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1. Introduction

This paper is concerned with new development of numerical methods for the convection-diffusion equations. For sim-
plicity, we consider the model problem that seeks an unknown function u satisfying

−∇ · (a∇u + bu) = f , in �,

u =g1, on �D ,

(a∇u + bu) · n =g2, on �N ,

(1.1)

where � ⊂ Rd (d = 2, 3) is an open bounded polygonal (d = 2) or polyhedral (d = 3) domain with Lipschitz continuous 
boundary ∂�, �D is the Dirichlet boundary, �N = ∂� \ �D is the Neumann boundary, and n is the unit outward normal 
direction to the Neumann boundary �N . We assume that the convection vector b ∈ [L∞(�)]d is bounded, and the diffusion 
tensor a = {aij}d×d is symmetric and positive definite in the sense that there exists a constant α > 0, such that

ξ T aξ ≥ αξ T ξ, ∀ξ ∈Rd.
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Furthermore, we assume that the diffusion tensor a and the convection tensor b are uniformly piecewise continuous func-
tions.

The convection-diffusion equations arise in many areas of science and engineering. Readers are referred to the “Intro-
duction” Section in [16] and the references cited therein for a detailed description of the convection-diffusion equations.

The weak Galerkin (WG) finite element method was first introduced by Wang and Ye in [14] for second order elliptic 
equations, and later was widely used for solving various partial differential equations, e.g., [1,13,15,7,17,8,11,9,12,10]. Re-
cently, the authors in [3] have developed a new numerical scheme, called “primal-dual weak Galerkin (PDWG) finite element 
method” for the second order elliptic problem in non-divergence form. PDWG uses the weak Galerkin strategy to construct 
the discrete weak Hessian operator in the weak formulation of the model PDEs, and further seeks a discontinuous function 
which minimizes a stabilizer defined on the boundary of each element with the constraint given by the weak formulation 
of the model PDEs weakly defined on each element. The Euler-Lagrange method was employed to solve the constrained 
minimization problem leading to the primal-dual weak Galerkin finite element method, which has been further studied 
in [4,5,16,6,2]. The primal-dual weak Galerkin finite element method has shown the promising features as a discretization 
approach due to: (1) it works well for a wide class of PDE problems for which no traditional variational formulations are 
available; and (2) it is applicable to virtually any PDE problems where the inf-sup condition is satisfied.

Using the usual integration by parts one may derive a weak formulation for the model problem (1.1) as follows: Find 
u ∈ H1(�) satisfying u|�D = g1 and (a∇u + bu) · n|�N = g2, such that∫

T

(a∇u + bu) · ∇wdT −
∫
∂T

(a∇u + bu) · nwds

=
∫
T

f wdT , ∀T ⊂ �, w ∈ H1(T ).

(1.2)

The PDWG numerical scheme developed in this paper is based on the weak formulation (1.2) for the convection-diffusion 
model problem (1.1). The gradient operator is the principal player in (1.2) so that a reconstructed gradient (i.e., weak 
gradient) is crucial in the PDWG finite element scheme. In contrast, the PDWG finite element method developed in [16]
was based on a weak form principled by the operator L = ∇ · (a∇) so that a reconstructed weak L played a key role in the 
construction of the numerical scheme. The two numerical methods are thus sharply different from each other, and each has 
its own advantage in theory and practical computation.

The rest of the paper is organized as follows. In Section 2, we present our primal-dual weak Galerkin scheme for the 
model problem (1.1) based on the weak formulation (1.2). In Section 3, we shall establish a result on the solution existence 
and uniqueness for the numerical method. Section 4 is devoted to the establishment of the property of mass conservation. 
The error equations for the primal-dual weak Galerkin algorithm are derived in Section 5. Sections 6-7 are devoted to the 
establishment of some optimal order error estimates for the PDWG solution in discrete norms as well as the usual L2-norm. 
Finally, various numerical examples are presented in the last section to support our theoretical findings.

Throughout this paper, we adopt standard notations for Sobolev spaces such as Wm,p(D) on sub-domain D ⊂ � equipped 
with the norm ‖ · ‖m,p,D and the semi-norm | · |m,p,D . When D = �, we omit the index D; and if p = 2, we set Wm,p(D) =
Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D , and | · |m,p,D = | · |m,D , and if m = 0, p = 2, we set ‖ · ‖m,p,D = ‖ · ‖D .

2. Numerical algorithm

Let Th be a partition of the domain � into polygons in 2D or polyhedra in 3D which is shape regular in the sense of 
[13]. Denote by Eh the set of all edges or flat faces in Th and E0

h = Eh \ ∂� the set of all interior edges or flat faces. Denote 
by hT the meshsize of T ∈ Th and h = maxT∈Th hT the meshsize for the partition Th .

By a weak function on T ∈ Th we mean a triplet v = {v0, vb, vn} such that v0 ∈ L2(T ), vb ∈ L2(∂T ) and vn ∈ L2(∂T ), 
where ∂T is the boundary of T . The first and the second components, namely v0 and vb , should be understood as the value 
of v in the interior and on the boundary of T respectively. The third component vn refers to the value of (a∇v + bv) · n on 
∂T . Note that vb and vn may not necessarily be the trace of v0 and (a∇v0 + bv0) · n on ∂T . Denote by W(T ) the space of 
all weak functions on T ; i.e.,

W(T ) = {v = {v0, vb, vn} : v0 ∈ L2(T ), vb ∈ L2(∂T ), vn ∈ L2(∂T )}. (2.1)

The weak gradient of v ∈ W(T ), denoted by ∇w v , is defined as a linear functional on [H1(T )]d such that

(∇w v,ψ)T = −(v0,∇ · ψ)T + 〈vb,ψ · n〉∂T ,

for all ψ ∈ [H1(T )]d . Denote by Pr(T ) the space of polynomials on T with degree r ≥ 0. A discrete version of ∇w v , denoted 
by ∇w,r,T v , is defined as the unique vector-valued polynomial in [Pr(T )]d satisfying

(∇w,r,T v,ψ)T = −(v0,∇ · ψ)T + 〈vb,ψ · n〉∂T , ∀ψ ∈ [Pr(T )]d. (2.2)
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For smooth v0, we have from the usual integration by parts that

(∇w,r,T v,ψ)T = (∇v0,ψ)T − 〈v0 − vb,ψ · n〉∂T , ∀ψ ∈ [Pr(T )]d. (2.3)

For any given integer k ≥ 1, denote by Wk(T ) the local discrete weak function space; i.e.,

Wk(T ) = {{v0, vb, vn} : v0 ∈ Pk(T ), vb ∈ Pk(e), vn ∈ Pl(e), e ⊂ ∂T },
where l = k − 1 or l = k. Patching Wk(T ) over all the elements T ∈ Th through a common value vb and ±vn on the interior 
interface E0

h , we arrive at a global weak finite element space Wh ; i.e.,

Wh = {{v0, vb, vn} : {v0, vb, vn}|T ∈ Wk(T ),∀T ∈ Th
}
.

Denote by W 0
h the subspace of Wh with homogeneous Dirichlet and Neumann boundary conditions; i.e.,

W 0
h = {{v0, vb, vn} ∈ Wh : vb = 0 on �D , vn = 0 on �N }. (2.4)

Next, let Mh be the finite element space consisting of piecewise polynomials of degree k; i.e.,

Mh = {σ : σ |T ∈ Pk(T ),∀T ∈ Th}. (2.5)

Remark 2.1. The finite element space Mh in (2.5) can also be constructed by using piecewise polynomials of degree k − 1 in 
the forthcoming numerical scheme. All the mathematical results to be presented in this paper can be extended to the case 
of k − 1 without any difficulty.

For simplicity, for any v = {v0, vb, vn} ∈ Wh , denote by ∇w v the discrete weak gradient ∇w,k−1,T v computed by using 
(2.2) on each element T ; i.e.,

(∇w v)|T = ∇w,k−1,T (v|T ), v ∈ Wh.

Let us introduce the following bilinear forms:

s(u, v) =
∑
T∈Th

h−3
T 〈u0 − ub, v0 − vb〉∂T

+ h−1
T 〈(a∇u0 + bu0) · n− un, (a∇v0 + bv0) · n− vn〉∂T ,

b(u, λ) =
∑
T∈Th

(a∇wu + bu0,∇λ)T − 〈un, λ〉∂T ,

c(λ,σ ) =τ1
∑
T∈Th

h2T (∇λ,∇σ)T + τ2
∑
T∈Th

h4T

d∑
i, j=1

(∂2
i jλ, ∂2

i jσ)T ,

where u, v ∈ Wh and λ, σ ∈ Mh , τ1 ≥ 0 and τ2 ≥ 0 are two mesh-independent parameters.
Let k ≥ 1 and T ∈ Th . Denote by Q

(k)
0 the L2 projection operator onto Pk(T ). For each edge or face e ⊂ ∂T , denote by 

Q (k)
b and Q (l)

n the L2 projection operators onto Pk(e) and Pl(e), respectively. For any w ∈ H1(�), denote by Qhw the L2
projection onto the weak finite element space Wh such that on each element T ,

Qhw = {Q (k)
0 w, Q (k)

b w, Q (l)
n ((a∇w + bw) · n)}.

