Translational Process: Mathematical Software
Perspective

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester
Mark Gates
University of Tennessee
Piotr Luszczek
University of Tennessee

Stanimire Tomov

University of Tennessee

Abstract

Each successive generation of computer architecture has brought new chal-
lenges to achieving high performance mathematical solvers, necessitating devel-
opment and analysis of new algorithms, which are then embodied in software
libraries. These libraries hide architectural details from applications, allowing
them to achieve a level of portability across platforms from desktops to world-
class high performance computing (HPC) systems. Thus there has been an
informal translational computer science process of developing algorithms and
distributing them in open source software libraries for adoption by applications
and vendors. With the move to exascale, increasing intentionality about this
process will benefit the long-term sustainability of the scientific software stack.

Keywords: dataflow scheduling runtimes, hardware accelerators,
communication avoiding algorithms

Email addresses: dongarra@icl.utk.edu (Jack Dongarra), mgates3@icl.utk.edu (Mark
Gates), luszczek@icl.utk.edu (Piotr Luszczek), tomov@icl.utk.edu (Stanimire Tomov)

URL: http://www.netlib.org/utk/people/JackDongarra (Jack Dongarra),
http://www.icl.utk.edu/"luszczek (Piotr Luszczek)

Preprint submitted to Elsevier May 11, 2020

20

25

30

35

40

45

1. Introduction

High-performance computers continue to increase in speed and capacity,
with exascale machines expected to be delivered in 2021. Alongside these devel-
opments, architectures are becoming progressively more complex, with multi-
socket, multi-core central processing units (CPUs), multiple graphics processing
unit (GPU) accelerators, and multiple network interfaces per node. This new
complexity leaves existing software unable to make efficient use of the increased
processing power.

For decades, processor performance has been improving in each generation
consistent with Moore’s Law doubling transistor counts every two years and
Dennard Scaling enabling increases in clock frequency. Combined, these doubled
peak performance every 18 months. Since Dennard Scaling ceased around 2006
due to physical limits, the push has been to multi-core architectures. Instead of
getting improved performance for free, software had to be adapted to parallel,
multi-threaded architectures.

In addition to multi-threaded CPU architectures, hybrid computing has also
become a popular approach to increasing parallelism, with the introduction
of CUDA in 2007 and OpenCL in 2009. Hybrid computing couples heavy-
weight CPU cores (using out-of-order execution, branch prediction, hardware
prefetching, etc.) with comparatively lighter weight (using in-order execution)
but heavily vectorized GPU accelerator cores. There is also heterogeneity in
memory: large, relatively slow CPU DDR memory coupled with smaller but
faster GPU memory such as 3-D stacked high-bandwidth memory (HBM). To
take advantage of these capabilities, modern software has to explicitly program
for multi-core CPUs and GPU accelerators while also managing data movement
between CPU and GPU memories and across the network to multiple nodes.

The compute speed, memory and network bandwidth, and memory and
network latency increase at different exponential rates, leading to an increasing
gap between data movement speeds and computation speeds. For decades, the
machine balance of compute speed to memory bandwidth has increased 15-30%
per year (Figure 1). Hiding communication costs is thus becoming increasingly
more difficult. Instead of just relying on hardware caches, new algorithms must
be designed to minimize and hide communication, sometimes at the expense of
duplicating memory and computation.

Very high levels of parallelism also mean that synchronization becomes in-
creasingly expensive. With processors at around 1-2 GHz, exascale machines,
with 10'® floating point operations per second, must have billion-way paral-
lelism. This is currently anticipated to be achieved by roughly 1.5 GHz Xx
10,000 nodes x 100,000 thread-level and vector-level parallelism. Thus paral-
lelism must become asynchronous and dynamically scheduled.

Mathematical libraries are, historically, among the first software adapted
to the hardware changes occurring over time, both because these low-level
workhorses are critical to the accuracy and performance of many different types
of applications, and because they have proved to be outstanding vehicles for
finding and implementing solutions to the problems that novel architectures

50

55

60

65

Machine balance
(floating point operations per read)

0) [KNL
S \Core i7p L ¢V100]
. vt . \Ploo\
‘ 1 \K40)
\Ongmzoool ‘\KNCHFugakul
s ‘T3E§' ‘ \CoreZDuo)
I \PII) '\\Pllli _.\KComputerT G\Raspberrym\
] NI ;
Q% 10 Ql'z>Q \Pentlum) "" L _-.
3|5 S PRI C1060p
Q|0 < . ‘ I
LB Q‘b . I « + [Cray le \KIO)
S* [CM-5ED : . | ..
) [486DX20 |NEC SX-7p
INEC SX-5p°
14 [CO0NNEC SX-4»
VAX-11p Y-MP Z
e
oY
[8088) oo ®
N2

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
year

Figure 1: Processor and machine balance increasing, making communication relatively more
expensive. Data from vendor specs and STREAM benchmark [1].

