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Abstract—This article analyzes AlphaZero-type algorithms
quantitatively from the viewpoint of local and global optimal
sequences of play on a 7×7 board. Through targeted evaluation
of the AI agent, the authors reveal the strategic, that is, winrate-
dominated, nature of such algorithms, and expose thereby certain
inherent obstacles against optimal play. Possible remedies are
then explored, leading to techniques that may help further
quantitative analysis of those algorithms and for the search for
optimal solutions, on 7× 7 as well as larger boards.

Index Terms—Game of Go, artificial intelligence, AlphaZero,
optimal play, targeted evaluation, targeted training.

I. INTRODUCTION

AlphaGo [1] and its subsequent variations culminating in
AlphaZero [2], notching victories against professional Go
players for the very first time in history and yet achieving
them with seeming ease, and eventually becoming self-taught
from a near tabula rasa in the span of a mere couple of years,
have attracted great attention not only in the field of artificial
intelligence (AI), but also in a number of other fields spanning
almost the entire spectrum of intellectual endeavors, from
philosophy and cognitive science all the way to mathematics.
Go players themselves seem to have completed a remarkable
transition from initial skepticism to eventual reverence also:
the Chinese professionals, for example, routinely refer to Al-
phaGo and AlphaZero as “Teacher Alpha”, and their national
team now features an official AI coach called Jueyi (the name
has been translated to Fine Art in English) [3], which is built
on the same principles of AlphaZero.

Has AlphaZero already reached perfection in the game of
Go, or does it still have room for further growth? From
the small number of published games, either self-played by
AlphaGo or AlphaZero, or played between the two, we can
infer that the answer is No. The differing margins of victory
towards the end of the games tell us that conclusively.

The natural follow-up question, then, is how further im-
provement upon AlphaZero may be brought about. To an-
swer this question, many researchers have chosen to emulate
AlphaZero by adopting its basic approach but refining the
technical aspects, so as to create a more efficient algorithm
and, hopefully, a stronger playing agent. One could describe
this general approach as trying to “speed AlphaZero up”; we
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shall have little to contribute in this regard except for a few
comments towards the end of this paper.

In this article, we wish to discuss a rather different ap-
proach that is at once more conceptual and more quantitative.
Currently, playing strength of the various AlphaZero-type
algorithms is measured by their efficacy of scoring wins. Like
the Elo rating system [4], this is a relative metric. However,
there is a more absolute reference against which to define
and measure strength as well, namely, optimal sequences of
play. From that vantage point, the strength of an AI agent is
measured by its ability to replicate or approximate optimal
play. This is the approach we have taken in our experiments.

An immediate challenge in the abstract to this approach
has to do with our lack of knowledge of what the optimal
sequence of play is in any given game position. Since it is no
longer a rare thing for an AI agent to play at a superhuman
level, criticizing plays made by an AlphaZero-type algorithm
could feel rather like a novice daring to gainsay his guru. For
this reason, we have chosen to “slow down” AlphaZero rather
than speeding it up. More precisely, we have conducted our
investigations by applying an AlphaZero-type algorithm with
commodity GPUs on a much smaller board (7 × 7). In so
doing, the progress of the AI agent becomes more gradual,
and positions may be set up where optimal plays can be
demonstrated by humans. In addition, it is fortunate that global
optimal solutions on the 7 × 7 board have been well studied
by human players. As a result, we have been able to follow
the (self-)training process of our AI playing agent, observe
how far (and how frequently) it could go to follow global
optimal solutions in its self-played games, and test its ability
to discover optimal plays in various game positions specifically
designed to target diverse stages of the game.

Winning plays and optimal plays are clearly related; they
might appear roughly equivalent when viewed naively. Upon
further consideration, however, the potential of an intriguing
paradox emerges. As is well known, AlphaZero-type algo-
rithms emphasize winrate, a probabilistic measure of how
likely the game may be won. While it sounds vaguely logical
that optimal plays should always be followed, this is not nec-
essarily the case when one is behind; an aggressive play that
leads to more complications may be seen as more strategic.
By the same token, it is also possible to choose a suboptimal
play strategically to avoid complications if one is in the lead.

Here we encounter a second, more practical, challenge. It



is well that we have a vague conjecture at hand, but to prove
it rigorously with concrete scenarios is quite another matter.
We have already mentioned the difficulty of knowing what the
optimal line of play is, but even if it is known that an AI agent
has not played optimally, how does one determine whether it
is an instance of “strategic play” or simply one of failing to
find the optimal play? To obtain clear-cut results, therefore,
one needs game positions that hang on the knife-edge.

