
Generating Fake Cyber Threat Intelligence

Using Transformer-Based Models

Priyanka Ranade∗, Aritran Piplai∗, Sudip Mittal†, Anupam Joshi∗, Tim Finin∗,
∗Department of Computer Science & Electrical Engineering, University of Maryland, Baltimore County,

Email: {priyankaranade, apiplai1, joshi, finin}@umbc.edu
†Department of Computer Science, University of North Carolina, Wilmington,

Email: mittals@uncw.edu

Abstract—Cyber-defense systems are being developed to auto-
matically ingest Cyber Threat Intelligence (CTI) that contains
semi-structured data and/or text to populate knowledge graphs.
A potential risk is that fake CTI can be generated and spread
through Open-Source Intelligence (OSINT) communities or on
the Web to effect a data poisoning attack on these systems.
Adversaries can use fake CTI examples as training input to
subvert cyber defense systems, forcing their models to learn
incorrect inputs to serve the attackers’ malicious needs.

In this paper, we show how to automatically generate fake
CTI text descriptions using transformers. Given an initial prompt
sentence, a public language model like GPT-2 with fine-tuning
can generate plausible CTI text that can mislead cyber-defense
systems. We use the generated fake CTI text to perform a
data poisoning attack on a Cybersecurity Knowledge Graph
(CKG) and a cybersecurity corpus. The attack introduced ad-
verse impacts such as returning incorrect reasoning outputs,
representation poisoning, and corruption of other dependent
AI-based cyber defense systems. We evaluate with traditional
approaches and conduct a human evaluation study with cyber-
security professionals and threat hunters. Based on the study,
professional threat hunters were equally likely to consider our
fake generated CTI and authentic CTI as true.

Index Terms—Cybersecurity, Cyber Threat Intelligence, Arti-
ficial Intelligence, Data Poisoning Attack

I. INTRODUCTION

Open-source platforms such as social media, the dark web,

security blogs, and news sources play a vital role in providing

the cybersecurity community with Cyber Threat Intelligence

(CTI). This OSINT based threat intelligence complements

sources collected by companies like IBM, Virtustotal or Man-

diant, by analyzing malware found in the wild, as well as that

obtained by the Intelligence community. CTI is information

about cybersecurity threats and threat actors that is shared

with analysts and systems to help detect and mitigate harmful

events. CTI can be shared as text or as semi-structured data

with some text fields using formats like Structured Threat

Information Expression (STIX) [1] and Malware Information

Sharing Platform (MISP) [2]. Recent research has shown how

text analysis approaches can be used to transform free text

threat information into more structured forms [3]–[11], and

even be ingested into policy driven defensive systems to enable

detection [12], [13].

Although there are many clear benefits to open-source threat

intelligence, addressing and handling misinformation across

these platforms is a growing concern. The misinformation risk

for the security community is the possible dissemination of

false CTI by threat actors in an attempt to poison systems that

ingest and use the information [14]. In January 2021, Google

Threat Analysis Group discovered an ongoing campaign that

targets security researchers. Various nation state government-

backed threat actors created fake accounts and blog posts with

textual cybersecurity information on a variety of exploits in

an attempt to divert security researchers from credible CTI

sources [15]. There is also additional research that suggests

the possibility of future propagation of fake CTI. Maasberg

et al. [16] conducted a study of methods in propagating fake

cybersecurity news and developed components to categorize

it. The authors did not create fake cyber news, just studied its

potential propagation. The widespread generation of fake CTI

itself is heavily under-explored, and is a key contribution of

this paper.

The widespread propagation of fake CTI primarily impacts

cyber analysts who rely on the information to keep up to

date with current attack vectors, as well as the cyber defense

systems that ingest the information to take correct mitigation

steps [12]. Next-generation cyber defense systems are now

being developed to automatically ingest and extract data from

open source CTI to populate knowledge graphs, that are then

used to detect potential attacks or as training data for machine

learning systems.

Adversaries can use fake CTI as training input to subvert

cyber defense systems. This type of attack is commonly known

as a data poisoning attack [17]. Many cyber defense systems

that rely on this data automatically collect streams of CTI data

from common sources. Adversaries can post fake CTI across

open sources, infiltrating the training corpus of AI-based cyber

defense systems with ease. This fake information will appear

legitimate to cyber analysts, but will in reality, have false

components that contradict the real data. As can be seen from

the examples in Table I, convincing fake CTI can be generated

that provides incorrect information about the vulnerabilities

exploited by an attack, or its consequences. This can cause

confusion in analysts on what steps to take to address a threat.

In an automated system cyber defense system that is ingesting

the CTI, this can also break the reasoning and learning process

altogether or force the model to learn incorrect inputs to serve



the adversaries’ malicious goals. Techniques demonstrated for

open-source CTI can also be applied for covert data, such as

proprietary information belonging to a particular company or

government entity. In this scenario, potential attack strategies

will more than likely be categorized as insider threats, and

adversaries will be employees looking to exploit internal

systems.