Denote by Q(k−1)
h the L2 projection operator onto the space [Pk−1(T )]d .

The numerical scheme for the convection-diffusion problem (1.1) based on the variational formulation (1.2) can be stated 
as follows:

Primal-Dual Weak Galerkin Algorithm 2.1. Find (uh; λh) ∈ Wh × Mh satisfying ub = Q (k)
b g1 on �D and un = Q (l)

n g2 on �N , 
such that

s(uh, v) + b(v, λh) = 0, ∀v ∈ W 0
h , (2.6)

−c(λh,σ ) + b(uh,σ ) = ( f ,σ ), ∀σ ∈ Mh. (2.7)

Remark 2.2. For the case of l = k, one may take τ1 = τ2 = 0 and thus c(λh, σ) = 0; for the case of l = k − 1 and k = 1, one 
may take τ1 > 0 and τ2 = 0; for the case of l = k − 1 and k ≥ 2, one would take τ1 = 0 and τ2 > 0, as suggested by the 
mathematical theory.
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3. Solution existence and uniqueness

For the sake of analysis, in what follows of this paper, we assume that the diffusion tensor a and the convection tensor 
b in the convection-diffusion equation (1.1) are piecewise constants in � with respect to the finite element partition Th . 
However, the analysis can be extended to the case that a and b are piecewise smooth functions without any difficulty.

The L2 projection operators Qh and Q(k−1)
h satisfy the following commutative property [13]:

∇w(Qhw) = Q(k−1)
h (∇w), ∀w ∈ H1(T ). (3.1)

In the finite element spaces Wh and Mh , we introduce the following seminorms:

|||v|||Wh
=s(v, v)

1
2 , v ∈ Wh; (3.2)

|||σ |||Mh
=c(σ ,σ )

1
2 , σ ∈ Mh. (3.3)

Lemma 3.1 (Generalized inf-sup condition). For any λ ∈ Mh, there exists a v ∈ W 0
h satisfying

b(v, λ) ≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
‖λ‖2, l = k,

1

2
‖λ‖2 − βh2‖∇λ‖2, k = 1, l = k − 1,

1

2
‖λ‖2 − βh4|λ|22, k ≥ 2, l = k − 1,

(3.4)

for some constant β > 0.

Proof. Consider the auxiliary problem of seeking w such that

−∇ · (a∇w + bw) = λ, in �,

w = 0, on �D ,

(a∇w + bw) · n = 0, on �N .

(3.5)

Assume that the auxiliary problem (3.5) has the H2-regularity property in the sense that there exists a constant C satisfying

‖w‖2 ≤ C‖λ‖. (3.6)

By taking v = Qhw = {Q (k)
0 w, Q (k)

b w, Q (l)
n ((a∇w + bw) · n)} ∈ W 0

h in b(v, λ), we have from (2.2) and the usual integration 
by parts that

b(v, λ) = b(Qhw, λ)

=
∑
T∈Th

(a∇w Qhw + bQ (k)
0 w,∇λ)T − 〈Q (l)

n ((a∇w + bw) · n), λ〉∂T

=
∑
T∈Th

(aQ(k−1)
h (∇w) + bQ (k)

0 w,∇λ)T − 〈Q (l)
n ((a∇w + bw) · n), λ〉∂T

=
∑
T∈Th

(a∇w + bw,∇λ)T − 〈Q (l)
n ((a∇w + bw) · n), λ〉∂T

=
∑
T∈Th

−(∇ · (a∇w + bw), λ)T − 〈(Q (l)
n − I)((a∇w + bw) · n), λ〉∂T

=‖λ‖2 −
∑
T∈Th

〈(Q (l)
n − I)((a∇w + bw) · n), (I − Q (l)

n )λ〉∂T ,

(3.7)

where we have used the first equation of (3.5), (3.1), and the property of the L2 projection Q (l)
n .

We shall discuss the estimate of the term 
∑

T∈Th
〈(Q (l)

n − I)((a∇w +bw) ·n), (I − Q (l)
n )λ〉∂T in various situations. For the 

case of l = k, we have∑
〈(Q (l)

n − I)((a∇w + bw) · n), (I − Q (l)
n )λ〉∂T = 0,
T∈Th
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which, together with (3.7), gives (3.4) for the case of l = k. For the case of l = k − 1, using the Cauchy-Schwarz inequality 
and the trace inequality (6.1) gives∣∣∣∣∣∣

∑
T∈Th

〈(Q (l)
n − I)((a∇w + bw) · n), (I − Q (l)

n )λ〉∂T
∣∣∣∣∣∣

≤
( ∑

T∈Th

‖(Q (l)
n − I)((a∇w + bw) · n)‖2∂T

) 1
2
( ∑

T∈Th

‖(I − Q (l)
n )λ‖2∂T

) 1
2

≤C
( ∑

T∈Th

h−1
T ‖(Q (l)

0 − I)((a∇w + bw))‖2T

+ hT ‖(Q (l)
0 − I)(a∇w + bw)‖21,T

) 1
2

( ∑
T∈Th

h−1
T ‖(I − Q (l)

0 )λ‖2T + hT ‖(I − Q (l)
0 )λ‖21,T

) 1
2

≤
{
Ch‖∇λ‖‖w‖2, k = 1, l = k − 1,

Ch2|λ|2‖w‖2, k ≥ 2, l = k − 1.

(3.8)

Substituting (3.8) into (3.7) and using the Young’s inequality and the H2- regularity property (3.6) gives

|b(v, λ)| ≥ ‖λ‖2 − ε‖w‖22 − Cε−1

{
h2‖∇λ‖2, k = 1, l = k − 1

h4|λ|22, k ≥ 2, l = k − 1

≥ (1 − εC)‖λ‖2 − Cε−1

{
h2‖∇λ‖2, k = 1, l = k − 1

h4|λ|22, k ≥ 2, l = k − 1

≥ 1

2
‖λ‖2 − β

{
h2‖∇λ‖2, k = 1, l = k − 1,

h4|λ|22, k ≥ 2, l = k − 1,

where ε > 0 is a parameter satisfying 1 − εC ≥ 1
2 , and β = Cε−1 > 0. This completes the proof of (3.4) for the case of 

l = k − 1 and further completes the proof of the lemma. �
Theorem 3.2. The primal-dual weak Galerkin algorithm (2.6)-(2.7) has a unique solution.

Proof. It suffices to prove that the homogeneous problem of (2.6)-(2.7) has only trivial solution. To this end, we assume 
f = 0, g1 = 0 and g2 = 0. By letting v = uh and σ = λh in (2.6)-(2.7), we have from the difference of (2.6)-(2.7) that

s(uh,uh) + c(λh, λh) = 0,

which implies u0 = ub and (a∇u0 + bu0) · n = un on each ∂T ; and c(λh, λh) = 0. From c(λh, λh) = 0 we have ∇λh = 0
on each element T ∈ Th if τ1 > 0 and ∂2

i jλh = 0 for i, j = 1, · · · , d on each element T ∈ Th if τ2 > 0, which shows that 
c(λh, σ) = 0 for all σ ∈ Mh .

Using (2.7), (2.3) and the usual integration by parts, we have

0 = b(uh,σ )

=
∑
T∈Th

(a∇wuh + bu0,∇σ)T − 〈un,σ 〉∂T

=
∑
T∈Th

(∇u0,a∇σ)T − 〈u0 − ub,a∇σ · n〉∂T − (∇ · (bu0),σ )T

+〈bu0 · n,σ 〉∂T − 〈un,σ 〉∂T
=

∑
T∈Th

−(∇ · (a∇u0),σ )T + 〈a∇u0 · n,σ 〉∂T − 〈u0 − ub,a∇σ · n〉∂T

−(∇ · (bu0),σ )T + 〈bu0 · n,σ 〉∂T − 〈un,σ 〉∂T
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=
∑
T∈Th

−(∇ · (a∇u0 + bu0),σ )T − 〈u0 − ub,a∇σ · n〉∂T

+〈(a∇u0 + bu0) · n− un,σ 〉∂T
=

∑
T∈Th

−(∇ · (a∇u0 + bu0),σ )T ,

where we used u0 = ub and (a∇u0 + bu0) · n = un on each ∂T . This gives ∇ · (a∇u0 + bu0) = 0 on each element T ∈ Th by 
taking σ = ∇ · (a∇u0 + bu0). From (a∇u0 + bu0) · n = un on each ∂T , and a∇u0 + bu0 ∈ H(div; T ), we obtain a∇u0 + bu0 ∈
H(div; �) and further ∇ · (a∇u0 + bu0) = 0 in �. Using g1 = 0 on �D and u0 = ub on each ∂T , gives u0 = 0 on �D . Using 
g2 = 0 on �N and (a∇u0 + bu0) · n = un on each ∂T , yields (a∇u0 + bu0) · n = 0 on �N . Therefore, from the solution 
uniqueness of the PDE problem, we have u0 ≡ 0 in �. We further obtain ub ≡ 0, un ≡ 0 and thus uh ≡ 0 in �.

