
a
rX

iv
:2

1
0
2
.1

2
0
6
6
v
1
  
[m

a
th

.S
T

] 
 2

4
 F

e
b
 2

0
2
1

On the Minimal Error of Empirical Risk Minimization

Gil Kur

MIT

Alexander Rakhlin

MIT

Abstract

We study the minimal error of the Empirical Risk Minimization (ERM) procedure in the task of
regression, both in the random and the fixed design settings. Our sharp lower bounds shed light on
the possibility (or impossibility) of adapting to simplicity of the model generating the data. In the
fixed design setting, we show that the error is governed by the global complexity of the entire class. In
contrast, in random design, ERM may only adapt to simpler models if the local neighborhoods around
the regression function are nearly as complex as the class itself, a somewhat counter-intuitive conclusion.
We provide sharp lower bounds for performance of ERM for both Donsker and non-Donsker classes. We
also discuss our results through the lens of recent studies on interpolation in overparameterized models.

1 Introduction

An increasing number of machine learning applications employ flexible overparameterized models to fit the
training data. Theoretical analysis of such ‘overfitted’ solutions has been a recent focus of the learning com-
munity. It is conjectured that the use of large overparameterized neural networks makes the loss landscape
amenable to optimization through local search methods, such as stochastic gradient descent. It is also hy-
pothesized that implicit regularization, arising from the choice of the optimization algorithm and the neural
network architecture, mitigates the large complexity and ensures that the ‘overfitted’ solutions generalize.

Suppose a ‘simple’ class H of models captures the relationship between the covariates X and the response
variable Y . Inspired by the use of overparameterized models, we may take a much larger class F ⊃ H for
computational or other purposes (such as lack of explicit description of H) and minimize training loss over
this larger class. It is natural to ask whether the learning procedure can adapt to the fact that data comes
from a simple model f0 ∈ H, in the sense that the prediction error depends on the statistical complexity of
H rather than F . We do have positive examples of this type: the least squares solution (that is, empirical
risk minimization with respect to square loss) over the class of all convex functions F on a convex compact
subset of Rd (with d ≤ 4) automatically enjoys the faster “parametric” rate Õ(k/n) of convergence to the
true regression function f0 ∈ H if f0 is a piece-wise linear convex function with k pieces. This rate should
be contrasted with the slow non-parametric rate Θ(n−4/(d+4)) when the true regression function is ‘complex’
and cannot be approximated well by a piece-wise linear convex function.

How generic is this phenomenon of automatic adaptivity of empirical minimizers to simplicity of the true
model? An affirmative answer would lend credibility to the practice of taking large models, whereas a
negative answer would necessitate the study of conditions that can make such adaptivity possible.

This paper studies the fundamental limits of adaptivitiy of empirical risk minimization (ERM) in the setting
of nonparametric regression (or, prediction with square loss and a well-specified model), in both random
and fixed design. In contrast with the standard minimax approach to lower bounds, which may hide the
true performance of ERM on simple models, we focus on lower bounds that hold for any (rather than
the worst-case) regression function in a given class. In the fixed design setting, we show that—informally
speaking—for rich classes F , dependence on the global statistical complexity of the class is unavoidable, as
it controls the error of ERM for any true regression function f0, no matter how ‘simple’ it is. In contrast, in
the random design case, the situation is more subtle. Somewhat counter-intuitively, we show that for rich
classes F , adaptation to the simplicity of f0 may only be possible if the local neighborhood of f0 in F is
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nearly as rich as the class F . This finding can be viewed through the lens of recent results on interpolation
(Belkin et al., 2019, 2018; Bartlett et al., 2020; Liang et al., 2020b). In these papers, the solutions can be
seen as ‘simple-plus-spiky’ (Wyner et al., 2017) with spikes responsible for fitting the training data without
affecting the error with respect to the population. Since in these models there are enough degrees of freedom
to fit any noisy data, the effective function classes have rich local neighborhoods. In such cases, it is still
possible that ‘overfitting’ to the training data does not result it large out-of-sample error. Conversely, we
show that—again, informally speaking—if f0 is embedded in a local neighborhood in F with low complexity,
the empirical minimizer will necessarily be attracted to a solution far away from f0 with respect to the
out-of-sample loss. This finding initially appeared counter-intuitive to the authors.

2 Formal Model

We now present the formal model. Let F be a convex class of real-valued functions on some domain X . We
aim to recover f0 ∈ F based on n samples Yi = f0(Xi) + ξi, i = 1, . . . , n, under the assumption f0 ∈ F
and ξ1, . . . , ξn

i.i.d.∼ N(0, 1). In the random design setting, X1, . . . , Xn
i.i.d.∼ P, where P is some unknown

distribution on X , while in the fixed design setting X1, . . . , Xn are some fixed points in X .

The Least Squares Estimator, or ERM with respect to square loss, is defined as

f̂n = Ψ

(
argmin
f∈F

n∑

i=1

(Yi − f(Xi))
2

)
, (1)

where Ψ is a function that selects a particular solution in the set of possible minimizers (for example, a
minimal norm solution).

One of the most important questions regarding ERM is its statistical performance as compared to other
estimators, defined as maps from {(Xi, Yi)}ni=1 to F (or to RX for improper methods). While there are
multiple ways of measuring the statistical performance, perhaps the most popular is the minimax risk
(Tsybakov, 2003), defined in the random design case for any estimator f̄n as

R(f̄n,F ,P) := sup
f0∈F

Ex,ξ

∫
(f̄n((X1, Y1), . . . , (Xn, Yn))− f0)

2dP,

where Ex,ξ denotes expectation over the training data and the integral represents the expected out-of-sample
performance with respect to P. One can also write this measure of performance as excess square loss

sup
f0∈F

Ex,ξE(X,Y )(f̄n(X)− Y )2 − E(X,Y )(f0(X)− Y )2.

We say that the ERM f̂n is minimax optimal, if for for all n ≥ 0,

R(f̂n,F ,P) . inf
f̄n

R(f̄n,F ,P),

where . denotes less or equal up to a constant that only depends on P,F . The quantity inf f̄n R(f̄n,F ,P)
is known as the minimax rate for (F ,P). In the fixed design setting, the risk measure is defined in an
analogous way, except that instead of drawing n i.i.d. points from P, we consider a sequence of measures
that are supported uniformly on n points.

Clearly, the definitions of the risk and the minimax optimality measure “the worst case scenario" of a given
estimator, and may hide the true statistical performance of the ERM in real-life applications (cf. (Bellec,
2017)). For example, as mentioned in the introduction, if f0 is known to belong to a smaller class H, the
relevant quantity is

RH(f̂n,F ,P) := sup
f0∈H

E

∫
(f̂n − f0)

2dP,
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which may be significantly smaller than the minimax risk. We remark that the ERM f̂n is still defined over
F , due to computational or other considerations. As an example, consider linear regression in Rd when
the true coefficient vector is sparse, i.e. supported on k ≪ d coordinates. Then, due to computational
considerations, it is standard to replace the original problem of minimizing square loss over sparse vectors
in Rd by minimization over a larger ℓ1 ball in Rd (the Lasso procedure).