pose. We have seen architectures change from scalar to vector to symmetric
multiprocessing to distributed parallel to heterogeneous hybrid designs over the
last 40 years. Each of these changes has forced the underlying implementations
of the mathematical libraries to change. Vector computers used Level 1 and
Level 2 basic linear algebra subprograms (BLAS); with the change to cache-
based memory hierarchies, algorithms were reformulated with block operations
using Level 3 BLAS matrix multiply. Task-based scheduling has addressed mul-
ticore CPUs, while more recently—as the compute-speed-to-bandwidth ratio
increases—algorithms have again been reformulated as communication avoid-
ing. In all of these cases, ideas that were first expressed in research papers
were subsequently implemented in open-source software, to be integrated into
scientific and engineering applications, both open-source and commercial.
Developing numerical libraries that enable a broad spectrum of applications
to exploit the power of next-generation hardware platforms is a mission-critical
challenge for scientific computing generally, and for HPC specifically. But this
challenge raises a variety of difficult issues. For instance, programming mod-
els and hardware architectures are still in a state of flux, and this uncertainty
is bound to inhibit the development of libraries as new configurations and ab-
stractions are tried. At the same time, it seems prudent, if possible, to build
on top of existing libraries instead of developing entirely new ones, since this
will amortize some of the software maintenance costs, provide backward com-

70

75

80

85

90

IMPLEMENTATION
ROBUSTNESS

Portable | Vendor
Software Adoption

i cceptanc

Stable API

Package 1 Development
of Robust Software

Reusable .
Component | /_
Prototype - .
/ Basic Research
ADOPTION LEVELS

Standardization

Use within
Applications

Algorithm +
Internal Close Interested Broader User External
Group Collaborators Developers Community Groups
I L I I L
T \ T T / \ T T j
LABORATORY LOCALE COMMUNITY

Figure 2: Translational approach for mathematical software.

patibility, and make transition for applications easier; and yet including radi-
cally different algorithms and methods at a low level, without radically altering
usage characteristics of familiar packages at a high level, is a difficult soft-
ware engineering problem. Moreover, many HPC applications will need to run
on platforms ranging from leadership-class machines to smaller-scale clusters
and workstations. These architectural changes have come every decade or so,
thereby creating a need to rewrite or refactor the software for the emerging ar-
chitectures. Scientific libraries have long provided a large and growing resource
for high-quality, reusable software components upon which applications can be
rapidly constructed—with improved robustness, portability, and sustainability.

This process of writing new generations of numerical software for new archi-
tectures has, informally, led to the translational process illustrated in Figure 2,
which starts with basic research to develop high performance, numerically sta-
ble methods. This research grew out of a motivation to have efficient and
stable algorithms on state-of-the-art architectures. Out of that research comes
new mathematical algorithms that are developed into robust software libraries
that are portable across platforms and include an extensive testing suite and
documentation. Applications start to use these libraries, which are eventually
adopted by system vendors such as AMD, Cray, IBM, and Intel for inclusion
in their system software. Ideally, software goes through a standardization pro-
cess, as in the case of MPI and BLAS, while other software becomes a de facto
standard, like LAPACK. With this standardization comes widespread accep-
tance. Throughout this process, feedback is exchanged between the math li-
brary developers, application developers, and vendors. Underlying this process
is an environment that includes: community involvement; an emphasis on high
performance, efficiency, and portability; development of software that is freely

95

100

105

110

115

120

125

130

135

available under a liberal open-source license; and ongoing software maintenance
of the libraries. This general translational process was published by Abramson
and Parashar [2]. Here, basic research and robust software corresponds to the
lab in their concept; early adoption by applications and vendors corresponds to
the locale, and standardization and widespread acceptance corresponds to the
community. In this paper, we will look at how this translational research has
affected the development of mathematical software libraries.

2. Background

Today’s scientists often tackle problems that are too difficult to parse the-
oretically, or too difficult or dangerous to tackle experimentally. How can a
researcher peer inside a star to see exactly how it explodes? Or how can one
predict impacts of climate change with so many variables?

At the application level, science must be captured in mathematical mod-
els, which are expressed algorithmically and ultimately encoded as software.
Accordingly, much of the grant funding goes to support this modeling, which
requires intimate collaboration among domain scientists, computer scientists,
and applied mathematicians. This process relies on a large infrastructure of
mathematical libraries, protocols, and system software that has taken years to
build up and must be maintained, ported, and enhanced for many years to come
in order to preserve and extend the value of the application codes that depend on
it. The software that encapsulates all this time, energy, and thought routinely
outlasts (usually by years, sometimes by decades) the hardware it was originally
designed to run on, as well as the individuals who designed and developed it.

2.1. Standards

Standards are critical for software development. Research has always ben-
efited from the open exchange of ideas and the opportunity to build on the
achievements of others. While single implementations have the advantage of
rapid development and implementation, widely embraced standards (e.g., MPI,
BLAS, IEEE floating point standards, and numerical libraries) are based on the
experience of a wider community and are often required by application groups.

2.1.1. BLAS

Since the early days of HPC, the Level 1, Level 2, and Level 3 BLAS stan-
dards [3, 4, 5, 6, 7] abstracted away the low-level hardware details from scien-
tific library developers by encoding high-level mathematical concepts like vector,
matrix-vector, and matrix-matrix products.

The key to using a high-performance computer effectively is to avoid un-
necessary memory movement, providing considerable motivation to devise al-
gorithms to minimize data movement. Along these lines, much activity in the
past 30 years has involved the redesign of basic routines in linear algebra, using
block algorithms based on matrix-matrix techniques [8]. These have proved ef-
fective on a variety of modern computer architectures with vector processing or
parallel-processing capabilities, on which high performance can potentially be
degraded by excessive transfer of data between different levels of memory (e.g.,

140

145

150

155

160

165

170

175

registers, cache, main memory, and solid-state disks).