In this paper, we generate realistic fake CTI examples

by fine-tuning the public GPT-2 model. Transformer-based

methods are state-of-the art approaches that aid in detecting

and generating misinformation on a large scale with minimal

human effort [18]. Our generated fake CTI was able to confuse

professional threat hunters and led them to label nearly all

of the fake CTI as true. We also use the generated fake

CTI examples to demonstrate data poisoning attacks on a

Cybersecurity Knowledge Graph (CKG) and a cybersecurity

corpus. We made sure that our generated fake data was never

circulated in the wild, and remained on our machines where

we generated it for testing.

Our work makes three main contributions:

• We produce a fine-tuned GPT-2 model that generates fake

CTI text (Section III-B),

• We demonstrate a possible poisoning pipeline for infil-

trating a CKG (Section IV), and

• We present an evaluation and analysis of the fake and

real CTI text (Sections III-C and III-D).

The organization of this paper is as follows - In Section

II, we present background and related work. We describe

our fake CTI generation methodology in Section III, which

includes fine-tuning the GPT-2 transformer model on CTI data

(Section III-B) and evaluating the generated fake CTI (Section

III-D). We showcase a data poisoning attack on a cybersecurity

corpus and CKG (Section IV) as well as provide additional

experiments and analysis after ingesting the fake CTI with the

CKG (Section IV-B). We conclude and present future work in

Section V.

II. BACKGROUND AND RELATED WORK

In this section, we describe transformer architectures and

related work in the areas of text generation, misinformation,

AI-Based cybersecurity systems, knowledge graphs, and ad-

versarial machine learning.

A. Transformer Models

Encoder-decoder configurations inspired current state-of-

the art language models such as GPT [19] and BERT [20]

which utilize the transformer architecture [21]. Similar to

Recurrent Neural Network (RNN) based sequence to sequence

(Seq2Seq) models, the transformer encoder maps an input

sequence into an abstract high dimensional space. The decoder

then transforms the vector into an output sequence. Unlike its

Seq2Seq precursor, the transformer does not use any RNN

components and relies solely on the attention mechanism to

generate sequences.

Seq2Seq architectures rely on LSTM cells to process an

input sequence one word at a time. In a transformer model,

all input words are processed in parallel. Due to this, the

transformer introduces the concept of a positional encoding

in order to capture word ordering information in the n-

dimensional vector of each word. The encoder and decoder

components of the transformer also contain a multi-head

attention mechanism. This can be described with the equation

below where Q represents queries, K represents keys, and V

represents values.

Attention(Q,K, V )
︸ ︷︷ ︸

Queries,Keys,Values

= softmax

(
QKT

√
dk

)

V

The complete description of creating these values has been

presented by Vaswani et al. [21]. At the start of the encoder,

let y be the initial sentence representation. As it travels through

each layer of the encoder, y gets updated by different encoder

layers. The input y is used to calculate Q, K, and V in the

above equation. Attention is calculated by taking the transpose

of the matrix dot product QK and dividing by the square root

of the dimension of the keys
√
dk. Lastly, using the attention

weights, we find the weighted sum of values V . The decoder

attention mechanism operates similarly to the encoder, but

employs masked multihead attention. A linear and softmax

layer are also added to produce the output probabilities of

each word. In this paper, we focus on the GPT-2 model [22]

which exclusively uses decoder blocks.

B. Transformer based Use-Cases

Generative transformer models have many use-cases such

as machine translation [23], question-answering [24] and text

summarization [25]. A popular example of a generative trans-

former model is OpenAI GPT [19]. In recent years, GPT-2

[22] and GPT-3 [26], [27] models have also been developed

(At the time of writing this paper, GPT-3 is only accessible by

a paywall API, and the model along with its other components

are unavailable). GPT models across generations differ from

each other in the sizes of data-sets used and number of

parameters added. For example, the WebText dataset used to

train GPT-2 contains eight million documents.

In this paper, we utilize GPT-2 in our experiments. Unla-

beled data is used to pretrain an unsupervised GPT model for

a generic task. Fine-tuning the generic pre-trained models is

a common method of extending the architectures for more

specific tasks [19]. Lee et al. [28] produced patent claims

by fine-tuning the generic pretrained GPT-2 model with U.S.

utility patents claims data. Similarly, Feng et al. [29] fine-

tuned GPT-2 on a small set of yelp review data-set and used

it as a baseline model for various augmentation experiments.

Transformers have been utilized to both detect and generate

misinformation. Misinformation can be generally categorized

as lies, fabricated information, unsupported facts, misunder-

standings, and outdated facts and is often used to achieve

economic, political, or social gain [30]. Vijjali et al. [31] utilize

BERT-based transformers to detect false claims surrounding

the COVID-19 pandemic. Similarly, Zellers et al. [32] also

use a BERT-based model called Grover, which can detect

and generate neural fake news. Their evaluation shows that



human beings found machine-generated disinformation more

trustworthy than human-written information.