The second example was already briefly mentioned in the introduction, and we expand on it here. Let Fd be
the family of convex 1-Lipschitz functions on X = [0, 1]d, and let P = Unif(X ). The subset Hd (of ‘simple
functions’) is the set of 1-Lipschitz k-affine piece-wise linear functions with k = Θ(1). It is well known that
ERM over Hd is NP-hard since the problem is highly non-convex; moreover, even estimating the number
of pieces is computationally hard (cf. the recent paper Ghosh et al. (2019) for more details). In contrast,
ERM over Fd can be efficiently computed (Ghosh et al., 2019). While the minimax rate for (Fd,Pd) is
Θ(n−4/(d+4)) (Dudley, 1999; Bronshtein, 1976), it was proved recently in (Kur et al., 2020b) that the risk of
ERM is Θ̃d(max{n−2/d, n−4/(d+4)}), which is minimax-suboptimal when d ≥ 5. Furthermore, it was shown
in (Han and Wellner, 2016; Feng et al., 2018) that

RHd
(f̂n,Fd,Pd) . Õ(max{n−4/d, n−1}), (2)

which is significantly smaller than both the risk of ERM and the minimax rate. When the ERM (or MLE)
satisfies such improved bounds, we say that it exhibits adaptation (cf. (Feng et al., 2018; Kim et al., 2018;
Samworth, 2018; Han et al., 2019; Kur et al., 2020b)).

In this paper we answer the two following questions: Does there exist a uniform lower bound on the minimal
error

inf
f0∈F

Ex,ξ

∫
(f̂n − f0)

2dQ

of ERM f̂n, where Q is either fixed or random design measure? Does the richness of the entire class F affect
the minimal error, or is there a more refined notion of complexity that governs its behavior?

3 Main Results

We start with definitions. For n points xn := {x1, . . . , xn} in X and G ⊆ F , we define the Gaussian averages
of G as

Ŵ(G) := Eξ sup
f∈G

1

n

n∑

i=1

ξif(xi), W(G) := EŴ(G).

For a measure Q on X and f : X → R we denote by ‖f‖Q the L2(Q) norm of f . Finally, for any Q, f ∈ F ,
and r ≥ 0 we denote by BQ(f, r) := {g ∈ F : ‖g− f‖Q ≤ r}, the intersection of the L2(Q) ball around f and
the class F .

3.1 Fixed Design

We now state our sharp lower bound for the fixed design error, for simplicity of exposition under the
assumption of uniform boundedness of F (the general statement is given below in Lemma 3.1).

Corollary 3.1. Let Pn be the empirical measure on some n points in X , and assume F ⊆ [−1, 1]X is convex.
Then the minimal error of ERM over F satisfies

inf
f0∈F

Eξ

∫
(f̂n − f0)

2dPn ≥ 64−1(Ŵ(F)− Cn−1)2,

where C is some positive absolute constant.
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When F is uniformly bounded (say, by 1), a classical result in non-parametric statistics (van de Geer, 2000)
and our theorem imply that

64−1(Ŵ(F)− Cn−1)2 ≤ inf
f0∈F

Eξ

∫
(f̂n − f0)

2dPn ≤ sup
f0∈F

Eξ

∫
(f̂n − f0)

2dPn

︸ ︷︷ ︸
=R(f̂n,F ,Pn)

≤ 2Ŵ(F).

Moreover, both of these bounds are tight, in the sense that they can be attained on certain families of
functions, up to constants (cf. Birgé et al. (1998); Han et al. (2019)). Therefore, we conclude that in the
fixed design case, both the minimax risk and the minimal error of the ERM depend on the entire Gaussian
complexity of F (when it is convex and uniformly bounded). In particular, for the case of convex regression,
Corollary 3.1 recovers the rate in (2) (up to logarithmic factors) for the fixed design case, since with high

probability the global complexity Ŵ(F) is of the order max{n−2/d, n−1/2}.

3.2 Random Design

We now turn to the random design setting, which is significantly more subtle. Before stating the result, we
describe a direct proof strategy that fails. This approach would attempt to pass from the fixed design lower
bound to the random design lower bound by relating the population and empirical norms ‖ · ‖P and ‖ · ‖Pn,
uniformly over the class. A statement of this type (which may be called “upper isometry,” in contrast with
“lower isometry” studied, for instance, in Mendelson (2014)) could be derived under additional assumptions
on the geometry of (F ,P), such as a small-ball condition (Mendelson, 2014), Kolchinskii-Pollard entropy
(Rakhlin et al., 2017), or an ǫ-covering with respect to the sup-norm van de Geer (2000). To the best of our
knowledge, such upper-isometry statements can at best read

‖f − g‖2P ≥ 1

2
‖f − g‖2Pn

− C · W(F)2 ∀f, g ∈ F ,

where C ≥ 1. Since W(F)2 is larger than the lower bound on the fixed design error, this technique does not
appear to work.

Moreover, a uniform lower bound of order W(F)2 in random design cannot be true in general. For in-
stance, it was shown in a string of recent works (Liang et al., 2020a; Belkin et al., 2019; Bartlett et al., 2020;
Tsigler and Bartlett, 2020) that it is possible to completely interpolate Y1, . . . , Yn (i.e. achieve zero empirical
error) and still have a small generalization error (of order n−c, for some c ∈ (0, 1)), and even be minimax
optimal (with an appropriate function Ψ in Eq. (1)) . In these examples, because of the ability to interpolate
any data, we know that W(Bn(f0, 1)) = Θ(1); therefore, the lower bound in the fixed design case cannot be
always true in random design.

The last paragraph motivates the need to consider additional properties of the model F and the underlying
distribution P. With the interpolation examples in mind, we might hope that the relation between the global
complexity of the class and complexity of local neighborhoods around the regression function f0 may play a
role in determining rates of convergence of ERM. To this end, for every n and f0 ∈ F , we define the following
notion of complexity:

tn,P(f0,F) := max{t ∈ R+ : W(BP(f0, t)) ≤ lξW(Bn(f0, 1))}, (3)

where lξ ∈ (0, 1) is a small absolute constant that will be chosen in the proofs. We remark that under the
additional assumption of F being uniformly bounded by 1, we have that W(Bn(f0, 1)) ≤ 1

2W(Bn(f0, 2)) =
1
2W(F), and thus we can replace the term on the right-hand side of (3) with global Gaussian averages W(F).

The quantity tn,P(f0,F) is the maximal radius of the population ball around f0 that has Gaussian complexity
comparable to that of the entire class (in the uniformly bounded case), up to some absolute constant, or
to a ball of constant radius within the class. As we show next, this local richness is necessary in order to
avoid the rate being dominated by the global complexity of F . In the aforementioned interpolation examples
we have both tn,P(f0,F) = O(n−c) and W(Bn(f0, 1)) = Θ(1). The last two relations must be true for any
f0 ∈ F for which ERM attains perfect fit to data, and yet a small generalization error of order n−c.
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We now state the main result of this paper for the random design setting, under the additional assumption
of F being uniformly bounded. Remarkably, tn,P(f0,F) is the only additional quantity that we need to
consider for a general uniform lower bound on a general family F . Specifically, we prove the following:

Theorem 3.1. Let F be a convex class of functions1 uniformly bounded by one. Then for large enough n,
the minimal error of ERM over F is lower bounded as

inf
f0∈F

Ex,ξ
∫
(f̂n − f0)

2dP

min{W(F)2, tn,P(f0,F)2} ≥ c,

where c ∈ (0, 1).

