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A B S T R A C T   

This paper proposes a model for parameter estimation of Vanadium Redox Flow Battery based on both the 
electrochemical model and the Equivalent Circuit Model. The equivalent circuit elements are found by a newly 
proposed optimization to minimized the error between the Thevenin and KVL-based impedance of the equivalent 
circuit. In contrast to most previously proposed circuit models, which are only introduced for constant current 
charging, the proposed method is applicable for all charging procedures, i.e., constant current, constant voltage, 
and constant current-constant voltage charging procedures. The proposed model is verified on a nine-cell VRFB 
stack by a sample constant current-constant voltage charging. As observed, in constant current charging mode, 
the terminal voltage model matches the measured data closely with low deviation; however, the terminal voltage 
model shows discrepancies with the measured data of VRFB in constant voltage charging. To improve the 
proposed circuit model’s discrepancies in constant voltage mode, two Kalman filters, i.e., hybrid extended 
Kalman filter and particle filter estimation algorithms, are used in this study. The results show the accuracy of the 
proposed equivalent with an average deviation of 0.88% for terminal voltage model estimation by the extended 
KF-based method and the average deviation of 0.79% for the particle filter-based estimation method, while the 
initial equivalent circuit has an error of 7.21%. Further, the proposed procedure extended to estimate the state of 
charge of the battery. The results show an average deviation of 4.2% in estimating the battery state of charge 
using the PF method and 4.4% using the hybrid extended KF method, while the electrochemical SoC estimation 
method is taken as the reference. These two Kalman Filter based methods are more accurate compared to the 
average deviation of state of charge using the Coulomb counting method, which is 7.4%.   

1. Introduction 

Redox flow batteries (RFBs) are becoming an emerging type of bat
teries among battery energy storage systems (BESSs), which are used in 
both standalone or in hybrid systems with Renewable Energy Sources 
(RES). There are several possible applications for the RFBs in both off- 
grid (residential or commercial) and grid-tied applications. Among 
RFBs, Vanadium Redox Flow Batteries (VRFBs) are the most commer
cialized type of RFBs for large-scale battery applications and in a hybrid 
system with other types of RESs. This is because of the benefits of the 
VRFB system, like long cycle life, environmentally friendly chemistry, 
non-cross-contamination, and the scalability of VRFB, which means 
adjustable capacity only by varying the volume of electrolyte. 

Some previous research studies make VRFBs more feasible and viable 
to be used in different BESS applications. These research studies on 
VRFB can be categorized into the battery stack design [1–3], 

modifications to the electrode [4–6], and electrolyte type [7–9]. 
Increasing the performance of VRFB systems relies on accurate modeling 
of VRFBs. The State of Charge (SoC) of the VRFB is more accurate when 
formulated in relation to Vanadium ion concentrations using the elec
trochemical model. This is because, in VRFB systems, the electric charge 
stores in the reservoir tank’s electrolyte. In this paper, a new first-order 
Equivalent Circuit Model (ECM) is proposed for VRFBs which is com
bined with the electrochemical model of VRFBs. Moreover, the Nernst 
equation-based terminal voltage estimation is not accurate for VRFBs 
since it is originally introduced for fuel cells, not for VRFBs [10,11]. The 
equation needs some modifications to be accurate of VRFBs. According 
to our study results, the Nernst equation-based terminal voltage model 
shows discrepancies with our nine-cell VRFB stack experimental data. 
An accurate model for the terminal voltage of the VRFB stack can lead to 
a more accurate formulation for energy and power equations of VRFBs. 
Energy and power equations are essential for optimal charging and flow 
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management of VRFBs during charging and discharging, which leads to 
a more efficient operation of VRFBs. 

The electrochemical models of the VRFB [12–14] are based on the 
law of conservation of mass and Vanadium ion concentrations. Decou
pled electrical and chemical models [15,16] of the VRFB system impose 
limitations on the resulting models to accurately depict its behavior 
under closed-loop operations. Therefore both of electrical and chemical 
models should be considered to model the battery behavior more 
accurately. 

Some research studies so far consider the ECM models for batteries, 
including the VRFBs [15–19]. However, some of these models did not 
include all battery parameters like battery terminal voltage, SoC, and 
battery discharge capacity. Also, most previous ECMs for VRFBs were 
proposed for Constant Current (CC) charging mode and are not appli
cable for the Constant Current-Constant Voltage (CCCV) or Constant 
Voltage (CV) charging procedures. The CCCV charging method is 
currently using in many off-grid and grid-tied applications. Therefore, it 
is crucial to study the ECM behavior for the CCCV charging too, which is 
one of the concerns of this study. The CC charging procedure is not a safe 
charging procedure compared to the CCCV charging. 

A Resistance-Capacitance (RC) equivalent model of VRFB is pro
posed in [15,16], where the open circuit cell potential and SoC for 
charge/discharge experiments were measured by extended Kalman filter 
approach, and the model was proposed for terminal voltages at different 
SoC. But the models were not expanded to estimate other parameters 
like the SoC or battery capacity. 