We have designed a large number of exercises for this very
purpose, and this work is still on-going. A few representative
examples will be exhibited and explained later in this article.
Our experiments show that AlphaZero-type algorithms can be
guilty of both overly aggressive and overly conservative plays
for the sake of winrate. In fact, we shall show that the built-
in strategic methodology may even impede the AI agent from
playing optimally.

We hesitate to describe what we have uncovered as deficien-
cies of AlphaZero. Indeed, this line of AI agents have been
widely praised for their “human-like” styles of play; perhaps
strategic plays are partly responsible for such a feeling.
Nevertheless, it goes without saying that understanding the
difference between optimal and suboptimal plays is of great
importance; it is so for the game’s own sake, and from a scien-
tific or philosophical standpoint, if we view Go as an exemplar
of a deep problem with complex answers, this understanding
is of fundamental significance. What we do claim, then, is
that AlphaZero-type algorithms do not promote the discovery
of optimal solutions as they are currently designed.

The rest of the paper is organized as follows. After a very
brief discussion on existing and related work in Section II, we
introduce basic concepts relevant to our work in Section III,
and make precise the meaning of technical words such as
optimal. We then demonstrate via concrete examples what we
have qualitatively discussed thus far in Section IV; by probing
the AI playing agent at well-targeted junctures in various
stages of the game, we achieve a better understanding of the
the workings behind the neural network of the AlphaZero-
type algorithm. Not only so, we provide evidence that our
techniques can help in our search for optimal plays as well
in Section V. Some further general remarks, including a brief
discussion of our project from a wider angle, are offered in
Section VI.

II. RELATED WORK

Stimulated by their dazzling successes, emulators of algo-
rithms of the AlphaGo family are legion and comprise a very
impressive international cast of researchers. Many of their
creations have reached playing strength of strong professional
players and beyond. In addition to Fine Art, already mentioned
above, and Leela Zero, to be described below, there are also
DeepZen Go of Japan, AI Handol of Korea, and ELF OpenGo
of Facebook, to name just a very few. There is an equally
brilliant array of innovations aimed at enhancing the efficiency
and scope of AlphaZero-type algorithms. To touch upon just a
small sampling of recent developments, KataGo [5], currently
featuring arguably one of the best playing agents, has greatly

accelerated self-play learning by introducing several improve-
ments to the AlphaZero process and architecture, while the
work presented in [6] has proposed a new model aimed at
producing an agent that is strong (superhuman), stable and
robust. See [7] and [8] for some other new advances.

We have instead decided to proceed in a different, one
could almost say opposite, direction. Rather than striving
for further enhancement in performance, we focus on the
more foundational aspects of the issue and inquire into the
learning and decision making processes of AlphaZero-type
algorithms, to see whether or not there may be limitations in
their capabilities, powerful as they certainly are. At the same
time, we also concern ourselves with the quest of eventually
discovering entirely optimal lines of play with the aid of
the same algorithms. As we will explain, these investigations
are not at all unrelated with one another. What needs to be
emphasized here, however, is this, that if our work is in any
way unique and relevant, it is only so in the context of all the
spectacular developments brought about by other researchers.

III. PRELIMINARIES

A. Go

The rules of Go are disarmingly simple. Two players, Black
and White, take turns to place black and white stones on the
intersections (points) of a square grid. The standard size is
19 × 19, but the game can be meaningfully played on any
n × n board with n ≥ 3. Except for their color, all stones
are identical and have equal value; once played, they remain
stationary unless captured. A group of one or more stones of
the same color are connected if any two stones of the group can
be linked by a chain of pairs either horizontally or vertically
next to each other. A connected group of stones is captured
(removed from the board as “prisoners”) by the opponent, if all
the intersections immediately next to the stones via horizontal
and vertical lines (the liberties of the group) are occupied by
stones of the opposing color; otherwise all the stones remain
on the board. There can be no suicide—one is forbidden to
place a stone at a point, if in so doing all the stones connect
to that stone will have no liberty left as a group collectively.
The exception to this rule is that such a play is legal if it is
a capturing play. Finally, the overall board position can never
be repeated; this is called the rule of ko. The basic rules for
making legal plays are now complete.

(a) (b) (c)

Fig. 1: Rules of Go.