Remark 1. Notably, Theorem 3.1 holds under only convexity and uniform boundedness assumptions on the
class F . Furthermore, one can easily design a convex uniformly bounded family and an f0 ∈ F such that
the ERM attains an error of order tn,P(f0,F)2 ≪ W(F)2 for all n that are large enough (for completeness
see Section B.1). Therefore, under no additional assumption on F , the above lower bound is sharp up to
absolute constants.

An almost immediate corollary of this theorem is the following key insight on the behavior of the ERM
procedure in the random design setting:

Corollary 3.2. Let F be convex and uniformly bounded by 1. For any f0 ∈ F such that

Ex,ξ

∫
(f̂n − f0)

2dP

︸ ︷︷ ︸
:=E2(f0)

≪ W(F)2,

there must exists some constant t(f0) ≤ c1 · E(f0) such that

W(BP(f0, t(f0))) = Θ(W(F)),

where c1 ∈ (0, 1) is some absolute constant.

Informally speaking, if ERM learns some f0 ∈ F at a rate faster than W(F)2, then the local complexity of
a population ball centered at f0 with a very small radius must be as rich as the entire complexity of F . A
more prescriptive recipe for guaranteeing such fast rates is an interesting direction of further work.

3.3 Donsker and non-Donsker Classes

The lower bounds stated thus far assumed little about the geometry of the class F beyond convexity and
global and local Gaussian averages. Under additional assumptions on the behavior of entropy logN (ǫ,F ,P)
(defined as the logarithm of the smallest number of balls with respect to L2(P) of radius ǫ sufficient to cover
F) or entropy with bracketing logN[](ǫ,F ,P) (defined as the logarithm of the smallest number of brackets
li, ui ∈ F such that li ≤ ui, ‖li − ui‖P ≤ ǫ and F is contained in the union of the brackets), we can provide
specific upper bounds on the Gaussian averages via chaining and other techniques. In particular, we say that
a convex uniformly bounded F is P-Donsker if logN[](ǫ,F ,P) ∼ ǫ−α with α ∈ (0, 2) or if F is parametric
with logN[](ǫ,F ,P) ∼ v log(1/ǫ) for some ‘dimension’ v. In seminal works of (Birgé and Massart, 1993) it
was shown that for any P-Donsker class, the ERM is minimax optimal, i.e.

R(f̂n,F ,P) ∼ inf
f̄n

R(f̄n,F ,P) ∼ n− 2
2+α .

Note that for α ∈ (0, 2) we have that W(F) ∼ n−1/2.

The next result shows that without further assumptions we cannot learn any function in a convex uniformly
bounded P-Donsker class faster than a parametric rate.

1We assume that F is non-degenerate and contains at least two functions such that ‖f1 − f2‖P ≥ 1/2.

5



Corollary 3.3. Let F be a convex uniformly bounded P-Donsker class, and let X1, . . . , Xn ∼ P. Then

n−1 . inf
f0∈F

E

∫
(f̂n − f0)

2dPn ∼ inf
f0∈F

E

∫
(f̂n − f0)

2dP

This lower bound is sharp, namely there are classical P-Donsker classes, such as the convex regression example
mentioned in the introduction and Section 2, where ERM can attain a parametric rate (up to logarithmic
factors) when optimizing over all convex Lipschitz functions, but only for d ≤ 4 which puts us in the Donsker
regime.

For non-Donsker classes, i.e when α > 2, the ERM procedure may not be optimal. One can show that

n− 2
2+α . R(f̂n,F ,P) . n− 1

α

and both of these bounds can be tight, up to logarithmic factors. Furthermore, one can show that

n− 2
2+α . W(F) . n− 1

α

and, again, both of these can be tight. Our next corollary shows that in this regime, the fixed-design error
is at least of the order W(F)2, i.e. it is impossible to learn at a parametric rate in the non-Donsker regime.

Corollary 3.4. Let F be a convex uniformly bounded non-P-Donsker class, and let X1, . . . , Xn ∼ P. Then
the following holds:

n− 4
2+α . W(F)2 . inf

f0∈F
E

∫
(f̂n − f0)

2dPn

The proof of these two corollaries appears in the appendix.

Remark 2. Due to the geometry of general non-Donsker classes, in random design case the same lower
bound may not hold. However, in all the examples in the literature (Han and Wellner, 2016; Feng et al.,
2018; Kim et al., 2018; Han et al., 2019; Kur et al., 2020b) that study the adaptivity of ERM in non-Donsker
families (such as convex functions when d ≥ 5, isotonic functions when d ≥ 3), the term of tn,P(f0,F) of
Theorem 3.1 is significantly larger than W(F). As a consequence, one may use Theorem 3.1 to show that
the bound in Eq. (2) is tight up to logarithmic factors.

3.4 General Lower Bound for Fixed Design

In this section, we state the general lower bound for fixed design. In comparison to its consequence, Corol-
lary 3.1, the version below captures complexity of local neighborhoods around regression functions that are
close to f0. Note that this lemma holds for any convex family (and not necessarily bounded).

Lemma 3.1. Let F be a convex family of functions and and let x1, . . . , xn ∈ X be some n points, and let
Pn := n−1

∑n
i=1 δxi . For all f0 ∈ F define

r(f0) := argmax
r≥0

Ŵ(Bn(f0, r)) −
r2

2
(4)

and

Lx(f0) := max
g∈Bn(f0,1),t≥0

Ŵ(Bn(g, t))− Ŵ(Bn(f0, r(f0))− Cn−1

‖g − f0‖Pn + t

where C ∈ (1,∞) is some absolute constant. Then the following lower bound holds:

Eξ

∫
(f̂n − f0)

2dPn ≥ max{ (Ŵ(Bn(f0, 1))− Cn−1)2

4
, Lx(f0)

2}.
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Note that Corollary 3.1 follows almost immediately from the last lemma. To see this, the convexity of F ,
and the uniform bounded by 1 assumption imply that

W(F) = Ŵ(Bn(f0, 2)) ≤ 2Ŵ(Bn(f0, 1)).

Remark 3. The second term in our lower bound may be significantly larger than Ŵ(F)2. For example, the

second term may be equal to Ŵ(F) in several non-Donsker families that appear in (Birgé and Massart, 1993;
Kur et al., 2020a; Birgé, 2006). We also remark that constant 1

4 is tight (up to on(1)).

The rest of this paper is devoted to proofs. While the fixed design lower bound follows a rather simple
argument, the corresponding lower bound in the random design case is more subtle. In particular, we
employ a particular version of Talagrand’s inequality that, in our particular regime, provides control on
certain empirical processes, while the more commonly used versions (including Bousquet’s inequality) result
in vacuous estimates.

