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1. Introduction

This paper is concerned with new development of numerical methods for the convection-diffusion equations. For sim-
plicity, we consider the model problem that seeks an unknown function u satisfying

—V . (@Vu+bu)=f, in €,
u=g;, on Tp, (1)
(@Vu+bu) -n=g, on Iy,
where @ c R? (d =2,3) is an open bounded polygonal (d = 2) or polyhedral (d = 3) domain with Lipschitz continuous
boundary 92, I'p is the Dirichlet boundary, 'y = 92\ I'p is the Neumann boundary, and n is the unit outward normal

direction to the Neumann boundary I'y. We assume that the convection vector b € [L®(£2)]¢ is bounded, and the diffusion
tensor a = {ajj}axq is symmetric and positive definite in the sense that there exists a constant @ > 0, such that

eTag >atTe, VEeRY.
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Furthermore, we assume that the diffusion tensor a and the convection tensor b are uniformly piecewise continuous func-
tions.

The convection-diffusion equations arise in many areas of science and engineering. Readers are referred to the “Intro-
duction” Section in [16] and the references cited therein for a detailed description of the convection-diffusion equations.

The weak Galerkin (WG) finite element method was first introduced by Wang and Ye in [14] for second order elliptic
equations, and later was widely used for solving various partial differential equations, e.g., [1,13,15,7,17,8,11,9,12,10]. Re-
cently, the authors in [3] have developed a new numerical scheme, called “primal-dual weak Galerkin (PDWG) finite element
method” for the second order elliptic problem in non-divergence form. PDWG uses the weak Galerkin strategy to construct
the discrete weak Hessian operator in the weak formulation of the model PDEs, and further seeks a discontinuous function
which minimizes a stabilizer defined on the boundary of each element with the constraint given by the weak formulation
of the model PDEs weakly defined on each element. The Euler-Lagrange method was employed to solve the constrained
minimization problem leading to the primal-dual weak Galerkin finite element method, which has been further studied
in [4,5,16,6,2]. The primal-dual weak Galerkin finite element method has shown the promising features as a discretization
approach due to: (1) it works well for a wide class of PDE problems for which no traditional variational formulations are
available; and (2) it is applicable to virtually any PDE problems where the inf-sup condition is satisfied.

Using the usual integration by parts one may derive a weak formulation for the model problem (1.1) as follows: Find
u e H\(Q) satisfying u|r, = g1 and (@aVu +bu) - n|r, = g3, such that

/(aVu +bu) - VwdT — /(aVu + bu) - nwds
T aT

(1.2)
:/fwdT, VT c Q, we H(T).
T

The PDWG numerical scheme developed in this paper is based on the weak formulation (1.2) for the convection-diffusion
model problem (1.1). The gradient operator is the principal player in (1.2) so that a reconstructed gradient (i.e., weak
gradient) is crucial in the PDWG finite element scheme. In contrast, the PDWG finite element method developed in [16]
was based on a weak form principled by the operator £ =V - (aV) so that a reconstructed weak £ played a key role in the
construction of the numerical scheme. The two numerical methods are thus sharply different from each other, and each has
its own advantage in theory and practical computation.

The rest of the paper is organized as follows. In Section 2, we present our primal-dual weak Galerkin scheme for the
model problem (1.1) based on the weak formulation (1.2). In Section 3, we shall establish a result on the solution existence
and uniqueness for the numerical method. Section 4 is devoted to the establishment of the property of mass conservation.
The error equations for the primal-dual weak Galerkin algorithm are derived in Section 5. Sections 6-7 are devoted to the
establishment of some optimal order error estimates for the PDWG solution in discrete norms as well as the usual L%-norm.
Finally, various numerical examples are presented in the last section to support our theoretical findings.

Throughout this paper, we adopt standard notations for Sobolev spaces such as W™P (D) on sub-domain D C @ equipped
with the norm || - ||m,p,p and the semi-norm |- |z p,p. When D = , we omit the index D; and if p =2, we set W™P(D) =
H™D), || lmp.0 = Il - lm.0» and | - lm.p.p = - lm.p, and if m =0, p =2, we set |- |m.p.0 = | - Ip.

2. Numerical algorithm

Let 7, be a partition of the domain Q into polygons in 2D or polyhedra in 3D which is shape regular in the sense of
[13]. Denote by &, the set of all edges or flat faces in 7, and Sﬁ =&, \ 09 the set of all interior edges or flat faces. Denote
by hr the meshsize of T € 7, and h = maxye7; ht the meshsize for the partition 7.

By a weak function on T € 7, we mean a triplet v = {vg, vp, va} such that vg € L2(T), v € L2(3T) and v, € L2(3T),
where 9T is the boundary of T. The first and the second components, namely vy and vy, should be understood as the value
of v in the interior and on the boundary of T respectively. The third component v, refers to the value of (aVv +bv) -n on
oT. Note that v, and v, may not necessarily be the trace of vo and (aVvg + bvg) -n on 9T. Denote by W(T) the space of
all weak functions on T; i.e.,

W(T) = {v = {vg, Vp, v} : Vo € L*(T), vy € L>(3T), vy € L>(3T)}. (21)
The weak gradient of v € W(T), denoted by Vv, is defined as a linear functional on [H!(T)]¢ such that

(Vwv, )1 =—(vo, V- ¥)1 + (vp, ¥ - Ny,

for all ¥ € [H'(T)]%. Denote by P,(T) the space of polynomials on T with degree r > 0. A discrete version of V,,v, denoted
by Vw r. 1V, is defined as the unique vector-valued polynomial in [P (T)]4 satisfying

(Vuwr 1V, )1 = —(Vo, V- )1 + (v, ¥ -m)ar, Vi € [PH(T)]°. (2.2)
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For smooth vg, we have from the usual integration by parts that

(Vw,r, TV, ¥)T = (Yo, ¥)1 — (Vo — Vi, ¥ - M)y, Vo € [Pr(T)]%. (23)
For any given integer k > 1, denote by W(T) the local discrete weak function space; i.e.,
Wi(T) = {{vo, vp, vn} : vo € Pk(T), vp € Pk(e), v € P(e),e C 9T},

where [ =k — 1 or | =k. Patching W (T) over all the elements T € 7, through a common value v, and +v, on the interior
interface S,?, we arrive at a global weak finite element space Wy; i.e.,

Wh = {{VOs Vb, Vn} . {VOa Vba VTl}'T € Wk(T)aVT € ﬁ}'
Denote by W,? the subspace of W} with homogeneous Dirichlet and Neumann boundary conditions; i.e.,

WP = {{vo, Vb, vn} € W : vy =00nTp, vy =0o0n Iy} (2.4)

Next, let My be the finite element space consisting of piecewise polynomials of degree k; i.e.,
Mp={o :0|r € Pp(T),VT € Tp}. (2.5)

Remark 2.1. The finite element space My in (2.5) can also be constructed by using piecewise polynomials of degree k — 1 in
the forthcoming numerical scheme. All the mathematical results to be presented in this paper can be extended to the case
of k — 1 without any difficulty.

For simplicity, for any v = {vo, vp, va} € Wy, denote by Vv the discrete weak gradient V,, _; v computed by using
(2.2) on each element T; i.e.,
(VwW)lr =V k-1,1(VI1), ve W
Let us introduce the following bilinear forms:
s(u,v) = Z h33 (o — up, Vo — Vb)ar
TeTh
+h3"((@Vug + bug) -1 — up, (@Vvo +bvo) - n— va)ar,

b(u,2) =Y (@Vwt +bug, VA)T — (U, A)ar.
TeTh

d
cOno)=11 Y hE(VA.Vo)r+12 Yy hi Y (@71 0501,
TeTh TeT, ij=1

where u,v e Wy and 1,0 € My, 11 >0 and 1, > 0 are two mesh-independent parameters.
Let k> 1 and T € 7. Denote by Q(()k) the L? projection operator onto Py(T). For each edge or face e C 9T, denote by

ngk) and Qr(,') the L2 projection operators onto Py(e) and Pj(e), respectively. For any w € H!(Q), denote by Quw the L2
projection onto the weak finite element space W} such that on each element T,

Quw ={Q§w, 0w, Q) (@Vw +bw) -m)}.