By organizing the computation into blocks, we provide for full reuse of data
while each block is held in cache or local memory, avoiding excessive movement
of data and giving a surface-to-volume effect for the ratio of data movement to
arithmetic operations, i.e., O(n?) data movement to O(n?®) arithmetic opera-
tions. In addition, parallelism can be exploited in two ways: (1) operations on
distinct blocks may be performed in parallel; and (2) within the operations on
each block, scalar or vector operations may be performed in parallel.

2.1.2. Batched Basic Linear Algebra Subprograms (BBLAS)

On new hardware and with new algorithms, BLAS started showing its age
as application developers expressed their compute needs in the form of multiple
BLAS calls for relatively small problem sizes. Batched BLAS fills this perfor-
mance need by, on one hand, abstracting away low-level details; and, on the
other hand, extending the original interface to express the computational needs
of the application in a hardware-friendly way [9, 10].

2.2. Software PACKs

Delivering specialized scientific software in the form of packages, such as
EISPACK [11], LINPACK [12], LAPACK [8], ScaLAPACK [13], and others
(see Appendix A), continues to be essential for delivering robust solvers that
enable portable performance across ever more specialized hardware systems.

The portability of software library code has always been an important con-
sideration, made much more difficult by diverse modern hardware designs and
the corresponding flourishing of a diverse programming language landscape.
Understandably, scientific teams do not wish to invest significant effort to port
large-scale application codes to each new machine, when they are focused on
science results rather than software engineering. Our answer to this glaring
problem has always been the development of performance-portable software li-
braries that hide the majority of machine-specific details yet allow automated
adaptation to the user’s platform of choice.

LAPACK [8] is an example of a mathematical software package wherein the
highest-level components are portable, while machine dependencies are hidden
in lower-level modules. Such a hierarchical approach is probably the closest
one can come to software portability across diverse parallel architectures. The
BLAS that LAPACK heavily relies on provide a portable, efficient, and flexible
standard for application programmers.

Maintaining scalability of parallel algorithms over a wide range of architec-
tures and numerous processors will likely require the granularity of computation
to be adjustable to suit the particular circumstances in which the software exe-
cutes. Our approach to this problem is block algorithms with adjustable block
sizes. In addition, a suite of algorithms may be required to deal with the full
range of architectural diversity and processor multiplicity likely to be available.

180

185

190

195

200

205

210

215

2.3. Portable Performance Layers

The layered approach to performance portability is indispensable for building
ever more intricate libraries on top of a less complex portability layer with
desirable performance characteristics. The first mathematical subroutine library
for a computer was written by Maurice V. Wilkes, David J. Wheeler, and Stanley
Gill for the EDSAC at the University of Cambridge in England in 1951 [14]. The
programs were written in machine language, and certainly no thought was given
to portability; to have a library at all was remarkable. Intuitively, our notion
of portable numerical software is quite clear: portable applications successfully
run on a variety of computer architectures and configurations.

Examples of different computer architectures include: single processor with
uniform random-access memory, pipeline or vector computers, parallel comput-
ers, and heterogeneous or hybrid computers, to name a few. Different versions of
a library routine may be written for different architectures, where each version
has the same calling sequence interface. Or, the library routine may have the
ability to determine which architecture it is running on and make a dynamic
decision on which path to take to successfully and efficiently execute on the un-
derlying architecture. Applications use these numerical libraries, and it is these
libraries we expect to be portable across different architectures.

2.4. Specific Techniques and Approaches
2.4.1. Dataflow Scheduling

In the late 1970s, dataflow scheduling was realized for mapping programs
represented as a direct acyclic graph (DAG) of tasks to a specialized hardware
configuration of systolic arrays [15]. In the ensuing decades, a large number
of task-based runtime systems have been proposed and remain active [16, 17,
18, 19, 20, 21, 22] with an overarching purpose to address programmability and
management of parallelism in the context of HPC. The next step is to turn the
dataflow scheduling approach into a standard akin to MPI.

2.4.2. Communication Avoiding Algorithms

The new normal in HPC may be summarized as follows: compute time de-
pends on memory accesses and not on total operation count. In other words,
the number of arithmetic instructions executed no longer directly reflects the
wall clock time spent in running the program; the type of operation is the es-
sential aspect to consider. Opting for higher complexity algorithms may be
preferable if the operations map better to the hardware and transfer less data
across the modern memory hierarchy and on-node interconnects [23, 24]. To
better represent the execution time of software, the performance model must
be a function of both computation and communication costs. To address the
computation-communication imbalance, several communication-avoiding (CA)
algorithms have been developed by redesigning existing methods to obtain the
minimum theoretical communication cost for a particular solver [25, 26|, in-
cluding CALU and CAQR factorization algorithms [27]. After basic research
established their advantages, communication avoiding algorithms are now being

220

225

230

235

240

245

250

255

260

integrated into various libraries such as LAPACK, MAGMA, ELPA, SLATE,
and vendor libraries, continuing the translational process.