4 Proof of Lemma 3.1

Notation Throughout this section, c, c1, c2 ∈ (0, 1) and C,C1, C2 ∈ (1,∞) are some absolute constants
that may change from to line to line. Also S1, s1, S2, s2 are absolute constants, but we use this notation to
emphasize that we have some freedom to control their size. We also use the notation C(c1, C2) to mean that
the constant depends on c1, C2.

To recap, we assume that F is a convex family of functions, Yi = f0(xi) + ξi, where ξi ∼ N(0, 1) i.i.d.,
x1, . . . , xn ∈ X , and f0 ∈ F . We write ‖f‖n = ‖f‖Pn and 〈f, g〉n =

∫
fgdPn. With slight abuse of notation,

we write 〈ξ, f〉n = 1
n

∑n
i=1 ξif(xi) for ξ := (ξ1, . . . , ξn). We also abbreviate Bn(f0, t) := BPn(f0, t) to be the

L2(Pn) ball with respect to empirical measure Pn.

Recall the definition of r(f0) in (4). The following lemma that was proven in (Chatterjee, 2014):

Lemma 4.1. [(Chatterjee, 2014, Thm 1.1)] The following holds under the above assumptions:

Pr
(
|‖f̂n − f0‖n − r(f0)| ≥ t

)
≤
{
3 exp(−nt2

64 ) t ≥ r(f0)

3 exp(− nt4

64r(f0)2
) 0 ≤ t ≤ r(f0)

(5)

Moreover, for each t ≥ 0 the following holds

Pr
(
|〈f̂n − f0, ξ〉n − Ŵ(Bn(f0, r(f0)))| ≥ t · r(f0)

)
≤
{
3 exp(−nt2

64 ) t ≥ r(f0)

3 exp(− nt4

64r(f0)2
) 0 ≤ t ≤ r(f0)

(6)

Also, we state a simple corollary that follows from this lemma (cf. (Boucheron et al., 2013),(Chatterjee, 2014,
Thm 1.2))

Corollary 4.1. The following two bounds hold

E

∣∣∣〈f̂n − f0, ξ〉n − Ŵ(Bn(f0, r(f0)))
∣∣∣ ≤ C1 max{r(f0)3/2n−1/4, n−1}.

and
E

∣∣∣‖f̂n − f0‖2n − r(f0)
2
∣∣∣ ≤ C2 max{r(f0)3/2n−1/4, n−1}.

Proof of Lemma 3.1. For brevity, denote r̂ := r(f0), where r(f0) is defined in Lemma 4.1. Define

gξ := argmax
h∈Bn(g,t)

〈h− g, ξ〉n.
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Optimality of f̂n and convexity of F imply that 〈∇f‖f −y‖2n|f=f̂n , g− f̂n〉n ≥ 0 for any g ∈ F . In particular,
for g = gξ this implies

0 ≥ E〈ξ + f0 − f̂n, gξ − f̂n〉n,
where the expectation is over ξ, conditionally on x1, . . . , xn. For any g ∈ F , we may write the right-hand
side as

E〈ξ + f0 − f̂n, gξ − g + g − f0 + f0 − f̂n〉n
= Ŵ(Bn(g, t))− E

[
〈ξ, f̂n − f0〉n + 〈f̂n − f0, gξ − g〉n + 〈f̂n − f0, g − f0〉n

]
+ E‖f̂n − f0‖2n

where we used the definition of gξ and the fact that E〈ξ, g − f0〉n = 0. Using Corollary 4.1, we obtain a
further lower bound of

Ŵ(Bn(g, t))− Ŵ(Bn(f0, r̂))− E

[
〈f̂n − f0, gξ − g〉n + 〈f̂n − f0, g − f0〉n

]

+ r̂2 − Cr̂3/2n−1/4 − Cn−1

≥ Ŵ(Bn(g, t))− Ŵ(Bn(f0, r̂))− E

[
〈f̂n − f0, gξ − g〉n + 〈f̂n − f0, g − f0〉n

]
(7)

+ r̂2/2− C1n
−1.

To verify the last inequality, observe that r̂2/2 ≥ C1r̂
3/2n−1/4 when r̂ ≥ C2n

−1/2 for C2 that is large enough;

on the other hand, if r̂ ≤ C2n
−1/2, the Cn−1 term is dominant for C large enough. Since 〈f̂n−f0, g−f0〉n ≤

‖f̂n − f0‖n‖g − f0‖n and 〈f̂n − f0, gξ − g〉n ≤ t · ‖f̂n − f0‖n, we conclude that

0 ≥ Ŵ(Bn(g, t))− Ŵ(Bn(f0, r̂))− E[‖f̂n − f0‖Pn ](‖g − f0‖Pn + t)− Cn−1. (8)

By re-arranging the terms and using Jensen’s inequality, we have

E‖f̂n − f0‖2n ≥
(
E‖f̂n − f0‖n

)2
≥
(
Ŵ(Bn(g, t))− Ŵ(Bn(f0, r̂))− Cn−1

t+ ‖f0 − g‖n

)2

+

where (a)2+ = max{a, 0}2. Since Lx(f0) in the statement of the Lemma is non-negative, the lower bound of
Lx(f0)

2 follows.

Now, for the first part of the lower bound, we have to consider two cases. The first one is when Ŵ(Bn(f0, r̂)) ≥
2−1Ŵ(Bn(f0, 1)) + r̂2/2, and we have

E‖f̂n − f0‖n ≥ E‖ξ‖n · E‖f̂n − f0‖n ≥ E〈ξ, f̂n − f0〉n
≥ 2−1Ŵ(Bn(f0, 1)) + r̂2/2− Cr̂3/2n−1/4 ≥ 2−1Ŵ(Bn(f0, 1))− C1n

−1,

where we used Cauchy-Schwartz inequality and Corollary 4.1. In the other case, we use Eq. (8) with g = f0
and t = 1:

E‖f̂n − f0‖n ≥ Ŵ(Bn(f0, 1))− Ŵ(Bn(f0, r̂))− Cn−1 ≥ 2−1Ŵ(Bn(f0, 1))− Cn−1,

concluding the proof.

5 Proof of Theorem 3.1

Throughout the proof of Theorem 3.1, Pn denotes the random empirical measure of X1, . . . , Xn. Denote by

r̂ := argmaxŴ(Bn(f0, r))− r2

2 , with the hat emphasizing the dependence on xn = (X1, . . . , Xn). We adopt
the notation ‖ · ‖n, 〈·, ·〉n, Bn in the previous section for the norm and the inner product with respect to Pn,
and the L2(Pn) ball. Recall that we assumed that F is not degenerate: W(F) ≥ c/

√
n, for some c ∈ (0, 1).2

2See the proof of Lemma A.3 for further details
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Proof of Theorem 3.1. Denote

t∗ := min{tn,P(f0,F), s1
√
W(F), s2W(F)} (9)

where s1, s2 ∈ (0, 1) are small enough absolute constants that will be defined in the proof, and tn,P(f0,F) is
defined in Eq. (3).

Denote by M the maximal separated set with respect to L2(P) at scale 6
√
W(F), and let

M = M(6
√
W(F),F ,P) (10)

denote its size.