C. AI-Based Cyber Systems and Knowledge Graphs

Next-generation cyber defense systems use various knowl-

edge representation techniques such as word embeddings and

knowledge graphs in order to improve system inference on po-

tential attacks. The use of CTI is an integral component of such

systems. Knowledge graphs for cybersecurity have been used

before to represent various entities [33]–[35]. Open source

CTI has been used to build Cybersecurity Knowledge Graphs

(CKG) and other agents to aid cybersecurity analysts working

in an organization [3]–[10]. Mittal et al. created Cyber-All-

Intel and CyberTwitter [3], [5] which utilizes a variety of

knowledge representations such as a CKG to augment and

store CTI.

The use of knowledge graphs for cyber-defense tasks has

also been used in malware analysis tasks [36]–[40]. Piplai et

al. [34], [41] create a pipeline to extract information from mal-

ware after action reports and other unstructured CTI sources

and represent that in a CKG. They use this prior knowledge

stored in a CKG as input to agents in a reinforcement learning

environment [42]. We demonstrate the effects of the poisoning

attack, by ingesting fake CTI on CKG using a complete CTI

processing pipeline [33], [34].

D. Adversarial Machine Learning and Poisoning Attacks

Adversarial machine learning is a technique used to subvert

machine learning systems by providing deceptive inputs to

their models. Adversaries use these methods to manipulate AI-

based system learning in order to alter protected behavior and

serve their own malicious goals [43]. There are several types of

adversarial techniques such as evasion, functional extraction,

inversion, and poisoning attacks [17]. In this paper, we focus

on data poisoning attack strategies.

Data poisoning attacks directly compromise the integrity of

an AI system that uses machine learning by contaminating

its training data [44]–[47]. These methods rely heavily on

the use of synthesized and/or incorrect input data. AI-based

cyber defense systems can potentially include fake data into

their training corpus. The attacker dominates future output by

ensuring the system learns fake inputs and performs poorly

on actual data. Biggio et al. [48] demonstrated pioneering

methods in using kernelized gradient ascent strategies to

produce malicious input that can be used to predict future

decisions of a support vector machine.

In recent years, poisoning attacks have grown to target

cyber-defense systems. One such attack is the VirusTotal poi-

soning attack demonstrated by the McAfee Advanced Threat

Research team [49]. This attack compromised several intrusion

detection systems that ingest VirusTotal data. The attacker

created mutant variants of a ransomware family sample and

uploaded the mutants to the VirusTotal platform. Intrusion

detection systems that ingest VirusTotal data classified the

mutant files as the particular ransomware family. Similarly,

Khurana et al. perform credibility checks on incoming CTI.

They develop a reputation score that is used by systems and

analysts to evaluate the level of trust for input intelligence data

[14]. Duddu et al. survey several methods of using machine

learning to model adversary behavior [50].

III. METHODOLOGY

In this section we describe our fake CTI generation pipeline.

Figure 1, presents the overall approach. We begin by creating

a cybersecurity corpus in Section III-A. The cybersecurity

corpus contains a collection of CTI from a variety of OSINT

sources. We then fine-tune the pre-trained GPT-2 model on

our cybersecurity corpus (Section III-B). The fine-tuned model

allows us to automatically generate large collections of fake

CTI samples. We then evaluate our model and describe a

poisoning attack against a CTI extraction pipeline.

A. Creating a Cybersecurity Corpus

We categorize our CTI collection into three main sources,

as shown in Figure 1. We collect security news articles,

vulnerability databases, and technical Advanced Persistent

Threat (APT) reports. The security news category contains

1000 articles from Krebs on Security [51]. The vulnerability

reports contain 16,000 Common Vulnerability and Exposures

(CVE) records provided by MITRE Corporation and National

Vulnerability Database (NVD) from years 2019-2020 [52].

Lastly, we collect 500 technical reports on APTs from the

available APTNotes repository [53].

The widespread use of the above sources across the greater

security community establishes our corpus as a gold standard

for cybersecurity domain information. Security news articles

are common sources used by cybersecurity threat hunters

to stay current on the latest vulnerabilities and exploits. In

particular, Krebs on Security is a global resource utilized

and referenced by the Security Operations Centers (SOCs)

and popular security bloggers. The resource is updated nearly

daily with reports describing exploits having medium to high

impact that security analysts and companies have found. APT

Reports is a repository of documents written by malware ana-

lysts and includes fine-grained technical briefings of advanced

persistent threat groups and persistent malware strains. The

CVE database, maintained by MITRE Corporation, is another

example of fine-grained OSINT and is used as a common

resource for corporations to track vulnerabilities and exploits

associated with popular products they produce and use. By

including both general and fine-grained OSINT, we can fine-

tune the GPT-2 to learn about various facets of the security

community that are otherwise not present in the GPT-2’s

training data, derived from a collection of web pages. More on

the GPT-2 fine-tuning process, is available in the next section.