Denote by foﬁl) the L? projection operator onto the space [Px_1(T)]%.
The numerical scheme for the convection-diffusion problem (1.1) based on the variational formulation (1.2) can be stated
as follows:

Primal-Dual Weak Galerkin Algorithm 2.1. Find (up; Ap) € Wy, x My, satisfying up = Q;k) giron'p and u, = ,,(’) g2 on 'y,
such that

s(up, v) +b(v,ap) =0,  Vve W], (2.6)
—c(Ap,0) +b(up,0)=(f,0), VYo e My. (2.7)

Remark 2.2. For the case of | =k, one may take t; = 7 =0 and thus c(A, o) = 0; for the case of =k —1 and k=1, one
may take 71 > 0 and 1, = 0; for the case of =k — 1 and k > 2, one would take 71 =0 and 1, > 0, as suggested by the
mathematical theory.

173



W. Cao and C. Wang Applied Numerical Mathematics 162 (2021) 171-191

3. Solution existence and uniqueness

For the sake of analysis, in what follows of this paper, we assume that the diffusion tensor a and the convection tensor
b in the convection-diffusion equation (1.1) are piecewise constants in € with respect to the finite element partition 7p.
However, the analysis can be extended to the case that a and b are piecewise smooth functions without any difficulty.

The L? projection operators Qj, and Q’(1k—1) satisfy the following commutative property [13]:

Vw(Qw) = Q¥ V(Vw),  vweH'(T). 3.1)
In the finite element spaces Wy and My, we introduce the following seminorms:
1
Ivilw, =s(v,v)2, veWp; (3.2)
1
llolip, =c(o,0)2, o €Mp. (3.3)

Lemma 3.1 (Generalized inf-sup condition). For any A € My, there existsa v € W,? satisfying
1
SIAZ, 1=k,
2
1
b(v,1) > illkllz—ﬂhZHVMF, k=1,1=k—1, (3.4)
1
SIAZ = htals, k=2, 1=k -1,
for some constant 8 > 0.

Proof. Consider the auxiliary problem of seeking w such that
—V .- (@vVw+bw) =2, in Q,
w=0, onlp, (3.5)
(avVw +bw) -n=0, onIy.

Assume that the auxiliary problem (3.5) has the H2-regularity property in the sense that there exists a constant C satisfying

Iwll2 < ClIA]l. (3.6)

By taking v=Qpw = {Q(()k)w, ngk)w, Qr(,l)((an +bw)-n)} e W,? in b(v, 1), we have from (2.2) and the usual integration
by parts that

b(v, %) =b(Qyw, %)
=Y @VwQunw +bQPw. Vi)r — (@) ((@Vw +bw) - m), A)ar

TeTy
=Y @0V (Vw) +bQPw. Vi)r — (@ (@Vw +bw) -m), i)t
TeTh
= Z @vw +bw, VA)r — (Q(@Vw +bw) -n), A)ar (3.7)
TeTh
=Y —(V-@w+bw). )r — ((Q" — D(@VW +bw) -m), A)ar
TeTh
=112 = Y (@ = D(@Vw +bw) -m), (1 — Q")A)ar.

TeTy

where we have used the first equation of (3.5), (3.1), and the property of the L? projection Q,E’).
We shall discuss the estimate of the term ZTeﬁ, ((Q,,(ll) —D((@Vw+bw) - -n), (I — Q,ﬁ’))xm in various situations. For the
case of [ =k, we have

> @ = D(@Vw +bw) -m), (I = Q")a)ar =0,

TeTh
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which, together with (3.7), gives (3.4) for the case of | = k. For the case of [ =k — 1, using the Cauchy-Schwarz inequality
and the trace inequality (6.1) gives

3@ = D(@Vw +bw) -, (1= QM)aar

TeTy
1
=( X n@d = ni@vw+bwy - miE)* (X2 10 - i)’

TeTy TeTy

=c(' " nIQf — D@vw +bwy) |}
TeTh (3-8)

1

+hrl(Q) = D@Vw +bw)l} )

(ST

[NE

_ 1 I
(3 hgt 10— @l + kel — Q)i 1)
TeTh
ChIVAlllwl2, k=1I=k-1,
<
Ch*[Al2llwla. k>21=k—1.
Substituting (3.8) into (3.7) and using the Young's inequality and the H?- regularity property (3.6) gives
5 5 C[PPIVAR, k=11=k—1
[b(v, M) > IA]l° —€llw]5 — Ce™ i
A3, k=2,1=k—1
h2|VAl?, k=1,1=k—1
> (1—€0)||r|* - Ce™!
W4 A3, k>2,1=k-1
, [PV’ k=11=k-1,
IA* —

=

N =

h4als, k>2,1=k—1,
where € > 0 is a parameter satisfying 1 —eC > 1, and 8 = Ce~! > 0. This completes the proof of (3.4) for the case of
=k —1 and further completes the proof of the lemma. O

Theorem 3.2. The primal-dual weak Galerkin algorithm (2.6)-(2.7) has a unique solution.

Proof. It suffices to prove that the homogeneous problem of (2.6)-(2.7) has only trivial solution. To this end, we assume
f=0, g1=0and g, =0. By letting v =up and o = A;, in (2.6)-(2.7), we have from the difference of (2.6)-(2.7) that

s(up, up) +c(hp, Ap) =0,

which implies ug = up and (aVug + bug) - n=u, on each dT; and c(Ap, Ap) = 0. From c(Ap, Ap) =0 we have Vi, =0
on each element T € 7, if 77 > 0 and aékh =0 fori,j=1,---,d on each element T € 7, if Ty > 0, which shows that
c(Ap,0) =0 for all o € My,.

Using (2.7), (2.3) and the usual integration by parts, we have

0=b(up,0)
= Y (@Vwup +bug, Vo)1 — (n, 0)g7
TeTh
= Y (Vug,avo)r — (ug — p, aVo -m)zr — (V - (bug), o)r
TeTh

+(bug -m, o)1 — (Un, 0 )sT

= Y —(V-(aVuo), o)1 + (aVug - n,0)57 — (g — Up, aVo - m)y7
TeTh

—(V - (bug), o) + (bug - n, o)y — (Up, 0y
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= Z —(V - (aVug +bug), o)1 — (Ug — up,avo -ny7
TeTh
+{(@Vug +bug) - n —up, 0)y7

= Z —(V - (aVug + bug), o),
TeTh

where we used ug =up and (aVug + bug) - n=u, on each dT. This gives V - (aVug + bug) =0 on each element T € 7, by
taking o =V - (aVug + bug). From (aVug + bug) - n=u, on each dT, and aVug + bug € H(div; T), we obtain aVug + bug €
H(div; ) and further V - (aVug + bug) =0 in Q. Using g1 =0 on I'p and ug = up on each 9T, gives ug =0 on I'p. Using
g2=0 on I'y and (aVug + bug) - n = u, on each 9T, yields (aVug + bup) - n =0 on I'y. Therefore, from the solution
uniqueness of the PDE problem, we have up =0 in Q. We further obtain up =0, u, =0 and thus uy =0 in Q.

From up =0 in €, (2.6) can be simplified as follows

b(v,ap) =0, Vvew).