2.4.3. Mixed Precision

The emergence of deep learning as a leading computational workload on
large-scale cloud infrastructure installations has led to a plethora of heavily
specialized hardware accelerators that can tackle these types of problems much
more efficiently. These new platforms offer new 16-bit floating-point formats
with reduced mantissa precision and exponent range at significantly higher
throughput rates, which makes them attractive in terms of improved perfor-
mance and energy consumption. Mixed-precision algorithms are being devel-
oped to leverage these significant advances in computational power, while still
maintaining accuracy and stability on par with the classic single or double preci-
sion formats through careful consideration of the numerical effects of half preci-
sion. Even though research on mixed-precision algorithms has been presented in
papers and conferences over the last couple of decades, these techniques mostly
remained in a prototype state and rarely made it into production code. Recently,
the US Department of Energy (DOE) Exascale Computing Project (ECP) has
allocated resources to bring these techniques into production.

2.4.4. Approximate, Randomized, and Probabilistic Approaches

In the past, the main goals for robust high-performance numerical libraries
were accuracy first and efficiency second. The current outlook, informed by ap-
plication needs, has been transforming rapidly: accuracy itself is often a tunable
parameter. It is now one of the major contributors to excessive computation,
and is therefore directly at odds with speed. In a wide range of applications,
from high performance data analytics (HPDA) to machine/deep learning, and
from edge sensors producing extreme amounts of data (including redundant or
faulty data) to large data stores, the modern requirement for various optimiza-
tions is to establish a “best” solution in a limited time period. This realignment
of priority motivates the development of algorithms that call for approximations,
randomization, probabilistic accuracy, and convergence bounds. The preferred
algorithms compute quickly while still being sufficiently accurate through non-
traditional, innovative approaches. Here we see a distinct feedback from appli-
cation needs back to the development of new algorithms.

2.4.5. Machine Learning/Autotuning

Although Moore’s law is still in effect, the multicore and accelerator revo-
lution has initiated a processor design trend of moving away from architectural
features that do not directly contribute to processing throughput. This means
a preference toward shallow pipelines with in-order execution and cutting down
on branch prediction and speculative execution. On top of that, virtually all
modern architectures require some form of vectorization to achieve top per-
formance, whether it be short-vector, single instruction, multiple data (SIMD)
extensions of CPU cores or single instruction, multiple threads (SIMT) pipelines
of GPU accelerators. With the landscape of future HPC populated with com-

265

270

275

280

285

290

295

300

305

plex, hybrid vector architectures, automated software tuning could provide a
path toward portable performance without heroic programming efforts.

3. Translational Process and Moving Forward

Given the relatively small community of supercomputing researchers, in-
ternational collaborations are particularly important. First and foremost, the
magnitude of the technical challenges that new architectures and systems bring
with them—and the corresponding sweep of changes required for HPC software
infrastructure—are formidable. In terms of feasibility, the task of recreating
this infrastructure to meet the new realities of advanced scientific computing
is simply too large for any one country, or small consortium of countries, to
undertake on its own. Second, the complex web of interdependencies and side
effects that exist among the software components of advanced computing in-
frastructure means that making sweeping changes to this infrastructure will
require a high degree of coordination and collaboration. Moreover, the HPC
software infrastructure serves scientific communities that include global collab-
orations working on problems of global significance and leveraging resources in
transnational configurations.

Historically, HPC software has been developed and maintained by national
laboratories, universities, hardware vendors, and small, independent companies.
Notably, though, an increasing amount of the software used in supercomputing
is developed in an open-source model. Indeed, over the last 30 years, the open
source community has provided much of the software infrastructure on which the
world’s HPC systems, ranging from supercomputers to campus clusters, have
depended for their performance and productivity. It has invested billions of
dollars and years of effort to build most of the key components, including math
libraries (e.g., LAPACK [8] and PETSc [28]), low-level performance counter
interfaces (e.g., PAPI [29, 30]), MPI, GNU tools, and many others.

Although the investments in these separate software elements have been
tremendously valuable, a great deal of productivity has also been lost because of
the lack of planning, coordination, and key integration of technologies necessary
to make them work together smoothly and efficiently, both within individual
HPC systems and between different systems. Open-source development within
a single project can be coordinated by a repository gatekeeper and an email
discussion list, but there is no global mechanism working across the community
to identify critical holes in the overall software environment, spot opportunities
for beneficial integration, or specify requirements for more careful coordination.
It seems clear that this completely uncoordinated development model will not
provide the software needed to support the unprecedented parallelism required
for peta/exascale computation on millions of cores or the flexibility required
to exploit new hardware models and features, such as transactional memory,
speculative execution, and GPUs and other accelerators. What is needed is
an international effort to coordinate research activities to gain more. However,
such an effort is hard to manage and co-fund.

Moreover, the successful evolution and maintenance of complex software
systems are critically dependent on institutional memory—that is, on the con-

310

315

320

325

330

335

340

345

350

tinuous involvement of the few key developers who understand the software
design—and stability and continuity are essential to preserving institutional
memory. Whatever support model is used, it should enable stable organizations
with decades-long lifetimes to maintain and evolve the software.

In any case, experience shows that the creation of a new, high-quality soft-
ware stack for scientific computing, one which can meet both the diverse require-
ments of future applications and the rigors of peta/exascale hardware architec-
tures, will demand investment on an unprecedented scale. To avoid significant
disruptions in critical research agendas, we need to leverage the collective re-
sources of the global community. Even leaving the magnitude of the investment
required aside, the software infrastructure that must be created is intended to
serve a very broad spectrum of science and engineering communities, all of which
are international in scope and need to leverage resources at a variety of scales.