A basic ECM of VRFB is proposed in [17,18] with a voltage source 
that represents the stack voltage, a controlled current source, and a fixed 
loss resistance representing parasitic losses, reaction resistance, and 
electrode capacitors. However, it lacks validation of the proposed 
models. Additionally, in [17,18], the SoC is modeled based on the 
Coulomb counting method. The Coulomb counting method’s accuracy 
relies on the correct estimation of battery available capacity in each 
charge and discharge cycle. However, in the long-term use of VRFBs, the 
available capacity decreases due to ion diffusions across the membrane 
and the depletion of active materials, a phenomenon known as capacity 
fading. Therefore, it’s more accurate to model VRFB SoC irrespective of 
its available capacity. 

An ECM was proposed in [19] for VRFB with a voltage source rep
resenting the stack voltage and a controlled current source. However, 
the drawback of the proposed ECM is that the parameter identification 
process is based on estimated values of the battery, and validation of the 
model is not provided. Additionally, the proposed model did not take 
account of chemical variation effects on the estimations (the dynamics 
of the concentration of vanadium ions). A battery model is proposed in 
[20] as a voltage source in series with internal resistance, but the circuit 
elements identification method didn’t explain clearly. 

Some other ECMs are introduced for different types of batteries like 
Li-ion, for e.g., composite equivalent circuit models [21]. In [21] the 
battery is modeled by composite equivalent modeling, and its parame
ters are identified effectively by investigating the hybrid power pulse 
test. In the composite equivalent model, parallel reverse diodes are 
employed in the equivalent model to characterize the resistance differ
ence in charging and discharging conditions. 

A common procedure for parameter extraction for the VRFB circuit 
models is electrode overpotentials by electrochemical impedance spec
troscopy (EIS), as stated in [22]. The capacitance and resistance in RC 
models are estimated by measurements under a wide range of fre
quencies. However, EIS is only applicable to a single cell measurement, 
and for the large battery stacks, some complement procedures need to 
apply. Therefore, in this paper, an optimization-based method is 
employed to identify the ECM’s elements, which accurately estimates 
the circuit elements, as shown in this study’s results section. 

Adaptive Filtering methods apply filtering algorithms and modern 
control theory to reduce the noise of estimated parameters [23–29]. 
Kalman Filters (KFs) are proven common algorithms that are used in the 

estimation of systems parameters. In [23,24], an improved EKF for SoC 
estimation of VRFBs is proposed, and the state-space model is based on 
the ECM of the battery. But, the electrochemical dynamics of the battery 
like concentrations of Vanadium ions are ignored. In [25–27], the Un
scented Kalman Filter (UKF) is used for the estimation of the Li-ion 
battery parameters. Besides commonly used KFs (EKF and UKF), other 
estimation methods like Particle Filters (PF) [28,29] are commonly used 
for modeling highly nonlinear systems. 

It is common to modify the KF algorithms for improving the accuracy 
of estimation of internal battery parameters. For example, in [21] an 
improved iterate calculation method is proposed to improve the charged 
state prediction accuracy of the lithium-ion battery packs by introducing 
a novel splice Kalman filtering algorithm with robust adaptive 
performance. 

In most of the previously published papers [16–20,23–27], only a 
Constant Current (CC) charging procedure was used to test the ECM of 
different types of batteries. It will be shown in the current study that 
although the proposed ECM for the VRFB, models the terminal voltage 
precisely in CC charging, the proposed ECM can not estimate the ter
minal voltage accurately in CV charging mode. Therefore, Hybrid 
Extended Kalman Filter (HEKF) and Particle Filter (PF) algorithms are 
employed with some modifications to make the proposed ECM appli
cable for CV charging mode too. 

Moreover, an accurate SoC estimation is essential for a battery to 
ensure its safe operation and prevent it from over-charging or over- 
discharging [30]. For verifying the consistency of the estimated SoC 
with HEKF and PF algorithms, the proposed methods will be compared 
with the electrochemical model and the Coulomb counting estimation 
method as references. 

The paper is organized as follows: Section 2 describes the electro
chemical model of the VRFB system and the proposed ECM for VRFB. 
This section also includes the expressions used in this study for the SoC 
estimation and battery capacity estimation of the VRFB. This section 
follows by describing the flow chart of the proposed VRFB parameter 
estimation procedure and the introduction of HEKF and PF estimation 
algorithms, which are used for battery parameter estimation in this 
study. In Section 3, the data of a nine-cell VRFB, i.e., the electrolyte 
temperature, the electrolyte flow rate, and charging current, are applied 
as inputs of the battery model, and the proposed ECM is tested by a 
sample CCCV charging. Further, the HEKF and PF-based estimation 
methods are used to solve the discrepancy of the ECM with the experi
mental data of the nine-cell VRFB in CV charging mode. Finally, the SoC 
and available capacity of the VRFB stack are compared to the Coulomb 
counting and electrochemical model-based methods. Section 4 con
cludes the paper. 