These rules are illustrated by the figures below. In Fig. 1a,
the group of seven black stones is connected with 12 liberties



(A and the points marked by triangles) in total. Black is
allowed to play at A, since so doing will create a connected
group with 11 liberties; but White is forbidden to play at
A, since it would be suicide. On the other hand, by the
same rules, it is permissible for White to play at B (it is a
capturing play), but not so for Black (it would be suicide),
as shown in Fig. 1b. The connected group of black stones in
the Fig. 1c is permanently alive, because both points marked
by squares are forbidden to White. When the entire board is
occupied by living shapes, the player who has managed to
control more than half of the board is declared the winner.
In modern tournament play, a fiat called komi is added in
order to compensate White, the player who plays second by
convention. The scores of Black and White are compared after
an agreed upon number, say 7.5, is added to that of White.
The half point is designed to avoid ties.

Fig. 2: A sample game.

The scores may be tallied as fol-
lows. The points on the board that
belong to Black but are not occupied
by black stones are Black’s territory,
which is to be compared with the
territory of White, after the captured
stones, along with the “dead stones”
left behind in enemy territory, are
returned to fill the opponent’s terri-
tory—black prisoners filling Black’s
territory, and white prisoners filling
White’s. For an (overly) simple example, Fig. 2 shows a
completed game on the 7×7 board. No capturing has occurred,
nor are there any dead stones left behind. The intersections
marked by triangles are Black’s territory, 21 points; the squares
mark White’s territory, 14 points. Therefore, if the komi is at
most 6.5 points, Black wins; if it is at least 7.5 points, White
wins.

For simplicity, we have omitted certain more nuanced sce-
narios of Go. In particular, we have not mentioned seki, which
may be described as a symbiotic co-existence of “undead”
stones. There also exist subtly different scoring systems, which
may become relevant for us under certain circumstances, but
not in this article.

It is well known that Go is extremely complex. The number
of possible games in the first 50 plays exceeds the number of
hydrogen atoms in the Universe. In more technical language, it
is EXPTIME complete. Even the endgames phase is PSPACE
hard [9]–[11].

B. Optimal Play

Given a particular size of Go board and a legal position
on it, a legal play is said to be locally optimal, if it either
maximizes the winning margin or minimizes the losing margin
at the end of the game, assuming all subsequent plays are also
locally optimal. Since the total number of possible games is
finite, this definition is meaningful by reverse induction. A
sequence of plays comprising an entire game and consisting
of locally optimal plays only is called a global optimal solution
for the given board size. Thus Go is strongly solved on the

given board if all locally optimal plays are known, and weakly
solved if all global optimal solutions are known. Words like
local, global, and legal will oftentimes be omitted, if so-doing
does not diminish clarity.

It is clear from the reversely inductive nature of the defi-
nitions that optimal plays and solutions are hard to find, and
perhaps even harder to prove. For example, on a 19×19 board,
it is almost certainly suboptimal to place the first stone at the
very corner of the board. However, we are not aware of a
mathematical proof of this.

On a square n×n board, all locally optimal plays are easy
to find for 2 ≤ n ≤ 5. For n = 6 and n = 7, the game has
been extensively studied by professional Go players, such as
Li Zhe [12]. For the purposes of this particular article, it is
unnecessary to discuss the finer details regarding the status of
the finality of optimal solutions; we may consider them known
up to certain trivial exchanges of no material consequence. For
n > 7 the game is currently unsolved.

C. The AlphaGo Family

The core of the AlphaGo family (e.g., AlphaGo [1], Al-
phaGo Zero [13] and AlphaZero [2]) is the combination of
a convolution deep neural network fθ and a Monte Carlo
tree search (MCTS) algorithm. The parameters θ of the neural
network represent Go knowledge, which are randomly initial-
ized and iteratively trained by reinforcement learning from
self-play (solely or combined with human knowledge). The
neural network takes a game state s (board position) as input,
and outputs a vector ps (the policy) representing the move
probability for each possible action and a numerical number
vs ∈ [−1, 1] (the value, i.e., winrate) estimating the expected
outcome z (−1 for a loss, 0 for a tie, and +1 for a win) based
on s, as shown in Eq. 1.

(ps, vs) = fθ(s). (1)

For both players, each play is selected by the MCTS algo-
rithm, which contains a series of simulated self-play games
(rollouts or playouts) that traverse a tree of states from root
(the current state) to leaf. In each simulation, a move in each
state is selected by evaluating the number of visits, the move
probability, and the value (averaged over the leaf states of
simulations) based on the current fθ. The search reaches a
leaf node after a number of selected moves down the tree.
Then, it traces back (backup) along the traversed edges to
update the number of visits and the value. After repeating the
cycle of move selection and backup update for a number of
times (e.g., 1, 600 in AlphaZero), the search returns a vector π
representing the search probability distribution over possible
moves, either proportionally or greedily with respect to the
visit counts at the root state. The move with the highest π
value will be selected as the next move.