4. Impact and Lessons Learned

4.1. Measuring Impact

Even if expertly developed and superbly polished, software is worthless un-
less it has an impact in the hands of the end user. It is not enough to make users
aware of a software’s existence, though that is a difficult task in itself, as users
must overcome their reluctance to modify their existing software stack. They
must be convinced that the software they are currently using is inferior enough
to endanger their work, and that the new software will remove that danger.

The ultimate measure of impact stems from indications of usage. Ideally, it
is best if impact measurements are easy to factor and objective. Some possible
metrics include: growth of the contributor base, number of users, number of soft-
ware releases, number of downloads and citations, level of user satisfaction, level
of vendor adoption, number of research groups using the resources, percentage
of reasonably resolved tickets, time-to-resolve tickets, number of publications
citing or using the resource, and subjective user experience reports.

Calculating metrics for LAPACK, for example, we see there have been
around 6.4 million downloads of LAPACK and 1.5 million downloads from
ScaLAPACK per year, averaged over the last 29 years for LAPACK and over
the last 25 years for ScaLAPACK [31]. This is for the packages as well as various
components from the packages. These packages are also included in software
products like Matlab, Julia, and MKL, which we cannot easily count.

As much of the scientific software stack is open source, one can also look
into different package managers (e.g., Spack [32]) to measure dependencies and
usage, or use sites that do this automatically (e.g., libraries.io monitors close to
5 million open-source packages across 37 different package managers). However,
usage typically needs to be compared to other developments, quality and quan-
tity is also important, and measurements become more difficult and subjective.
Although there are a number of measures of impact that can be used for soft-
ware, they are not well established nor supported, which stands in contrast to
the number of citations or h-index calculated for publications.

A measure of impact that combines both objective and subjective measures

10

https://libraries.io/

355

360

365

370

375

can be obtained if we look into particular areas. For example, in the area of
algorithms and numerical libraries for current and upcoming HPC hardware, a
good example is the DOE’s ECP effort, which is a large-scale development and
deployment project for a comprehensive, integrated software stack and exascale
hardware technology development and its translation into DOE mission-critical
applications. ECP applications, and their associated exascale challenge prob-
lems, were reviewed by external experts and carefully selected in 2016 based
on key DOE criteria, including: significance and requirement of exascale re-
sources, alignment with DOE mission and strategic priorities, impact to both
DOE and the broader community, and experience of the teams in leveraging
HPC systems [33]. The software technologies in ECP and the number of ECP
applications that depend on each technology are shown in Figure 3.

64
48 | ¥ |nterested Dependents H mportant Dependents B Critical Dependents |

32

Number of Dependents

Number of Dependents
o> 8 &
® m
m
m
O mm
.
mo
m
-
$
e
% mma
-
N
% —
S
L}
L0
.
¢ mmm
S m——
<
| N
I
—
]
]

Tl R AN s i
& Q}\\o O\A}QV D FF W S LK PFED S OGS S ‘\000 2 P2 Tt *xég &
S I P C PTG S PateT & *Qo‘y""o"c"é S
FIF #l® 7T @ YT TESTITNGTT o
R & 4
40

Figure 3: Number of application dependents for each of the software technologies in DOE’s
ECP project. There are a total of 64 applications and 64 software technologies in ECP.

There are 64 applications and 64 software technology projects in the ECP
effort, ordered in Figure 3 on the z-axis by the number of applications that
critically depend on them. Note, for example, that Spack [32] reaches the max-
imum of 64 dependencies, as all applications use Spack as their package man-
ager to simplify and unify installation. After that, the software projects with
the most dependents are the ones related to the programming model, namely:
MPI, OpenMP, and C++ (in that order). The next projects with most crit-
ical dependents (17) are the LAPACK numerical library and the HDF5 open
source file format for large, complex, heterogeneous data. Other notable soft-
ware projects with a relatively large number of dependents are CUDA (pro-
gramming for NVIDIA GPUs), Kokkos (portable programming model), BLAS,
and ALPINE (scientific visualization).

11

380

385

390

395

400

405

410

415

4.2. Licensing for Users and Manufacturers

An important lesson learned for scientific software and its translation process
is the significance of its licensing. Much of the scientific software is open source,
frequently using a Berkeley Software Distribution (BSD)-derived license, which
originated in the BSD Unix OS. The modified or 3-clause BSD license states:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

(1) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copy-
right notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

(3) Neither the name of the Corporation nor the names of the con-
tributors may be used to endorse or promote products derived
from this software without specific prior written permission.

The BSD license is a permissive, free software license, imposing minimal
restrictions on the use and redistribution of covered software. A BSD style
license is a good choice for long duration research or other projects that require
a development environment that has near zero cost for end users, will evolve over
a long period of time, and permits anyone to retain the option of commercializing
final results with minimal legal issues.

The success of the scientific software stack can, in part, be attributed to
the choice of software licensing. Not only is the software, in general, of high
quality, well tested, portable, and actively maintained, it is also capable of being
incorporated into other software applications with minimal restrictions on the
use and redistribution of the application software; in other words, the license is
not a hindrance and allows users to employ the software how they see fit.

