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' Abstract

Oja’s rule [Oja, Journal of mathematical biology 1982] is a well-known biologically-plausible algo-
rithm using a Hebbian-type synaptic update rule to solve streaming principal component analysis
(PCA). Computational neuroscientists have known that this biological version of Oja’s rule con-
verges to the top eigenvector of the covariance matrix of the input in the limit. However, prior to
this work, it was open to prove any convergence rate guarantee.

In this work, we give the first convergence rate analysis for the biological version of Oja’s rule
in solving streaming PCA. Moreover, our convergence rate matches the information theoretical
lower bound up to logarithmic factors and outperforms the state-of-the-art upper bound for stream-
ing PCA. Furthermore, we develop a novel framework inspired by ordinary differential equations
(ODE) to analyze general stochastic dynamics. The framework abandons the traditional step-by-
step analysis and instead analyzes a stochastic dynamic in one-shot by giving a closed-form solution
to the entire dynamic. The one-shot framework allows us to apply stopping time and martingale
techniques to have a flexible and precise control on the dynamic. We believe that this general
framework is powerful and should lead to effective yet simple analysis for a large class of problems
with stochastic dynamics.

Keywords: Theoretical neuroscience, streaming PCA, stochastic process, stopping time, dynami-
cal system

1. Introduction

Brains processes high dimensional visual inputs constantly. In our eyes, 100 millions photoreceptors
in the retina receive gigabytes of information per second Wandell (1995). In addition, the retina is
a highly convergent pathway: 100 million photoreceptors converges the visual information onto
one million retina ganglion cells in optical nerves Ganguli and Sompolinsky (2012). Therefore, it
is important to understand a neural implementation of the dimensionality reduction in the retina.
Furthermore, many works in theoretical neuroscience Atick and Redlich (1990) demonstrated from
the efficient coding principle that the retina might implement Principal Component Analysis (PCA).
Specifically, they showed that under natural image statistics, PCA-like solution recovers the center-
surround receptive fields in the retina. However, their work only proposed PCA as an potential
solution to the pathway and did not provide a dynamic to explain the learning process of PCA.
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On the other hand, in the seminal work of Oja (1982), he proposed a mathematical model for
the biological neural network that solves streaming PCA with several biologically-plausible prop-
erties: the network not only updates its synaptic weights locally but also normalizes the strength of
synapses. This rule, now known as the biological version of Oja’s rule (biological Oja’s rule’ in
abbreviation), has been the subject of extensive theoretical Oja (1982) and experimental Swinehart
and Abbott (2006) studies aimed at understanding its performance. Despite its popularity, the the-
oretical understanding of the biological Oja’s rule cannot account for the speed of the convergence
because the state-of-the-art theoretical analysis only provides a guarantee on convergence in the
limit via Kushner-Clark theory Duflo (2013).

In biology, the retina can change its receptive field to adapt to environments with different
illumination Shapley and Enroth-Cugell (1984), contrast Shapley and Enroth-Cugell (1984), spatial
frequency , orientation and temporal correlation Hosoya et al. (2005) in the time scale of seconds
despite the high dimensional input. This suggests that a plausible dynamic for explaining the retina-
optical nerve pathway should have little or no dependency on the dimension, i.e., the number of
neurons, which in this case is on the order of 100 million. Meanwhile, researchers have observed
that the biological Oja’s rule (and its variants) has fast convergence rates Swinehart and Abbott
(2006) in simulations. Thus, to demonstrate the feasibility of fast retina adaptation in theory, it
is important to give an analysis to show that the biological Oja’s rule solves streaming PCA in a
biologically-realistic time scale. This is nevertheless a challenging task and has remained elusive
for almost 40 years Oja (1982).

In this paper, we provide the first convergence rate guarantee for the biological Oja’s rule in
solving streaming PCA. Furthermore, the convergence rate matches the information-theoretic lower
bound for streaming PCA up to logarithmic factors. In terms of the techniques, we develop an ODE-
inspired framework to analyze stochastic dynamics. We believe this general framework of using
tools and insights from ODE and SDE in analyzing stochastic dynamics is elegant and powerful.
Also, as a byproduct, our convergence rate guarantee for biological Oja’s rule outperforms the
state-of-the-art upper bound for streaming PCA (using a non-biologically plausible variant of Oja’s
rule) Allen-Zhu and Li (2017).

Biological Oja’s rule. Oja (1982) proposed a streaming PCA algorithm using n input neurons
and one output neuron. The firing rates of the input neurons at time ¢ are denoted by a vector
x; € R™ and the firing rate of the output neuron is denoted by a scalar y; € R. The synaptic weights
at time ¢ from the input neurons to the output neuron are denoted by a vector w; € R"™. Note that
the weight vector will be the output and ideally it will converge to the top eigenvector vi.