At the end of each game, the terminal position is evaluated
according to the rules of the game to compute the actual game
outcome. The neural network parameters θ are updated so as
to minimize the difference between the predicted outcome
(winrate) and the actual game outcome, and to maximize



the similarity of the policy vector to the search probabilities.
Specifically, the parameters θ are adjusted by gradient descent
on a loss function l that sums over mean-squared error and
cross-entropy losses respectively, as shown in Eq. 2.

l = (z − v)2 − π log p+ c‖θ‖2, (2)

where c is a control parameter to regulate the level of weight
regularization to prevent overfitting.

D. Experiment Configurations

Software tools. Our experiments are carried out using
LeeLa Zero (v0.17) [14], which is an open source implemen-
tation of AlphaGo Zero. Since LeeLa Zero was designed for
the board size of 19 × 19, we made a number of changes
to make it suitable to play on smaller odd board sizes (e.g.,
7 × 7, 9 × 9, and so on). Further, we utilize GoGUI (v1.5.1)
[15] as the middle ware that enables LeelaZero engines to
generate self-play games for training. We also use the neural
network training script in TensorFlow (v1.13) provided in the
LeelaZero repository to train our network. Lastly, we use
Sabaki [16] to generate heat maps and analyze results.

Hyper-parameters. The major hyper-parameters used by
the LeeLa Zero program for training our AI agents are listed
in Table I.

Parameters Definition Value
generations Number of generations 200

x Number of random moves at the start
of the game

10

cpuct Exploration v. exploitation parameter 1.0
playouts Number of playouts 150
visits Number of visits 200
m Number of games played per generation 6000
α Number of past generations used for

training
10

wr Validation gate 55
b Number of ResNet blocks 4
f Number of ResNet filters 128

TABLE I: Major hyper-parameters used in our training.

Hardware. Our experiments are run on a machine with
32GB of RAM, 500GB of local storage, 1 Intel Core i9-9900K
Processor (5GHz, 8 cores, 16 threads) and 1 NVIDIA TITAN
RTX (24GB of memory). Each training run takes about 3 days.

IV. TARGETED EVALUATION

The self-played games by our trained AI agent do not follow
global optimal solutions, even after the training is essentially
“complete”: that is, after its performance has plateaued. This
is not surprising, since none of the Go-playing programs (e.g.,
KataGo [17]) we have examined online do so either. This fact
alone is too vague to reveal all that much about the conceptual
question we ask, namely, How does the AI “choose” its plays?

In order to extract more clear-cut answers, we tested our
agent with numerous exercises specifically tailored for the
purpose. Indeed, from the definition of optimality it is clear
that a (not necessarily unique) locally optimal play always
exists given any legal game position. This gives us a much
wider range of freedom. We have dubbed this technique

targeted evaluation, though in reality it is not an original idea
at all—Go teachers have been training their human pupils for
hundreds of years with basically the same technique.

Our findings will be illustrated below with a few repre-
sentative exercises, selected to cover various phases of the
game; experience with playing the game itself is not essential
for comprehending the discussion. The examples will show
that winrate exerts a dominantly strong influence over the AI
agent’s play selection from the very beginning of the game,
so strong that the agent may select a suboptimal play in order
to increase the probability of winning by just a little bit when
behind, or similarly play suboptimally to avoid complications
while ahead. Consequently, the AI agent is extremely sensi-
tive to the amount of komi. This will be clear in most of
the examples, but we shall emphasize this especially in the
final example of this section to demonstrate that AlphaZero-
type algorithms may impede the exhibition of global optimal
solutions, even if so doing is within the capabilities of the AI.

A. Whole Board Thinking

A human pupil of Go usually learns the game one technique
at a time: how to capture and avoid capture; how to achieve and
prevent connection; how to make and destroy living shape, etc.
A striking feature of an AlphaZero-type algorithm, however,
is that concern for the advantage or disadvantage on the entire
board is always the driving force behind its decision making.
We had ourselves been surprised more than a few time by this.

(a) A ladder problem? (b) The supposed optimal solution.

(c) The actual optimal play. (d) Refutation of false solution.

