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Abstract—We present techniques of generating data for mixed
precision solvers that allows to test those solvers in a scalable
manner. Our techniques focus on mixed precision hardware
and software where both the solver and the hardware can
take advantage of mixing multiple floating precision formats.
This allows taking advantage of recently released generation of
hardware platforms that focus on ML and DNN workloads but
can also be utilized for HPC applications if a new breed of
algorithms is combined with the custom floating-point formats
to deliver performance levels beyond the standard IEEE data
types while delivering a comparable accuracy of the results.

I. INTRODUCTION

Modern accelerator hardware includes more floating-point
formats that mandated by IEEE 754 standard. We denote half-
precision 16-bit floating-point arithmetic storage as FP16 or
F5,10 (5 bits for exponent and 10 bits for mantissa, FP32
in that notation is F7,24). FP16 is already showing up in
enterprise and commodity hardware (e.g., NVIDIA’s Tensor
Core low-precision functional unit). A multitude of artificial
neural network accelerators have been explored, including field-
programmable gate arrays (FPGA) [1], [2], [3] and application-
specific integrated circuits (ASIC) [4], [5], [6]. These devices
achieve thousands of operations (floating point or fixed point)
at very high power efficiencies. This more efficient hardware
prompted research in code generators that take a neural network
model design and produce a hardware description for seamless
synthesis [7]. By comparison, ASIC-based accelerators enjoy
multiple benefits over FPGAs, including higher clock speeds
and lower power consumption. But the additional functionality
of being reconfigurable is a unique aspect of FPGAs that
make them a better fit for many applications. On-the-fly
reconfiguration enables the user to: rapidly exchange and
deploy improved neural model designs; implement fixes for
correctness and performance issues as they are discovered; and
deploy algorithmic changes that benefit rapid development
of new neural learning concepts. Additionally, on-demand
hardware synthesis permits reuse of the same hardware board
across different neural networks for a staged provisioning in
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production. This is exemplified by Microsoft Brainwave [1],
[2], NeuFlow [8], FPGAconvNet [3], and others [9], [10].

II. RELATED WORK

Generalized Minimum Residual (GMRES) could be consid-
ered the most common method for mixed-precision solvers
due to its numerical properties. Maintaining the stability and
orthogonality of GMRES requires both algorithmic considera-
tions as well as the properties of the system matrix [11], [12],
[13], [14], [15], [16], [17].

HPL [18], HPCC [19], [20], HPCG [21], [22], [23], [24],
[25] are benchmarks that are widely used across industrial,
research, and academic High Performance Computing (HPC)
installations for measuring dense operations, memory access
patterns, and sparse iterative solvers, respectively. They all
face the initialization problem of the system matrix A that
is subsequently used to measure the solver performance.
In order to achieve a scalable data generation process, a
distributed memory random number generator is employed
in these benchmarks which produces uniformly distributed
elements between −1/2 and 1/2: ai ,j ∼ U (−1/2,1 /2). In case
of HPCG, a standard 3D discretization is constructed via 27-
point finite difference stencil thusly also constituting a scalable
data generation mechanism.

III. HPL-AI BENCHMARK DEFINITION

In the core of performance benchmarking portion of the
HPL-AI benchmark is a solver for the following linear system:

Ax = b, A ∈ Fn×n
64b

, x , b ∈ Fn
64b

All input matrices and objects are in 64-bit floating-point format
and the answer is expected to be accurate to the same precision
regardless of the underlying method used in the solver. The
specification prescribes a solver based on the Krylov subspace
iteration with GMRES as the main method to accommodate
the non-symmetric system matrix A:

x ← GMRES(A, b, M)
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where M represents the right-preconditiner matrix that is to be
based on LU factorization of A in lower precision:

P × A → L × U L, U ∈ F32b

P ∈ {0, 1}n×n

The computed and storage precision of the L and U factors
may be lower than 32-bits and is hardware-specific in practice
to showcase the underlying performance capacity. Along the
same lines, the HPL-AI rules relax the pivoting requirements
represented by matrix P which could be an identity In
indicating the lack of pivoting. The main goal of the scalable
matrix generator is to make non-pivoting LU factorization
possible under suitable circumstances for numerical stability.

