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Abstract
We propose to estimate the number of communities in degree-corrected stochastic block models
based on a pseudo likelihood ratio statistic. To this end, we introduce a method that combines spec-
tral clustering with binary segmentation. This approach guarantees an upper bound for the pseudo
likelihood ratio statistic when the model is over-fitted. We also derive its limiting distribution when
the model is under-fitted. Based on these properties, we establish the consistency of our estimator
for the true number of communities. Developing these theoretical properties require a mild condi-
tion on the average degrees – growing at a rate no slower than log(n), where n is the number of
nodes. Our proposed method is further illustrated by simulation studies and analysis of real-world
networks. The numerical results show that our approach has satisfactory performance when the
network is semi-dense.

Keywords: Clustering, community detection, degree-corrected stochastic block model, K-means,
regularization.

1. Introduction

Advances in modern technology have facilitated the collection of network data which emerge in
many fields including biology, bioinformatics, physics, economics, sociology and so forth. There-
fore, developing effective analytic tools for network data has become a focal area in statistics re-
search over the past decade. Network data often have natural communities which are groups of
interacting objects (i.e., nodes); pairs of nodes in the same group tend to interact more often than
pairs belonging to different groups. For example, in social networks, communities can be groups
of people who belong to the same club, be of the same profession, or attend the same school; in
protein-protein interaction networks, communities are regulatory modules of interacting proteins.
In many cases, however, the underlying structure of network data is not directly observable. In such
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cases, we need to infer the latent community structure of nodes from knowledge of their interaction
patterns.

The stochastic block model (SBM) proposed by Holland et al. (1983) is a random graph model
tailored for clustering nodes, and it is commonly used for recovering the community structure in
network data. SBM has one limitation: it assumes that all nodes in the same community are stochas-
tically equivalent (i.e., they have the same expected degrees). To overcome this limitation, Karrer
and Newman (2011) propose the degree-corrected stochastic block model (DCSBM) which allows
for degree heterogeneity within communities. In the literature, various methods have been proposed
for the estimation of SBM and DCSBM. They include but are not limited to modularity maximiza-
tion (Newman and Girvan, 2004), likelihood-based methods (Amini et al., 2013; Bickel and Chen,
2009; Choi et al., 2012; Zhao et al., 2012), the method of moments (Bickel et al., 2011), spectral
clustering (Jin, 2015; Joseph and Yu, 2016; Lei and Rinaldo, 2015; Qin and Rohe, 2013; Rohe et al.,
2011; Sarkar and Bickel, 2015; Sengupta and Chen, 2015; Paul and Chen, 2020; Su et al., 2020),
and spectral embedding (Lyzinski et al., 2014; Sussman et al., 2012). In most, if not all, works, theo-
retical properties such as consistency and asymptotic distributions are built based on the assumption
that the true number of communities K0 is known.

In practice, prior information of the number of communities is often unavailable. Accurately
estimatingK0 from the network data is of crucial importance, as the following community detection
procedure relies upon it. Determining the number of communities can be regarded as a model selec-
tion problem. A natural approach to the problem is to consider the popular model selection methods
such as cross-validation (CV) or likelihood-based methods. However, tailoring those methods for
SBMs or DCSBMs and establishing the theoretical support are challenging, as network data are
complex in nature.

A few methods have been developed to estimate K0. Among them, the eigenvalue-based meth-
ods have been widely applied; see Bickel and Sarkar (2016), Bordenave et al. (2015), Le and Levina
(2015) and Lei (2016) for the hypothesis testing methods on eigenvalues. These methods can be
computationally fast, but they only use partial information from the data – the eigenvalues. Empir-
ically, the good behavior of eigenvalues often requires a very large sample size. In order to make
use of all the information from the data, we need to estimate the graph model (SBM or DCSBM).
To this end, spectral clustering is considered as a quick and effective way, and it has been proven
to have reliable theoretical basis (Jin, 2015; Joseph and Yu, 2016; Lei and Rinaldo, 2015; Qin and
Rohe, 2013; Rohe et al., 2011; Sarkar and Bickel, 2015; Su et al., 2020). Based on the spectral
clustering method for estimating the graph model, Chen and Lei (2018) and Li et al. (2020) propose
network cross-validation (NCV) and edge cross-validation (ECV), respectively, for selecting the
number of communities. In particular, Chen and Lei (2018) show that the NCV method guarantees
against under-selection in SBMs, but it does not rule out possible over-selection. Although they
have a discussion on the estimation of DCSBMs, they do not study the theoretical property of the
NCV estimator of the number of communities (K) in DCSBMs. Li et al. (2020) propose an ECV
method for choosing between SBMs and DCSBMs along with selecting K for each model, but the
consistency of ECV is not established. Moreover, both methods can be computationally intensive
when the number of folds is large; they can lead to unstable results when the number of folds or the
number of random sample splittings (or repetitions in the ECV case) is small. Another appealing
method for model selection is the likelihood-based approach (Wang and Bickel, 2017; Hu et al.,
2019). It uses a BIC-type penalty, so that it avoids iterations or random sample splittings. However,
for either SBMs or DCSBMs, optimizing the likelihood function which involves summing over all
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possible community memberships is computationally intractable for even moderate sample sizes.
As a result, Wang and Bickel (2017) use a variational EM algorithm to approximate the likelihood,
and it may converge to a local optimum (Blei et al., 2017).