For a constant K1 ∈ (1,∞), let E1 denote the high-probability event that is defined by the intersection of
the events of Lemma A.4 and Lemma A.2:

E1 :=

{
xn : sup

f,g∈F

∣∣‖f − g‖2n − ‖f − g‖2P
∣∣ ≤ 10W(F),

sup
h∈BP(f0,t∗),g∈M

|〈(g − f0), (h− f0)〉n − E[(g − f0)(h− f0)]| ≤ (8K1)
−1W(F)

}
.

(11)

Further, define the events

E2 =
{
xn : K−1

1 W(F) ≤ Ŵ(F) ≤ K1W(F) + Cn−1/2
}
,

E3 =
{
xn : Ŵ(BP(f0, t∗)) ≤ K1W(BP(f0, t∗)) + C1W(F)1/2n−1/2

}
,

E = E1 ∩ E2 ∩ E3.

(12)

Lemma A.3, proved in the appendix, shows that the event E holds with probability of at least 0.9. Note
that under the event E1, M is also a 2

√
W(F) separated set with respect to the random empirical measure

Pn. Hence, we may apply Sudakov’s minoration (Lemma A.5) with ǫ = 2
√
W(F) and empirical measure Pn

defined on any xn ∈ E :

c1

√
4W(F) · logM

n
≤ Ŵ(F) ≤ K1W(F) + Cn−1/2 ≤ C1K1W(F), (13)

where in the last inequality we used the assumption that W(F) ≥ c ·n−1/2, and C1 ≥ 0 is defined to be large
enough to satisfy the last inequality. Hence, the last equation implies that

M ≤ exp(C2K
2
1nW(F)). (14)

First, recall the definition of tn,P(f0,F) where in Lemma A.2 (that appears in the supplementary) we set
lξ = (256K1)

−3. Recall Eq. (9), where in Lemma A.2 we set s1 = c(K,K1, C2), and the three constants
K,K1, C2 follow from Sudakov’s minoration lemma, Talagrand’s inequality, and Adamzcak’s bound. We
define s2 := 16−1(K1)

−1.

Define the event

A =
{
(ξ,xn) : f̂n ∈ BP(f0, t∗)

}
(15)

and, for any xn, define the conditional event

A(xn) =
{
ξ : f̂n ∈ BP(f0, t∗)

}
. (16)

Assume by the way of contradiction that Prx,ξ(A) > 0.5. Then, using the average principle (Fubini) and the
fact Pr(E) ≥ 0.9, we can find an event E4 ⊆ E that has a probability of at least 0.4 (when n is large enough)
such that

∀xn ∈ E4 Pr
ξ
(A(xn)) ≥ 0.5.

9



Our first step is to prove that, for all xn ∈ E4,

K1W(BP(f0, t∗)) + lξW(F) ≥ Ŵ(Bn(f0, r̂)). (17)

First, recall that t∗ ≤ s1
√
W(F) and therefore under the event E1, we have

sup
h∈BP(f0,t∗)

‖h− f0‖2n ≤ 11 · W(F). (18)

Now, for each xn ∈ E4 ⊆ E , the map ξ 7→ suph∈BP(f0,t∗)〈ξ, h− f0〉n is Lipschitz with constant at most

sup
h∈BP(f0,t∗)

n−1/2‖h− f0‖n ≤ C3

√
W(F)n−1

by (18), and thus by Lipschitz concentration (Lemma A.8), conditionally on xn,

Pr
ξ

(
| sup
h∈BP(f0,t∗)

〈ξ, h− f0〉n − Ŵ(BP(f0, t∗))| ≥ ǫ

)
≤ 2 exp(−CnW(F)−1ǫ2)

for some absolute constant C. By setting ǫ = C5(n
−1W(F))1/2 in the last equation, we may define the event

A1(xn) =

{
ξ : | sup

h∈BP(f0,t∗)

〈ξ, h− f0〉n − Ŵ(BP(f0, t∗))| ≤ C5

√
W(F)n−1

}
∩ A(xn).

that holds with probability of at least 0.25 (over ξ) for any xn ∈ E4 .

Before defining the next event, observe that

r̂ = argmax
r≥0

Ŵ(Bn(f0, r))− r2/2 ≤ 2

√
Ŵ(F),

according to Lemma 4.1 and the fact that for rn := 2

√
Ŵ(F) we have Ŵ(Bn(f0, rn)) − r2n/2 ≤ 0. As we

already argued in (13), for any xn ∈ E2 we have that Ŵ(F) ≤ C1K1W(F) for some absolute constant C1,
and thus

∀xn ∈ E2, r̂ ≤ C
√
K1W(F). (19)

Now, from Eq. (6) in Lemma 4.1, for C8 large enough, the event

{
ξ : |〈ξ, f̂n − f0〉n − Ŵ(Bn(f0, r̂))| ≤ C8(n

−1/4r̂3/2 + n−1)
}

holds with probability of at least 0.5, and thus, in view of (19), for all xn ∈ E4, the event

A2(xn) =
{
ξ : |〈ξ, f̂n − f0〉n − Ŵ(Bn(f0, r̂))| ≤ C6K1W(F)3/4n−1/4

}
∩ A1(xn)

that holds with probability of at least 0.1 over ξ.

We are now ready to prove Eq. (17), using the fact that A2(xn) is not empty for each xn ∈ E4. To this end,
fix xn ∈ E4 and ξ ∈ A2(xn). First, by definition of E3, we have

K1W(BP(f0, t∗)) ≥ Ŵ(BP(f0, t∗))− C
√

W(F)n−1

which can be further lower bounded, by definition of A1(xn), by

sup
h∈BP(f0,t∗)

〈ξ, h− f0〉n − C
√
W(F)n−1.

10



Since ξ ∈ A2(xn) ⊆ A(xn), the above expression is further lower bounded by

〈ξ, f̂n − f0〉n − C
√
W(F)n−1

which, under the assumption of ξ ∈ A2(xn), is lower bounded by

Ŵ(Bn(f0, r̂))− C2

√
W(F)n−1 − C6K1W(F)3/4n−1/4.

When n is large enough, the above estimate is lower bounded by

Ŵ(Bn(f0, r̂))− lξW(F).

To see this, observe that under the assumption of W(F) ≥ c/
√
n, both

√
W(F)n−1 = on(W(F)) and

W(F)3/4n−1/4 = on(W(F)). Therefore, we proved Eq. (17) holds, namely that

K1W(BP(f0, t∗)) + lξW(F) ≥ Ŵ(Bn(f0, r̂))

for all xn ∈ E4. Using the definition of lξ = (256K1)
−3, we have

W(BP(f0, t∗)) ≤ lξW(F) ≤ 128−3K−3
1 W(F),

and thus for any xn ∈ E4,

8−1K−1
1 W(F) ≥ Ŵ(Bn(f0, r̂)). (20)

By Lemma A.1 and (20), for any xn ∈ E4,

0 ≥(2−1K−1
1 − 8−1K−1

1 )W(F)− Eξ max
g∈M

〈g − f0, f̂n − f0〉n − 16
√
W(F)r̂,

and since xn ∈ E4 ⊆ E1, we also have

0 ≥(2−1K−1
1 − 8−1K−1

1 − 8−1K−1
1 )W(F)− sup

h∈BP(f0,t∗),g∈M

∫
(g − f0)(h− f0)dP− 16

√
W(F)r̂

≥ (4K1)
−1W(F)−max

g∈M
‖g − f0‖t∗ − 16

√
W(F)r̂

≥ (4K1)
−1W(F)− 2t∗ − 16

√
W(F)r̂ (21)

where we used the Cauchy-Schwartz inequality, the fact that F ⊂ [−1, 1]X , and the definition of lξ =
(256K1)

−3.