Some of the guiding principles for the design of the eventual
generator of matrix A include:
• Ascertain that the un-preconditioned GMRES convergence

is slow and possibly even stagnates without producing
satisfactory solution.

• Limit numerical issues in non-pivoting LU factorization
so that some implementation may forgo the requirement
of pivoting in LU preconditioner without excessive pivot
growth.

• The system matrix A must be constructable in O(n2)
steps with a small constant multiplier to minimize time
for constructing n by n matrix that fits the tested system
and scale across the computational units.

• For any given matrix size n, there should be hundreds
of matrices or even matrix classes to choose from so as
to give the implementation harness a potential to evade
predictability and delay detailed generation decision to
late in runtime.

IV. RANDOM AND NAMED MATRICES

Special matrices such as Cauchy: [ai ,j ] ≡ [1/(i − j)] and
Hilbert [ai ,j ] ≡ [1/(i + j − 1)] matrices may be cheaply
constructed and they admit useful numerical properties such as
QR factorization O(n2) complexity [26] or an explicit inverse
that is known for Hilbert matrices even though they are provably
badly conditioned.

HPL-AI benchmark [27], [28] aims to use the GMRES-
IR method [29] to solve a large linear system Ax = b on
an platforms with hardware accelerators that feature limited
precision arithmetic at very high performance rate. This mimics
how this type of machines are utilized by deep learning
and mixed-precision solvers. Consequently, the HPL-AI rules
explicitly permit non-pivoted LU factorization and thus the
matrix generator needs to produce matrices that are numerically
stable for such an approach to work successfully.

V. PROPOSED SCALABLE MATRIX GENERATOR

A natural starting point for creating a well-conditioned matrix
is to use the strict diagonal dominance property. Row-wise, it is
defined as: |aii | >

∑
j 6=i |aij | for each i = 1, 2, ... , n and the

property may also be formulated column-wise by transposing
the indices of the formula. The property of strong diagonal
dominance imbues the matrix with two relevant guarantees,
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Fig. 1. Sample matrix with diagonal dominance departure factor fd3 = 25%
with ai ,j ∼ U (0, 1).

namely well-conditioning and limited pivot growth even if no
pivoting is used during the Gaussian elimination. This may be
observed in the Schur complement which is the elimination’s
main computational pattern that performs the update of the
remaining right portion of the matrix based on the current
column k :

a(k)
i ,j ←

∑
i ,j>k

ai ,k a−1
k ,k ak ,j (1)

for elements a(k)
i ,j to the right of column k : i , j > k . Note

how the independence of the updates in Eq. (1) are the main
source of parallelism of the elimination that leads to scalable
implementations across CPUs, GPUs, and distributed memory
nodes.

TABLE I
THE NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE OF GMRES

WITH AN IDENTITY PRECONDITIONER M ≡ In AND WITH
M ≡ (LFP32 × UFP32)−1 BASED ON LOWER-PRECISION L AND U FACTORS.

n M ≡ In M ≡ (LFP32 × UFP32)−1

500 8 2
1000 ... 3000 7 2
3500 ... 10000 6 2

A straightforward way of constructing a diagonally dominant
matrix Add is to additively increase the diagonal:

Add ≡ n × In + Un(0, 1) = n ×

 ai ,j∈[0,1]︷ ︸︸ ︷
In + Un(0, 1/n))

 (2)

which translates into a trivial Julia/MATLAB/Octave code:
n*eye(n)+rand(n). The issue with this matrix for the HPL-
AI benchmark is it does not require a good preconditioner
to guarantee a quick convergence with a standard GMRES
implementation. This is summarized in Table I for matrices
of sizes between 500 and 10000. We see that without
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preconditioner, the iteration count is only marginally larger
than when using high quality preconditioner that accurately
approximates A−1 in FP32. Our goal is to differentiate between
the two scenarios by adjusting the numerical properties of
the system matrix A while still maintaining stability for non-
pivoting factorizations.

We proceed by introducing departure from diagonal domi-
nance factor that we note as fd3 throughout this writing. It is
the fraction of diagonal dominance in Eq. (2) applied to the
random matrix.