2. The proposed estimation approach for VRFB parameters 

In Section 2.1, the Ordinary Differential Equations (ODEs) of the 
electrochemical model of the VRFBs are introduced. In Section 2.2 of 
this section, the ECM for VRFB is proposed, and further, the 
optimization-based circuit elements parameter identification is 
introduced. 

In Section 2.3, the HEKF and PF algorithms for VRFB parameter 
estimation are introduced. Finally, in Section 2.4, the expression for 
estimation of the SoC and available capacity of the battery used in this 
study are expressed. 

2.1. The electrochemical model of VRFB 

The electrochemical model of the VRFB is proposed in this subsec
tion. The chemical reactions in VRFB are expressed in equation (1) [31]: 

VO2+ + H2O→VO+
2 + 2H+ + e− E0 = +1.0 V (1a)  

V3+ + e−→V2+ E0 = −0.26 V (1b) 
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In which V stands for Vanadium, e is the electron released from the 
reaction, and E0 is the standard potential of each positive and negative 
reactions. The total reaction creates 1.26 Volts which is known as 
standard Open-Circuit Voltage (OCV) [31]. The Partial Differential 
Equations (PDE) of VRFB can be reduced to ODEs by discretizing the 
VRFB cell. The ODEs of the electrochemical model of VRFB are 
expressed as follows [31]: 
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The concentrations of Vanadium ions in tanks derive from: 
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In equations (2,3) Wpe, Lpe and Hpe are the length, the width and the 
height of the porous electrode. K2

D , K3
D , K4

D , and K5
D are diffusion coefficients 

of V2+, V3+, VO2+, and VO+
2 ions across the membrane, respectively. F is 

Faraday constant, M is the number of cells in the battery stack, Q is the 
electrolyte flow rate, U−

tank, U+
tank are negative and positive tank’s volume 

and c2, c3, c4, and c5 are the Vanadium (II),(III),(IV), and (V) concen
trations, which are shown for cells and tanks with the corresponding 
superscripts, constituting all the eight states of the state-space model of 
the VRFB. 

The SoC of the VRFB is estimable using Eqs. (4)–(6) considering SOC 
of both half-cells calculated based on the concentrations of Vanadium 
ions present in each electrolyte reservoir during the charge and 
discharge processes: 

SoC− =
ctank

2

ctank
2 + ctank

3
(4)  

SoC+ =
ctank

5

ctank
4 + ctank

5
(5) 

Where the Vanadium ion concentrations values are the solution of 
the VRFB’s ODEs (equations 2 and 3). The overall SoC of the VRFB 
system is the average of SOC−and SOC+ as expressed in Eq. (6): 

SoC =
SOC− + SOC+

2
(6) 

Eq. (6) is called the electrochemical method for SoC estimation. 

2.2. The proposed ECM for VRFBs and the method for identification of 
ECM’s elements 

Fig. 1 shows a first-order Resistive-Capacitive (RC) ECM for VRFB. 
Although higher order of ECMs with more RC parallel elements can add 
to the accuracy of the ECM, it comes with more complexity and more 
computation-time for the model. Thus, the first-order ECM is used in this 
study. 

In Fig. 1, the Rs is the series resistant, R1 is the parallel resistance, and 
C1 is the parallel capacitance of the first-order ECM. 

For a parallel RC impedance, the KCL can be written as: 

Ci
dV1

dt
+

V1

Ri
= I (7) 

In which V1 is the voltage across each of RC parallel impedances, and 
I is the battery current. 

The discrete form of the voltage of each parallel RC impedance can 
be written as [24]: 

Vi(k) = exp
(

−
Δt

RiCi

)

Vi(k − 1)

[

1 − exp
(

−
Δt

RiCi

)]

RiI(k − 1) (8) 

Where k is discrete-time instances, and Δt is time intervals. 
In the first-order RC model, the battery terminal voltage is as follows 

in charging mode: 

VT = M.Voc + V1 + RsI (9) 

Where M is the number of cells, and V1 is the voltage across the 
parallel RC impedance, which is determined by Eq. (8). In this research 
study, the equations are formulated in charging mode; however, the 
proposed method is applicable for discharging mode too. In discharging 
mode, the signs of V1 and I are negative. 

Fig. (2) shows the flowchart of the proposed procedure to estimate 
the parameters of VRFBs in this study. 

In Eq. (9), the open-circuit voltage, Voc can be estimated and be 
replaced from the results of the electrochemical model as expressed in 
Eq. (10): 

Voc = M
[

E0 +
2RT
nF

Ln
(

Ccell
2 (CH+ )

2

Ccell
3

)]

(10) 

Where ccell
2 and ccell

3 are Vanadium II and III concentrations of cells, and 
cH+ is concentration of Hydrogen in the electrolyte solution. E0 is stan
dard cell potential equal to 1.4 Volts for SoC of 50% [28], n is the 
number of electrons transferred in the cell reaction, R is gas constant, T 
is the electrolyte temperature in Kelvin. In the current study, an 
optimization-based method is used for determining the values of circuit 
elements of the first-order ECM (Rs, R1, and C1), as follows. 