B. Fine-Tuning GPT-2 on Cyber Threat Intelligence Data

The original GPT-2 model was trained with the WebText

dataset [22] collected from eight million web pages. While

this dataset contains some general cybersecurity text, it lacks

much of the fine-grained CTI information useful to the security

community. To address this problem, we fine-tuned the general





network, which adds an activation function and dropout. Its

output is passed through a softmax layer, which obtains the

positional encoding of the highest probability word inside the

vocabulary.

The first sample in Table I, provides information on APT

group APT41. Given the prompt, “APT41 is a state sponsored

espionage group”, the model was able to form a partially false

narrative about APT41. APT41 is a Chinese state-sponsored

espionage group, not a Russian group as indicated by the

model. Although this is a false fact, the later part of the

generated CTI is partially true. Despite some true information,

the incorrect nation-state information surrounding APT41 is

still present and adds conflicting intelligence if ingested by an

AI-based cyber defense system.

In the second example, we provide an input prompt from

a Krebs on Security article [55]. The model generated fake

CTI, which states kill switch as an actual service, when in

actuality, kill switch refers to the method of disconnecting

networks from the Internet. In addition, it relates the false

service to the Win32k framework. This gives the fake CTI

enough credibility and seems true to cyber analysts.

Lastly for the third example, we provide an input prompt

from a 2019 CVE record. The model generated the correct

product, but an incorrect associated version and attack type;

the true attack was a remote code execution while the gen-

erated attack was privilege escalation. While a remote code

execution attack can be related to a privilege escalation attack

in general, the specific context of using a Cross-Site Request

Forgery (CSRF) token to gain access to survey.php is incorrect

for this specific product.

D. Evaluating the generated CTI

We next show that the generated fake CTIs are credible. We

use two approaches to show this. First, we evaluate the ability

of the fine-tuned model to predict our test data by calculating

the perplexity score. Next, we conduct human evaluation stud-

ies. The study required a group of cybersecurity professionals

and threat hunters to label a collection of generated and actual

CTI samples as true or fake. The cybersecurity experience of

the participants range from 2-30 years (in operational settings),

with an average experience of 15 years. The idea is to see

if professionals in the field can separate real CTI from fake

instances generated by our system.

In the context of cybersecurity, human evaluation with

potential real-world users of the fake CTI is more indicative

than traditional methods such as perplexity scores. The main

objective of generating fake CTI is to mislead cyber analysts

and bypass intelligence pipelines that they frequently monitor.

If the generated CTI does not possess a high range of mal-

formed sentence structure, poor grammar, or incomprehensible

text (obvious mistakes indicating the text was produced by

a machine), we can assume it has fair potential to appear

real to analysts. Perplexity is a common method to determine

“uncertainty” in a language model, by assigning probabilities

to the test set. Perplexity is measured as the exponentiated

average logarithmic loss and ranges from 0-100. The lower the

perplexity score, the less uncertainty exists within the model.

The base 117M GPT-2 model we fine-tuned has a perplexity

score of 24 [28]. We ensure the model is not evaluated on text

from the training set by calculating perplexity on a separate

test set and achieve a calculated perplexity score of 35.9,

showing strong ability of the model to generate plausible text.

In order to evaluate the potential implications of the gen-

erated fake CTI in a real world setting, we conduct a study

across a group of ten cybersecurity professionals and threat

hunters1. We provided the participants with an assessment

set of both true and fake CTI text samples. Using their own

expertise, participants labeled each text sample in the corpus as

either true or fake. We created the assessment set by collecting

112 text samples of true CTI drawn from various sources

described in Section III-A. We pre-process the text samples

by truncating them to the first 500 words and eliminating

partial last sentences. We select the first sentence of each

sample as an initial prompt to the fine-tuned GPT-2 model and

generate a fake CTI example of no more than 500 words. We

further divide the 112 samples (56 true CTI and their generated

fake counterparts) into two separate annotation sets to ensure

true CTI and direct fake counterparts are not part of the

same annotation task. Therefore, each annotation task included

28 samples of true text and 28 non-overlapping samples of

generated fake data. We randomize the data in each annotation

task assigned to the participants.

Participants worked individually, and labeled each of the

56 samples as either true or fake. Participants used their own

judgement in labeling each sample, and were prohibited to use

external sources like search engines during the assessment.

The results of the study are provided in the confusion matrix.

The confusion matrix shows the true positive, false negative,

false positive, and true negative rates for 560 CTI samples (in-

cluding both true and fake data). Of the total 560 samples that

were rated, the accuracy (36.8%) was less than chance. The

threat hunters predicted 52.5% incorrectly (74 true samples

as false and 220 false statements as true) and 47.5% samples

correctly (206 true samples as true and 60 false statements as

false). Despite their expertise, the threat hunters were only able

to label 60/280 of the generated samples as fake and found the

a large majority (78.5%) of the fake samples as true. These

results demonstrate the ability of the generated CTI to confuse

security experts, and portends trouble if such techniques are

widely used.