From Lemma 3.1, there exists a v € W,?, satisfying
1
—IAl?, =k,
2|| nll
—b T . 2 a2 21—
0=b(v,Arp) = 2||Ah|| BRAIVARl®, k=1,1=k—1, (3.9)

1
inxhnz—ﬁh“m@, k>2,1=k—1,

for some constant 8 > 0. For the case of [ =k, it follows from (3.9) that A; =0 in Q. Note that when =k —1 and k=1,
we take 7y >0 and 7 =0; when =k — 1 and k > 2, we take 71 =0 and 73 > 0. Thus, for the case of | =k — 1, using
c(Ap, Ap) =0 gives VA, =0 on each T € 7, for k=1; and 85)»;1 =0foranyi,j=1,---,d on each T € Ty for k > 2, which,
combined with (3.9), yields A, =0 in 2 for the case of | =k — 1. This completes the proof of this theorem. O

4. Mass conservation

The first equation in the convection-diffusion model problem (1.1) can be rewritten in a conservative form; i.e.,

~V.-F=f, (4.1)
F=aVu + bu. (4.2)

On each element T € 7y, integrating (4.1) over T gives the integral formulation of the mass conservation; i.e.,

—/F-nds:T/de. (4.3)

aT

We claim that the numerical solution arising from the primal-dual weak Galerkin scheme (2.6)-(2.7) for the convection-
diffusion model problem (1.1) retains the mass conservation property (4.3) locally on each element T € 7, with a numerical
flux F;. To this end, for any given element T € 7Ty, choosing the test function o in (2.7) such that 6 =1on T and 0 =0
elsewhere, yields

d
— Tthf (VAn, V)1 = 20T Y (95, 95 D1 + @Vt + bug, V1)1 — (un, 1)o7
i,j=1
=(f.Dr,

which can be simplified as follows

—{upn-n, )7 = (f, Dr.

This implies that the primal-dual weak Galerkin algorithm (2.6)-(2.7) conserves mass with a numerical flux given by
Fplar = upn.
It is easy to check that

Fulor, -nr, +FploT, -0, =0, one=09T1NITy,
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where nr, and nr, are the unit outward normal directions along the interior edge or flat face e = 8T1 N 3T, pointing
exterior to T and T3, respectively. This indicates the continuity of the numerical flux F; along the normal direction on each
interior edge or flat face e € £).

The result can be summarized as follows.

Theorem 4.1. Let (uy = {ug, up, uy}; Ay) be the numerical solution of the convection-diffusion model problem (1.1) arising from the
primal-dual weak Galerkin finite element method (2.6)-(2.7). Define a numerical flux function as follows:

Fylyr :=upn, onaT, T € Tp.

Then, the numerical flux approximation Fy is continuous across each interior edge or flat face e € 6’,? in the normal direction, and
satisfies the following mass conservation property; i.e.,

—/Fh-nds:[de‘

aT T
5. Error equations

Let u and (up; Ap) € Wp, x My, be the exact solution of (1.1) and the PDWG solution arising from the numerical scheme
(2.6)-(2.7), respectively. Denote by Q,(Ik) the L2 projection onto the finite element space Mj. Note that the exact solution of
the Lagrange multiplier A is 0. Define two error functions by

ep = up — Qnl, (5.1)
€ER=Ap — Q,(lk)k = Ap. (5.2)

Lemma 5.1. The error functions ey and €y, defined in (5.1)-(5.2) satisfy the following error equations for the primal-dual WG finite
element scheme (2.6)-(2.7); i.e.,

s(ep, V) +b(v, ep) = —s(Qpu, v), Vv e W,?, (5.3)
—c(ep,0) +b(ep,0) =4£y(0), Yo € My, (5.4)
where
0, I=k,
Gu@) =1 3"(@QY - D(@Vu+bu) -m),o)r, I=k-1. (5.5)
TeTh

Proof. Note that the exact solution of the Lagrange multiplier A is 0. Subtracting s(Qpu, v) from both sides of (2.6) yields

S(up — Qutt, v) +b(v, iy — Q02) = —s(Quu, v), Vv e WY
This completes the proof of (5.3). Next, for any o € Mj,, we have

b(Quu.0) = Y (@Vy Quu+bQ{ u, Vo)r — (@) (@Vu +bu) -m),0)sr
TeTy

=3 @ "Vu+bQu, Vo)r — (@ ((@Vu +bu) -m), o)1
TeTy
=" @Vu+bu, Vo)r — (Q (@Vu +bu) -m), 0)sr
TeTy
=Y —(V-(@Vu+bu),0)r +(@Vu+bu) -n,0)r
TeTy
— (@ (@Vu+bu)-n), o)1
=Y (f.o)r— Y_((Q = D(@Vu+bu)-n), o),
TeTh TeTh

where we have used the operator identify (3.1), the usual integration by parts, and the first equation of (1.1). Note that for
the case of | =k, we have ZTETh((Q,Sl) — D((aVu + bu) - n), o)yt = 0. Combining the above with (2.7) yields (5.4). This
completes the proof of the lemma. O

177



W. Cao and C. Wang Applied Numerical Mathematics 162 (2021) 171-191

6. Residual error estimates

Recall that 7, is a shape-regular finite element partition of the domain . For any T € 7; and ¢ € H!(T), the following
trace inequality holds true [13]:

leldr < Chytlgl% +hrIVel?). (6.1)

If ¢ is a polynomial on the element T € 7y, then from the inverse inequality (see also [13]) we have
ll3r < Chy el (6.2)

Lemma 6.1. [13] Let T}, be a finite element partition of the domain Q satisfying the shape regularity assumptions given in [13]. Then,
forany0<p <2,1<m=<k, one has

2
> P = QS ull? ¢ < CRA™ V2 (63)
TeTy
2 —1
> P Ivu — o VVul? < Ch?Mju)? . (6.4)
TeTh
2
P u— oM ul? ¢ < ChEM D g2 . (6.5)
TeTh

Theorem 6.2. Let u and (up; Ap) € Wy x My, be the exact solution of (1.1) and PDWG solution of (2.6)-(2.7), respectively. Assume that
the exact solution u of (1.1) is sufficiently regular such that u € H**' (). Then, there exists a constant C such that the following error
estimate holds true:

Ch  Nullsr, [ =k,
3 -1k
lun — Quttllw, + I — QA < 3 €A+ 17, DR ulgr, k=1,1=k—1, (6.6)

1
Ca+1, HE Nulkrr, k> 2,1=k—1.

Proof. By choosing v =¢j, and o = ¢, in (5.3)-(5.4), we have from the difference of (5.3) and (5.4) that

s(en, en) + c(€n, €n) = —s(Quu, ep) — Ly(€p). (6.7)
Recall that
s(Qnu, ep)
=3 h7Qf u—QPu 0 —ep)ar + Y hr'(@VQE u+bQu) n (6.8)
TeTh TeTh

— Q" (@Vu +bu) - n), (@Veg +beg) - n — ey)ar.