The Thevenin impedance of the first-order ECM is as follows: 

Fig. 1. first-order RC ECM for VRFBs.  
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Z(jω) = Rs +

R1

(
1

jωC1

)

R1 +

(
1

jωC1

) (11) 

On the other hand, the Thevenin equivalent impedances considering 
KVL is expressed in Eq. (12): 

Zth(jω) = Avg((VT − MVoc) / I) (12) 

Where Avg is the average of the Thevenin impedances on all sample 
data. The circuit elements Rs, R1, and C1 can be estimated by minimizing 
the error between the two impedances i.e., Eqs. (11) and (12) as shown 
in equation (13): 

Minimize Zth(jω) − Z(jω) (13a)  

Subjected to Rs, R1, and C1 > 0 (13b) 

The constraints of the above optimization express that the series and 
parallel RC circuit elements are positive. In Eq. (12), Zth(jω) is assumed 
as the average (Avg) of the Thevenin impedance for each sample. For 
each discrete sample time (k), there are corresponding circuit elements 
[Rs(k), R1(k), and C1(k)]. However, unique values for circuit elements 
are needed to preset before using the battery model for simulations. 
Therefore, the average value of the samples is considered in the current 
study. Eq. (12) shows that the Thevenin impedance is a function of the 
charging current (I). 

Based on experimental results, it will be shown that although the 
proposed optimization-based model is accurate in CC charging, it is not 
so in CV charging mode where the charging current varies. Hence, two 
adaptive Kalman filters (HEKF, and PF) are applied to the ECM to solve 
the propseod model’s discrepancies with the experimental data of the 
VRFB in CV charging mode. 

2.3. The proposed adaptive Kalman Filter algorithms for the ECM of 
VRFBs 

To solve the inconsistency of the proposed ECM in CV charging 
mode, two nonlinear Kalman Filters (KFs) are employed in this study to 
estimate the parameters of VRFBs. The other benefit of using the KFs is 
decreasing the estimation noise of the battery parameters. The VRFB 
parameters are estimated, considering the ECM state-space system using 
equation (14). The state-space model of the first-order ECM in charging 
mode can be expressed as equation (14): 

dV1

dt
= −

V1

R1C1
+

I
C1

(14a)  

VT = MVoc + V1 + RsI (14b) 

Where V1 is the state variable, I is the battery current (input of the 
system), and VT is the battery terminal voltage (output of the system). 
Note that the open-circuit voltage (Voc) in equation 14 should be 
replaced from Eq. (10), which is resulted from the VRFB electrochemical 
model, i.e., equation 2,3). 

2.3.1. Hybrid Extended Kalman Filter (HEKF) 
Most of the real engineering systems can be identified by continuous- 

time dynamics, however, the output measurements are sometimes in 
discrete form. For these kinds of systems, the hybrid form of EKF, 
namely HEKF, is suitable [29]. By using HEKF, there is no need to dis
cretize the continuous-time system to adapt to the conventional EKF, 
which results in simpler mathematical modeling and less 
computation-time. 

EKF algorithm is common for nonlinear systems in literature because 
of the ease of modeling compared to other methods like the PF 

Fig. 2. The proposed unified VRFB Electrochemical ECM-based model flowchart.  
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algorithm. However, the other reason why HEKF is used in this paper is 
that the system definition is simply modifiable in the HEKF algorithm. 
Thus, the HEKF is chosen in this study because there are essential 
changes to the proposed ECM to be applicable for the CV charging mode 
too. 

On the other hand, the PF algorithm is another suitable estimation 
algorithm that is commonly used for highly nonlinear systems. However, 
the PF algorithm is independent of the system model; therefore, the 
system definition is not modifiable in contrast to the EKF and HEFK 
algorithms. Both the HEKF and PF estimation algorithms are used in this 
study to estimate the VRFB parameters, and the two estimation 
methods’ efficiency in the estimation of the terminal voltage and the SoC 
of the VRFBs are compared. 

The system equations with continuous-time dynamics and discrete- 
time measurements are described in equation (15): 

ẋ = f (x, u, w, t) (15a)  

yk = hk(xk, vk) (15b)  

w(t) ∼ (0, Q) (15c)  

vk ∼ (0, Rk) (15d) 

Where x: [V1] is the state variable vector, u: [I] is input, yk : [VT ] is 
considered as output. w,vk are process and white noise from measure
ment has covariance of Q and Rk respectively. The HEKF algorithm is 
described in the following section: 

2.3.1.1. Initialize the filter as Eq. (16). . 

x̂+

0 = E[x0]

P+
0 = E

[(

x0 − x̂+

0

) (

x0 − x̂+

0

)T ] (16)  

2.3.1.2. For k=1, 2, … perform the following. . 
2.3.1.2.1. Integrate the state estimate and its covariance from time 

(k − 1)
+to time k−as described in equation (17). . 