1Our study protocol was evaluated by UMBC’s IRB and classfied as Not
Human Subjects Research





A. Processing fake CTI

A CTI ingestion pipeline described in Piplai et al. [34]

and similar systems [10], [35], [56] take a CTI source as an

input and produces a CKG as an output. The CKG contains

cyber entities and their existing relationships. The first stage

is a cybersecurity concept extractor that takes a CTI and

extracts various cyber entities. This is done by using a Named

Entity Recognizer (NER) trained on a cybersecurity corpus.

The second stage, is a deep-neural network based relationship

extractor that takes word embeddings of cyber entity pairs as

an input and identifies likely relationships. This results in an

entity-relationship set that can be asserted into the CKG. As a

running example, we use the following fake CTI text as input

to the extraction pipeline-

‘Malicious domain in SolarWinds hack turned into

killswitch service where the malicious user clicks an

icon (i.e., a cross-domain link) to connect the service

page to a specific target.’

When fake CTI is ingested by the pipeline, the cybersecurity

concept extractor will output classifications that serve the

adversaries’ goals. The concept extractor classifies ‘clicks

an icon’, ‘connect the service’ as ‘Attack-Pattern’. It also

classifies ‘SolarWinds hack’ as a ‘Campaign’. These entities

are extracted from the fake CTI potentially poisoning the

CKG.

The relationship extractor while processing the fake CTI

above, outputs the following relationships:

• ‘Solarwinds hack’ (Campaign)-uses- ‘clicks an icon’

(Attack-Pattern).

• ‘Solarwinds hack’ (Campaign)- uses - ‘connect the ser-

vice’ (Attack-Pattern).

The extracted entity relationship set can then be asserted in

the CKG. Figures 2 and 3, describe the state of the CKG

before and after asserting knowledge extracted from fake

CTI. Figure 2, contains entities and relationships extracted

from true CTI samples describing the campaign ‘SolarWinds

hack’. We can see entities like ‘Orion Software’, identified

as ‘Tool’, and ‘malicious code’ identified as ‘Attack-Pattern’.

These entities are used by the malware in the ‘SolarWinds

hack’ and are present in the true CTI. We also see ‘simple

password’ as a vulnerability. Figure 3, contains additional

information extracted from fake CTI generated by our model.

These additional entities and relationships have been asserted

along with the entity ‘SolarWinds hack’, and are demarcated

by the red box. In this figure, we can see additional ‘Attack-

Patterns’ like, ‘connect the service page’ and ‘clicks an icon’

being captured in the CKG. These entities have been extracted

using the pipeline from the fake CTI and are an evidence of

how a poisoned corpus with fake CTI can be ingested and

represented in a CKG.

B. Effects of fake CTI ingestion

The objective of creating a structured knowledge graph

from the unstructured CTI text is to aid security professionals

in their research. The security professionals can look up

past knowledge about cyber incidents, perform reasoning, and

retrieve information with the help of queries. However, if

generated fake information is ingested by the CKG as part

of a data poisoning attack, it can have detrimental impacts

such as returning wrong reasoning outputs, bad security alert

generation, representation poisoning, model corruption, etc.

For example, if a security professional is interested in

knowing which attack campaigns have used ‘click-baits’, they

will be misled by the result ‘Solarwinds hack’. As the fake

CTI has been ingested and represented in the knowledge

representation (See Section IV-A). The following SPARQL

[57] query when executed on the CKG,

SELECT ?x WHERE {

?x a CKG:Campaign;

CKG:uses CKG:clicks_an_icon.}

will result in the following value:

Solarwinds_hack

If security professionals are interested to know more informa-

tion about ‘Solarwinds-hack’, they may also receive incorrect

information after executing appropriate SPARQL queries.

SELECT ?x WHERE {

?x a CKG:Attack-Pattern;

ˆCKG:uses CKG:Solarwinds-hack.}

This query results in the following values:

malicious_code, offloading_sensitive_tools,

connect_the_service_page, clicks_an_icon

Although we obtained some true results (sourced from true

CTI), the presence of fake CTI guided results like, ‘connect

the service page’ and ‘clicks an icon’ have the potential to

mislead security professionals. Security professionals model

cybersecurity attacks and generate network/system detection

rules using past available information on the same attacks

or similar attacks. They also use these representations to

generate alerts for future attacks. For example, a ‘supply chain

attack’ exploiting a ‘small password’ vulnerability ‘offloading

sensitive tools’ may mean that a new variant of the SolarWinds

hack has surfaced. However, if prior knowledge contains fake

CTI about the same attack, incorrect alerts can be generated.

More concerning, is the possibility of adversaries further

optimizing the generated fake CTI to achieve more sophis-

ticated and targeted changes to a CKG. One approach is

to include a second stage to the fake CTI generation, by

replacing entities such as IP addresses or process names, with

targeted entities chosen by the adversary. This will cause the

changes to be populated into the CKG, and the adversary can

manipulate the system to treat the chosen entities as benign.