Fig. 3: Whole board thinking.

The exercise shown in Fig. 3a is designed to test the AI’s
abilities at local fighting; more specifically, it tests the mastery
of a basic capturing technique known as the ladder. Black is



to play and capture the two white stones marked by triangles.
The correct plays must frustrate all efforts by White to avoid
capture. As such, the “optimal” sequence of plays is unique, as
shown in Fig. 3b. After a quick review of Subsection III-A, the
reader can ascertain without too much difficulty the fact that
every play by Black threatens to capture the entire and growing
white group with the next play—hence White’s responses are
all forced, but still fails to rescue the initial stone in the end.

To our great surprise, however, our AI agent failed to solve
this exercise, which is considered relatively easy and a low-
ranking human player is already expected to be able to solve it.
The script we had written for detecting matching sequences of
plays simply failed to find any. When we looked at the actual
records, however, we discovered that the AI agent consistently
made the play shown in Fig. 3c.

The truth is that the AI’s play is superior to our so-called
correct answer. Instead of narrowly aiming at the capture of a
couple of white stones, the AI’s play seeks to control the entire
board. An experienced Go player will be able to verify easily
that this play enables Black to claim the entire board—that
is, all of the white stones will eventually “die”, though none
is immediately captured for now. By contrast, the “correct
play” leaves White ample room to make permanent life for
some of the stones. This is demonstrated in Fig. 3d. A reader
inexperienced with Go may disregard Fig. 3d and take our
assertion about Fig. 3c on faith.

In this example, our AI playing agent passes over immediate
profit in a local fight in order to gain whole board dominance,
since so doing gives it a more elevated winrate. Similarly
motivated plays, however, can also cause the AI to err, as
the next example shows.

B. A Winrate-induced Overplay

The optimal play for the exercise shown in Fig. 4a (White
to move) is unique, for this is a so-called "life-and-death"
problem, and White has just one group to save. More precisely,
the white stones are surrounded, and there is only one play—at
A—that can ensure permanent life for the group. This play
simultaneously creates two points that are forbidden to Black;
in Go terminology they are called eyes. Figure 4b shows how
an attempt by Black at destroying White’s eyes would fail,
and Figs. 4c and 4d demonstrate that White’s playing at any
point other than A in Fig. 4a would not work. In both of the
latter figures, the white group is “dead”, that is, the stones
can eventually be captured by Black if the game continues. In
other words, Black would end up occupy the entire board.

Once again, the AI agent surprised us during our targeted
evaluation by stubbornly playing at 1 in Fig. 4d. We were
rather puzzled until we learned to “think like AI” and adopted
the whole board thinking as explained in the previous subsec-
tion.

The komi (points assigned to White as a compensation for
playing second; see Subsection III-A) was set at 9.5 in this
experiment. Suppose White plays the correct—and this time it
is also optimal—move, then the game will end as in Fig. 5a,
with both sides playing optimally. We have also marked, by

(a) White to play; komi = 9.5. (b) White 1 optimal; A captures.

(c) Failure for White. (d) Another failure.

Fig. 4: A life-and-death problem.

(a) Optimal sequence rejected by AI. (b) Dream sequence for AI.

Fig. 5: AI’s reasoning?

triangles and squares, territories occupied by Black and White.
The result is then Black 17 territory + 1 dead stone = 18,
White 2 territory+9.5 komi = 11.5—a defeat for White. Now,
if the wrong plays should miraculously work, as, say, Fig. 5b
shows, White would end up with 5 territory+1 dead stone+
9.5 komi = 15.5 points total versus Black’s 15 territory
points: White would win! Therefore, though 1 in Fig. 4d is an
overplay, i.e., an overly aggressive play that can be refuted,
it is a strategic one nevertheless. Perhaps that is why the AI
considers it the right play. This is an amusing theory, but is
there any chance of it being right?

We did not think so ourselves at first, not until we devised
the exercise shown in Fig. 6, that is. Notice that the shape
of the white group in the previous exercise appears exactly
here as well, except that it is shifted to the right by a line.
This is done to allow us to create a new group that is already



permanently alive, at bottom left. The presence of this new
group means that White has a winning game going, provided
that the white group on the upper right does not die. And, lo
and behold, though the technical problem has not changed at
all, this time the same AI agent had no trouble whatsoever at
finding the right, and in this case optimal, play!

Fig. 6: AI plays optimally when in lead.