The first term on the right-hand side of (6.8) can be estimated by using the Cauchy-Schwarz inequality, the trace inequality
(6.1), and the estimate (6.3) with m =k as follows

3, (¢ k
> Qe u — @u.eo — ep)ar
TeTh

—3,0 (¢
=Y Qg u —u.eo — ep)or

TeTh
‘ 1 1 (6.9)
=( 2 nPiu = oPuldr) " (D nrtleo — esli3r)
TeTh TeTh

(ST

— k _ k
EC( 3 bt — QPull? + hy?lu - Q§ )uliT) llenllyy,
TeTy

k—1
=Ch*lullg+1llenllw,-
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Similarly, the second term on the right-hand side of (6.8) has the following estimate

| > @y Pu+beg’u - n— Q. (@Vu+bu) -m,
TeTn (6.10)
(aVeo +beg) - n —en)or| < Ch* " ullir1llenllw,
Substituting (6.9) and (6.10) into (6.8) gives
I5(Qntt, en)| < CH a1 llenlly, - (611)
We shall further discuss the second term on the right-hand side of (6.7). For the case of | = k, from (5.5), we have

Ly (ep) =0. (6.12)
We now consider the case of | =k — 1. By denoting
Fy=aVu+bu,
and then using (5.5), the Cauchy-Schwarz inequality, the trace inequality (6.1), and the estimate (6.3) with m=I1=k —1, we
have
I
[eu(en) =tu(en — Then) = | > Q" = D(Fy -m), €, — Ihen)or
TeTh
, ) }
=( D2 1@ = neEamidr)* (Y len — Hhenlr )
TeTh TeTh
{ I 2
=c(( X h7'IQY = DFul} +hrl@) = DFul} r) (613)
TeTh

1
— 2
(= n7'llen = thenl +hrlVeen — e} )
TeTy

<CHIFullis (Y len — thenlld + R}V (6n — thew)IF)
TeTy

[SE

where 1;16,1 denotes the cell average and linear interpolation of €, on each element T € 7, for =0 and [ > 1, respectively.
Choosing I =k — 1 in the above inequality and using the approximation property of the interpolation function yields

1
Ct, 2 ullerllenllng., k=1,1=k—1,
f 1t le+1 Ml €n g, (614)

[ACHIER
Cty 2 Ml lenllyg, . k=20=k—1.

Substituting (6.11), (6.12), and (6.14) into (6.7) gives the error estimate (6.6). This completes the proof of the theorem. O

Theorem 6.3. Under the assumption of Theorem 6.2, there exists a constant C such that the following error estimate holds true:

CH* Mullsr. 1=k,

3 1 _1
(X 1V @Veo+be)l})” = { €1+ + 77 DR fuller k=1.1=k -1, (6.15)
TeTh 1 .
CO+)(M+7, DI ullgr, k=2, 1=k 1.
Proof. From the error equation (5.4) we have
(6.16)

b(ep,0) =c(ep,0) +£y(0), Yo € Mp.
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Recall that

blen,0) = Y (aVwen +beg, Vo)1 — (en, 0 )ar

TeTh
= ) (aVeo +beg, Vo)1 + (ey — e, aVo - m)yr — (en, 0 )ar
TeTh (6.17)
=— Y (V-(aVeg+bep),o)r — (ep —e0,avo -m)r
TeTh

+ {en — (@Veg +beg) - m,0)s7,
where we have used (2.3) with ¢y =aVo and the usual integration by parts. Substituting (6.17) into (6.16) gives

— Y (V- (aVeg +beg).0)r

TeTh
=c(€n.0) +Lu(0) + Y _ (€0 —ep.aVo - m)yr + (e — (aVeg +beg) -0, 0)yr (6.18)
TeTh
=1+ ]2+ 73+ Ja,
where J; is defined accordingly fori=1,---,4.

We shall estimate each term J; in (6.18) respectively. With Ji, we have for the case of I =k, J; = 0. For the case of
I=k—1 and k=1, we have

Ji=11 ) h;(Vey, Vo)r

TeTy
} }
2 2 2
=( X mrtived?)’ (X nhdivolr)
TeTh TeTh
! 2
=ceillenllw, (Y lIollr)”

TeTy

where we have used the Cauchy-Schwarz inequality and the inverse inequality. Similarly, for the case of =k —1 and k > 2,
we have

1 1
5 2
Ji =z lenll, (X llolir) .

TeTy

As to the term J;, we have from (5.5) that for [ =k, ¢,(0) =0; for =k — 1, we have, by following the same argument
as that in (6.13)

1
ol =@ =( 30 1@ = Di@Vu+buy - miZ)* (3 ol )’

TeTy TeTy
1
k—1 2?2
=Ch s (Y 1o13)
TeTh

where we used the Cauchy-Schwarz inequality, the estimate (6.3) with m =[=k — 1, and the trace inequalities (6.1) and
(6.2). As to the term J3, we have

B=(0 hPleo —esli3r) " (D hilavo -midy)

TeTh TeTh

(ST
[SE

1
2 22
=Cllellw, ( Y_ b lavo -ni} )
TeTh

1
2\2
=Cllenllw ol ) s
h

TeTh

where we used the Cauchy-Schwarz inequality, the trace inequality (6.2) and the inverse inequality.
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For the last term J4, we have

D {en—(aVeg+beg) -n,0)r

TeTy
} }
<(( 3 b len — @Veo +beo) i ) (3 hrliol;)
TeTy TeTy
1
2
=Cllenllw, ( Y Il
TeTy
where we used the Cauchy-Schwarz inequality and the trace inequality (6.2).
Substituting the above estimates for Ji(i =1,---,4) into (6.18) and combining with (6.6) completes the proof of
(6.15). O

7. Error estimates in H' and L2

Consider the dual problem of seeking an unknown function w such that

-V - (@Vw)+b-Vw =eg, in Q, (7.1)
w =0, onIp, (7.2)
avVw -n=0, onTly, (7.3)

for any given eg € L%(2). The problem (7.1)-(7.3) is said to be H”‘(% < s < 1)-regular in the sense that

Iwll1i4s = Clleoll- (7.4)
Lemma 7.1. Let e, = {eo, ey, en} be the error function defined in (5.1). There holds
_1
[Vwen — Veollr < Chy?lleo —epllaT- (7.5)

Proof. From (2.3), we have

(Vwen — Veo,¥)r =—(eo —ep, ¥ -Myr, V¥ € [Proq (D],
From the Cauchy-Schwarz inequality and the trace inequality (6.2), we thus have

lleo —epllaTIl¥ - mllaT

IVwen — VeollT < sup

vy e[P_1 (D1 I¥ir
1
Ch.2|leg —e
< sup 7°lleo —epllar ¥ it
Ve[ P_q (1)) 1¥lir

1
<Ch;?lleg —epllaT-

This completes the proof of the lemma. O

The following theorem presents the error estimate in the usual L? norm for the first component ug in the primal variable
up = {ug, up, uy} of the PDWG solution arising from the numerical scheme (2.6)-(2.7).

Theorem 7.2. Assume that the dual problem (7.1)-(7.3) has the H'**-regularity with a priori estimate (7.4) for s € (%, 1]. There exists
a constant C such that

CH* S g1, 1=k,
1 _1
leoll <{ CA+t2(+7 2D ulkyr, k=11=k—1, (7.6)

1 _1
CA+THA+7, HEF ulr, k=2,1=k—1,

provided that the meshsize h is sufficiently small.
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Proof. Testing (7.1) with ep on each element T € 7, we obtain from the usual integration by parts that

leoll> =Y (=V-(@Vw)+b-Vw,ep)r

TeTh

=) (@Vw,Veo)r — (@Vw - n,eq)yr + (b- Vw, eo)r (7.7)
TeTh

=) (@vVw, Veg)r — (@Vw-n,eg —ep)sr + (b- Vw, eo)r,
TeTh

where we used ZTG’H, (aVw -n, ep)sTr = (@Vw -n, ep)yq =0 due to the facts that aVw-n=0 on I'y and e, =0 on I'p.
It follows from (2.3) and (3.1) that

(@Vwen, Vi (Quw))r =(@Vwen, OF V' Vw)r

=(@Veo, O " Vw)r — (eg — ey, aQl V' Vw - n)yr
=(aVeo, VW) — (0 — €5, aQ) " Vw - m)yr,
which gives

(@Veo, VW)t = (@Vwen, O Vw1 + (eo — 5, aQ) ' Vw - m)yr

ket (7.8)
= (aVwen, VW)T + (€0 —€p,aQ, VW -myr.
Substituting (7.8) into (7.7) leads to
leol* = > (@Vwen. Vw1 + (beo, Vw)1 + (€0 — e, a(Qf " — HVw - m)ar
TeTh
=b(en w)+ Y {en. W)t + (€0 — €5.a(Q " — HVW -m)yr
TeTh
(7.9)

=clen. QW) + €u(Q W) +blen. (1 = O )w)

+ > teo—ep.a(Q TV = HVw )y
TeTh

=l + 1+ I3+ 14,

where in the second step, we have used the fact that ZTeﬁ (en, W)sT = {€n, W)so = 0 due to the facts that w =0 on I'p
and e;=0o0n 'y, and I;(i=1,---,4) is defined accordingly.