In this article, we propose a new method by taking advantage of both spectral clustering and
likelihood principle. The method is devised for DCSBM, but can be naturally applied to SBM as
it is a special case of DCSBM. To determine the number of communities K, we propose a pseudo
likelihood ratio (pseudo-LR) to compare the goodness-of-fit of two DCSBMs estimated by using
K and K + 1, respectively, as the number of communities. For estimation, directly using spectral
clustering can be an appealing choice as it is computationally fast. However, when K > K0, it
remains unclear about theoretical properties for the resulting estimators of the DCSBM obtained
through the standard spectral clustering approach. This hinders the use of goodness-of-fit methods
for model selection by spectral clustering for estimation. To overcome the difficulty, we estimate
the DCSBM with K communities by spectral clustering; based on this estimate, we propose a
binary segmentation method for estimating the DCSBM with K + 1 communities. This approach
guarantees consistency of the estimator for the model with K + 1 communities when the estimator
for the model with K communities is consistent. The binary segmentation technique has been used
in the seminal work Vostrikova (1981) for change-point detection and in recent work Wang and Su
(2021) for latent group recovery. Our idea of adapting this method to estimate DCSBM has not been
considered by others. Based on the proposed estimation approach, we show that the pseudo-LR has
a sound theoretical basis, and the resulting estimator of the number of communities is consistent.

It is worth noting that for establishing the consistency of estimating K0, we only require the
average degree to grow with the number of nodes n at a rate no slower than log(n), whereas the
BIC-type methods considered in Wang and Bickel (2017) and Hu et al. (2019) require it to be faster
than n1/2 log(n) and proportion to n, respectively, in DCSBMs. That is, these approaches need a
much denser network than our method for good finite sample performance. As pointed out by Wang
and Bickel (2017, Section 2.5), their approach needs a very stringent condition on the average
degree, because the slow convergence rate of the estimate of the node degree variation passes on to
the likelihood ratio. On the contrary, it is not carried on to our pseudo-LR because of the mutual
cancellation of the slow-convergence parts. As a result, this allows us to relax the strong restriction
on the average degree in theory. Both Chen and Lei (2018) and Li et al. (2020) only require the
growth rate of the average degree to be no slower than log(n), which is the same rate as required
by our method. However, theoretical properties are not available for the NCV and ECV estimators
of K in DCSBMs. In contrast, we develop thorough theoretical results including the consistency of
our proposed pseudo-LR method.

The rest of the paper is organized as follows. We describe the estimation procedure in Section
2. We establish the consistency of our estimators of the number of communities under DCSBMs
in Section 3. Section 4 compares the performance of our method with various existing methods
in different simulated networks. Section 5 illustrates the proposed method using several real data
examples. Section 6 concludes. The proofs of all results are relegated to the appendix.

Notation. Throughout the paper, we write [M ]ij as the (i, j)-th entry of matrix M . Without
confusion, we sometimes simplify [M ]ij as Mij . In addition, we write [M ]i as the i-th row of
M . ‖M‖ and ‖M‖F denote the spectral norm and Frobenius norm of M, respectively. Note that
‖M‖ = ‖M‖F when M is a vector. We use 1 {·} to denote the indicator function which takes
value 1 when · holds and 0 otherwise. All vectors without transpose are understood as column vec-
tors. For a vector a = (a1, ..., an)>, let diag(a) be the diagonal matrix whose diagonal is a, and
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let ||a|| = (
∑

i a
2
i )

1/2 be its L2 norm. Let ιn, #S, and [n] be the n-dimensional vector of ones,
the cardinality of set S , and the integer sequence {1, 2, · · · , n}, respectively. C, c, and c′ denote
arbitrary positive constants that are independent of n, but may not be the same in different contexts.