Summarizing, the same whole board thinking, driven by
the same emphasis on winrate, has caused the AI agent to
deliberately choose a suboptimal play, even though it is fully
capable of finding the optimal play under the right—that is,
winning—circumstances.

C. Avoiding Complication to Protect Winrate

It happens often that the optimality of a play is demonstrable
only after the discovery of certain complicated lines of play.
In the previous subsection, we have seen that the AI agent is
willing to abandon a simple optimal play in exchange for an
elevated winrate in an unfavorable position. We may surmise
that the winrate-driven playing style of an AlphaZero-like
playing agent may also strategically opt for a simpler line
of play to avoid complications, even if it means abandoning
optimality, when a winning game is at hand. This is indeed
the case.

(a) White to play; komi = 8.5. (b) A companion problem.

Fig. 7: A pair of endgame problems.

Unlike the “fighting” exercise in Subsection IV-A and the
“life and death” exercise in Subsection IV-B, this time we offer
an endgame exercise. Compare Fig. 7a with Fig. 7b. Black’s
and White’s main groups are all safe in both exercises, and the
focus is on finding plays that garner the maximal amount of

points in terms of territory or, which is the opposite side of the
same coin, to prevent the opponent from doing so. It is White’s
turn to play in both exercises, the komi is set at 8.5 points,
and the diagrams are rather similar. A close examination shows
that the stone marked with a triangle in Fig. 7b gives Black
a slight amount of established advantage over the situation in
Fig. 7a.

Without giving quite as many details as we have done in
the previous example, we point out that the choice is between
playing at A, a simply play that secures immediate profit,
and playing at B, a play that requires two follow-up plays to
maximize its effect. In both cases, playing at B is the optimal
play. Which line of play will our AI playing agent adopt?

(a) Simple but suboptimal. (b) Simple but suboptimal.

(c) Optimal but complicated. (d) Optimal but complicated.

Fig. 8: Optimality or simplicity?

By now the reader will not be surprised that the decision
turns out to be determined by winrate. If we compare Figs. 8a
and 8c, or similarly Figs. 8b and 8d, we see that the com-
plicated line of play are superior. However, if we compare
Figs. 8a and 8b, we discover a crucial difference: White wins
by the minimal possible margin of 0.5 point in Fig. 8a, but
loses in Fig. 8b. This decides White’s play: our agent chooses
the simple play in Fig. 8a, but the complicated line in Fig. 8d.
Rather uncanny!

To sum up, in this example we consider a pair of exer-
cises that are extremely similar, technically speaking. In each
exercise, a simple play suggests itself immediately, though a
more complicated optimal solution also exists. The AI agent
chooses the simple solution when it has a winning position,
though it does adopt the more complicated line when behind
and, furthermore, is quite capable of finding the optimal plays.



D. Strategic Play vs. Optimal Play

Our final example directly explores the relation between
global optimal play and strategic play. If we pursue the chain
of thoughts so far to its logical conclusion, the following
conjecture is almost inevitable: given that an AlphaZero-type
algorithm emphasizes winrate to a dominantly strong extent, it
may in fact impede the exhibition of a global optimal line of
play, since at some point in a self-played game, either Black
or White would realize that the game is about to be decided
with the given komi, and hence would tend to opt for a line
of play either to protect the win or to fight for a chance at a
reversal. In order to test the plausibility of such a conjecture as
explicitly as possible, we conducted an experiment as follows.

Fig. 9: Last three plays
of an optimal solution.

First, we selected a specific game
among the global optimal solutions
in Li Zhe’s article [12]. The margin
of victory by Black, without komi,
is 9 points. Next, we trained two
playing agents from scratch under
identical conditions, except that one
has a built-in komi of 9.5 points, and
the other 8.5. Finally, we gave as an
exercise the game position that is 17
plays into of the optimal solution,
which is shown in Fig. 9. In the
same diagram we have also indicated the three plays that
would lead to the conclusion of the optimal solution.

(a) White overplays with 8.5-komi. (b) Black overplays with 9.5-komi.

Fig. 10: Suboptimal overplays.

Now the two playing agents either play themselves or
against each other. Since the game is very near the end, White
perceives that it is losing if komi is set at 8.5 points, and
opts for a subnormal but aggressive play shown in Fig. 10a.
When komi is 9.5, however, White is quite content to adopt
the simple and optimal play in Fig. 9. Of course, we must
remember that an AI playing agent is not human, and words
and phrases like to “perceive”, “to opt for”, and “to be content”
are but anthropomorphized descriptors of a vector p and a
winrate v. In order to show the contrast with maximal clarity
and also the aptness of our “feeling” in using such words,
we have included the “heat maps” showing White’s “decision
making” as Figs. 11a and 11b. Likewise, in the 9.5-komi case,

(a) At play 18 with 8.5-komi. (b) At play 18 with 9.5-komi.