˙̂x = f (x̂, u, 0, t) (17a)  

Ṗ = AP + PT + LQLT (17b) 

Where P is the estimation covariance matrix, T denotes the transpose 
of matrices, Q is the process covariance, and L is Jacobian Matrix. This 
integration begins with x̂ = x̂+

k−1 and P = P+
k−1. At the end of this inte

gration x̂ = x̂−

k and P = P−
k . R is not included in the equation for Ṗ 

because during the integration of P between actual measurement times, 
its value is not updated. 

2.3.1.2.2. At the kth sampling instance, the gain, the posteriori, and 
estimation covariance are as equation (18). . 

Kk = P−
k HT

k

(
HkP−

k HT
k + MkRdMT

k

)−1 (18a)  

x+
k = x̂−

k + Kk

(

yk − hk

(

x̂−

k , 0, tk

))

(18b)  

P+
k = (I − KkHk)P−

k (I − KkHk)
T

+ KkMkRkMT
k KT

k (18c) 

Hk and Mk are the partial derivatives of hk(xk, vk) with respect to xk 

and vk and are both evaluated at x̂−

k . 

2.3.2. Particle filter (PF) 
The PF algorithm is also recognized by some other names like 

bootstrap filtering [32]. The PF algorithm is as follows: 

2.3.2.1. First, if the system is continuous, it should be discretized. . 

xk+1 = fk(xk, ωk) (19a)  

yk = hk(xk, vk) (19b) 

Where ωk and vk are independent white noise processes with known 
pdf, which is a probability distribution (the likelihood of an outcome) 
for a discrete random variable. 

2.3.2.2. Generate random N particle (x+
0,i). . 

2.3.2.3. For k=1, 2, the following method is followed. . 
2.3.2.3.1. Propagation to obtain a priori particles (x−

k,i). . 

x−
k,i = fk−1

(
x+

k−1,i, ωk−1,i

)
(i = 1, …, N) (20)  

2.3.2.3.2. Calculate the likelihood qi for each particle by evaluating the 

pdf p(yk

⃒
⃒
⃒x−

k,i) on the nonlinear measurement equation. . 

2.3.2.3.3. Scale the relative likelihood in the previous part. . 

qi =
qi

∑N
j=1qj

(21) 

Where the sum of all the likelihoods is equal to 1. 
2.3.2.3.4. Resampling step: Generate a set of a posteriori particles (x+

k,i) 
based on the relative likelihood qi. . 

2.3.2.3.5. Having all sets of particles (x+
k,i) according to the pdf 

p(xk
⃒
⃒yk), one can calculate any statistical measure of this pdf, for example, 

the mean and the covariance. . 

2.4. The estimation of SoC and available capacity of VRFBs 

The proposed ECM method in Section 2.2 can be used to estimate the 
SoC and available capacity of VRFBs. The conventional mapping method 
to find the SoC based on the Open-Circuit Voltage (OCV) is not an ac
curate method because it accompanies with some errors due to inter
rupting the battery’s charging or discharging to measure OCV. It also 
mentioned that while the charge accumulates in the electrolyte of 
reservoir tanks, It is more accurate to estimate the SoC of VRFBs 
considering the Vanadium ions concentrations. 

Further, the proposed ECM method using the HEKF and PF algo
rithms (ECM-HEKF and ECM-PF methods) is employed to estimate SoC 
and battery available capacity. Eq. (9) can be used to estimate the OCV 
of a cell based on the proposed ECM as follows in charging mode: 

V̂oc =
(

V̂T − V̂1 − R̂sI
)/

M (22) 

Where V̂1 is the estimated voltage of RC parallel impedance, and V̂T 

is estimated value of terminal voltage, and R̂s is the optimal series 
resistance resulted from the optimization equation 13. The charging 
current (I) is constant in CC charging mode while it varies in CV 
charging, which will be defined further by Eq. (27) for CV charging 
mode. In discharging mode, however, the estimated OCV (V̂oc ) of a cell 
is: 

V̂oc =
(

VT + V̂1 + R̂sI
)

/M (23) 

Knowing the estimated value of open-circuit voltage V̂oc by Eqs. (22) 
and (23), the SoC of the VRFB can be estimated by the modified Nernst 
equation, assuming that all the vanadium species are fully balanced in 
the VRFB system as Eq. (24): 

ŜoC =

exp
[

nF
2RT

(
V̂oc − 1.4

)]

1 + exp
[

nF
2RT

(
V̂oc − 1.4

)] (24) 
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The available capacity of the VRFB can be derived from the results of 
SoC estimation, as expressed in Eq. (25): 

Available Capacity =

∫
I(t)dt

[
ŜoC(K) − ŜoC(K − 1)

] (25) 

In Eq. 25, the SoC estimated value (ŜoC) is derived from the proposed 
ECM and not the Coulomb counting method. Then the SoC will be 
estimated by the proposed ECM-HEKF or ECM-PF method, the resulting 
estimated value (ŜoC) can be used to estimate the available capacity of 
VRFBs according to Eq. 25. 