We shall estimate each of the four terms I[; fori=1,---,4 in (7.9). As to the term I4, for the case of | =k where 71 =0
and 13 =0, we have

I = c(en, QF'w) = 0. (7.10)

For the case of | =k — 1, we have, from the Cauchy-Schwarz inequality and (6.6),

d
L=t Y h (Ve VOw)r +12 Y Y hf@3en. 922 wr

TeTh i,j=1T€eTy
. ;
k k
<lenllm, | D (vhd IV Wi} + 12 Y hblof o wi) (7.11)
TeTh i, j=1

1
Chy llenlim, lIwlly, k=1,1=k -1,

1
Ch'™ 5 llenlim, Iwllhiss, k>2,1=k—1.

Here in the last step, we have used the fact that 5 =0 for k=1 and 7; =0 for k > 2, and the inverse inequality
1
10y wl2 = CH* Q) Wiias < CH Mwlligs, 5 <s<1.
As to the term I, for the case of [ =k, we have from (5.5) that
Iy = u(Q' W) =0.

182



W. Cao and C. Wang Applied Numerical Mathematics 162 (2021) 171-191

For the case of | =k — 1, by the same argument as what we did in (6.13), we have

k
2] = 1€u(Q)F W)

1
<ChMullesr (D 10 = QP W) + IV = 1) QP wF)’

TeTh (712)
<{ Ch¥lullesrwls, k=1,01=k—1,

CR Sl Iwlligs, k=2, 01=k—1.
Here for any function v, I;]V denotes the cell average and linear interpolation of v on each element T € 7, for | =0 and
I > 1, respectively.
To estimate I3, we note that

I3= Y ((@Vwen +beg) -n—en, (I — O )W)yt

TeTy
— 3" (V- @Vwen +beo). (I — Q) yw)r
TeTy
=131 — I32.

To estimate I31, we have from the Cauchy-Schwarz inequality, the trace inequality (6.2), (7.5), the estimate (6.5) with m=s
that (with F, =aVeg + beg)

[131]
k
=Y (Fe-m—eq. (I — Q)W) + (@Vwen —aVeg) -m, (I — O )w)yr
TeTh
: ]
< {( > IIFe~n—en||§T) +( > ll@Vwen —aVeo).n”gT) }
TeTh TeTh
1
K 2
(X na - ofwidy)
TeTh
: L
< C[( > IFe -n—enllﬁT) + ( > hr'li@Vuey —aVeO)-n”%) ]hs+z T
TeTy TeTy

1
1 2 2 \2 1
= c{nlienliw, + (D hr2lleo = eslr)* JA 2wl
TeTy

< Cllenllw, Iwll1+s.

Similarly, for the term I3, we have from the Cauchy-Schwarz inequality, the estimate (6.5) with m =s, (7.5), the inverse
inequality that

32l = | Y (V- Fe, (1 = Q)W) + (V- (@Vuwey —aVeo), (I — Q) )w)r

TeTy
1 1
2 - 2
<c{( X IV-Fel)” + (30 b laVwen —aVeolF) ' wliag
T€Th TeTy
1 1
2 - 2
<l (X IV-Fel)” + (30 b o —enlir) R Iw e
TeTh TeTh

1

=c{( X219+ @Veo+beo)liF)” + llenllw, [h* Iwilvs.
TeTh

Consequently,

1
s = c{( 3017 @Veo +beo)l3) + llenllw, [ 1wl
TeTh
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As to the term I4, we have from the Cauchy-Schwarz inequality, trace inequality (6.1), the estimate (6.4) with m =s,
that

N—=

al =( ) leo—esli3r) " (X2 la@f ™" = nvw - ni;)

TeTy TeTy
1 1
— 2 k—1 2
=( X2 hrleo —esli3r) (X2 Hlla@f " = DVw-nid)
TeTy TeTy (713)

[N

k—1 k—1
<Cllenllw, ( Y- BHIQY" = DYWIF +ht Q™" = nywid ;)
TeTy

1
<Cllellw, i+ I Wll1s.

Substituting (7.10)- (7.13) into (7.9) and using the regularity assumption (7.4) with the error estimates (6.6) and (6.15)
gives (7.6). This completes the proof of this theorem. O

We shall establish the error estimates for the two boundary components u, and u, of the PDWG solution up =
{0, Up, Uy} in the usual L2 norms defined as follows:

1
k 2
leoll = lluy — Q%ull = (D hrlleslr) (714)
TeTh
1
I 2
leal == llun — Q& (@Va+bu) - w1 = (Y hrllealidr) (7.15)
TeTy

Theorem 7.3. Under the assumptions of Theorem 7.2, there exists a constant C such that
Ch S |ullgr, =k,
lesl <1 CO+720+7; R ulisr, k=1.1=k—1, (716)
c(1+ 12%)(1 + rﬁ)h"*snunkﬂ, k>21=k—1.
CRS ulleyr, 1=k,
lleall <7 C+ rl%(l + tl_%))h"_1||u||k+1, k=1,1=k—-1, (717)
ca+ rz%)(l + r;%)h"“‘] lullger, k>2,01=k—1,

provided that the meshsize h is sufficiently small.

Proof. On each element T € 7, we have from the triangle inequality that

llesllar < lleollaT + llev — eollar-
Thus, by (7.14), and the trace inequality (6.2), we obtain

2 2 2 4 -3 2
lesll> =D hrllesl3r <C Y hrlleollr +Ch* >~ hi’lles — eoll3y
TeTh TeTh TeTy

< C(lleoli§ + h*llenlliy, ).

which, together with the error estimates (6.6) and (7.6), gives rise to (7.16).
To derive (7.17), applying the same approach to the error component e, by using triangle inequality, trace inequality
(6.2) and inverse inequality gives
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2 2
leall> =" hrllenll3y

TeTh
< Y hrli@@Veg +beg) - n — enl37 + hr | (@Veo + beo) - a3y
TeTh
<Ch®> Y h7'@Veo +beg) - m—eyll3r + Y (hrllaVeol3r + hrlbeol5r)
TeTy TeTh
<C(R*|lenlly, + > (hrhi>lleollF + hrhy ' lleoll?))

TeTh
<C(h*llenllfy, +h2lleoll®).

which, together with the error estimates (6.6) and (7.6), gives rise to the error estimate (7.17). O
8. Numerical results

Two types of domains are considered in the numerical experiment: (1) an unit square domain Q; = [0, 1]%, and (2) a
L-shaped domain €2, with vertices (0, 0), (0.5, 0), (0.5,0.5), (1,0.5), (1, 1), (0, 1). In all the computation, the finite element
partition 7, is obtained through a successive uniform refinement of a coarse triangulation of the domain Q by dividing
each coarse element into four congruent sub-elements by connecting the mid-points of the three edges of the triangle. The
right-hand side function f, the Dirichlet boundary data g; and the Neumann boundary data g are set correspondingly. For
simplicity, the parameters in the PDWG numerical scheme (2.6)-(2.7) are chosen as 11 =17, = 1.