(c) At play 19 with 8.5-komi. (d) At play 19 with 9.5-komi.

Fig. 11: Heat maps.

Black deviates from the optimal line with its own overplay in
answer to White’s optimal play; this is shown in Fig. 10b.

Consequently, neither agent ends up producing the optimal
solution in self-play. However, when we let the 9.5-komi agent
play White against the 8.5-komi’s Black, the optimal line is
generated with near certainty. The heat maps corresponding to
Black’s game analysis are given as Figs. 11c and 11d.

These results are explicit, consistent, and unequivocal. If
its generalization to the 19 × 19 board holds true, the moral
of the story is perhaps worth a rephrasing, since it is rather
counterintuitive and hence a bit startling:

We may have never seen the best an AlphaZero-type
algorithm can perform yet, and certainly not all of its best,
because the winrate-dominated algorithm itself impedes
optimal lines of play from being realized.

V. TARGETED TRAINING

An AlphaZero-type algorithm may be born with a near
tabula rasa knowledge-wise, but we have seen in the previous
section strong indications that it is nevertheless endowed with
a “disposition” imposed by the winrate-related stipulations.
This idea is natural, but it is much more difficult to quan-
titatively investigate, because it verges on the philosophical.
Our current exploration is based on the hypothesis that, if
the winrate-driven disposition of an AlphaZero-type algorithm
should exert enough influence on the development of the
playing agent to affect its trajectory, then one should be
able to make the playing agent more “robust” by external
steering—that is, dare we say it, by human intervention. We
hasten to remark that, though it would be interesting for its



own sake, our larger goal is by no means the making of another
god-like Go playing agent. The ultimate aim should always
be advancement towards a better architecture towards more
generic artificial intelligence, and so it is for us. However,
well designed human steering, if it should prove successful in
enhancing robustness, is itself diagnostic of the areas where
the current AI design may be improved upon.

As is well known, robustness is another large but vague
word, but it at least allows the possibility of quantitative ex-
periments. Our approach is to first identify areas our AI agent
seems deficient, either in problem solving or in discovering
possible optimal lines of playing, and then insert patterns
tailored for these perceived weaknesses into the training of the
AI agent. We have called this technique targeted training; a
precise description of its meaning and implementation follows.

A. Implementation of Targeted Training

Targeted training is where puzzles or fixed openings are
included in the self-play phase in order to guide the agent
toward the “right direction”. To realize this idea, in addition
to playing against itself from the empty board, the agent also
generated self-play games that start from an arbitrary number
of openings as desired. The empty-board : opening ratio is
defined as e : o, with e + o = 1. Regarding the network
evaluation stage, there are two possible scenarios. If we target
train on a set of openings and want to improve the overall
strength of the AI, we pick e > o and still compare the current
best network and the newly trained one at the end of each
generation. If we want the agent to focus on solving one (or
few) specific puzzles, we pick e < o for targeted training and
skip the network comparison phase. We also train for a fewer
number of generations since the initial network already has a
solid amount of Go knowledge when trained traditionally.

Algorithm 1 describes the targeted training procedure in
brevity (refer to Table I for parameters).

Algorithm 1 Targeted Training

X∗ ← initialize random neural network
g ← 1
while g ≤ generations do

self-play m ∗ e games from empty board using X∗

self-play m ∗ o games from openings using X∗

train a new network X on α ∗m games
if e > o then

if X is better than X∗ then
X∗ ← X

else if e < o then
X∗ ← X

g = g + 1

B. Results

Our work in this area is still preliminary, though it appears
hopeful. We mention two experiments briefly.

In one experiment, we assembled 30 exercises and incorpo-
rated them into our targeted training agent with the e : o ratio

set to 0.6 : 0.4. Only the patterns were given in the training,
not the solutions. Afterwards, we compared its performance
in solving these exercises with another agent trained solely by
self-play. Each agent was given 20 solving trials per exercise.
The results are given in Fig. 12.

(a) Self-play-trained agent. (b) Target-trained agent.

Fig. 12: Problem solving by different agents.

The exercises are relatively easy, and both agents handled
them rather well. However, the target-trained agent does per-
form somewhat better overall, especially in the case of a few
exercises the self-trained agent finds nearly impossible.