4.3. Funding for Research and Development

With the development of mathematical software the process begins with a
sound foundation in mathematics that expresses the correctness and stability
of the computation. A numerical algorithm is then developed that expresses
the mathematics as an algorithm that encompasses the various cases the math-
ematics takes into account. A more complete picture would be:

e the development and analysis of algorithms for standard mathematical
problems which occur in a wide variety of applications;

e the practical implementation of mathematical algorithms on computing
devices, including study of interactions with particular hardware and soft-
ware systems;

12

420

425

430

435

440

445

450

455

e the environment for the construction of mathematical software, such as
computer arithmetic systems, languages, and related software develop-
ment tools;

e software design for mathematical computation systems, including user in-
terfaces;

e testing and evaluation of mathematical software, including methodologies,
tools, testbeds, and studies of particular systems;

e issues related to the dissemination and maintenance of software.

Each of these items requires an investment of time and funding to successfully
accomplish its task. The National Science Foundation and the Department of
Energy have contributed to the promotion of various aspects of this overall
research and development process.

4.4. Personnel for Long Running Projects

Training and retention of a cadre of young people to engage in long term
translational projects are critical. A strong research program cannot be estab-
lished without a complementary education component, which is as important
as adequate infrastructure support. A continuing supply of high-quality com-
putational scientists available for work in our field is critical. This starts with
graduate students, who contribute to the software development, and continues
with post-docs who care about the development and help with the research
directions, as well as research professors and colleagues, who contribute to the
overall effort. Without a continuous effort full of qualified people at these levels,
such long-term projects cannot be carried out at our universities. Students and
post-docs are with the project for only a short time. It is critical that the design
is well documented and the documentation is faithful to the software that is de-
veloped. For the student, it can lead to a thesis or dissertation. For post-docs,
it can solidify their interest in the field and lead to new research areas.

Traditionally, individual researchers working alone or in pairs have charac-
terized the style of much of the work in the sciences. This situation is different
in computational science where increasingly a multidisciplinary team approach
is required. There are several compelling reasons for this. First and foremost,
problems in modern scientific computing transcend the boundaries of a single
discipline. In general, the computational approach has made science more in-
terdisciplinary than ever before. There is a unity among the various steps of
the overall modeling process from the formulation of a scientific or engineering
problem to the construction of appropriate mathematical models, the design
of suitable numerical methods, their computational implementation, and, last
but not least, the validation and interpretation of the computed results. For
most of today’s complex scientific or technological computing problems a team
approach is required involving scientists, engineers, applied and numerical math-
ematicians, statisticians, and computer scientists.

Unlike theoretical mathematics, computational mathematics, by its very na-
ture, has a strong experimental component. As a result, research work proceeds

13

460

465

470

475

480

485

490

495

500

in part in a laboratory mode similar to that in the experimental sciences. The
laboratory equipment required for modern scientific computing ranges from lo-
cal workstations to mainframe machines of various sizes, and supercomputers.
This hardware is complemented by appropriate software systems and libraries.

Clearly, the investment costs, as well as the longer duration of typical compu-
tational projects—especially when extensive software development is involved—
necessitate a certain continuity and stability of the entire research infrastructure.

4.5. Roadblocks for ECP Translation Process

A major and valuable investment for a supercomputing ecosystem is its in-
vestment in people. The technology is maintained, exploited, and enhanced by

the collective know-how of a relatively small cadre of supercomputing professionals—

from those who design and build the hardware and system software to those
who develop the algorithms and write the applications and programs. Their
expertise is the product of years of experience. As supercomputing becomes a
smaller fraction of research and development in information technology, there
is a greater chance that those professionals will move out of supercomputing
related employment and into more lucrative jobs. For example, their systems
skills could be reused at Google, Facebook, or NVIDIA, and their algorithms
skills would be useful on Wall Street.

5. Conclusions

Advancing to the next stage of growth for computational simulation and
modeling will require us to solve basic research problems in computer science
and applied mathematics, at the same time as we create and promulgate a
new paradigm for the development of scientific software. To make progress
on both fronts simultaneously will require a level of sustained, interdisciplinary
collaboration among the core research communities that requires a translational
approach.

Existing numerical libraries will need to be rewritten and extended in light
of emerging architectural changes. The technology drivers will necessitate the
redesign of existing libraries and will force re-engineering and implementation
of new algorithms. Because of the enhanced levels of concurrency on future
systems, algorithms will need to embrace asynchrony to generate the number of
required independent operations.

As we enter an era of great change, strategic clarity and vision will be essen-
tial. Technology disruptions will also require innovative new ideas in mathemat-
ics and computer science. We need sustained investments in creative individuals
and high-risk concepts.

The community has long struggled to settle on a good model for sustained
support for key elements of the software ecosystem. This issue will become more
acute as we move to exascale and beyond. The community needs to recognize
that software is really a scientific facility that requires long-term investments in
maintenance and support.

14

Appendix A. PACKs over Decades

Project Year Authors

NATS Project 1971 Boyle, et al.
FUNPACK 1972 Cody

EISPACK 1972 Smith, et al.
RFK45 1977 Shampine & Watts
SLATEC 1977 DOE Community
LINPACK 1978 Dongarra, et al.
Level 1 BLAS 1978 Lawson, et al.
MINPACK 1979 More’, et al.
DEPAC 1980 Shampine & Watts
DASSL 1982 Petzold
ODEPACK & SUNDIALS 1983 Hindmarsh

IEEE floating point 1985 Kahan et al.
Netlib 1985 Dongarra & Gross
Level 2 BLAS 1988 Dongarra et al.
PVM 1989 Geist, et al.

Level 3 BLAS 1990 Dongarra, et al.
PETSc 1991 Smith, et al.
ADIFOR 1992 Hovland, et al.
MPI 1992 Community
MPICH 1992 Gropp & Lusk
LAPACK 1992 Anderson, et al.
ScaLAPACK 1997 Blackford, et al.
SuperLU 1997 L, et al.