The finite element spaces for the primal variable uy and the dual variable A, are given by

Wi n = {up = {uo, up, un} : ug € Pp(T), up € Pr(e), up € Pi(e), Ve C dT,VT € Tp},
My p = {*n: Anlt € PR(T), VT € Tp},

where [ =k or | =k — 1. The primal-dual weak Galerkin scheme (2.6)-(2.7) is implemented for the case of k=1 and k = 2.
Denote by e, = {eo, ep, en} = U, — Quu the error function. The following L? norms are used to measure the errors:

ol =( Y- [ ). ivel=( Y / (Veo)sz)%,

TeTh T TeTh T
1 1
24.)2 2.2
fesll= (3 tr [ ebas)’.tewl= (3 hr [ ebas)”.
T€Th 41 T€Th 41

Test Example 1 (Constant diffusion a and convection b). The diffusion tensor a € R?*? and the convection tensor b € R? are
taken by constants as follows:

a1 =1, aip=a1 =1, app=6; by=1, by=1.

The exact solution is given by u(x, y) = sin(;rx) sin(;t y). The domain the unit square domain €. The Neumann boundary
is I’y ={(0,y):y €[0, 1]}, and the rest of the boundary is of Dirichlet.

Tables 8.1-8.2 demonstrate the approximation errors and the corresponding convergence rates for k=1 and k =2 with
I=k and I =k — 1, respectively. For the case of | =k, we observe from Table 8.1 that the convergence orders for eg and
ep in the discrete L2 norm are both of an optimal order @(h¥t1), and the convergence order for e, in the discrete L2
norm is of an optimal order O(h*), for k=1 and k = 2 respectively, which are all consistent with the theoretical results
in Theorems 7.2 - 7.3. For the case of =k — 1, we can see from Table 8.2 that the convergence rates for ey and e, in the
discrete L2 norm are of an order @(h¥*1), and the convergence rate for e, in the discrete L2 norm is of an order O(h¥)
for k=1 and k = 2, respectively. Note that for the case of | =k — 1 and k = 2, the convergence rates for ||egl|, ||lep|| and
llen|l are consistent with the theoretical results developed in Theorems 7.2 - 7.3; while for the case of I=k—1 and k=1,
the convergence rates for |leg], |lep|| and |le,|| are of an order which is 1 order higher than the expected convergence order
given by (7.6) and (7.16)-(7.17), respectively.

Test Example 2 (Continuous diffusion a and convection b). We choose the diffusion tensor a € R2*2 and the convection tensor
b € R? in the model problem (1.1) as continuous functions as follows:

a1 =1+%x a2=a1=0, ap=1+y; by=e'™ by=eY.

The Neumann boundary is 'y ={(0, y) : y € [0, 1]} and the Dirichlet boundary is I'p = dQ2 \ I'y. The exact solution is given
by u(x, y) = sin(x) cos(y). The domain is the unit square 1.
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Table 8.1
Various errors and corresponding convergence rates for k =1, 2 with =k on €.
1/h llep Il rate llenll rate [[Veoll rate lleoll rate
4 3.48e-1 - 7.88e-0 - 7.53e-1 - 7.97e-2 -
8 8.72e-2 2.00 3.75e-0 1.07 3.38e-1 116 2.10e-2 1.92
k=1 16 2.01e-2 211 1.72e-0 112 1.56e-1 111 4.92e-3 2.09
32 4.77e-3 2.08 8.31e-1 1.05 7.58e-2 1.04 1.16e-3 2.08
64 1.17e-3 2.02 4.11e-1 1.02 3.74e-2 1.02 2.85e-4 2.02
1/h llep |l rate llenll rate IVeoll rate lleoll rate
2 1.5%-1 - 6.89e-0 - 7.90e-1 - 9.94e-2 -
4 2.87e-2 247 1.43e-0 227 2.28e-1 179 1.63e-2 2.61
k=2 8 3.63e-3 2.98 3.48e-1 2.03 6.28e-2 1.86 2.28e-3 2.84
16 4.60e-4 2.98 8.79e-2 1.99 1.65e-2 1.93 3.01e-4 292
32 5.89e-5 2.96 2.21e-2 1.99 4.22e-3 1.97 3.86e-5 2.96
Table 8.2
Various errors and corresponding convergence rates for k=1,2 with =k —1 on Q.
1/h llep I rate llenll rate [[Veoll rate lleoll rate
4 3.77e-1 - 7.57e-0 - 7.19e-1 - 9.30e-2 -
8 9.77e-2 1.95 3.59e-0 1.07 3.28e-1 113 2.49e-2 1.90
k=1 16 2.46e-2 1.99 1.73e-0 1.05 1.56e-1 1.07 6.27e-3 2.00
32 6.16e-3 2.00 8.54e-1 1.02 7.65e-2 1.03 1.57e-3 2.00
64 1.54e-3 2.00 4.24e-1 1.01 3.79e-2 1.01 3.91e-4 2.00
1/h llepl rate llenll rate [|Veoll rate lleoll rate
2 2.16e-1 - 6.00e-0 - 8.56e-01 - 112e-1 -
4 3.39-2 2.67 1.42e-0 2.08 2.44e-01 1.81 1.75e-2 2.67
k=2 8 4.08e-3 3.05 3.54e-1 2.00 6.54e-2 1.90 2.39e-3 2.87
16 4.88e-4 3.06 8.90e-2 1.99 1.69e-2 1.96 3.08e-4 2.95
32 6.05e-5 3.01 2.23e-2 2.00 4.26e-3 1.98 3.90e-5 2.98
Table 8.3
Various errors and corresponding convergence rates for k=1,2 with [ =k on Q1.
1/h llepl rate llenll rate [IVeoll rate lleoll rate
4 7.65e-3 - 2.0277e-01 - 4.60e-2 - 2.34e-3 -
8 1.96e-3 1.96 9.7447e-02 1.06  2.22e-2 1.05 592e-4 198
k=1 16 496e-4 199 4.7834e-02 1.03 1.10e-2 1.02 1.48e-4 2.00
32 1.24e-4 2.00  2.3696e-02 1.01 5.46e-3 1.01 3.69e-5  2.00
64 3.10e-5 2.00  11792e-02 1.01 2.72e-3 1.00 9.21e-6  2.00
1/h llep |l rate llenll rate [|Veoll rate [leoll rate
2 1.06e-2 - 1.27e-1 - 3.22e-2 - 4.33e-3 -
4 9.07e-4 3.54 2.57e-2 2.31 7.19e-3 2.16 5.03e-4 3.10
k=2 8 9.04e-5 333 6.07e-3 2.08 1.75e-3 2.04 6.16e-5 3.03
16 9.86e-6 3.20 1.48e-3 2.03 4.33e-4 2.01 7.64e-6 3.01
32 1.14e-6 3.11 3.67e-4 2.01 1.08e-4 2.00 9.53e-7 3.00

Tables 8.3-8.4 demonstrate the numerical errors and the convergence rates arising from the PDWG scheme (2.6)-(2.7) for
the convection-diffusion model problem (1.1). We observe from Tables 8.3-8.4 that the numerical performance is the same
as those in Tables 8.1-8.2.

Test Example 3 (Convection-dominated diffusion problem). We consider the diffusion tensor a € R>*? and the convection
tensor b € R? given by

a1 =app=¢€, aip=a21=0, by=1, by=1,

where € assumes some small and positive constants. The exact solution is given by u(x, y) = (x + 0.5)(y + 0.5)e!*e¥ with
the full Dirichlet boundary condition I'p = 9€21.