Fig. 13: The game po-
sition used for testing.

In another experiment, we gave
the first five plays in a global op-
timal game and incorporated it into
the training of the AI agent. The AI
had previously discovered the first
five plays by itself already, and had
followed them from time to time.
The experiment simply enhanced its
frequency in effect. Afterwards, we
tested the target-trained agent and
a self-trained agent with a position
with six dictated plays, the five that
were used for training, plus one play that neither agent ever
followed. The result was interesting. Both agents discovered
lines that are optimal almost to the end—but they are two
different lines. Have we “altered the disposition” of the target-
trained AI agent? Further experiments are needed before
anything definitive can be said. The position we used for the
experiment is shown in Fig. 13.

VI. CONCLUDING REMARKS AND A FORWARD GLANCE

In this article, we have focused on the diagnostic aspects
of our experiments. We have demonstrated that the winrate
driven approach of an AlphaZero-type algorithm exerts a
strong influence that permeates all phases of game play.
Because of the fixed definition of what winning means (basic
rules of the game plus a built-in komi), this influence may
in fact discourage the global optimal solutions from being
discovered—or at least exhibited—since the AI agent may
deviate from optimal plays deliberately once it perceives the
game position as being either favorable or unfavorable. On
the other hand, we have also shown, convincingly we hope,
that the AI agent is oftentimes quite capable of producing



the optimal sequence if the conditions are right. In this sense
an AlphaZero-type algorithm may produce an agent rather
resembling an oracle: we often fail to get the right answers
because it is hard to ask the right questions. This, then, is the
paradox and enigma of AlphaZero. If this phenomenon has not
been observed hitherto, it must be due to the fact that human
playing strength has lagged behind that of the AI by too wide
a margin.

We have anthropomorphized too much in an effort to avoid
stilted language. One should always keep in mind that the
AI algorithm does not think, or, at least, it does not “think”
in the same manner we do. Nevertheless, it is perhaps not
categorically incorrect for us to believe that, if the AI agent
can play at superhuman level, the analysis of its neural network
may involve sequences of play that are closer to optimal
than humans have been able to produce by themselves. From
this point of view, optimal plays and their approximations
are of foundational importance for better understanding deep
machine learning—they are more tangible than what one can
garner, for example, from the AI algorithm’s analysis of image
recognition. AlphaZero is not explainable AI, but it leaves
footprints, so to speak. Our interest in the search of optimal
solutions either globally or locally, and, in fact, our interest in
Go, ultimately lies therein.

In fact, the experiments and examples discussed here are
part of an on-going project with a wider scope. Generally
speaking, for example, we are interested in a more detailed
analysis of the cognitive process of an AlphaZero-type al-
gorithm. In working with a smaller-scale, “slowed down”
algorithm, we hope to find a means to compare this process
with the learning process of a “typical human”, so to say. Tar-
geted evaluation is systematically employed in this endeavor
as we follow the progress of our playing agent through the
generations of its training phase.

Another aspect of our project is the search for global
optimal solutions. Here the issue is quite complex, since
optimal sequences of play (local or global) may not be unique.
Targeted training, which has been described here, though not
in detail, is especially relevant in such cases. As we have
explained, our oracle-like playing agent is not expected to
voluntarily display all the possible lines considered by the
network, but well-chosen dictated plays may bring out useful,
perhaps even critical, information. Since the global optimal
solutions can already be considered known on the 7×7 board,
it is our hope that testing our methodology in that setting
first will yield insight for a protocol for such an endeavor
on larger boards. It is to be expected, of course, that the
specific obstacles encountered by our particular AI agent may
be easily overcome with the use of a more powerful computer.
However, as we enlarge the size of the board, problems that
the computer cannot immediately resolve will surely arise,
regardless of the machine we use; a moment of reflection
in terms of combinatorics will convince us of that. The real
challenge, in fact, is to choose such targets judiciously so as
to keep the amount of targeted training down to a manageable
size. We hope to be able to report on these aspects of our

experiment on another occasion.
Although we have chosen to present just one set of examples

in this article in the interest of ensuring clarity and a sharp
focus, we believe that our insight is already relevant, and our
project shares with the other researchers on the AlphaZero-
type algorithms the larger goal of better comprehending
and utilizing deep machine learning through this remarkable
advance in artificial intelligence. It is our hope that our
approach will stimulate further research on the general subject,
especially in hitherto less explored directions.
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