From uh ≡ 0 in �, (2.6) can be simplified as follows

b(v, λh) = 0, ∀v ∈ W 0
h .

From Lemma 3.1, there exists a v ∈ W 0
h , satisfying

0 = b(v, λh) ≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2
‖λh‖2, l = k,

1

2
‖λh‖2 − βh2‖∇λh‖2, k = 1, l = k − 1,

1

2
‖λh‖2 − βh4|λh|22, k ≥ 2, l = k − 1,

(3.9)

for some constant β > 0. For the case of l = k, it follows from (3.9) that λh ≡ 0 in �. Note that when l = k − 1 and k = 1, 
we take τ1 > 0 and τ2 = 0; when l = k − 1 and k ≥ 2, we take τ1 = 0 and τ2 > 0. Thus, for the case of l = k − 1, using 
c(λh, λh) ≡ 0 gives ∇λh = 0 on each T ∈ Th for k = 1; and ∂2

i jλh = 0 for any i, j = 1, · · · , d on each T ∈ Th for k ≥ 2, which, 
combined with (3.9), yields λh ≡ 0 in � for the case of l = k − 1. This completes the proof of this theorem. �
4. Mass conservation

The first equation in the convection-diffusion model problem (1.1) can be rewritten in a conservative form; i.e.,

−∇ · F = f , (4.1)

F = a∇u + bu. (4.2)

On each element T ∈ Th , integrating (4.1) over T gives the integral formulation of the mass conservation; i.e.,

−
∫
∂T

F · nds =
∫
T

f dT . (4.3)

We claim that the numerical solution arising from the primal-dual weak Galerkin scheme (2.6)-(2.7) for the convection-
diffusion model problem (1.1) retains the mass conservation property (4.3) locally on each element T ∈ Th with a numerical 
flux Fh . To this end, for any given element T ∈ Th , choosing the test function σ in (2.7) such that σ = 1 on T and σ = 0
elsewhere, yields

− τ1h
2
T (∇λh,∇1)T − τ2h

4
T

d∑
i, j=1

(∂2
i jλh, ∂

2
i j1)T + (a∇wuh + bu0,∇1)T − 〈un,1〉∂T

= ( f ,1)T ,

which can be simplified as follows

−〈unn · n,1〉∂T = ( f ,1)T .

This implies that the primal-dual weak Galerkin algorithm (2.6)-(2.7) conserves mass with a numerical flux given by

Fh|∂T = unn.

It is easy to check that

Fh|∂T 1 · nT1 + Fh|∂T 2 · nT2 = 0, on e = ∂T 1 ∩ ∂T 2,
176
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where nT1 and nT2 are the unit outward normal directions along the interior edge or flat face e = ∂T1 ∩ ∂T2 pointing 
exterior to T1 and T2, respectively. This indicates the continuity of the numerical flux Fh along the normal direction on each 
interior edge or flat face e ∈ E0

h .
The result can be summarized as follows.

Theorem 4.1. Let (uh = {u0, ub, un}; λh) be the numerical solution of the convection-diffusion model problem (1.1) arising from the 
primal-dual weak Galerkin finite element method (2.6)-(2.7). Define a numerical flux function as follows:

Fh|∂T := unn, on ∂T , T ∈ Th.
Then, the numerical flux approximation Fh is continuous across each interior edge or flat face e ∈ E0

h in the normal direction, and 
satisfies the following mass conservation property; i.e.,

−
∫
∂T

Fh · nds =
∫
T

f dT .

5. Error equations

Let u and (uh; λh) ∈ Wh × Mh be the exact solution of (1.1) and the PDWG solution arising from the numerical scheme 
(2.6)-(2.7), respectively. Denote by Q(k)

h the L2 projection onto the finite element space Mh . Note that the exact solution of 
the Lagrange multiplier λ is 0. Define two error functions by

eh = uh − Qhu, (5.1)

εh = λh −Q(k)
h λ = λh. (5.2)

Lemma 5.1. The error functions eh and εh defined in (5.1)-(5.2) satisfy the following error equations for the primal-dual WG finite 
element scheme (2.6)-(2.7); i.e.,

s(eh, v) + b(v, εh) = −s(Qhu, v), ∀v ∈ W 0
h , (5.3)

−c(εh,σ ) + b(eh,σ ) = �u(σ ), ∀σ ∈ Mh, (5.4)

where

�u(σ ) =

⎧⎪⎨
⎪⎩

0, l = k,∑
T∈Th

〈(Q (l)
n − I)((a∇u + bu) · n),σ 〉∂T , l = k − 1. (5.5)

Proof. Note that the exact solution of the Lagrange multiplier λ is 0. Subtracting s(Qhu, v) from both sides of (2.6) yields

s(uh − Qhu, v) + b(v, λh −Q(k)
h λ) = −s(Qhu, v), ∀v ∈ W 0

h .

This completes the proof of (5.3). Next, for any σ ∈ Mh , we have

b(Qhu,σ ) =
∑
T∈Th

(a∇w Qhu + bQ (k)
0 u,∇σ)T − 〈Q (l)

n ((a∇u + bu) · n),σ 〉∂T

=
∑
T∈Th

(aQ(k−1)
h ∇u + bQ (k)

0 u,∇σ)T − 〈Q (l)
n ((a∇u + bu) · n),σ 〉∂T

=
∑
T∈Th

(a∇u + bu,∇σ)T − 〈Q (l)
n ((a∇u + bu) · n),σ 〉∂T

=
∑
T∈Th

−(∇ · (a∇u + bu),σ )T + 〈(a∇u + bu) · n,σ 〉∂T

− 〈Q (l)
n ((a∇u + bu) · n),σ 〉∂T

=
∑
T∈Th

( f ,σ )T −
∑
T∈Th

〈(Q (l)
n − I)((a∇u + bu) · n),σ 〉∂T ,

where we have used the operator identify (3.1), the usual integration by parts, and the first equation of (1.1). Note that for 
the case of l = k, we have 

∑
T∈Th

〈(Q (l)
n − I)((a∇u + bu) · n), σ 〉∂T = 0. Combining the above with (2.7) yields (5.4). This 

completes the proof of the lemma. �
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6. Residual error estimates

Recall that Th is a shape-regular finite element partition of the domain �. For any T ∈ Th and ϕ ∈ H1(T ), the following 
trace inequality holds true [13]:

‖ϕ‖2∂T ≤ C(h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖2T ). (6.1)

If ϕ is a polynomial on the element T ∈ Th , then from the inverse inequality (see also [13]) we have

‖ϕ‖2∂T ≤ Ch−1
T ‖ϕ‖2T . (6.2)

Lemma 6.1. [13] Let Th be a finite element partition of the domain � satisfying the shape regularity assumptions given in [13]. Then, 
for any 0 ≤ p ≤ 2, 1 ≤m ≤ k, one has∑

T∈Th

h2pT ‖u − Q (m)
0 u‖2p,T ≤ Ch2(m+1)‖u‖2m+1, (6.3)

∑
T∈Th

h2pT ‖∇u −Q(m−1)
h ∇u‖2p,T ≤ Ch2m‖u‖2m+1, (6.4)

∑
T∈Th

h2pT ‖u −Q(m)

h u‖2p,T ≤ Ch2(m+1)‖u‖2m+1. (6.5)

Theorem 6.2. Let u and (uh; λh) ∈ Wh × Mh be the exact solution of (1.1) and PDWG solution of (2.6)-(2.7), respectively. Assume that 
the exact solution u of (1.1) is sufficiently regular such that u ∈ Hk+1(�). Then, there exists a constant C such that the following error 
estimate holds true:

|||uh − Qhu|||Wh
+ |||λh −Q(k)

h λ|||Mh
≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Chk−1‖u‖k+1, l = k,

C(1+ τ
− 1

2
1 )hk−1‖u‖k+1, k = 1, l = k − 1,

C(1+ τ
− 1

2
2 )hk−1‖u‖k+1, k ≥ 2, l = k − 1.

(6.6)

Proof. By choosing v = eh and σ = εh in (5.3)-(5.4), we have from the difference of (5.3) and (5.4) that

s(eh, eh) + c(εh, εh) = −s(Qhu, eh) − �u(εh). (6.7)

Recall that

s(Qhu, eh)

=
∑
T∈Th

h−3
T 〈Q (k)

0 u − Q (k)
b u, e0 − eb〉∂T +

∑
T∈Th

h−1
T 〈(a∇Q (k)

0 u + bQ (k)
0 u) · n

− Q (l)
n ((a∇u + bu) · n), (a∇e0 + be0) · n− en〉∂T .