After extracting a knowledge graph of the generated text,

entities can be identified and replaced to look consistent with

actual CTI sources. In this case the attacker can leverage var-

ious knowledge provenance methods, which augment the fake

CTI knowledge graph with actual source information. These

strategies can further confuse cyber defense professionals. We

are exploring these more targeted attacks in ongoing future

work.

Once these knowledge representations are poisoned, addi-

tional defense systems can also be adversely impacted by fake



cybersecurity information. For example, many of the insights

generated by knowledge graphs are useful to other systems

like AI-based intrusion detection systems [37], [38], [58], or

alert-generators [3], [35], reaching a larger breadth of linked

systems and cybersecurity professionals.

V. CONCLUSION & FUTURE WORK

In this paper, we automatically generated fake CTI text

descriptions by fine-tuning the GPT-2 transformer using a

cybersecurity corpus rich in CTI sources. By fine-tuning the

GPT-2 transformer with cybersecurity text, we were able to

adapt the general model to the cybersecurity domain. Given an

initial prompt, the fine-tuned model is able to generate realistic

fake CTI text examples. Our evaluation with cybersecurity

professionals shows that generated fake CTI could easily

mislead cybersecurity experts. We found that cybersecurity

professionals and threat hunters labeled the majority of the

fake CTI samples as true despite their expertise, showing that

they found the fake CTI samples believable.

We use the fake CTI generated by the fine-tuned GPT-2

model to demonstrate a data poisoning attack on a knowledge

extraction system that automatically ingests open sourced CTI.

We exemplify the impacts of ingesting fake CTI, by comparing

the state of the CKG before and after the data poisoning attack.

The adverse impacts of these fake CTI sourced assertions

include wrong reasoning outputs, representation poisoning,

and model corruption.

In ongoing work, we are exploring defences against such

data poisoning attacks. One approach is to develop systems

that can detect linguistic errors and disfluencies that generative

transformers commonly produce, but humans rarely make.

A second approach to detecting fake CTI text can use a

combination of novelty, consistency, provenance, and trust.

CTI sources can be given a score that indicates the amount of

trust the user wishes to include in their information.

ACKNOWLEDGEMENT

This work was supported by a U.S. Department of De-

fense grant, a gift from IBM research, and National Science

Foundation grant #2025685. We would like to thank various

cybersecurity professionals and threat hunters at US defense

contractors that took part in our human evaluation study.

REFERENCES

[1] Oasis group. Stix 2.0 documentation. https://oasis-open.github.io/
cti-documentation/stix/, May 2013.

[2] Cynthia Wagner, Alexandre Dulaunoy, Gérard Wagener, and Andras
Iklody. Misp: The design and implementation of a collaborative threat
intelligence sharing platform. In Workshop on Information Sharing and

Collaborative Security, pages 49–56. ACM, 2016.

[3] Sudip Mittal, Prajit Das, Varish Mulwad, Anupam Joshi, and Tim
Finin. Cybertwitter: Using twitter to generate alerts for cybersecurity
threats and vulnerabilities. IEEE/ACM Int. Conf. on Advances in Social

Networks Analysis and Mining, pages 860–867, 2016.

[4] Sudip Mittal, Anupam Joshi, and Tim Finin. Cyber-all-intel: An AI for
security related threat intelligence. arXiv:1905.02895, 2019.

[5] Sudip Mittal, Anupam Joshi, and Tim Finin. Thinking, fast and slow:
Combining vector spaces and knowledge graphs. arXiv:1708.03310,
2017.

[6] Lorenzo Neil, Sudip Mittal, and Anupam Joshi. Mining threat intel-
ligence about open-source projects and libraries from code repository
issues and bug reports. In Intelligence and Security Informatics. IEEE,
2018.

[7] Priyanka Ranade, Sudip Mittal, Anupam Joshi, and Karuna Joshi. Using
deep neural networks to translate multi-lingual threat intelligence. In
International Conference on Intelligence and Security Informatics, pages
238–243. IEEE, 2018.

[8] Priyanka Ranade, Sudip Mittal, Anupam Joshi, and Karuna Pande Joshi.
Understanding multi-lingual threat intelligence for AI based cyber-
defense systems. In IEEE International Symposium on Technologies

for Homeland Security, 2018.

[9] Sagar Samtani, Hongyi Zhu, and Hsinchun Chen. Proactively identi-
fying emerging hacker threats from the dark web: A diachronic graph
embedding framework (d-gef). Transactions on Privacy and Security,
23(4):1–33, 2020.

[10] Nolan Arnold, Mohammadreza Ebrahimi, Ning Zhang, Ben Lazarine,
Mark Patton, Hsinchun Chen, and Sagar Samtani. Dark-net ecosystem
cyber-threat intelligence (cti) tool. In International Conference on

Intelligence and Security Informatics, pages 92–97. IEEE, 2019.