3. Verification of the proposed estimation method for VRFB’s 
parameter using the experimental data of a VRFB stack 

In this section, the ECM reliability is verified by a nine-cell VRFB. 
The VRFB prototype system setup is shown in Fig (3). The setup consists 
of positive and negative side reservoir tanks with an equal amount of 
electrolyte, which is a solution of Vanadium and sulfuric acid. Two 
pumps are used for electrolyte circulation to the battery stack and back 
to reservoir tanks. Two temperature sensors, two flow rate sensors, two 
pressure sensors, a DC current sensor, and a voltage sensor are used for 
monitoring of the VRFB system. For electrolyte flow rate control, a 
Battery Management System (BMS) controls the speed of the pumps, and 
hence the flow rate of electrolytes using two Variable Frequency Drives 
(VFDs) controlled digitally. 

In Section 3.1, the results of the ODEs (equations 2 and 3) describing 
VRFB’s electrochemical behavior for the nine-cell VRFB stack are pro
vided. In Section 3.2 of this section, the proposed ECM for VRFB is 
verified compared to the experimentally measured data of the nine-cell 
VRFB stack. The estimation algorithms, HEKF and PF, which are intro
duced in Section 2, are used to solve the experimental data’s discrep
ancies with the proposed ECM in CV charging mode. In Section 3.3, the 
HEKF based and PF-based ECM methods are used to estimate SoC and 
battery capacity, and the results are compared to the Coulomb counting 
and electrochemical model-based method. 

3.1. The results of ODEs of VRFB electrochemical model 

In Table 1, the parameters used in the proposed VRFB electro
chemical model are shown. Table 2 shows the error of the sensors (from 
the datasheets), which are used in the battery experiments. 

A sample CCCV charging data is used for verification of the proposed 
estimation methods, as shown in Fig. 4. According to Fig. 4, the first 
stage is constant current charging, but the current profile is not 
completely smooth, and it has some fluctuation which is because of the 
DC current sensor error. In the first stage of CCCV charging, the battery 

charges with constant current (bulk charging) until the voltage level 
reaches the preset value of voltage (1.7 Volts per cell in this study). The 
charging process will continue with Constant Voltage (CV) in the second 
stage. 

The VRFB stack under test has porous graphite felts as positive and 
negative electrodes, and the membrane is a commercial membrane 
"VANADion". The dimension of porous electrodes is 40 × 25 × .3 (cm) 
each. 

The resulted Vanadium II, III ions concentrations (mol/liter), which 
are the solution of ODEs in equations (2,3) are shown in Fig. 5 (a,b). 

The graphs of all the VRFB system states are not shown because the Fig 3. The nine-cell VRFB setup used for data acquisition and verification 
of results. 

Table 1 
The parameters in the proposed VRFB model.  

Symbol Quantity Value 

P Rated power 2.25 (kW) 
in  Nominal current density 58 (mA cm−2)

M No. of cells in the stack 9 
Utank  Volume of tank electrolyte 25 (gallons) 
Lpe  Length of porous electrode 0.4 (m) 
Wpe  Width of porous electrode 0.25 (m) 
Hpe  Height of porous electrode 0.003 (m) 

rcell  Cell internal resistivity 2 (Ωcm2)  

F Faraday constant 96485 (Cmol−1)  
R Gas constant 8.314 (J mol−1K−1)

(
K2

D
)

Diffusion coefficient of V(II) 3.17e-6 (cms−1)

(
K3

D
)

Diffusion coefficient of V(III) 0.72e-6 (cms−1)

(
K4

D
)  Diffusion coefficient of V(IV) 2e-6 (cms−1)

(
K5

D
)  Diffusion coefficient of V(V) 1.25e-6 (cms−1)

ρel  Electrolyte density 1354 (kg.m−3)  
η  Electrolyte viscosity 4.928e-3 (Pa.s) 
dfb  Electrode fiber diameter 17.6e-4 (cm) 
ϵ  Electrode porosity 0.93  

Table 2 
Error of Sensors used in VRFB experiments.  

Sensor error 

Electrolyte Flow rate ±2% of measured value 
Electrolyte Temperature 2.5 (oK)  
DC Voltage ±1% of measured value 
DC Current ±2% of measured value  

Fig. 4. The sample CCCV charging current profile used for verification of the 
proposed estimation method. 
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graphs of the other six states of the VRFB state-space system are almost 
the same as these two states, which are shown in Fig. 5 (a, b). 