(6.8)

The first term on the right-hand side of (6.8) can be estimated by using the Cauchy-Schwarz inequality, the trace inequality 
(6.1), and the estimate (6.3) with m = k as follows∣∣∣∣∣∣

∑
T∈Th

h−3
T 〈Q (k)

0 u − Q (k)
b u, e0 − eb〉∂T

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
T∈Th

h−3
T 〈Q (k)

0 u − u, e0 − eb〉∂T
∣∣∣∣∣∣

≤
( ∑

T∈Th

h−3
T ‖u − Q (k)

0 u‖2∂T
) 1

2
( ∑

T∈Th

h−3
T ‖e0 − eb‖2∂T

) 1
2

≤C
( ∑

T∈Th

h−4
T ‖u − Q (k)

0 u‖2T + h−2
T |u − Q (k)

0 u|21,T
) 1

2 |||eh|||Wh

≤Chk−1‖u‖ |||e ||| .

(6.9)
k+1 h Wh
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Similarly, the second term on the right-hand side of (6.8) has the following estimate

∣∣∣ ∑
T∈Th

h−1
T 〈(a∇Q (k)

0 u + bQ (k)
0 u) · n− Q (l)

n ((a∇u + bu) · n),

(a∇e0 + be0) · n− en〉∂T
∣∣∣ ≤ Chk−1‖u‖k+1|||eh|||Wh

.

(6.10)

Substituting (6.9) and (6.10) into (6.8) gives

|s(Qhu, eh)| ≤ Chk−1‖u‖k+1|||eh|||Wh
. (6.11)

We shall further discuss the second term on the right-hand side of (6.7). For the case of l = k, from (5.5), we have

�u(εh) = 0. (6.12)

We now consider the case of l = k − 1. By denoting

Fu = a∇u + bu,

and then using (5.5), the Cauchy-Schwarz inequality, the trace inequality (6.1), and the estimate (6.3) with m = l = k −1, we 
have

|�u(εh)| =|�u(εh − Ilhεh)| =
∣∣∣∣∣∣
∑
T∈Th

〈(Q (l)
n − I)(Fu · n), εh − Ilhεh〉∂T

∣∣∣∣∣∣
≤

( ∑
T∈Th

‖(Q (l)
n − I)(Fu · n)‖2∂T

) 1
2
( ∑

T∈Th

‖εh − Ilhεh‖2∂T
) 1

2

≤C
( ∑

T∈Th

h−1
T ‖(Q (l)

0 − I)Fu‖2T + hT |(Q (l)
0 − I)Fu|21,T

) 1
2

( ∑
T∈Th

h−1
T ‖εh − Ilhεh‖2T + hT ‖∇(εh − Ilhεh)‖2T

) 1
2

≤Chl‖Fu‖l+1

( ∑
T∈Th

‖εh − Ilhεh‖2T + h2T ‖∇(εh − Ilhεh)‖2T
) 1

2
,

(6.13)

where Ilhεh denotes the cell average and linear interpolation of εh on each element T ∈ Th for l = 0 and l ≥ 1, respectively. 
Choosing l = k − 1 in the above inequality and using the approximation property of the interpolation function yields

|�u(εh)| ≤
⎧⎨
⎩Cτ

− 1
2

1 hk−1‖u‖k+1|||εh|||Mh
, k = 1, l = k − 1,

Cτ
− 1

2
2 hk−1‖u‖k+1|||εh|||Mh

, k ≥ 2, l = k − 1.
(6.14)

Substituting (6.11), (6.12), and (6.14) into (6.7) gives the error estimate (6.6). This completes the proof of the theorem. �
Theorem 6.3. Under the assumption of Theorem 6.2, there exists a constant C such that the following error estimate holds true:

( ∑
T∈Th

‖∇ · (a∇e0 + be0)‖2T
) 1

2 ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Chk−1‖u‖k+1, l = k,

C(1+ τ
1
2
1 )(1 + τ

− 1
2

1 )hk−1‖u‖k+1, k = 1, l = k − 1,

C(1+ τ
1
2
2 )(1 + τ

− 1
2

2 )hk−1‖u‖k+1, k ≥ 2, l = k − 1.

(6.15)

Proof. From the error equation (5.4) we have

b(eh,σ ) = c(εh,σ ) + �u(σ ), ∀σ ∈ Mh. (6.16)
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Recall that

b(eh,σ ) =
∑
T∈Th

(a∇weh + be0,∇σ)T − 〈en,σ 〉∂T

=
∑
T∈Th

(a∇e0 + be0,∇σ)T + 〈eb − e0,a∇σ · n〉∂T − 〈en,σ 〉∂T

= −
∑
T∈Th

(∇ · (a∇e0 + be0),σ )T − 〈eb − e0,a∇σ · n〉∂T

+ 〈en − (a∇e0 + be0) · n,σ 〉∂T ,

(6.17)

where we have used (2.3) with ψ = a∇σ and the usual integration by parts. Substituting (6.17) into (6.16) gives

−
∑
T∈Th

(∇ · (a∇e0 + be0),σ )T

=c(εh,σ ) + �u(σ ) +
∑
T∈Th

〈e0 − eb,a∇σ · n〉∂T + 〈en − (a∇e0 + be0) · n,σ 〉∂T

= J1 + J2 + J3 + J4,

(6.18)

where J i is defined accordingly for i = 1, · · · , 4.
We shall estimate each term J i in (6.18) respectively. With J1, we have for the case of l = k, J1 = 0. For the case of 

l = k − 1 and k = 1, we have

J1 =τ1
∑
T∈Th

h2T (∇εh,∇σ)T

≤
( ∑

T∈Th

τ1h
2
T ‖∇εh‖2T

) 1
2
( ∑

T∈Th

τ1h
2
T ‖∇σ‖T

) 1
2

≤Cτ
1
2
1 |||εh|||Mh

( ∑
T∈Th

‖σ‖T

) 1
2
,

where we have used the Cauchy-Schwarz inequality and the inverse inequality. Similarly, for the case of l = k − 1 and k ≥ 2, 
we have

J1 ≤ Cτ
1
2
2 |||εh|||Mh

( ∑
T∈Th

‖σ‖T

) 1
2
.

As to the term J2, we have from (5.5) that for l = k, �u(σ ) = 0; for l = k − 1, we have, by following the same argument 
as that in (6.13)

| J2| = |�u(σ )| ≤
( ∑

T∈Th

‖(Q (l)
n − I)((a∇u + bu) · n)‖2∂T

) 1
2
( ∑

T∈Th

‖σ‖2∂T
) 1

2

≤Chk−1‖u‖k+1

( ∑
T∈Th

‖σ‖2T
) 1

2
,

where we used the Cauchy-Schwarz inequality, the estimate (6.3) with m = l = k − 1, and the trace inequalities (6.1) and 
(6.2). As to the term J3, we have

J3 ≤
( ∑

T∈Th

h−3
T ‖e0 − eb‖2∂T

) 1
2
( ∑

T∈Th

h3T ‖a∇σ · n‖2∂T
) 1

2

≤C |||eh|||Wh

( ∑
T∈Th

h2T ‖a∇σ · n‖2T
) 1

2

≤C |||eh|||Wh

( ∑
T∈Th

‖σ‖2T
) 1

2
,

where we used the Cauchy-Schwarz inequality, the trace inequality (6.2) and the inverse inequality.
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For the last term J4, we have∑
T∈Th

〈en − (a∇e0 + be0) · n,σ 〉∂T

≤
( ∑

T∈Th

h−1
T ‖en − (a∇e0 + be0) · n‖2∂T

) 1
2
( ∑

T∈Th

hT ‖σ‖2∂T
) 1

2

≤C |||eh|||Wh

( ∑
T∈Th

‖σ‖2T
) 1

2
,

where we used the Cauchy-Schwarz inequality and the trace inequality (6.2).
Substituting the above estimates for J i(i = 1, · · · , 4) into (6.18) and combining with (6.6) completes the proof of 

(6.15). �
7. Error estimates in H1 and L2

Consider the dual problem of seeking an unknown function w such that

−∇ · (a∇w) + b · ∇w =e0, in �, (7.1)

w = 0, on �D , (7.2)

a∇w · n = 0, on �N , (7.3)

for any given e0 ∈ L2(�). The problem (7.1)-(7.3) is said to be H1+s( 12 < s ≤ 1)-regular in the sense that

‖w‖1+s ≤ C‖e0‖. (7.4)

Lemma 7.1. Let eh = {e0, eb, en} be the error function defined in (5.1). There holds

‖∇weh − ∇e0‖T ≤ Ch
− 1

2
T ‖e0 − eb‖∂T . (7.5)

Proof. From (2.3), we have

(∇weh − ∇e0,ψ)T = −〈e0 − eb,ψ · n〉∂T , ∀ψ ∈ [Pk−1(T )]d.
From the Cauchy-Schwarz inequality and the trace inequality (6.2), we thus have

‖∇weh − ∇e0‖T ≤ sup
∀ψ∈[Pk−1(T )]d

‖e0 − eb‖∂T ‖ψ · n‖∂T

‖ψ‖T

≤ sup
∀ψ∈[Pk−1(T )]d

Ch
− 1

2
T ‖e0 − eb‖∂T ‖ψ‖T

‖ψ‖T

≤Ch
− 1

2
T ‖e0 − eb‖∂T .

This completes the proof of the lemma. �
The following theorem presents the error estimate in the usual L2 norm for the first component u0 in the primal variable 

uh = {u0, ub, un} of the PDWG solution arising from the numerical scheme (2.6)-(2.7).