The input stream X1, X2, ..., X arrives in the form of firing rates of the input neurons. The
firing rate of the output neuron is simply the inner product of the synaptic weight vector and the
firing rate vector of the input neurons, i.e., y; = x/ w;_1. Now, from the biological Oja’s rule, the
dynamic of the synaptic weight vector is described by the following equation.

Definition 1 (Biological Oja’s rule) For any initial vector wo € R™ such that ||woll2 = 1, the
dynamic of the biological Oja’s rule is the following. For anyt € N, define

Wi = Wi_1 + ey (Xe — YeWi—1) (1.1)

2. Also known as Oja’s rule in the literature. However, many works in the machine learning community use the name
“Oja’s rule” for non-biologically-plausible variants of the original Oja’s rule. Thus, in this paper we emphasize the
term “biological” to distinguish the two.
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Figure 1: Biological Oja’s rule is a local synaptic learning rule

where y; = XtT wy_1 and Xy is the input at time t.

Notice that biological Oja’s rule is local, i.e. the synaptic weight updates only depends on the
activities of the two ends neurons and itself (Figure 1). The locality is an important criteria for the
biological plausibility of a synaptic learning rule Hebb (1949).

Our results There are two common convergence notions in the streaming PCA literature. The
global convergence requires the algorithm/dynamic to start from a random initial vector while the
local convergence allows the algorithm/dynamic to start from an initial vector that is highly corre-
lated to the top eigenvector of the covariance matrix. Now, we are ready to state our main theorem
as follows.

Theorem 2 (Global and local convergence) With the setting in the dynamic in Definition 1, let
gap == A1 — A2 > 0. Forany €,0 € (0, 1), we have the following results.
2
e (Local Convergence) Suppose 0¥~ — Q(1). Foranyn € N, §,€ € (0,1)), let
2
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Then, we have

o (Global Convergence) Suppose wyq is uniformly sampled from the unit sphere of R". For any
neN, e (0,1), let
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The notation a A b stands for min{a, b} and O hides the poly-logarithmic factors with respect to

—1 —1 —1
€ ,0 ,gap”,n.
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General Framework One of the main difficulty to analyze the dynamic of biological Oja’s rule
is the nonlinearity of the update rule. This makes the traditional step-by-step expectation approach
unusable because the improvement factor at each step can depend on the process itself and at worst
case, the dynamic can show no improvement or even deteriorate. Taking expectation loses precise
controls of the values of the process. This makes naive martingale analysis difficult to work. We
use an ODE-inspired one-shot framework to solve this problem. Our high-level strategy is to first
consider the continuous version of the Oja’s rule where the learning rate 7 is set to be infinitesi-
mal. In the continuous setting, the dynamic can be fully understood by tools from the theory of
ordinary differential equations (ODE) or stochastic differential equations (SDE). The continuous
analysis helps us not only to understand how to analyze the dynamic via different linearization but
also to write down a closed form solution of the dynamic where the noise is adapted. Since we can
write down a closed form solution for the dynamic, by bounding the noise, we can guarantee the
improvement in one-shot. Next, by using stopping time technique, we are able to gain precise con-
trol of the process itself and therefore give a tight bound on the stopped concentration of the noise.
Finally, by exploiting the structure of the dynamic, we are able to pull out the stopping time without
introducing additional failure probability to recover a tight concentration on the original noise and
therefore guarantee the improvement. This framework is conceptually elegant and powerful. We
refer readers to the full version of this paper and a subsequent work Chou et al. (2020) focusing on
the framework for more details.

Biological Perspectives. Biological Oja’s rule is one of the earliest local learning rules that incor-
porate both Hebbian and homeostatic plasticity Oja (1982), two major activity-dependent synap-
tic modification mechanisms Abbott and Nelson (2000). Both mechanisms work together to form
memory and drive learning behaviors in the brain. Hebbian plasticity is a synapse-specific correlation-
based plasticity mechanism that strengthens the connection when the input has a high correlation
with the weights while weakening the connection when the input has a poor correlation Kelso et al.
(1986); Dudek and Bear (1992). However, this type of mechanism alone can often make networks
unstable since the highly correlated input will keep strengthening synapses unboundedly Abbott and
Nelson (2000). Homeostatic plasticity, in contrast, stabilizes the network by keeping the activities
of the neurons relatively constant through calcium sensors Turrigiano (2008). Synaptic scaling is a
specific kind of homeostatic plasticity where the strength of the incoming synapses is normalized
while still encoding the information from Hebbian learning in their relative strength after normal-
ization Turrigiano (2008). Oja’s rule is one example of this. Concretely, Oja’s rule can be expressed
as the following
wy = wy—1 + e (Teye — ytzwtfl) .

One can see that x4y, term corresponds to the Hebbian plasticity while y?w;_; term corresponds
to the homeostatic plasticity. One can then show the synaptic scaling property where ||w;|| ~ 1

for all ¢. In this sense, this work demonstrates that a biologically plausible mechanism can solves
streaming PCA in a biologically-realistic timescale to explain fast retina adaptation.
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