3.2. Verification of the proposed ECM using the nine-cell VRFB’s terminal 
voltage 

The ECM for VRFB is proposed in Section 2. It is compared with the 
measured experimental data of the nine-cell VRFB unit in this subsection 
for verifying the proposed model. The result of the comparison is shown 
in Fig. 6. The optimal values of the ECM elements have resulted from 
equation 13, and are shown in Table 3 as follows 

Fig. 6 shows the comparison of the ECM-based terminal voltage 
model with the nine-cell VRFB unit’s experimental data. As shown in 
Fig. 6, the battery terminal voltage resulted from the ECM is accurate 
enough in CC charging (left side of Fig. 6), but it is not accurate in CV 

charging (right side of Fig. 6). This inaccuracy is because the method 
used for parameter identification based on the average of Thevenin 
equivalence impedances (proposed in Section 2) does not hold well in 
CV charging mode. 

As mentioned, the charging current is variable in CV mode, so the 
ECM loses accuracy in this mode. Therefore, to address the mentioned 
inaccuracy problem, a recursive function is proposed for the HEKF al
gorithm in CV mode to model charging current reduction in this mode, 
which reduces the discrepancies of the model with the experimental 
data in CV mode. 

In CV mode, the terminal voltage is constant: 

VT (k) = VT (k − 1) (26) 

In the CV charging mode, the charging current reduces recursively to 
keep the terminal voltage constant. Using equation 14, the charging 
current can be updated recursively as: 

I(k) = I(k − 1) (27)  

− [MVoc(k) − MVoc(k − 1) + V1(k) − V1(k − 1)]/Rs 

Where Voc(k) is assumed a single cell open-circuit voltage. This 
change to the ECM in CV mode is applied by modifying HEKF’s algo
rithms. For the HEKF-based estimations, it is possible to apply necessary 
changes to the system model by modifying the HEKF algorithm. How
ever, this is not possible for the ECM-PF-based model because the PF 
algorithm is independent of the system model, and it is not possible to 
apply any change to the system by modifying the PF algorithm. There
fore, another solution is considered for PF based estimation in this study 
considering the fact that the voltage is constant in CV charging mode (as 
Eq. (26)). 

Fig. 7 shows the resulting terminal voltage model by ECM, ECM- 
HEKF, and ECM-PF algorithms compared to the measured experi
mental data of the nine-cell VRFB unit. 

According to Fig. 7, Although the ECM-based terminal voltage 
models closely match the experimental data in CC charging (left side of 
Fig. 7), the ECM-based estimation is not accurate in CV charging (right 
side of Fig. 7). On the other hand, assigning the recursive function to the 
ECM-HEKF and applying the mentioned condition to the ECM-PF algo
rithm consistently improved the proposed ECM inaccuracy in the CV 

Fig. 5. (a) Vanadium II concentrations, (b) Vanadium III concentrations, 
resulted from ODEs (Eqs. 2 and 3). 

Fig. 6. verification of ECM-based VRFB terminal voltage of the nine-cell 
VRFB stack. 

Table 3 
Optimal ECM elements for the nine-cell VRFB unit.  

Series Resistance Parallel Resistance Parallel Capacitance 

0.0406 Ω  30.86 Ω  1.09e+5 F  

Fig. 7. Comparison of estimated terminal voltage by different methods with 
experimental data of the nine-cell VRFB stack. 
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mode. 
As a result, the proposed ECM-HEKF- and ECM-PF-based terminal 

voltage model closely matches the nine-cell VRFB unit’s experimental 
data in both CC and CV charging modes. The remaining deviation in the 
estimated values is mainly because of sensor measurement errors used in 
VRFB’s experiments and inherent error in VRFB ODE-base electro
chemical model, which cannot completely fit the experimentally 
measured data. As mentioned, the difference between the HEKF and PF 
algorithms is that in the HEKF algorithm, it is possible to make changes 
to the algorithm directly to adapt it for any kind of battery charging like 
the CV mode. However, the PF algorithm is independent of the system 
model, and it is not possible to adapt it directly. This can be concluded as 
an advantage for the HEKF algorithm regarding its modifiable algo
rithm. The average deviation of each method in estimating the terminal 
voltage of the nine-cell VRBF is shown in Table 4. 

Table 4 shows that both of the HEKF and PF-based methods signifi
cantly improve the accuracy of the estimated terminal voltage of the 
nine-cell VRFB in a sample CCCV charging. 

3.3. The use of proposed KF methods in estimation of the SoC and 
available capacity of VRFBs 

According to improvements by HEKF and PF methods to the initially 
proposed ECM, and the reliability of the estimation for the VRFB’s ter
minal voltage, these KF methods are extended to estimate other pa
rameters of VRFBs like the SoC and the available capacity of the nine- 
cell VRFB unit. 

The estimated SoC by these KF methods are compared with the 
Coulomb counting and the electrochemical ODE-base method as the 
reference in Fig. 8. The electrochemical-based SoC estimation algorithm 
is more time-consuming and it has more burden of mathematical 
modeling than the ECM approaches. However, the electrochemical 
model is used as reference and compared with the other estimation 
methods in this study, because it is proven as one of the most accurate 
methods for SoC estimation of the redox flow batteries. 