If 16
√
W(F)r̂ < (8K1)

−1W(F), then the last equation implies that

s2W(F) = (16K1)
−1W(F) < t∗.

However, this inequality contradicts the definition of t∗, and thus cannot hold for any xn ∈ E4. In the other
case, we assume that 16

√
W(F)r̂ ≥ (8K1)

−1W(F), or equivalently, r̂ ≥ (128K1)
−1
√
W(F). Now, from

Lemma 4.1 one can see that the maximizing value r̂ ensures

Ŵ(Bn(f0, r̂))− 2−1r̂2 > 0

and hence
Ŵ(Bn(f0, r̂)) > 2−1(128K1)

−2W(F).

Therefore, under the event E4 and by Eq. (17)

2K1lξW(F) ≥ K1W(BP(f0, t∗)) + lξW(F) ≥ Ŵ(Bn(f0, r̂)) > 2−1(128K1)
−2W(F).

Once again, we have a contradiction for any xn ∈ E4, since we assumed that lξ = (256K1)
−3.

11



Therefore, we showed that Eq. (21), cannot hold under the event E4, i.e. the set E4 is empty. This
contradicts our earlier conclusion that Pr(E4) ≥ 0.4, which was made under the assumption that event A
has probability at least 0.5. Hence, we conclude that Pr(A) ≤ 0.5, or, equivalently, with probability at least

0.5, f̂n /∈ BP(f0, t∗). Therefore, we must have that

E

∫
(f̂n − f0)

2dP ≥ t2∗
2

=
1

2
min{tn,P(f0,F)2, s21W(F), s22W(F)2} ≥ c1 ·min{tn,P(f0,F)2,W(F)2}.

where in the last inequality, we used the fact that

W(F) ≤ W([−1, 1]X ) ≤ E|ξ| ≤
√
Eξ2 = 1.

The theorem follows.
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A Lemmas

Lemma A.1. Under the event E in (12), and for n that is large enough, the following holds:

0 ≥2−1K−1
1 W(F)− Ŵ(Bn(f0, r̂)) − Eξ max

g∈M
〈g − f0, f̂n − f0〉n − 16

√
W(F)r̂, (22)

where K1 is defined in Eq. (12), and set M is defined in Eq. (10).

Lemma A.2. LetX1, . . . , Xn ∼
i.i.d

P, then the following holds with probability of at least 1−K exp(−nW(F))

sup
g∈M,h∈BP(f0,t∗)

|〈h− f0, g − f0〉n −
∫

X

(h− f0)(g − f0)dP| ≤ (8K1)
−1W(F).

where M is defined in Eq. (10), t∗ is defined in Eq. (9), and K1,K are defined in Eq. (12), Lemma A.6.

Lemma A.3. The event E defined in Eq. (12) holds with probability of at least 0.9.

A.1 Auxiliary Lemmas

Lemma A.4. [(Koltchinskii, 2011, pgs. 25-26)] Let F ⊆ [−1, 1]X be family of functions. Then with
probability of at least 1− 2 exp(−c1nW(F)),

∀f, g ∈ F
∣∣‖f − g‖2n − ‖f − g‖2P

∣∣ ≤ 10W(F),

and
‖f̂n − f0‖2n ≤ 10W(F).

Lemma A.5 (Sudakov’s minoration lemma). Let H ⊂ [−1, 1]X . There exists a constant c1 such that for
any Pn,

c1 sup
ǫ≥0

ǫ

√
logM(ǫ,H,Pn)

n
≤ Ŵ(H).

where M(ǫ,H,Pn) denotes the size of the largest ǫ-separated set in H with respect to L2(Pn).

The next two lemmas appear in (Koltchinskii, 2011, pgs. 24-25), (Adamczak, 2008).

Lemma A.6 (Talagrand’s inequality). Let X1, . . . , Xn ∼
i.i.d.

P, and H ⊆ [−U,U ]X be a family of functions.

Let Z = supf∈H |n−1
∑n
i=1 f(Xi) − E[f ]|. Then there exists an absolute constant K ≥ 0 such that for any

s ≥ 0

Pr (|Z − EZ| ≥ s) ≤ K exp

(
−K−1U−1 log(1 +

sU

V 2
)ns

)
,

where V 2 = supf∈H

∫
f2dP.

Lemma A.7 (Adamczak’s inequality). Let G be a centred family of functions supported on D, and Q be
some distribution on D. Let Z = supg∈G |n−1

∑n
i=1 g(Xi)|. Assume that there exists an envelope function

G such that |g(x)| ≤ G(x) for all g ∈ G, x ∈ D. Then, the following holds for all t ≥ 0

K−1
2 EZ − V

√
t

n
− ‖max1≤i≤n f

′(Xi)‖ψ1
t

n
≤ Z ≤ K2EZ + V

√
t

n
+

‖max1≤i≤n f(Xi)‖ψ1
t

n
,

where V 2 := supg∈G

∫
g2dQ, and K2 ∈ (1,∞) is some universal constant, and ψ1 is the Orlicz norm.

Lemma A.8 (Lipschitz Concentration). Let ξ1, . . . , ξn ∼
i.i.d

N(0, 1), and f : Rn → R be a L-Lipschitz

function with respect to ‖ · ‖2. Then, for all ǫ > 0,

Pr(|f − E[f ]| ≥ ǫ) ≤ exp(−cǫ2L−2).
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B Proofs

Proof of Lemma A.1. We invoke the lower bound of Eq. (7) with g = f0 and t = 2, implying

0 ≥ Ŵ(Bn(f0, 2))− Ŵ(Bn(f0, r̂))− E〈f̂n − f0, gξ − f0〉n − Cn−1

= Ŵ(F)− Ŵ(Bn(f0, r̂))− E〈f̂n − f0, gξ −Π(gξ) + Π(gξ)− f0〉n − Cn−1, (23)

where Π(gξ) := argming∈M ‖gξ − g‖Pn , and the equality follows for the fact that for F ⊆ [−1, 1]X we have
Bn(f0, 2) = F .