Theorem 7.2. Assume that the dual problem (7.1)-(7.3) has the H1+s-regularity with a priori estimate (7.4) for s ∈ ( 12 , 1]. There exists 
a constant C such that

‖e0‖ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Chk+s‖u‖k+1, l = k,

C(1+ τ
1
2
1 (1+ τ

− 1
2

1 ))hk‖u‖k+1, k = 1, l = k − 1,

C(1+ τ
1
2
2 )(1 + τ

− 1
2

2 )hk+s‖u‖k+1, k ≥ 2, l = k − 1,

(7.6)

provided that the meshsize h is sufficiently small.
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Proof. Testing (7.1) with e0 on each element T ∈ Th , we obtain from the usual integration by parts that

‖e0‖2 =
∑
T∈Th

(−∇ · (a∇w) + b · ∇w, e0)T

=
∑
T∈Th

(a∇w,∇e0)T − 〈a∇w · n, e0〉∂T + (b · ∇w, e0)T

=
∑
T∈Th

(a∇w,∇e0)T − 〈a∇w · n, e0 − eb〉∂T + (b · ∇w, e0)T ,

(7.7)

where we used 
∑

T∈Th
〈a∇w · n, eb〉∂T = 〈a∇w · n, eb〉∂� = 0 due to the facts that a∇w · n = 0 on �N and eb = 0 on �D .

It follows from (2.3) and (3.1) that

(a∇weh,∇w(Qhw))T =(a∇weh,Q(k−1)
h ∇w)T

=(a∇e0,Q(k−1)
h ∇w)T − 〈e0 − eb,aQ(k−1)

h ∇w · n〉∂T
=(a∇e0,∇w)T − 〈e0 − eb,aQ(k−1)

h ∇w · n〉∂T ,

which gives

(a∇e0,∇w)T = (a∇weh,Q(k−1)
h ∇w)T + 〈e0 − eb,aQ(k−1)

h ∇w · n〉∂T
= (a∇weh,∇w)T + 〈e0 − eb,aQ(k−1)

h ∇w · n〉∂T .
(7.8)

Substituting (7.8) into (7.7) leads to

‖e0‖2 =
∑
T∈Th

(a∇weh,∇w)T + (be0,∇w)T + 〈e0 − eb,a(Q(k−1)
h − I)∇w · n〉∂T

=b(eh, w) +
∑
T∈Th

〈en, w〉∂T + 〈e0 − eb,a(Q(k−1)
h − I)∇w · n〉∂T

=c(εh,Q(k)
h w) + �u(Q(k)

h w) + b(eh, (I −Q(k)
h )w)

+
∑
T∈Th

〈e0 − eb,a(Q(k−1)
h − I)∇w · n〉∂T

=I1 + I2 + I3 + I4,

(7.9)

where in the second step, we have used the fact that 
∑

T∈Th
〈en, w〉∂T = 〈en, w〉∂� = 0 due to the facts that w = 0 on �D

and en = 0 on �N , and Ii(i = 1, · · · , 4) is defined accordingly.
We shall estimate each of the four terms Ii for i = 1, · · · , 4 in (7.9). As to the term I1, for the case of l = k where τ1 = 0

and τ2 = 0, we have

I1 = c(εh,Q(k)
h w) = 0. (7.10)

For the case of l = k − 1, we have, from the Cauchy-Schwarz inequality and (6.6),

I1 =τ1
∑
T∈Th

h2T (∇εh,∇Q(k)
h w)T + τ2

d∑
i, j=1

∑
T∈Th

h4T (∂2
i jεh, ∂

2
i j(Q

(k)
h w))T

≤|||εh|||Mh

⎛
⎝ ∑

T∈Th

(
τ1h

2
T ‖∇Q(k)

h w‖2T + τ2

d∑
i, j=1

h4T ‖∂2
i jQ

(k)
h w‖2T

)⎞
⎠

1
2

≤
⎧⎨
⎩ Chτ

1
2
1 |||εh|||Mh

‖w‖1, k = 1, l = k − 1,

Ch1+sτ
1
2
2 |||εh|||Mh

‖w‖1+s, k ≥ 2, l = k − 1.

(7.11)

Here in the last step, we have used the fact that τ2 = 0 for k = 1 and τ1 = 0 for k ≥ 2, and the inverse inequality

|Q(k)
h w|2 ≤ Chs−1|Q(k)

h w|1+s ≤ Chs−1‖w‖1+s,
1

2
< s ≤ 1.

As to the term I2, for the case of l = k, we have from (5.5) that

I2 = �u(Q(k)w) = 0.
h
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For the case of l = k − 1, by the same argument as what we did in (6.13), we have

|I2| = |�u(Q(k)
h w)|

≤Chk−1‖u‖k+1

( ∑
T∈Th

‖(I − Ilh)Q
(k)
h w)‖2T + h2T ‖∇((I − Ilh)Q

(k)
h w)‖2T

) 1
2

≤
{

Chk‖u‖k+1‖w‖1, k = 1, l = k − 1,

Chk+s‖u‖k+1‖w‖1+s, k ≥ 2, l = k − 1.

(7.12)

Here for any function v , Ilh v denotes the cell average and linear interpolation of v on each element T ∈ Th for l = 0 and 
l ≥ 1, respectively.

To estimate I3, we note that

I3 =
∑
T∈Th

〈(a∇weh + be0) · n− en, (I −Q(k)
h )w〉∂T

−
∑
T∈Th

(∇ · (a∇weh + be0), (I −Q(k)
h )w)T

= I31 − I32.

To estimate I31, we have from the Cauchy-Schwarz inequality, the trace inequality (6.2), (7.5), the estimate (6.5) with m = s
that (with Fe = a∇e0 + be0)

|I31|
=

∑
T∈Th

〈Fe · n− en, (I −Q(k)
h )w〉∂T + 〈(a∇weh − a∇e0) · n, (I −Q(k)

h )w〉∂T

≤
{( ∑

T∈Th

‖Fe · n− en‖2∂T
) 1

2 +
( ∑

T∈Th

‖(a∇weh − a∇e0) · n‖2∂T
) 1

2
}

·
( ∑

T∈Th

‖(I −Q(k)
h )w‖2∂T

) 1
2

≤ C
{( ∑

T∈Th

‖Fe · n− en‖2∂T
) 1

2 +
( ∑

T∈Th

h−1
T ‖(a∇weh − a∇e0) · n‖2T

) 1
2
}
hs+ 1

2 ‖w‖1+s

≤ C
{
h

1
2 |||eh|||Wh

+
( ∑

T∈Th

h−2
T ‖e0 − eb‖2∂T

) 1
2
}
hs+ 1

2 ‖w‖1+s

≤ Chs|||eh|||Wh
‖w‖1+s.

Similarly, for the term I32, we have from the Cauchy-Schwarz inequality, the estimate (6.5) with m = s, (7.5), the inverse 
inequality that

|I32| =
∣∣∣∣∣∣
∑
T∈Th

(∇ · Fe, (I −Q(k)
h )w)T + (∇ · (a∇weh − a∇e0), (I −Q(k)

h )w)T

∣∣∣∣∣∣
≤ C

{( ∑
T∈Th

‖∇ · Fe‖2T
) 1

2 +
( ∑

T∈Th

h−2
T ‖a∇weh − a∇e0‖2T

) 1
2
}
h1+s‖w‖1+s

≤ C
{( ∑

T∈Th

‖∇ · Fe‖2T
) 1

2 +
( ∑

T∈Th

h−3
T ‖e0 − eb‖2∂T

) 1
2
}
h1+s‖w‖1+s

≤ C
{( ∑

T∈Th

‖∇ · (a∇e0 + be0)‖2T
) 1

2 + |||eh|||Wh

}
h1+s‖w‖1+s.

Consequently,

|I3| ≤ C
{( ∑

‖∇ · (a∇e0 + be0)‖2T
) 1

2 + |||eh|||Wh

}
h1+s‖w‖1+s.
T∈Th
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As to the term I4, we have from the Cauchy-Schwarz inequality, trace inequality (6.1), the estimate (6.4) with m = s, 
that

|I4| ≤
( ∑

T∈Th

‖e0 − eb‖2∂T
) 1

2
( ∑

T∈Th

‖a(Q(k−1)
h − I)∇w · n‖2∂T

) 1
2

≤
( ∑

T∈Th

h−3
T ‖e0 − eb‖2∂T

) 1
2
( ∑

T∈Th

h3T ‖a(Q(k−1)
h − I)∇w · n‖2∂T

) 1
2

≤C |||eh|||Wh

( ∑
T∈Th

h2T ‖(Q(k−1)
h − I)∇w‖2T + h4T ‖(Q(k−1)

h − I)∇w‖21,T
) 1

2

≤C |||eh|||Wh
hs+1‖w‖1+s.