Hypre 1998 Falgout, et al.
ARPACK 1998 Sorensen

ATLAS 2000 Whaley & Dongarra
PAPI 2000 Browne, et al.
Trilinos 2001 Heroux, et al.
Open MPI 2005 Community

IESP 2009 Community
PLASMA 2007 Kurzak, et al.
MAGMA 2009 Tomov, et al.
SLATE 2017 Gates, et al.

15

505

510

515

520

525

530

535

540

References

[1]

[10]

[11]

J. D. McCalpin, et al., Memory bandwidth and machine balance in current
high performance computers, IEEE computer society technical committee
on computer architecture (TCCA) newsletter 2 (19-25) (1995).

URL https://www.cs.virginia.edu/stream/

D. Abramson, M. Parashar, Translational research in computer science,
Computer 52 (9) (2019) 16-23.

C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic linear algebra
subprograms for FORTRAN usage, ACM Trans. Math. Soft. 5 (1979) 308—
323.

J. J. Dongarra, J. D. Croz, S. Hammarling, R. Hanson, An extended set
of FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software 14 (1988) 1-17.

J. J. Dongarra, J. D. Croz, S. Hammarling, R. Hanson, Algorithm 656:
An extended set of FORTRAN Basic Linear Algebra Subprograms, ACM
Transactions on Mathematical Software 14 (1988) 18-32.

J. J. Dongarra, J. D. Croz, I. S. Duff, S. Hammarling, Algorithm 679: A
set of Level 3 Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software 16 (1990) 1-17.

J. J. Dongarra, J. D. Croz, I. S. Duff, S. Hammarling, A set of Level 3
Basic Linear Algebra Subprograms, ACM Transactions on Mathematical
Software 16 (1990) 18-28.

E. Anderson, Z. Bai, C. Bischof, S. L. Blackford, J. W. Demmel, J. J.
Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. C.
Sorensen, LAPACK User’s Guide, Third Edition, Society for Industrial and
Applied Mathematics, Philadelphia, 1999.

J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham,
J. Hogg, P. Valero-Lara, S. D. Relton, S. Tomov, M. Zounon, A proposed
APT for Batched Basic Linear Algebra Subprograms, MIMS EPrint 2016.25,
Manchester Institute for Mathematical Sciences, The University of Manch-
ester, UK (Apr. 2016).

URL http://eprints.ma.man.ac.uk/2464/

J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham,
J. Hogg, P. V. Lara, P. Luszczek, M. Zounon, S. D. Relton, S. Tomov,
T. Costa, S. Knepper, Batched blas (basic linear algebra subprograms)
2018 specification (2018-07 2018).

B. S. Garbow, J. M. Boyle, C. B. Moler, J. Dongarra, Matrix eigensystem
routines — EISPACK guide extension, Vol. 51 of Lecture Notes in Computer
Science, Springer, Berlin, 1977. doi:10.1007/3-540-08254-9.

16

https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
https://doi.org/10.1007/3-540-08254-9

545

550

555

560

565

570

575

580

[12]

[13]

[20]

J. Dongarra, J. R. Bunch, C. B. Moler, G. W. Stewart, LINPACK users’
guide, SIAM, Philadelphia, 1979. doi:10.1137/1.9781611971811.

Y. Choi, J. J. Dongarra, R. Pozo, D. W. Walker, ScaLAPACK: a scalable
linear algebra library for distributed memory concurrent computers, in:
Proceedings of the fourth symposium on the frontiers of massively parallel
computation (Frontiers '92), McLean, Virginia, Oct 19-21, 1992, 1992, pp.
120-127.

M. V. Wilkes, D. J. Wheeler, S. Gill, The Preparation of Programs for
an Electronic Digital Computer (Charles Babbage Institute Reprint), The
MIT Press, 1984.

H. T. Kung, C. E. Leiserson, Systolic arrays (for VLSI), in: Sparse Matrix
Proceedings, Society for Industrial and Applied Mathematics, 1978, pp.
256-282, ISBN: 0898711606.

M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: Expressing lo-
cality and independence with logical regions, in: International Conference
for High Performance Computing, Networking, Storage and Analysis, SC,
2012. doi:10.1109/S8C.2012.71.

E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Ser-
gent, S. Thibault, Harnessing Supercomputers with a Sequential Task-
based Runtime System 13 (9) (2014) 1-14.

T. Heller, H. Kaiser, K. Iglberger, Application of the ParalleX execution
model to stencil-based problems, Computer Science - Research and Devel-
opment 28 (2-3) (2013) 253-261. doi:10.1007/s00450-012-0217-1.

J. Dokulil, M. Sandrieser, S. Benkner, Implementing the Open Com-
munity Runtime for Shared-Memory and Distributed-Memory Systems,
Proceedings - 24th Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, PDP 2016 (2016) 364-368doi:
10.1109/PDP.2016.81.

J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé,
J. Labarta, Productive programming of GPU clusters with OmpSs, Pro-
ceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium, IPDPS 2012 (2012) 557-568d0i:10.1109/IPDPS.
2012.58.

OpenMP 5.0 Complete Specifications, https://www.openmp.org/
wp-content/uploads/OpenMP-API-Specification-5.0.pdf (Nov 2018).