Now, recall that M is a maximal 6
√
W(F)-separated set with respect to L2(P), and therefore also a

12
√
W(F)-net with respect to L2(P). Therefore, under the event E it is also a 16

√
W(F)-net with respect

to L2(Pn), and, in particular, ‖Π(gξ)− gξ‖Pn ≤ 16
√
W(F). Hence, we can rewrite (23) as

Eξ max
g∈M

〈f̂n − f0, g − f0〉n

≥ Ŵ(F)− Ŵ(Bn(f0, r̂))− Eξ〈f̂n − f0, gξ −Π(gξ)〉n − Cn−1

≥ K−1
1 W(F)− Ŵ(Bn(f0, r̂))− 16

√
W(F)Eξ‖f − f̂n‖Pn − Cn−1

Now, we proceed by using the first part of Corollary 4.1 and the assumption of lying in E . The last expression
is lower-bounded by

K−1
1 W(F)− Ŵ(Bn(f0, r̂))− 16

√
W(F)(r̂ + Cr̂1/2n−1/4). (24)

According to (19), under the event E , we have

r̂ ≤ C3

√
K1W(F)

for some constant C3. Thus the expression in Eq. (24) is further lower-bounded by

K−1
1 W(F)− Ŵ(Bn(f0, r̂))− 16

√
W(F)r̂ − C4

√
K1W(F)3/4n−1/4 − Cn−1

≥ (2K1)
−1W(F)− Ŵ(Bn(f0, r̂))− 16

√
W(F)r̂

where the last inequality holds when n is large enough. To see this, recall that W(F) ≥ c/
√
n and under this

assumption both n−1 = on(W(F)) and W(F)3/4n−1/4 = on(W(F)) hold. Therefore, the lemma follows.

Proof of Lemma A.2. First, denote by ‖Pn−P‖H := suph∈H |n−1
∑n
i=1 h(Xi)−E[h]|, and for each gi ∈ M,

define Gi = {(h− f0)(gi − f0) : h ∈ BP(f0, t∗)}. By Talagrand’s inequality (Lemma A.6), the following holds
for and u ≥ 0

Pr (|‖Pn − P‖Gi − E‖Pn − P‖Gi| ≥ u) ≤ K exp

(
−nK−1 log(1 +

4−1us−2
1

W(F)
)u

)

where we used the fact that V 2 ≤ suph∈F ‖g − f0‖2∞t2∗ ≤ 4s21W(F). Now, we set u = (16K1)
−1W(F) in the

last equation

Pr
(
|‖Pn − P‖Gi − E‖Pn − P‖Gi| ≥ (16K1)

−1W(F)
)

≤ K exp
(
−n(16K ·K1)

−1W(F) log(1 + 4−1(16K1)
−1s−2

1 )
)
.

Next, we aim to take a union bound over M, and recall that logM ≤ C2K
2
1nW(F) ≤ C(K1)nW(F), for

some absolute constant that does not depend on s1. Therefore, we may choose

s1 := c(K,K1, C2) (25)

where c(K,K1, C2) is a constant that satisfies the following:

Pr
(
|‖Pn − P‖Gi − E‖Pn − P‖Gi | ≥ (16K1)

−1W(F)
)
≤ K exp(−2C2K1nW(F)).
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Therefore, we have

Pr
(
∃1 ≤ i ≤M : |‖Pn − P‖Gi − E‖Pn − P‖Gi| ≥ (16K1)

−1W(F)
)
≤MK exp(−2C2K1nW(F)))

≤ K exp(−C2K1nW(F))

≤ K exp(−nW(F)).

We conclude that with probability of at least 1−K exp(−nW(F)) the following holds for G := {(h− f0)(g−
f0) : g ∈ M, h ∈ BP(f0, t∗)}:

‖Pn − P‖G ≤ max
1≤i≤M

E‖Pn − P‖Gi + (16K1)
−1W(F). (26)

The lemma will follow as soon as we show that

max
1≤i≤M

E‖Pn − P‖Gi ≤ (16K1)
−1W(F).

In order to prove the last inequality, we first apply the symmetrization lemma (cf. (Koltchinskii, 2011, p.
20)) and majorize the resulting Rademacher averages by a constant multiple of the Gaussian averages

E‖Pn − P‖Gi ≤ 8W(Gi) (27)

where we used the fact that 0 ∈ Gi.

Next, since ‖gi − f0‖∞ ≤ 2, a standard argument (e.g. (Giné and Nickl, 2016, Theorem 3.1.17)) gives

Eξ sup
h∈BP(f0,t∗)

n−1
n∑

k=1

(h− f0)(gi − f0)(Xk)ξk ≤ 2Eξ sup
h∈BP(f0,t∗)

n−1
n∑

k=1

(h− f0)(Xi)ξk.

Then, by taking expectation over X1, . . . , Xn over the last equation and by Eq. (27), we conclude

E‖Pn − P‖Gi ≤ 16W(BP(f0, t∗)) ≤ 16lξW(F) ≤ (16K1)
−1W(F),

where we set lξ = (256K1)
−3. Then, by Eq. (26) and the last equation, the claim follows.

Proof of Lemma A.3. It is enough to show that E2, E3 hold with probability of at least 0.99 for n large
enough. First, we prove this claim for E2.

We aim to apply Adamczak bound for concentration of the suprema of unbounded empirical processes
(Lemma A.7). For this purpose, define the family of functions G := {yf(x), y ∈ R, f ∈ F − f0}, and the
distribution Q = P⊗N(0, 1). Note that F ⊆ [−1, 1]X and, ξ is Gaussian. Therefore, by Pisier’s inequality
(cf. Pisier (1983),(Adamczak, 2008, Eq. 13)), we have

‖ max
1≤i≤n

|ξif(Xi)|‖ψ1
≤ C log(n) max

1≤i≤n
‖|ξif(Xi)|‖ψ1

≤ C2 log(n).

By Adamczak’s bound (Lemma A.7),

K−1
2 Ex,ξ sup

f∈F−f0

| 1
n

n∑

i=1

f(Xi)ξi| −
10√
n
− C log(n)

n

≤ sup
f∈F−f0

| 1
n

n∑

i=1

f(Xi)ξi| ≤ K2Ex,ξ sup
f∈F−f0

| 1
n

n∑

i=1

f(Xi)ξi|+
10√
n
+
C log(n)

n
,

(28)

with probability of at least 0.99 both X1, . . . , Xn and ξ.

Now, using the average principle, for n large enough, we can find an event E7 (that depends only on
X1, . . . , Xn) that holds with probability 0.98, such that for any fixed xn ∈ E7, there exists an event A3(xn)
of probability at least 0.98 (over ξ) such that Eq. (28) holds. For each xn ∈ E7, Lemma A.8 (with Lipschitz

16



constant supf∈F ‖f−f0‖n ≤ 2) implies that the middle term in (28) is, with high probability, within Cn−1/2

from its expectation (with respect to ξ). Therefore, we have for all xn ∈ E7:

K−1
2 Ex,ξ sup

f∈F−f0

|n−1
n∑

i=1

f(Xi)ξi| −
C√
n

≤ Eξ sup
f∈F−f0

|n−1
n∑

i=1

f(Xi)ξi| ≤ K2Ex,ξ sup
f∈F−f0

|n−1
n∑

i=1

f(Xi)ξi|+
C√
n
.

Finally, since 0 ∈ F − f0, we have

Eξ sup
f∈F−f0

n−1
n∑

i=1

f(Xi)ξi ≤ Eξ sup
f∈F−f0

|n−1
n∑

i=1

f(Xi)ξi| ≤ 2Eξ sup
f∈F−f0

n−1
n∑

i=1

f(Xi)ξi.