[11] Varish Mulwad, Wenjia Li, Anupam Joshi, Tim Finin, and Krishna-
murthy Viswanathan. Extracting information about security vulnerabili-
ties from web text. In 2011 IEEE/WIC/ACM International Conferences

on Web Intelligence and Intelligent Agent Technology, volume 3, pages
257–260, 2011.

[12] Sandeep Narayanan, Ashwini Ganesan, Karuna Joshi, Tim Oates, Anu-
pam Joshi, and Tim Finin. Early detection of cybersecurity threats using
collaborative cognition. In 4th Int. Conf. on Collaboration and Internet

Computing, pages 354–363. IEEE, 2018.

[13] A. Patwardhan, V. Korolev, L. Kagal, and A. Joshi. Enforcing policies in
pervasive environments. In The First Annual International Conference

on Mobile and Ubiquitous Systems: Networking and Services, 2004.

MOBIQUITOUS 2004., pages 299–308, 2004.

[14] Nitika Khurana, Sudip Mittal, Aritran Piplai, and Anupam Joshi. Pre-
venting poisoning attacks on AI based threat intelligence systems. In
29th Int. Workshop on Machine Learning for Signal Processing, pages
1–6. IEEE, 2019.

[15] Google Threat Analysis Group. New campaign targeting security
researchers. https://blog.google/threat-analysis-group/new–campaign-
targeting-security-researchers/, 2021.

[16] Michele Maasberg, Emmanuel Ayaburi, Charles Liu, and Yoris Au. Ex-
ploring the propagation of fake cyber news: An experimental approach.
In 51st Hawaii International Conference on System Sciences, 2018.

[17] Yevgeniy Vorobeychik and Murat Kantarcioglu. Adversarial machine
learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning, 12(3):1–169, 2018.

[18] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 855–864, 2016.

[19] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
Improving language understanding by generative pre-training. Technical
report, OpenAI, 2018.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv:1810.04805, 2018.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[22] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[23] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F
Wong, and Lidia S Chao. Learning deep transformer models for machine
translation. arXiv:1906.01787, 2019.

[24] Taihua Shao, Yupu Guo, Honghui Chen, and Zepeng Hao. Transformer-
based neural network for answer selection in question answering. IEEE

Access, 7:26146–26156, 2019.

[25] Yang Liu and Mirella Lapata. Text summarization with pretrained en-
coders. In Conf. on Empirical Methods in Natural Language Processing

and the 9th Int. Joint Conf. on Natural Language Processing, pages
3721–3731. ACL, 2019.

[26] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish



Sastry, and Amanda Askell. Language models are few-shot learners.
arXiv:2005.14165, 2020.

[27] OpenAI. Open AI API. https://openai.com/blog/openai-api/, 2021.

[28] Jieh-Sheng Lee and Jieh Hsiang. Patent claim generation by fine-tuning
OpenAI GPT-2. arXiv:1907.02052, 2019.

[29] Steven Y Feng, Varun Gangal, Dongyeop Kang, Teruko Mitamura, and
Eduard Hovy. Genaug: Data augmentation for finetuning text generators.
In Deep Learning Inside Out: 1st Workshop on Knowledge Extraction

and Integration for Deep Learning Architectures, pages 29–42, 2020.

[30] Michela Del Vicario, Alessandro Bessi, Fabiana Zollo, Fabio Petroni,
Antonio Scala, Guido Caldarelli, H Eugene Stanley, and Walter Quat-
trociocchi. The spreading of misinformation online. Proceedings of the

National Academy of Sciences, 113(3):554–559, 2016.

[31] Rutvik Vijjali, Prathyush Potluri, Siddharth Kumar, and Sundeep Teki.
Two stage transformer model for COVID-19 fake news detection and
fact checking. arXiv:2011.13253, 2020.

[32] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali
Farhadi, Franziska Roesner, and Yejin Choi. Defending against neural
fake news. In Advances in neural information processing systems, pages
9054–9065, 2019.

[33] Aditya Pingle, Aritran Piplai, Sudip Mittal, Anupam Joshi, James Holt,
and Richard Zak. Relext: Relation extraction using deep learning
approaches for cybersecurity knowledge graph improvement. IEEE/ACM

International Conference on Advances in Social Networks Analysis and

Mining, 2019.

[34] Aritran Piplai, Sudip Mittal, Anupam Joshi, Tim Finin, James Holt, and
Richard Zak. Creating cybersecurity knowledge graphs from malware
after action reports. IEEE Access, 8:211691–211703, 2020.

[35] Peng Gao, Xiaoyuan Liu, Edward Choi, Bhavna Soman, Chinmaya
Mishra, Kate Farris, and Dawn Song. A system for automated open-
source threat intelligence gathering and management. arXiv preprint

arXiv:2101.07769, 2021.