Tables 8.5-8.6 show the approximation errors and the convergence rates for the convection-dominated diffusion problem
with € = 10710 on the unit square domain 2. For the case of | =k and k =1, we observe from Table 8.5 that the conver-
gence rates for the errors eg, e, and ey, in the discrete L?-norm are of an order (O (h?), respectively, which are consistent
with the theory for both |leg|| and |ep]||; and are of one order higher than the expected order O(h) for |le,||. For the case
of =k — 1 with k=1, the convergence rates of eq, ey, and e, in the discrete L2-norm shown in Table 8.6 are all of order
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Table 8.4

Various errors and corresponding convergence rates for k=1,2 with =k —1 on Q.
1/h llep Il rate llenll rate [[Veoll rate lleoll rate
4 2.79e-2 - 4.69e-1 - 8.16e-2 - 9.72e-3 -
8 6.53e-3 2.10 2.20e-1 1.09 2.87e-2 1.51 1.81e-3 242

k=1 16 1.60e-3 2.03 1.07e-1 1.04 1.20e-2 1.26 3.98e-4 218
32 3.97e-4 2.01 5.32e-2 1.01 5.62e-3 1.09 9.60e-5 2.05
64 9.90e-5 2.00 2.65e-2 1.00 2.75e-3 1.03 2.38e-5 2.01

1/h llep I rate llenll rate [|Veoll rate lleoll rate

2 1.14e-2 - 1.69e-1 - 3.55e-2 - 4.96e-3 -

4 1.10e-3 3.37 3.89e-2 211 7.54e-3 224 5.49e-4 3.17
k=2 8 1.18e-4 3.22 9.49e-3 2.04 1.79e-3 2.08 6.59e-5 3.06

16 1.37e-5 311 2.35e-3 2.01 4.39e-4 2.02 8.14e-6 3.02
32 1.65e-06 3.05 5.85e-4 2.01 1.09e-4 2.01 1.01e-6 3.01

Table 8.5

Various errors and corresponding convergence rates for k=1, 2 with [ =k and € =1071° on ;.
1/h llepll rate llenll rate [[Veoll rate lleoll rate
4 9.52e-2 - 111e-1 - 7.76e-01 - 2.78e-2 -
8 2.64e-2 1.85 2.99e-2 1.90 4.07e-01 0.93 7.53e-3 1.88

k=1 16 6.77e-3 1.96 7.65e-3 1.96 2.06e-01 .098 1.92e-3 197
32 1.70e-3 1.99 1.93e-3 1.99 1.03e-01 1.00 4.83e-4 1.99
64 4.27e-4 2.00 4.84e-4 2.00 5.18e-02 1.00 1.21e-4 2.00

1/h llep |l rate llenll rate IVeoll rate lleoll rate

2 3.73e-2 - 5.77e-2 - 2.27e-1 - 1.28e-2 -

4 6.65e-3 249 9.50e-3 2.60 6.44e-2 1.82 2.17e-3 2.55
k=2 8 1.36e-3 229 1.86e-3 235 1.97e-2 171 4.64e-4 2.23

16 3.13e-4 211 4.23e-4 214 7.38e-3 141 1.10e-4 2.08
32 7.61e-5 2.04 1.03e-4 2.04 3.30e-3 116 2.69e-5 2.03

Table 8.6
Various errors and corresponding convergence rates for k = 1,2 with =k —1 and € = 10~'° on
Q1.

1/h llepl rate llenll rate [|Veoll rate lleoll rate

4 2.96e-01 - 1.54e-0 - 1.09e-0 - 1.09e-1 -

8 1.80e-01 0.73 7.93e-1 0.96 5.62e-1 0.95 6.43e-2 0.75

k=1 16 1.06e-01 0.76 4.06e-1 0.97 3.25e-1 0.79 3.77e-2 0.77
32 5.86e-02 0.85 2.06e-1 0.98 2.05e-1 0.67 2.08e-2 0.86
64 3.10e-02 0.92 1.04e-1 0.99 1.35e-1 0.66 1.10e-2 0.92

1/h llep |l rate llenll rate [[Veoll rate lleoll rate

2 9.82e-2 - 2.77e-1 - 4.25e-1 - 3.98e-2 -

4 2.81e-2 180 7.47e-2 1.89 2.07e-1 1.04 1.04e-2 194
k=2 8 7.93e-3 1.82 1.93e-2 1.95 1.14e-1 0.86 2.84e-3 1.86

16 2.11e-3 1.91 4.92e-3 1.98 6.13e-2 0.89 7.59e-4 1.91
32 5.44e-4 1.96 1.24e-3 1.99 3.20e-2 0.94 197e-4 1.95

O(h), which are consistent with the expected order for both |eg| and |ley|; and is of one order higher than the expected
convergence rate given by (7.17) for |ey||. For the case of | =k and k = 2, we observe from Table 8.5 that the convergence
rates for the errors eg, e, and e, in the discrete L2-norm are of order ((h?), which are consistent with the theory for |e,||;
and are of one order lower than the expected optimal order O (h?) for both |eg| and |lep||. For the case of =k — 1 and
k =2, we see from Table 8.6 that the convergence rates for the errors eg, e, and ey in the discrete L?-norm are of order
O(h?), which are consistent with the theory for [leo| and |ep|; and are of one order higher than the expected optimal
order O(h) for |le,].

Table 8.7 shows the approximation errors and the convergence rates for € = 102 on the unit square domain €2; when
k =2 is employed. For the case of I =k, we observe from Table 8.7 that the convergence rates for the errors eg and e in the
discrete L2-norm are of optimal order O(h?), which is consistent with the theory; and the convergence rate for the error e,
in the discrete L2-norm is one order higher than the expected optimal order @ (h2), which outperforms the theory. For the
case of | =k — 1, the convergence rates of eg, e, and ey, in the discrete L2-norm are of one order higher than the expected
optimal order, which are better than the theory. It can be seen that the convergence rates are improved and the theoretical
results in Theorems 7.2-7.3 are recovered for the case of € = 10~2. The results indicate that the diffusion coefficient a has
an influence on the convergence rate for k = 2.
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Table 8.7
Various errors and corresponding convergence rates for k =2 with € = 1072 on ;.
1/h llep I rate llenll rate [|Veoll rate lleoll rate
2 4.31e-02 - 6.79e-2 - 2.44e-1 - 1.59e-2 -
4 6.18e-03 2.80 8.97e-3 292 6.47e-2 1.92 2.02e-3 2.98
I=k 8 7.98e-04 2.95 1.25e-3 2.84 1.73e-2 1.90 2.55e-4 2.99

16 9.42e-05 3.08 1.94e-4 2.69 431e-3 2.00 3.12e-5 3.03
32 1.11e-05 3.08 3.56e-5 244 1.03e-3 2.06 3.72e-6 3.07

1/h llep I rate llenll rate [[Veoll rate lleoll rate
4 2.71e-2 - 7.51e-2 - 1.96e-1 - 1.02e-2 -
8 7.01e-3 1.95 1.94e-2 1.96 9.48e-2 1.05 2.64e-3 195

I=k-1 16 1.44e-3 229  4.77e-3 2.02 3.63e-2 138 5.59e-4 224
32 2.05e-4 281 1.13e-3 2.07 9.36e-3 1.96 8.21e-5 2.77
64 1.97e-5 338 273e-4 205 1.64e-3 2.51 8.0le-6  3.36

Table 8.8

Various errors and corresponding convergence rates for k=1, 2 with [ =k and € =102 on Q;.
1/h llepll rate llenll rate [|Veoll rate lleoll rate
4 1.00e-1 - 1.32e-1 - 7.45e-1 - 3.23e-2 -
8 3.35e-2 1.58 4.57e-2 1.53 3.97e-1 0.90 1.12e-2 1.53

k=1 16 1.02e-2 172 1.47e-2 1.63 1.97e-1 1.01 3.56e-3 1.66
32 2.58e-3 1.99 4.12e-3 1.84 9.60e-2 1.03 9.18e-4 1.96
64 6.43e-4 2.00 1.32e-3 1.64 4.76e-2 1.01 2.30e-4 2.00