(7.13)

Substituting (7.10)- (7.13) into (7.9) and using the regularity assumption (7.4) with the error estimates (6.6) and (6.15)
gives (7.6). This completes the proof of this theorem. �

We shall establish the error estimates for the two boundary components ub and un of the PDWG solution uh =
{u0, ub, un} in the usual L2 norms defined as follows:

‖eb‖ := ‖ub − Q (k)
b u‖ =

( ∑
T∈Th

hT ‖eb‖2∂T
) 1

2
, (7.14)

‖en‖ := ‖un − Q (l)
n ((a∇u + bu) · n)‖ =

( ∑
T∈Th

hT ‖en‖2∂T
) 1

2
. (7.15)

Theorem 7.3. Under the assumptions of Theorem 7.2, there exists a constant C such that

‖eb‖ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Chk+s‖u‖k+1, l = k,

C(1+ τ
1
2
1 (1 + τ

− 1
2

1 ))hk‖u‖k+1, k = 1, l = k − 1,

C(1+ τ
1
2
2 )(1 + τ

− 1
2

2 )hk+s‖u‖k+1, k ≥ 2, l = k − 1.

(7.16)

‖en‖ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Chk+s−1‖u‖k+1, l = k,

C(1+ τ
1
2
1 (1+ τ

− 1
2

1 ))hk−1‖u‖k+1, k = 1, l = k − 1,

C(1 + τ
1
2
2 )(1+ τ

− 1
2

2 )hk+s−1‖u‖k+1, k ≥ 2, l = k − 1,

(7.17)

provided that the meshsize h is sufficiently small.

Proof. On each element T ∈ Th , we have from the triangle inequality that

‖eb‖∂T ≤ ‖e0‖∂T + ‖eb − e0‖∂T .

Thus, by (7.14), and the trace inequality (6.2), we obtain

‖eb‖2 =
∑
T∈Th

hT ‖eb‖2∂T ≤ C
∑
T∈Th

hT ‖e0‖2∂T + Ch4
∑
T∈Th

h−3
T ‖eb − e0‖2∂T

≤ C(‖e0‖20 + h4|||eh|||2Wh
),

which, together with the error estimates (6.6) and (7.6), gives rise to (7.16).
To derive (7.17), applying the same approach to the error component en by using triangle inequality, trace inequality 

(6.2) and inverse inequality gives
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‖en‖2 =
∑
T∈Th

hT ‖en‖2∂T

≤
∑
T∈Th

hT ‖(a∇e0 + be0) · n− en‖2∂T + hT ‖(a∇e0 + be0) · n‖2∂T

≤Ch2
∑
T∈Th

h−1
T ‖(a∇e0 + be0) · n− en‖2∂T +

∑
T∈Th

(hT ‖a∇e0‖2∂T + hT ‖be0‖2∂T )

≤C(h2|||eh|||2Wh
+

∑
T∈Th

(hT h
−3
T ‖e0‖2T + hT h

−1
T ‖e0‖2T ))

≤C(h2|||eh|||2Wh
+ h−2‖e0‖2),

which, together with the error estimates (6.6) and (7.6), gives rise to the error estimate (7.17). �
8. Numerical results

Two types of domains are considered in the numerical experiment: (1) an unit square domain �1 = [0, 1]2, and (2) a 
L-shaped domain �2 with vertices (0, 0), (0.5, 0), (0.5, 0.5), (1, 0.5), (1, 1), (0, 1). In all the computation, the finite element 
partition Th is obtained through a successive uniform refinement of a coarse triangulation of the domain � by dividing 
each coarse element into four congruent sub-elements by connecting the mid-points of the three edges of the triangle. The 
right-hand side function f , the Dirichlet boundary data g1 and the Neumann boundary data g2 are set correspondingly. For 
simplicity, the parameters in the PDWG numerical scheme (2.6)-(2.7) are chosen as τ1 = τ2 = 1.

The finite element spaces for the primal variable uh and the dual variable λh are given by

Wk,h = {uh = {u0,ub,un} : u0 ∈ Pk(T ),ub ∈ Pk(e),un ∈ Pl(e),∀e ⊂ ∂T ,∀T ∈ Th},
Mk,h = {λh : λh|T ∈ Pk(T ), ∀T ∈ Th},

where l = k or l = k − 1. The primal-dual weak Galerkin scheme (2.6)-(2.7) is implemented for the case of k = 1 and k = 2.
Denote by eh = {e0, eb, en} = uh − Qhu the error function. The following L2 norms are used to measure the errors:

‖e0‖ =
( ∑

T∈Th

∫
T

e20dT
) 1

2
, ‖∇e0‖ =

( ∑
T∈Th

∫
T

(∇e0)
2dT

) 1
2
,

‖eb‖ =
( ∑

T∈Th

hT

∫
∂T

e2bds
) 1

2
, ‖en‖ =

( ∑
T∈Th

hT

∫
∂T

e2nds
) 1

2
.

Test Example 1 (Constant diffusion a and convection b). The diffusion tensor a ∈ R2×2 and the convection tensor b ∈ R2 are 
taken by constants as follows:

a11 = 1, a12 = a21 = 1, a22 = 6; b1 = 1, b2 = 1.

The exact solution is given by u(x, y) = sin(πx) sin(π y). The domain the unit square domain �1. The Neumann boundary 
is �N = {(0, y) : y ∈ [0, 1]}, and the rest of the boundary is of Dirichlet.

Tables 8.1-8.2 demonstrate the approximation errors and the corresponding convergence rates for k = 1 and k = 2 with 
l = k and l = k − 1, respectively. For the case of l = k, we observe from Table 8.1 that the convergence orders for e0 and 
eb in the discrete L2 norm are both of an optimal order O(hk+1), and the convergence order for en in the discrete L2
norm is of an optimal order O(hk), for k = 1 and k = 2 respectively, which are all consistent with the theoretical results 
in Theorems 7.2 - 7.3. For the case of l = k − 1, we can see from Table 8.2 that the convergence rates for e0 and eb in the 
discrete L2 norm are of an order O(hk+1), and the convergence rate for en in the discrete L2 norm is of an order O(hk)
for k = 1 and k = 2, respectively. Note that for the case of l = k − 1 and k = 2, the convergence rates for ‖e0‖, ‖eb‖ and 
‖en‖ are consistent with the theoretical results developed in Theorems 7.2 - 7.3; while for the case of l = k − 1 and k = 1, 
the convergence rates for ‖e0‖, ‖eb‖ and ‖en‖ are of an order which is 1 order higher than the expected convergence order 
given by (7.6) and (7.16)-(7.17), respectively.

Test Example 2 (Continuous diffusion a and convection b). We choose the diffusion tensor a ∈ R2×2 and the convection tensor 
b ∈R2 in the model problem (1.1) as continuous functions as follows:

a11 = 1+ x, a12 = a21 = 0, a22 = 1+ y; b1 = e1−x, b2 = exy .

The Neumann boundary is �N = {(0, y) : y ∈ [0, 1]} and the Dirichlet boundary is �D = ∂� \ �N . The exact solution is given 
by u(x, y) = sin(x) cos(y). The domain is the unit square �1.
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Table 8.1
Various errors and corresponding convergence rates for k = 1, 2 with l = k on �1.

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 1

4 3.48e-1 – 7.88e-0 – 7.53e-1 – 7.97e-2 –
8 8.72e-2 2.00 3.75e-0 1.07 3.38e-1 1.16 2.10e-2 1.92
16 2.01e-2 2.11 1.72e-0 1.12 1.56e-1 1.11 4.92e-3 2.09
32 4.77e-3 2.08 8.31e-1 1.05 7.58e-2 1.04 1.16e-3 2.08
64 1.17e-3 2.02 4.11e-1 1.02 3.74e-2 1.02 2.85e-4 2.02

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 2

2 1.59e-1 – 6.89e-0 – 7.90e-1 – 9.94e-2 –
4 2.87e-2 2.47 1.43e-0 2.27 2.28e-1 1.79 1.63e-2 2.61
8 3.63e-3 2.98 3.48e-1 2.03 6.28e-2 1.86 2.28e-3 2.84
16 4.60e-4 2.98 8.79e-2 1.99 1.65e-2 1.93 3.01e-4 2.92
32 5.89e-5 2.96 2.21e-2 1.99 4.22e-3 1.97 3.86e-5 2.96

Table 8.2
Various errors and corresponding convergence rates for k = 1, 2 with l = k − 1 on �1.