[36] Jing Liu, Yuan Wang, and Yongjun Wang. The similarity analysis of
malicious software. In Int. Conf. on Data Science in Cyberspace. IEEE,
2016.

[37] Younghee Park, Douglas Reeves, Vikram Mulukutla, and Balaji Sun-
daravel. Fast malware classification by automated behavioral graph
matching. In 6th Annual Workshop on Cyber Security and Information

Intelligence Research. ACM, 2010.

[38] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran
Lane. Graph-based malware detection using dynamic analysis. Journal

in Computer Virology, 7(1):247–258, 2011.

[39] Karuna P Joshi, Aditi Gupta, Sudip Mittal, Claudia Pearce, Anupam
Joshi, and Tim Finin. Alda: Cognitive assistant for legal document
analytics. In AAAI Fall Symposium, 2016.

[40] Maithilee Joshi, Sudip Mittal, Karuna P Joshi, and Tim Finin. Semanti-
cally rich, oblivious access control using ABAC for secure cloud storage.
In Int. Conf. on edge computing, pages 142–149. IEEE, 2017.

[41] Aritran Piplai, Sudip Mittal, Mahmoud Abdelsalam, Maanak Gupta,
Anupam Joshi, and Tim Finin. Knowledge enrichment by fusing repre-
sentations for malware threat intelligence and behavior. In International

Conference on Intelligence and Security Informatics. IEEE, 2020.

[42] Aritran Piplai, Priyanka Ranade, Anantaa Kotal, Sudip Mittal, Sandeep
Narayanan, and Anupam Joshi. Using Knowledge Graphs and Re-
inforcement Learning for Malware Analysis. In 4th International

Workshop on Big Data Analytics for Cyber Intelligence and Defense,

IEEE International Conference on Big Data. IEEE, December 2020.

[43] Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and JD Ty-
gar. Adversarial Machine Learning. Cambridge University Press, 2019.

[44] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and
J. Doug Tygar. Can machine learning be secure? In ACM Symposium

on Information, computer and communications security, pages 16–25,
2006.

[45] Benjamin Rubinstein, Blaine Nelson, Ling Huang, Anthony Joseph,
Shing-hon Lau, Satish Rao, Nina Taft, and J. Doug Tygar. Antidote:
understanding and defending against poisoning of anomaly detectors.
In ACM SIGCOMM Conference on Internet Measurement, pages 1–14,
2009.

[46] Marius Kloft and Pavel Laskov. Online anomaly detection under
adversarial impact. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, pages 405–412.
JMLR Workshop and Conference Proceedings, 2010.

[47] Marius Kloft and Pavel Laskov. Security analysis of online cen-
troid anomaly detection. The Journal of Machine Learning Research,
13(1):3681–3724, 2012.

[48] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks
against support vector machines. arXiv preprint arXiv:1206.6389, 2012.

[49] MITRE. Virus Total Data Poisoning Case Studies. http://git-
hub.com/mitre/advmlthreatmatrix/blob/master/pages/case-studies-
page.md#virustotal-poisoning, 2021.

[50] Vasisht Duddu. A survey of adversarial machine learning in cyber
warfare. Defence Science Journal, 68(4), 2018.

[51] Brian Krebs. Krebs on security. https://krebsonsecurity.com/, 2021.
[52] Harold Booth, Doug Rike, and Gregory Witte. The national vulnerability

database (nvd): Overview. Technical report, National Institute of
Standards and Technology, 2013.

[53] aptnotes. APTnotes repository. https://github.com/aptnotes/data, 2021.
[54] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer

normalization. stat, 1050:21, 2016.
[55] Brian Krebs. Malicious Domain in Solarwinds Hack turned into

killswitch. https://krebsonsecurity.com/2020/12/malicious-domain-in-
solarwinds-hack-turned-into-killswitch/, 2021.

[56] Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Haoyuan Liu, Zheng
Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R Kulkarni, and Dawn Song.
A system for efficiently hunting for cyber threats in computer systems
using threat intelligence. arXiv preprint arXiv:2101.06761, 2021.

[57] W3. Sparql query language. https://www.w3.org/TR/rdf-sparql-query/.
[58] Gulshan Kumar, Krishan Kumar, and Monika Sachdeva. The use of

artificial intelligence based techniques for intrusion detection: a review.
Artificial Intelligence Review, 34(4):369–387, 2010.


	Introduction
	Background and Related Work
	Transformer Models 
	Transformer based Use-Cases 
	AI-Based Cyber Systems and Knowledge Graphs 
	Adversarial Machine Learning and Poisoning Attacks 

	Methodology
	Creating a Cybersecurity Corpus 
	Fine-Tuning GPT-2 on Cyber Threat Intelligence Data 
	Generating Fake CTI
	Evaluating the generated CTI

	Data Poisoning using Fake CTI
	Processing fake CTI
	Effects of fake CTI ingestion

	Conclusion & Future Work
	References