Definition V.1. Departure from diagonal dominance factor
fd3 ∈ (0, 1) is the scaling applied to diagonal entries:

A(fd3) ≡ n × (In + fd3 × Un(0, 1)) . (3)

If fd3 is constraint to n levels we denote it kd3 ∈ (1, n):

A(k ) ≡ n ×
(
In +

k
n
× Un(0, 1)

)
. (4)

In order to put fd3 factor in perspective, Fig. 1 visualizes
sample matrix entries for diagonal dominance departure factor
fd3 = 25% with ai ,j ∼ U (0, 1).

Note that it is possible to use a different random distribution
for the matrix entries. For example, in the HPL benchmark
ai ,j ∼ U(−1/2,1/2). In our experiments, normal and uniform
distribution had a similar effect of GMRES convergence and
pivoting requirements. See Fig. 3 in §IX-A for more details.

VI. EIGENVALUE SPECTRUM ANALYSIS

Spectral properties of the matrix strongly influence the
convergence behavior of GMRES algorithm. To test the
influence of fd3 of the eigenvalue spectrum, in Figure 2 we
plotted the eigenvalues on the complex plane for various matrix
sizes and fd3 values. There are two main patterns emerging
from these figures. The dominant eigenvalue is real, positive
and its value depends on the size of the matrix in line with the
analysis of random matrices [30], [31], [32], [33], [34]. The
remaining eigenvalues are for the most part contained inside
a unit circle around the origin. The large separation of the
largest (in magnitude) eigenvalue from the others explains a
fast convergence of the Krylov subspace solver. Introducing
the fd3 factor diminishes the length of that separation and thus
reduces the effectiveness of the unpreconditioned GMRES.

VII. REPRESENTATION IN LIMITED RANGE PRECISION

With strict diagonal dominance, the required representation
range is linearly proportionate to the matrix dimension n. This
is acceptable for floating-point formats equivalent to FP32’s
representation or better that admit suitably large exponents and
can reproduce matrix element ranges of practical importance.
More precisely, FP32 F7,24 reserves 7 bits out of the 32-
bit storage for the exponent which is always signed1. Also,
included in this category of sufficient range representations is
BF16 or F7,8 that uses 7-bit exponent just like IEEE’s FP32.

1Some bit combinations are prohibited in order to represent infinity and
NaNs, both signaling and non-signaling.
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Fig. 2. Distribution of eigenvalues of random matrices of size 50, 100 (top
row), 200, 500 (middle row), 1000, and 2000 (bottom row) and different fd3
factors from 1% to 10%.

However, the IEEE 754 standard also includes FP16 (for both
storage and computation as of the 2019 update) has an issue
because F5,10 overflows beyond ±65504. To circumvent that,
a combination of scaling techniques may be applied [27], [28].
One such method is shown in Eq. (2) on the right where we
scale the matrix elements to the (0, 1) and factor out the matrix
dimension n that may be stored externally in higher precision.

VIII. PERFORMANCE MODEL: FLOATING-POINT
EXECUTION RATE, BANDWIDTH, AND LATENCY

TABLE II
CPU PERFORMANCE AND MEMORY BANDWIDTH FOR TYPICAL SERVER

CHIPS AND A SINGLE CHANNEL MMU.

DDR3 DDR4 FP64 FP32 FP16
GB/s GB/s Gflop/s Gflop/s Gflop/s

12.8 21.3 1000 2000 4000

TABLE III
GPU PERFORMANCE AND MEMORY BANDWIDTH ACROSS THREE

GENERATIONS OF SERVER ACCELERATORS.

Pascal Volta Ampere

HBM FP16 HBM FP16 HBM FP16
GB/s Tflop/s GB/s Tflop/s GB/s Tflop/s

720 8 900 125 1555 312
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TABLE IV
BANDWIDTH AND LATENCY VALUES FOR INFINIBAND NETWORK.

Generation FDR EDR HDR

Single link bandwidth (Gbs) 14 25 50
Latency (ns) 700 500 300

Our performance model of FGMRES has three components
related to computing LU preconditioner, matrix-vector multi-
plication, and dot-product:

t = tLU + tMV + tDOT (5)

The floating-point precision performance is the limiting fac-
tor for computing the preconditioner based on LU factorization:

tLU =
2
3
× n3

pFP
(6)

The typical values for the performance for CPUs and GPUs
are given in Tables. II and III, respectively.