Hence, the last two equations imply that when W(F) ≥ C1n
−1/2, for C1 that is large enough, the claim

follows for E2. To handle the remaining case of W(F) ≤ C1n
−1/2, recall that we assumed that our class is

not degenerate (i.e it has two functions that are ‖f1−f2‖P ≥ 0.5. Then, it is easy to see that with probability
of 0.99 it holds that

Ŵ(F − f0) ≥ W({0, f2 − f0, f1 − f0}) ≥ Emax{n−0.5g, 0} ≥ c · n−1/2 ≥ c · C−1
1 W(F),

where g ∼ N(0, 1/4). Therefore, for some K−1
1 = c(K2, c), the claim follows for E2.

Next, we handle E3. By using the definition of BP(f0, t∗), and similar considerations that led to Eq. (28),
we have

sup
f∈BP(f0,t∗)−f0

|n−1
n∑

i=1

f(Xi)ξi| ≤ K2Ex,ξ sup
BP(f0,t∗)−f0

|n−1
n∑

i=1

f(Xi)ξi|+
10t∗√
n

+
C log(n)

n
, (29)

with probability of at least 0.99 over both X1, . . . , Xn and ξ.

As above, for n large enough, we can find an event E8 ⊆ E1 (where E1 is defined in Eq. (11)) of probability at
least 0.98 (over X1, . . . , Xn), such that for any xn ∈ E8, there exists an event A4(xn) of probability at least
0.98 (over ξ) such that (29) holds. Then, similarly to the case of E2, we will employ Lipschitz concentration
for the middle term in (29), for each xn ∈ E8. To estimate the Lipschitz constant, recall that under E1 (more
precisely, under the event of Lemma A.4), we also have that

‖f − f0‖2n ≤ s21W(F) + 10W(F) ≤ 11W(F)

for all f ∈ BP(f0, t∗), under the choice t∗ in (9). Then, using the fact that A4(xn) holds with probability of
at least 0.98, and Lemma A.8 with Lipschitz constant supf∈BP(f0,t∗) ‖f − f0‖Pn ≤

√
11W(F), imply that for

each xn ∈ E8, the middle term in (29) is within an additive factor of C1

√
W(F)n−1/2 from its expectation

over ξ. Namely, we have for all xn ∈ E8:

Eξ sup
f∈F−f0

|n−1
n∑

i=1

f(Xi)ξi| ≤ K2Ex,ξ sup
f∈F−f0

|n−1
n∑

i=1

f(Xi)ξi|+
C
√
W(F)√
n

.

where we used the fact that t∗ ≤ s1
√
W(F). The claim for E3 follows by similar considerations that we used

earlier.

Proof of Corollary 3.3. For any P-Donsker class we have with probability at least 0.9 (van de Geer, 2000,
Chap. 5)

Ŵ(F) ∼ W(F) ∼ n−1/2.

Then, by Corollary 3.1, we have that

E

∫
(f̂n − f0)

2dPn & n−1.
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In order to prove the second part of the bound, we apply Theorem 3.1,

E

∫
(f̂n − f0)

2dP & max{n−1, tn,P(f0,F)2}.

The corollary will follow if we show that for any f0 ∈ F , we have that tn,P & 1. To see this, we use
(van de Geer, 2000, Thm 5.11) that shows that for all t ≥ 0, we have

W(BP(f0, t)) . n−1/2

∫ t

0

u−α/2du . t
−α+2

2 n−1/2.

Since α ∈ (0, 2), the right hand side is decreasing in t, therefore we know that if

W(BP(f0, t∗)) & W(F) & n−1/2

then we have t∗ & 1. Hence, tn,P(f0,F) & 1, and the claim follows.

Proof of Corollary 3.4. For any non P-Donsker class we have with probability of at least 0.9 (van de Geer,
2000, Chap. 5)

n− 2
2+α . Ŵ(F) ∼ W(F) . n− 1

α .

Then, by Corollary 3.1, we have that

E

∫
(f̂n − f0)

2dPn & n− 4
2+α ,

and the claim follows.

B.1 An example to the tightness of Theorem 3.1 (a sketch)

Let P be the uniform density of [0, 1], and denote by I(xi, li) to be an interval with center xi and length li.
For each m ≥ 0 we define

Fm :=
{
m−1/6

m∑

i=1

ǫi1I(xi,m−5/4) : ∀x1, . . . , xm s.t. 1 ≤ j 6= k ≤ m I(xk,m
−5/4) ∩ I(xj ,m−5/4) = ∅,

∀(ǫ1, . . . , ǫm) ∈ {−1, 1}m
}
.

Now, we define F := conv{0, {Fm}∞m=1}. Clearly, this family is uniformly bounded by one. Also, we assume
that f0 = 0.

Using a classical fact, we have that with probability of at least 1− n2,

max
1≤i6=j≤n

|Xj −Xi| ≥ c · (n logn)−1,

and denote this event by A. Clearly, for each xn ∈ A, we can find a function fξ ∈ Fn (that depends on xn

as well) such that

〈fξ, ξ〉n = n−1/6 · n−1
n∑

i=1

|ξi|. (30)

Also, note that under the event A, f̂n /∈ {Fm}∞m=n+1. Therefore, one can easily show that

Ŵ(Bn(f0, n
−1/6)) ∼ n−1/6.

Now, denote by C(n) := C1(n log(n))
4/5 for C1 that is large enough. Note that any Fm such that C(n) ≤

m ≤ n− 1, we can only place m intervals with length of at most (c/2) · (n log(n))−1. Therefore, under the
event A, each of these intervals has at most one point. Hence, we have that

max
fm∈Fm

〈fm, ξ〉n = m−1/6n−1 max
S∈(n

m),|S|=m

∑

i∈S

|ξi|.
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Now, for any fixed C(n) ≤ m ≤ n− 1, one can easily show by standard concentration inequalities that

E max
fm∈Fm

〈fm, ξ〉n . m−1/6(m/n) +m−1/6(m/n)
√
log(n/m) . m−1/6(m/n)

√
log(n/m). (31)

In the remaining case of m ≤ C(n), using some standard arguments, it can be shown that with probability
of at least 1− n2 (over X1, . . . , Xn) the following holds:

Eξ sup
fm∈Fm

〈fm, ξ〉n ∼ Ex,ξ sup
fm∈Fm

〈fm, ξ〉n ≪ n−1/6. (32)

By using Eqs. (30),(31),(32), one can show that with high probability f̂n ∈ Bn(f0, Cn
−1/6), for some C ≥ 0,

and also
W(F) ∼ n−1/6.

Therefore, one can conclude that

E

∫
(f̂n − f0)

2dPn ∼ n− 1
3 ∼ W(F)2,

and

E

∫
(f̂n − f0)

2dP ∼ n−( 1
4
+ 1

3
) ≪ W(F)2 ∼ n− 1

3 .

Finally, it is easy to see that tn,P(f0,F) & n−( 1
8
+ 1

6
), and therefore, by using the last equation

E

∫
(f̂n − f0)

2dP ∼ tn,P(f0,F)2,

and the claim follows.
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