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 1

4 3.77e-1 – 7.57e-0 – 7.19e-1 – 9.30e-2 –
8 9.77e-2 1.95 3.59e-0 1.07 3.28e-1 1.13 2.49e-2 1.90
16 2.46e-2 1.99 1.73e-0 1.05 1.56e-1 1.07 6.27e-3 2.00
32 6.16e-3 2.00 8.54e-1 1.02 7.65e-2 1.03 1.57e-3 2.00
64 1.54e-3 2.00 4.24e-1 1.01 3.79e-2 1.01 3.91e-4 2.00

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 2

2 2.16e-1 – 6.00e-0 – 8.56e-01 – 1.12e-1 –
4 3.39e-2 2.67 1.42e-0 2.08 2.44e-01 1.81 1.75e-2 2.67
8 4.08e-3 3.05 3.54e-1 2.00 6.54e-2 1.90 2.39e-3 2.87
16 4.88e-4 3.06 8.90e-2 1.99 1.69e-2 1.96 3.08e-4 2.95
32 6.05e-5 3.01 2.23e-2 2.00 4.26e-3 1.98 3.90e-5 2.98

Table 8.3
Various errors and corresponding convergence rates for k = 1, 2 with l = k on �1.

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 1

4 7.65e-3 – 2.0277e-01 – 4.60e-2 – 2.34e-3 –
8 1.96e-3 1.96 9.7447e-02 1.06 2.22e-2 1.05 5.92e-4 1.98
16 4.96e-4 1.99 4.7834e-02 1.03 1.10e-2 1.02 1.48e-4 2.00
32 1.24e-4 2.00 2.3696e-02 1.01 5.46e-3 1.01 3.69e-5 2.00
64 3.10e-5 2.00 1.1792e-02 1.01 2.72e-3 1.00 9.21e-6 2.00

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 2

2 1.06e-2 – 1.27e-1 – 3.22e-2 – 4.33e-3 –
4 9.07e-4 3.54 2.57e-2 2.31 7.19e-3 2.16 5.03e-4 3.10
8 9.04e-5 3.33 6.07e-3 2.08 1.75e-3 2.04 6.16e-5 3.03
16 9.86e-6 3.20 1.48e-3 2.03 4.33e-4 2.01 7.64e-6 3.01
32 1.14e-6 3.11 3.67e-4 2.01 1.08e-4 2.00 9.53e-7 3.00

Tables 8.3-8.4 demonstrate the numerical errors and the convergence rates arising from the PDWG scheme (2.6)-(2.7) for 
the convection-diffusion model problem (1.1). We observe from Tables 8.3-8.4 that the numerical performance is the same 
as those in Tables 8.1-8.2.

Test Example 3 (Convection-dominated diffusion problem). We consider the diffusion tensor a ∈ R2×2 and the convection 
tensor b ∈R2 given by

a11 = a12 = ε, a12 = a21 = 0, b1 = 1, b2 = 1,

where ε assumes some small and positive constants. The exact solution is given by u(x, y) = (x + 0.5)(y + 0.5)e1−xey with 
the full Dirichlet boundary condition �D = ∂�1.

Tables 8.5-8.6 show the approximation errors and the convergence rates for the convection-dominated diffusion problem 
with ε = 10−10 on the unit square domain �1. For the case of l = k and k = 1, we observe from Table 8.5 that the conver-
gence rates for the errors e0, eb and en in the discrete L2-norm are of an order O(h2), respectively, which are consistent 
with the theory for both ‖e0‖ and ‖eb‖; and are of one order higher than the expected order O(h) for ‖en‖. For the case 
of l = k − 1 with k = 1, the convergence rates of e0, eb , and en in the discrete L2-norm shown in Table 8.6 are all of order 
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Table 8.4
Various errors and corresponding convergence rates for k = 1, 2 with l = k − 1 on �1.

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 1

4 2.79e-2 – 4.69e-1 – 8.16e-2 – 9.72e-3 –
8 6.53e-3 2.10 2.20e-1 1.09 2.87e-2 1.51 1.81e-3 2.42
16 1.60e-3 2.03 1.07e-1 1.04 1.20e-2 1.26 3.98e-4 2.18
32 3.97e-4 2.01 5.32e-2 1.01 5.62e-3 1.09 9.60e-5 2.05
64 9.90e-5 2.00 2.65e-2 1.00 2.75e-3 1.03 2.38e-5 2.01

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 2

2 1.14e-2 – 1.69e-1 – 3.55e-2 – 4.96e-3 –
4 1.10e-3 3.37 3.89e-2 2.11 7.54e-3 2.24 5.49e-4 3.17
8 1.18e-4 3.22 9.49e-3 2.04 1.79e-3 2.08 6.59e-5 3.06
16 1.37e-5 3.11 2.35e-3 2.01 4.39e-4 2.02 8.14e-6 3.02
32 1.65e-06 3.05 5.85e-4 2.01 1.09e-4 2.01 1.01e-6 3.01

Table 8.5
Various errors and corresponding convergence rates for k = 1, 2 with l = k and ε = 10−10 on �1.

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 1

4 9.52e-2 – 1.11e-1 – 7.76e-01 – 2.78e-2 –
8 2.64e-2 1.85 2.99e-2 1.90 4.07e-01 0.93 7.53e-3 1.88
16 6.77e-3 1.96 7.65e-3 1.96 2.06e-01 .098 1.92e-3 1.97
32 1.70e-3 1.99 1.93e-3 1.99 1.03e-01 1.00 4.83e-4 1.99
64 4.27e-4 2.00 4.84e-4 2.00 5.18e-02 1.00 1.21e-4 2.00

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 2

2 3.73e-2 – 5.77e-2 – 2.27e-1 – 1.28e-2 –
4 6.65e-3 2.49 9.50e-3 2.60 6.44e-2 1.82 2.17e-3 2.55
8 1.36e-3 2.29 1.86e-3 2.35 1.97e-2 1.71 4.64e-4 2.23
16 3.13e-4 2.11 4.23e-4 2.14 7.38e-3 1.41 1.10e-4 2.08
32 7.61e-5 2.04 1.03e-4 2.04 3.30e-3 1.16 2.69e-5 2.03

Table 8.6
Various errors and corresponding convergence rates for k = 1, 2 with l = k − 1 and ε = 10−10 on 
�1.

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 1

4 2.96e-01 – 1.54e-0 – 1.09e-0 – 1.09e-1 –
8 1.80e-01 0.73 7.93e-1 0.96 5.62e-1 0.95 6.43e-2 0.75
16 1.06e-01 0.76 4.06e-1 0.97 3.25e-1 0.79 3.77e-2 0.77
32 5.86e-02 0.85 2.06e-1 0.98 2.05e-1 0.67 2.08e-2 0.86
64 3.10e-02 0.92 1.04e-1 0.99 1.35e-1 0.66 1.10e-2 0.92

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 2

2 9.82e-2 – 2.77e-1 – 4.25e-1 – 3.98e-2 –
4 2.81e-2 1.80 7.47e-2 1.89 2.07e-1 1.04 1.04e-2 1.94
8 7.93e-3 1.82 1.93e-2 1.95 1.14e-1 0.86 2.84e-3 1.86
16 2.11e-3 1.91 4.92e-3 1.98 6.13e-2 0.89 7.59e-4 1.91
32 5.44e-4 1.96 1.24e-3 1.99 3.20e-2 0.94 1.97e-4 1.95

O(h), which are consistent with the expected order for both ‖e0‖ and ‖eb‖; and is of one order higher than the expected 
convergence rate given by (7.17) for ‖en‖. For the case of l = k and k = 2, we observe from Table 8.5 that the convergence 
rates for the errors e0, eb and en in the discrete L2-norm are of order O(h2), which are consistent with the theory for ‖en‖; 
and are of one order lower than the expected optimal order O(h3) for both ‖e0‖ and ‖eb‖. For the case of l = k − 1 and 
k = 2, we see from Table 8.6 that the convergence rates for the errors e0, eb and en in the discrete L2-norm are of order 
O(h2), which are consistent with the theory for ‖e0‖ and ‖eb‖; and are of one order higher than the expected optimal 
order O(h) for ‖en‖.

Table 8.7 shows the approximation errors and the convergence rates for ε = 10−2 on the unit square domain �1 when 
k = 2 is employed. For the case of l = k, we observe from Table 8.7 that the convergence rates for the errors e0 and eb in the 
discrete L2-norm are of optimal order O(h3), which is consistent with the theory; and the convergence rate for the error en
in the discrete L2-norm is one order higher than the expected optimal order O(h2), which outperforms the theory. For the 
case of l = k − 1, the convergence rates of e0, eb and en in the discrete L2-norm are of one order higher than the expected 
optimal order, which are better than the theory. It can be seen that the convergence rates are improved and the theoretical 
results in Theorems 7.2-7.3 are recovered for the case of ε = 10−2. The results indicate that the diffusion coefficient a has 
an influence on the convergence rate for k = 2.
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Table 8.7
Various errors and corresponding convergence rates for k = 2 with ε = 10−2 on �1.