The matrix-vector multiplication is a bandwidth-bound
operation and the number of GMRES iterations ic determines
the number of multiplications required:

tMV = ic ×
n2

min(bmem, bnet )
(7)

The bandwidth depends on both the type of data transfers
needed for the matrix-vector multiplication. The main memory
bandwidth bmem dominates in a single-node scenarios while
the distributed memory setting needs to be modeled with
consideration of the network bandwidth bnet . A set of sample
values for these compute, bandwidth, and latency parameters
are given it Tables II, III, and IV.

Finally, the dot-product is a reduction operation that exposes
the algorithm to the network latency `net (memory latency on
a node may be ignored):

tDOT = `net × ic × log2 P (8)

Typical network latency values for Infiniband are shown in
Table IV. Note that these values are based on low-level
hardware signaling overheads and software overheads may
increase the latency substantially. Also, latency values is often
a random variable rather than a single number and depends
on the network traffic and the switches’ ability to handle
congestion. In practical situation, latency admits multi-modal
distribution, especially in dynamically routed networks.

IX. PERFORMANCE RESULTS

A. Properties of Matrices with Diagonally Dominant Departure

Figure 3 shows the results with pivoting for matrices of
sizes between 100 and 10000. For each matrix size, the figure
shows the largest fd3 value (as a percentage of n) for which
the resulting matrix does not require pivoting. Three types
of random distributions were tested: uniform between 0 and
1, uniform around 0, and normal distribution. The uniform
distribution asymptotically approaches around 4% value while
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Fig. 3. Largest fd3 non-pivoted.

the normal distribution approaches approximately 1% mark.
This is a positive result indicating that there is a non-empty
range from which to draw the fd3 factor. The larger the factor,
the more iterations of GMRES are required, on the order of
hundreds for large matrix sizes as indicated in Figure 4.
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Fig. 4. The number of GMRES iterations required for convergence for the
largest fd3 factor that allows non-pivoting factorization.

Figure 4 shows the distribution of GMRES iteration counts
across matrix sizes for the largest fd3 factor that permits non-
pivoting LU factorization. The saturation trend observed in
Figure 3 also shows up here. At 700 iterations, GMRES
is much less effective without a preconditioner, especially
considering the performance model from Section VIII. That
model as well as other practical considerations limit the
iteration count for the HPL-AI benchmark to 50 and therefore
using the proposed fd3 factor values meets this requirement.
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B. Conversion Throughput

The speed of conversion between floating-point formats is
limited by the data access throughput and also relies on the
abundant presence of Special Function Units (SFUs) in every
streaming processor (SM) of the GPU accelerator. Depending
on the platform, the ratio of SFUs to Floating Point Units
(FPUs) is a small fraction below 1 and saturating the capacity
of High Bandwidth Memory (HBM) of the GPU. Figure 5
establishes these facts experimentally and shows the conversion
throughput on the Titan V GPU accelerator from NVIDIA. The
conversion code was compiled with CUDA Toolkit version
10.1.243. We see that the achieved bandwidth for conversion is
below maximum memory bandwidth of typical HBM version 2.
This shows the importance of low complexity of per-element
overhead for scalable data generation.

X. CONCLUSIONS AND FUTURE WORK

We presented scalable matrix data generator for the HPL-
AI benchmark that targets the specifics of the benchmark’s
algorithmic variants of GMRES and LU factorization and
the floating-point formats of modern hardware accelerator
hardware.

Our future work will focus on testing the benchmark and the
proposed generator on the newly released NVIDIA Ampere
GPU. The new accelerator introduced new tensor units and
new floating-point format that lies somewhere between 16 and
32 with approximately 20 bits devoted to the mantissa. The
details have not been fully disclosed and only observational
evidence may be used to infer the properties of the new format
and its computational behavior.

Another research direction is to consider a variety of
precondititioning levels from diagonal to full dense factorization
in the increasingly higher floating-point precisions.
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