As Fig. 8 shows, the result of estimated SoC with initially proposed 
ECM is not accurate in CV charging mode. However, according to Fig. 8, 
the SoC of VRFB estimated by the proposed ECM-HEKF and ECM-PF 
methods are accurate in both CC and CV charging modes with low de
viations. The remaining deviation is acceptable, considering inevitable 
errors of sensors and the fact that the dynamic electrochemical model 
does not fit completely to the experimental data. 

Commonly computational complexities involved with PF-based es
timations are known to be one of the major constraints to their wide
spread use. On the other hand, EKF-based estimations are easier to 
define, but sometimes PF has better estimations for highly nonlinear 
systems. Table 5 shows the average deviations of each method to esti
mate the SoC of the VRFB under test. 

According to Table (4,5), the estimations of terminal voltage and SoC 
of VRFBs by the ECM-HEKF and ECM-PF algorithms are more accurate 
than other methods since these algorithms are modified (improved) in 
CV mode leading to enhancement of estimations. The remaining devi
ation of HEKF and PF based methods are mainly because of sensor 
measurement errors used in VRFB’s experimental setup and the inherent 
error in VRFB’s ODE-based electrochemical model to fit the experi
mental data, and that the average of optimal equivalent circuit elements 
is used in this study. 

Therefore, the ECM-HEKF and ECM-PF algorithms are expanded to 

estimate the available capacity of the nine-cell VRFB by Eq. (25). The 
resulting available capacity of nine-cells VRFB is estimated as about 2.05 
kWh, assuming tanks containing 25 gallons of electrolyte each. How
ever, VRFB’s available energy depends on the volume of the electrolyte 
in the reservoir tanks, which considers as RBF’s benefit in which power 
and energy sizing are decoupled. As mentioned, in the long-term use of 
VRFBs, the available capacity reduces due to ion diffusions across the 
membrane and the depletion of active materials (capacity fading). 

The proposed HEKF and PF-based ECM algorithms are accurate 
models that can be used for any VRFB with any number of cells and stack 
configuration. The proposed algorithm was formulated for charging 
mode, but the method can be used in discharging mode as well by minor 
changes in signs of quantities in the proposed equations. 

4. Conclusion 

A new circuit equivalent model unified with electrochemical model 
is introduced for VRFBs in this study for parameter estimation of the 
battery. The accuracy of the proposed ECM and circuit elements iden
tification method is verified on both CC and CV charging modes using a 
sample CCCV charging data. As the ECM uses the average of circuit el
ements in all samples during charge/discharging, the ECM shows a 
considerable deviation in CV charging mode. To address this deviation 
in CV mode, HEKF and PF Kalman filter-based estimation algorithms are 
employed to enhance the accuracy of CV mode estimations. Moreover, a 
recursive function is defined for the HEKF algorithm in CV charging 
mode to keep the terminal voltage constant while modeling the reduc
tion in current during the constant voltage. The results show HEKF and 
PF estimation methods consistently improve the estimated battery ter
minal voltage compared to the initially introduced ECM, during the CV 
charging mode. For the sample CCCV charging, results show the average 
deviation of 0.88% for the ECM-HEKF method, and the average devia
tion of 0.79% for the ECM-PF method in estimating the battery terminal 
voltage, while the initially proposed ECM has a deviation of 7.21% 
compared to the experimental data. The negligible deviation of HEKF 
and PF-based methods is mainly because of sensor measurement errors 

Table 4 
The average deviation of each method in estimation of the nine-cell VRFB ter
minal voltage.  

Average deviation of 
ECM-HEKF 

The average deviation of 
ECM-PF 

The average deviation of 
initial ECM 

0.88% 0.79% 7.21%  

Fig. 8. Comparison of estimated SoC with the proposed methods with the 
electrochemical method and the Coulomb counting methods. 

Table 5 
The average deviation of each method in the estimation of SoC of the nine-cell 
VRFB unit.  

The average 
deviation of ECM- 
HEKF 

The average 
deviation of 
ECM-PF 

The average 
deviation of 
ECM 

The average 
deviation of 
Coulomb counting 

4.4% 4.2% 23.7% 7.4%  
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used in VRFB’s experimental setup and the inherent error in VRFB’s 
ODE-based electrochemical model to fit the experimental data. 

Further, the proposed procedure is extended to estimate the SoC of 
the battery. According to the results, the ECM-HEKF and ECM-PF algo
rithms based SoC estimation for the nine-cell VRFB show more accuracy 
compared to the estimated SoC by the Coulomb counting method (while 
the electrochemical model is taken as the reference). The results show 
the average deviation of 4.2% and 4.4% for the PF and HEKF based 
methods compare to the SoC estimation by the electrochemical model, 
while the average deviation of the Coulomb counting method is about 
7.4%. Therefore, it can be concluded that the proposed HEKF and PF- 
based ECM algorithms are more accurate models for VRFB’s param
eter estimation, i.e., SoC, terminal voltage, and battery capacity. 
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