DAG traffic demand from Fig. 25. Spider is
able to achieve over 95% success ratio and 90% normalized
throughput even when its routers balance only every 10,000 €
while LND is never able to sustain more than 75% success ratio
even when rebalancing for every 10€ routed. This implies that
Spider makes PCNs more economically viable for both routers
locking up funds in payment channels and end-users routing
via them since they need far fewer on-chain rebalancing events
to sustain high throughput and earn routing fees.

796 17th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

	Introduction
	Background
	Challenges in Payment Channel Networks
	Packet-Switched PCN
	Modeling Routing
	Implications for Throughput

	Design
	Intuition
	Spider Router Design
	Spider Transport Layer at End-Hosts
	Optimality of Spider

	Evaluation
	Experimental Setup
	Prototype Implementation
	Circulation Payment Graph Performance
	Effect of DAGs
	Spider's Design Choices
	Additional Results

	Related Work
	Conclusion
	Circulations and Throughput Bounds
	Optimality of Spider
	Fluid Model
	Proof of Optimality

	Additional Results
	Comparison with Celer
	Circulations on Synthetic Topologies
	Fairness of Schemes
	DAG Workload on Synthetic Topologies