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, J. Dongarra,
PaRSEC: A programming paradigm exploiting heterogeneity for enhancing
scalability, Computing in Science and Engineering 99 (2013) 1. doi:10.
1109/MCSE.2013.98.

URL http://hal.inria.fr/hal-00930217

17

https://doi.org/10.1137/1.9781611971811
http://books.google.com/books?id=lYRNdo2m7ssC&pg=PA256
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1007/s00450-012-0217-1
https://doi.org/10.1109/PDP.2016.81
https://doi.org/10.1109/PDP.2016.81
https://doi.org/10.1109/PDP.2016.81
https://doi.org/10.1109/IPDPS.2012.58
https://doi.org/10.1109/IPDPS.2012.58
https://doi.org/10.1109/IPDPS.2012.58
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
http://hal.inria.fr/hal-00930217
http://hal.inria.fr/hal-00930217
http://hal.inria.fr/hal-00930217
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/MCSE.2013.98
http://hal.inria.fr/hal-00930217

585

590

595

600

605

610

615

620

[23]

[25]

[26]

A. Haidar, P. Luszczek, J. Dongarra, New algorithm for computing eigen-
vectors of the symmetric eigenvalue problem, in: Workshop on Parallel
and Distributed Scientific and Engineering Computing, IPDPS 2014 (Best
Paper), IEEE, IEEE, Phoenix, AZ, 2014. doi:10.1109/IPDPSW.2014.130.

A. Haidar, J. Kurzak, P. Luszczek, An improved parallel singular value al-
gorithm and its implementation for multicore hardware, in: Proceedings of
the International Conference on High Performance Computing, Network-
ing, Storage and Analysis, ACM, 2013, p. 90.

G. Ballard, J. Demmel, O. Holtz, O. Schwartz, Minimizing communica-
tion in numerical linear algebra, STAM Journal on Matrix Analysis and
Applications 32 (3) (2011) 866-901.

M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing com-
munication in sparse matrix solvers, in: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, ACM,
2009, p. 36.

J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-optimal
parallel and sequential QR and LU factorizations, STAM Journal of Scien-
tific Computing 34 (1) (2012) A206-A239. doi:10.1137/080731992.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik,
M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp,
P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users man-
ual, Tech. Rep. ANL-95/11 - Revision 3.13, Argonne National Laboratory
(2020).

URL https://www.mcs.anl.gov/petsc

H. Jagode, A. Danalis, H. Anzt, J. Dongarra, PAPI software-defined events
for in-depth performance analysis, The International Journal of High Per-
formance Computing Applications 33 (6) (2019) 1113-1127.

A. Danalis, H. Jagode, T. Herault, P. Luszczek, J. Dongarra, Software-
defined events through PAPI, in: 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro,
Brazil, Brazil, 2019, pp. 363-372, dOI: 10.1109/IPDPSW.2019.00069.

University of Tennessee, Oak Ridge National Laboratory, Netlib Libraries
Access Counts.
URL http://www.netlib.org/master_counts2.html

T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, S. Futral, The Spack package manager: bringing order to HPC
software chaos., in: J. Kern, J. S. Vetter (Eds.), SC, ACM, 2015, pp. 40:1—
40:12.

URL http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15

18

https://doi.org/10.1109/IPDPSW.2014.130
https://doi.org/10.1137/080731992
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://www.netlib.org/master_counts2.html
http://www.netlib.org/master_counts2.html
http://www.netlib.org/master_counts2.html
http://www.netlib.org/master_counts2.html
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#GamblinLCLMSF15

625

630

[33] F. Alexander, A. Almgren, J. Bell, A. Bhattacharjee, J. Chen, P. Colella,
D. Daniel, J. DeSlippe, L. Diachin, E. Draeger, A. Dubey, T. Dunning,
T. Evans, 1. Foster, M. Francois, T. Germann, M. Gordon, S. Habib, M. Ha-
lappanavar, S. Hamilton, W. Hart, Z. Huang, A. Hungerford, D. Kasen,
P. R. C. Kent, T. Kolev, D. B. Kothe, A. Kronfeld, Y. Luo, P. Macken-
zie, D. McCallen, B. Messer, S. Mniszewski, C. Oehmen, A. Perazzo,
D. Perez, D. Richards, W. J. Rider, R. Rieben, K. Roche, A. Siegel,
M. Sprague, C. Steefel, R. Stevens, M. Syamlal, M. Taylor, J. Turner,
J.-L. Vay, A. F. Voter, T. L. Windus, K. Yelick, Exascale applications:
skin in the game, Philosophical Transactions of the Royal Society. A,
Mathematical, Physical and Engineering Sciences 378 (2166) (1 2020).
d0i:10.1098/rsta.2019.0056.

19

https://doi.org/10.1098/rsta.2019.0056

	Introduction
	Background
	Standards
	BLAS
	BBLAS

	Software PACKs
	Portable Performance Layers
	Specific Techniques and Approaches
	Dataflow Scheduling
	Communication Avoiding Algorithms
	Mixed Precision
	Approximate, Randomized, and Probabilistic Approaches
	Machine Learning/Autotuning

	Translational Process and Moving Forward
	Impact and Lessons Learned
	Measuring Impact
	Licensing for Users and Manufacturers
	Funding for Research and Development
	Personnel for Long Running Projects
	Roadblocks for ECP Translation Process

	Conclusions
	PACKs over Decades