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

l = k

2 4.31e-02 – 6.79e-2 – 2.44e-1 – 1.59e-2 –
4 6.18e-03 2.80 8.97e-3 2.92 6.47e-2 1.92 2.02e-3 2.98
8 7.98e-04 2.95 1.25e-3 2.84 1.73e-2 1.90 2.55e-4 2.99
16 9.42e-05 3.08 1.94e-4 2.69 4.31e-3 2.00 3.12e-5 3.03
32 1.11e-05 3.08 3.56e-5 2.44 1.03e-3 2.06 3.72e-6 3.07

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

l = k − 1

4 2.71e-2 – 7.51e-2 – 1.96e-1 – 1.02e-2 –
8 7.01e-3 1.95 1.94e-2 1.96 9.48e-2 1.05 2.64e-3 1.95
16 1.44e-3 2.29 4.77e-3 2.02 3.63e-2 1.38 5.59e-4 2.24
32 2.05e-4 2.81 1.13e-3 2.07 9.36e-3 1.96 8.21e-5 2.77
64 1.97e-5 3.38 2.73e-4 2.05 1.64e-3 2.51 8.01e-6 3.36

Table 8.8
Various errors and corresponding convergence rates for k = 1, 2 with l = k and ε = 10−2 on �2.

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 1

4 1.00e-1 – 1.32e-1 – 7.45e-1 – 3.23e-2 –
8 3.35e-2 1.58 4.57e-2 1.53 3.97e-1 0.90 1.12e-2 1.53
16 1.02e-2 1.72 1.47e-2 1.63 1.97e-1 1.01 3.56e-3 1.66
32 2.58e-3 1.99 4.12e-3 1.84 9.60e-2 1.03 9.18e-4 1.96
64 6.43e-4 2.00 1.32e-3 1.64 4.76e-2 1.01 2.30e-4 2.00

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 2

4 6.03e-3 – 8.94e-3 – 6.18e-2 – 1.97e-3 –
8 8.85e-4 2.77 1.39e-3 2.68 1.72e-2 1.85 2.85e-4 2.79
16 1.02e-4 3.12 2.02e-4 2.78 4.27e-3 2.01 3.23e-5 3.14
32 1.15e-5 3.15 3.58e-5 2.50 1.02e-3 2.07 3.64e-6 3.15
64 1.38e-6 3.06 8.00e-6 2.16 2.50e-4 2.03 4.36e-7 3.06

Table 8.9
Various errors and corresponding convergence rates for k = 1, 2 with l = k − 1 and ε = 10−2 on �2.

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 1

4 1.89e-1 – 1.44e-0 – 9.87e-1 – 7.02e-2 –
8 1.06e-1 0.83 7.33e-1 0.98 4.91e-1 1.00 3.83e-2 0.87
16 6.53e-2 0.72 3.72e-1 0.98 2.71e-1 0.86 2.33e-2 0.72
32 3.52e-2 0.89 1.87e-1 0.99 1.54e-1 0.81 1.25e-2 0.90
64 1.54e-2 1.20 9.28e-2 1.01 7.85e-2 0.98 5.45e-3 1.20

1/h ‖eb‖ rate ‖en‖ rate ‖∇e0‖ rate ‖e0‖ rate

k = 2

4 2.49e-2 – 7.00e-2 – 1.76e-1 – 9.52e-3 –
8 6.56e-3 1.92 1.81e-2 1.95 8.61e-2 1.03 2.49e-3 1.93
16 1.34e-3 2.29 4.45e-3 2.02 3.32e-2 1.38 5.24e-4 2.25
32 1.89e-4 2.83 1.05e-3 2.08 8.52e-3 1.96 7.54e-5 2.80
64 1.80e-5 3.39 2.54e-4 2.05 1.49e-3 2.51 7.25e-6 3.38

Tables 8.8-8.9 show the approximation errors and corresponding convergence rates for k = 1, 2 with l = k and l = k − 1, 
respectively, on the L-shaped domain �2. In both the case of l = k for k = 1, 2 and l = k − 1 for k = 2, we observe a 
(k + 1)-th order of convergence for ‖e0‖ and ‖eb‖, and a k-th order of convergence for ‖en‖, which are consistent with our 
theoretical results established in Theorems 7.2-7.3. As for the case of l = k − 1 and k = 1, we observe from Table 8.9 that, 
the convergence rates of ‖e0‖, ‖eb‖, ‖en‖ are all of order O(h). Note that the convergence results for ‖e0‖ and ‖eb‖ for the 
case of l = k − 1 and k = 1 are consistent with the theoretical findings in Theorems 7.2-7.3; while for ‖en‖, the convergence 
rate is 1 order higher than the error estimate given by (7.17).

In what follows of this section, we present the plot of the numerical solution uh arising from the primal-dual weak 
Galerkin scheme (2.6)-(2.7) for test problems for which the exact solution is not known.

Test Example 4. The diffusion a is given by a11 = a22 = 10−4, a12 = a21 = 0; the convection is set as b = (y, −x)T , the 
domain is an unit square domain �1; and the mixed boundary conditions are g1 = sin(3x) on the inflow boundary �D =
{(x, y) : b · n < 0} and g2 = 0 on �N = ∂�1 \ �D . Fig. 8.1 presents the plots for the numerical solution uh obtained from 
the PDWG numerical method (2.6)-(2.7) with k = 1 and l = k − 1 for the convection-dominated diffusion problem when 
different load functions f = 1 (left) and f = 0 (right) are employed, respectively.
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Fig. 8.1. Contour plots of the numerical solution uh on �1 for the load functions f = 1 (left) and f = 0 (right).

Fig. 8.2. Contour plots of the numerical solution uh on �1 with the load functions f = 1 (left) and f = 0 (right).

Fig. 8.3. Contour plots of the numerical solution uh on �2 with the load functions f = 1 (left) and f = 0 (right).

Test Example 5. The diffusion is given by a11 = a22 = 10−5, a12 = a21 = 0; and the convection vector is set as b = (y, −x)T . 
For the unit square domain �1, �N = {(x, y) : x = 1 or y = 0}; and for the L-shaped domain �2, �N = {(x, y) : x = 1 or y =
0.5}. The mixed boundary conditions are g1 = sin(2x) on �D = ∂� \ �N and g2 = 0 on �N . We take l = k − 1 and k = 1. 
Figs. 8.2-8.3 demonstrate the numerical solutions uh on the unit square domain �1 and the L-shaped domain �2 when 
different load functions f = 0 (left) and f = 1 (right) are employed, respectively.

Test Example 6. We test the positivity-preserving property of the PDWG solution in this example. To this end, we test the 
problem (1.1) on the unit square domain �1 with the full Dirichlet boundary condition in two cases:
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Table 8.10
The minimum value ūb of the numerical solution on the edge for piecewise constant and piecewise 
linear approximations.

ūb for Case 1 ūb for Case 2

1/h ε = 1 ε = 10−2 ε = 10−4 ε = 1 ε = 10−2 ε = 10−4

k = 0

4 1.0000 0.0100 0.0001 0.9530 -0.0370 -0.0469
8 1.0000 0.0100 0.0001 0.9511 -0.0389 -0.0488
16 1.0000 0.0100 0.0001 0.9505 -0.0395 -0.0494
32 1.0000 0.0100 0.0001 0.9503 -0.0397 -0.0496
64 1.0000 0.0100 0.0001 0.9503 -0.0397 -0.0469

1/h ε = 1 ε = 10−2 ε = 10−4 ε = 1 ε = 10−2 ε = 10−4

k = 1

4 1.0000 0.0100 0.0001 1.0000 0.0100 0.0001
8 0.8497 -0.1403 -0.1502 0.8021 -0.1879 -0.1978
16 0.9893 -0.0007 -0.0106 0.9894 -0.0006 -0.0105
32 1.0000 0.0100 0.0001 1.0000 0.0100 0.0001
64 0.9941 0.0041 -0.0058 0.9929 0.0029 -0.0070

• Case 1: a11 = a22 = 1, a12 = a21 = 0, b = (0, 0)T ;
• Case 2: a11 = a22 = 1, a12 = a21 = 0, b = (1, 1)T .

We take the right-hand side function f = 1, and the boundary function g1 = ε > 0 with ε = 1, 10−2, 10−4. In our numerical 
experiment, we test the positivity of the minimum value of the numerical solution on each edge e ∈ Eh for both the 
piecewise constant (i.e., k = 0, l = 0) approximation and piecewise linear (k = 1, l = k − 1) approximation. We denote by ūb

this minimum value, that is

ūb = min
e∈Eh

ub(z0),

where z0 ∈ e is the middle point of the edge e.

Table 8.10 demonstrates the minimum value ūb of the numerical solution for Case 1 and Case 2. As we may observe, 
the numerical solution ūb is positive-preserving in Case 1 for piecewise constant approximation. While for Case 2 (i.e., the 
convection-diffusion term b is not zero), ūb changes its sign and negative values appear for some small ε . In this sense, the 
coefficient b has effect on the positive-preserving property of our numerical scheme. On the other hand, for piecewise linear 
approximation, we observe that even for Poisson equations (i.e., Case 1), ūb could be negative for small ε = 10−2, 10−4. 
However, as ε increases to 1, ūb changes to positive. In other words, the numerical scheme is positive-preserving for large 
ε . From the point of view of positive-preserving property, it seems that the piecewise constant approximation behaviors 
better than the piecewise linear approximation. The analysis of the positive-preserving property for the PDWG solution is a 
challenging and interesting work, which deserves a comprehensive study.
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