1/h llepl rate [lenll rate [[Veoll rate lleoll rate
4 6.03e-3 - 8.94e-3 - 6.18e-2 - 1.97e-3 -
8 8.85e-4 2.77 1.39e-3 2.68 1.72e-2 1.85 2.85e-4 2.79

k=2 16 1.02e-4 312 2.02e-4 2.78 4.27e-3 2.01 3.23e-5 3.14
32 1.15e-5 315 3.58e-5 2.50 1.02e-3 2.07 3.64e-6 315
64 1.38e-6 3.06 8.00e-6 216 2.50e-4 2.03 4.36e-7 3.06

Table 8.9

Various errors and corresponding convergence rates for k=1,2 with =k —1 and € =102 on Q5.
1/h [lep |l rate llenll rate [[Veoll rate lleoll rate
4 1.89e-1 - 1.44e-0 - 9.87e-1 - 7.02e-2 -
8 1.06e-1 0.83 7.33e-1 0.98 491e-1 1.00 3.83e-2 0.87

k=1 16 6.53e-2 0.72 3.72e-1 0.98 2.71e-1 0.86 2.33e-2 0.72
32 3.52e-2 0.89 1.87e-1 0.99 1.54e-1 0.81 1.25e-2 0.90
64 1.54e-2 1.20 9.28e-2 1.01 7.85e-2 0.98 5.45e-3 1.20

1/h llep Il rate llenll rate [IVeoll rate lleoll rate
4 2.49e-2 - 7.00e-2 - 1.76e-1 - 9.52e-3 -
8 6.56e-3 192 1.81e-2 1.95 8.61e-2 1.03 2.49e-3 193

k=2 16 1.34e-3 229 4.45e-3 2.02 3.32e-2 1.38 5.24e-4 225
32 1.89e-4 283 1.05e-3 2.08 8.52e-3 1.96 7.54e-5 2.80
64 1.80e-5 3.39 2.54e-4 2.05 1.49e-3 2.51 7.25e-6 3.38

Tables 8.8-8.9 show the approximation errors and corresponding convergence rates for k =1,2 with =k and [ =k — 1,
respectively, on the L-shaped domain €2;. In both the case of =k for k=1,2 and [ =k — 1 for k =2, we observe a
(k + 1)-th order of convergence for |eg| and |lep||, and a k-th order of convergence for ||, which are consistent with our
theoretical results established in Theorems 7.2-7.3. As for the case of =k —1 and k =1, we observe from Table 8.9 that,
the convergence rates of |leg]||, |lep|l, |len| are all of order O(h). Note that the convergence results for |eg| and |lep| for the
case of =k —1 and k=1 are consistent with the theoretical findings in Theorems 7.2-7.3; while for |le;||, the convergence
rate is 1 order higher than the error estimate given by (7.17).

In what follows of this section, we present the plot of the numerical solution uy arising from the primal-dual weak
Galerkin scheme (2.6)-(2.7) for test problems for which the exact solution is not known.

Test Example 4. The diffusion a is given by ai; = azy = 1074, a1 = az; = 0; the convection is set as b = (y, —x)T, the
domain is an unit square domain 21; and the mixed boundary conditions are g; = sin(3x) on the inflow boundary I'p =
{(x,y):b-n<0} and g» =0 on 'y =9 \ I'p. Fig. 8.1 presents the plots for the numerical solution u; obtained from
the PDWG numerical method (2.6)-(2.7) with k=1 and | =k — 1 for the convection-dominated diffusion problem when
different load functions f =1 (left) and f =0 (right) are employed, respectively.
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Fig. 8.1. Contour plots of the numerical solution u; on €2 for the load functions f =1 (left) and f =0 (right).

Fig. 8.2. Contour plots of the numerical solution up on €7 with the load functions f =1 (left) and f =0 (right).

Fig. 8.3. Contour plots of the numerical solution u; on €2, with the load functions f =1 (left) and f =0 (right).

Test Example 5. The diffusion is given by a1 =az; = 107>, aj2 =az; = 0; and the convection vector is set as b= (y, —x)T.
For the unit square domain 1, 'y ={(x,¥) : x=1 or y =0}; and for the L-shaped domain €, 'y ={(x,y):x=1o0r y =
0.5}. The mixed boundary conditions are g; =sin(2x) on 'p =dQ\ 'y and g =0 on 'y. We take =k —1 and k= 1.
Figs. 8.2-8.3 demonstrate the numerical solutions uy on the unit square domain 21 and the L-shaped domain €, when
different load functions f =0 (left) and f =1 (right) are employed, respectively.

Test Example 6. We test the positivity-preserving property of the PDWG solution in this example. To this end, we test the
problem (1.1) on the unit square domain €1 with the full Dirichlet boundary condition in two cases:
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Table 8.10
The minimum value i, of the numerical solution on the edge for piecewise constant and piecewise
linear approximations.

up, for Case 1 up, for Case 2
1/h e=1 €=10"2 €e=10"* e=1 €=10"2 €e=10"*
4 1.0000 0.0100 0.0001 0.9530 -0.0370 -0.0469
8 1.0000 0.0100 0.0001 0.9511 -0.0389 -0.0488
k=0 16 1.0000 0.0100 0.0001 0.9505 -0.0395 -0.0494
32 1.0000 0.0100 0.0001 0.9503 -0.0397 -0.0496
64 1.0000 0.0100 0.0001 0.9503 -0.0397 -0.0469
1/h e=1 €=10"2 €e=10"* e=1 €=10"2 e=10"*
4 1.0000 0.0100 0.0001 1.0000 0.0100 0.0001
8 0.8497 -0.1403 -0.1502 0.8021 -0.1879 -0.1978
k=1 16 0.9893 -0.0007 -0.0106 0.9894 -0.0006 -0.0105
32 1.0000 0.0100 0.0001 1.0000 0.0100 0.0001
64 0.9941 0.0041 -0.0058 0.9929 0.0029 -0.0070

e Case 1: ay1 =axy =1, a;p =ax1 =0, b:(O,O)T;
e Case 2: aj1 =axy =1, aip=a;1 =0 b=(1,1)T.

We take the right-hand side function f =1, and the boundary function g; =€ > 0 with € =1,107%,10~%. In our numerical
experiment, we test the positivity of the minimum value of the numerical solution on each edge e € &, for both the
piecewise constant (i.e., k =0,] = 0) approximation and piecewise linear (k =1,/ =k — 1) approximation. We denote by
this minimum value, that is

Up = min up(2o),
ee&y
where zg € e is the middle point of the edge e.

Table 8.10 demonstrates the minimum value u} of the numerical solution for Case 1 and Case 2. As we may observe,
the numerical solution uj, is positive-preserving in Case 1 for piecewise constant approximation. While for Case 2 (i.e., the
convection-diffusion term b is not zero), i, changes its sign and negative values appear for some small €. In this sense, the
coefficient b has effect on the positive-preserving property of our numerical scheme. On the other hand, for piecewise linear
approximation, we observe that even for Poisson equations (i.e., Case 1), ii, could be negative for small € = 1072,1074.
However, as € increases to 1, U changes to positive. In other words, the numerical scheme is positive-preserving for large
€. From the point of view of positive-preserving property, it seems that the piecewise constant approximation behaviors
better than the piecewise linear approximation. The analysis of the positive-preserving property for the PDWG solution is a
challenging and interesting work, which deserves a comprehensive study.
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