2. Methodology

2.1 Degree-corrected SBM

Let A ∈ {0, 1}n×n be the adjacency matrix. By convention, we do not allow self-connection, i.e.,
Aii = 0. The network is generated by a degree-corrected stochastic block model with K0 true
communities. The communities, which represent a partition of the n nodes, are assumed to be
fixed beforehand. Denote ZK0 = {[ZK0 ]ik} as the n×K0 binary matrix providing the true cluster
memberships of each node, i.e., [ZK0 ]ik = 1 if node i is in Ck,K0 and [ZK0 ]ik = 0 otherwise,
where C1,K0 , . . . , CK0,K0 are denoted as the communities identified by ZK0 . For k = 1, · · · ,K0,
let nk,K0 = #Ck,K0 , the number of nodes in Ck,K0 . Given the K0 communities, the edges between
nodes i and j are chosen independently with probability depending on the communities that nodes i
and j belong to. In particular, for nodes i and j belonging to clusters Ck,K0 and Cl,K0 , respectively,
the probability of edge between i and j is given by

Pij = E(Aij) = θiθjBkl,K0 ,

where the block probability matrix BK0 = {Bkl,K0}, k, l = 1, . . . ,K0, is a symmetric matrix with
each entry between (0, 1]. The n× n edge probability matrix P = {Pij} represents the population
counterpart of the adjacency matrix A. Let Θ = diag(θ1, . . . , θn). Then we have

P = E(A) = ΘZK0BK0Z
T
K0

ΘT .

Note that Θ andBK0 are only identifiable up to scale. Following the lead of Su et al. (2020, Theorem
3.3), we adopt the following normalization rule:∑

i∈Ck,K0

θi = nk,K0 , k = 1, . . . ,K0. (1)

Apparently, the DCSBM becomes the standard SBM when θi = 1 for each i = 1, ..., n.

2.2 Estimation of the number of communities

Our procedure of estimatingK0 requires to obtain two estimated membership matrices (ẐK , Ẑ
b
K+1)

based on K and K + 1 communities, respectively.1 To this end, we estimate ẐK and ẐbK+1 via
spectral clustering of the first K eigenvectors of the graph Laplacian and a binary segmentation
technique, respectively. Section 2.3 provides more details. Denote P̂ij(Z) as the estimator of Pij
for a given membership matrix Z. We compute P̂ij(ẐbK+1) and P̂ij(ẐK) by the sample-frequency-
type estimators and propose a pseudo-LR Ln(ẐbK+1, ẐK) defined in (2) to measure the deviance of
goodness-of-fit of DCSBMs estimated withK andK+1 communities, respectively. The estimators
of P̂ij(ẐbK+1) and P̂ij(ẐK) are given in Appendix A. Lastly, we obtain the estimator of the true

1. The superscript b in Ẑb
K+1 denotes that it is estimated by a binary segmentation from ẐK .
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number of communities based on the change of the pseudo-LR. Let Kmax denote the maximum
number of communities such that Kmax ≥ K0. The pseudo-code is described in Algorithm 1.

Algorithm 1: Estimation of the number of communities
input : adjacency matrix A, tuning parameters cη and hn
output: K̂1 and K̂2

for K ← 1 to Kmax do
obtain ẐK and ẐbK+1 via spectral clustering and binary segmentation, respectively;
compute P̂ij(ẐK) and P̂ij(ẐbK+1);
compute

Ln(ẐbK+1, ẐK) =
1

2

∑
i 6=j

(
P̂ij(Ẑ

b
K+1)

P̂ij(ẐK)
− 1

)2
a (2)

compute R(K) as

R(K) =


Ln(Ẑb

K+1,ẐK)

ηn
K = 1

Ln(Ẑb
K+1,ẐK)

Ln(Ẑb
K ,ẐK−1)

K ≥ 2,
(3)

where ηn = cηn
2.

end
obtain K̂1 and K̂2 as

K̂1 = arg min
1≤K≤Kmax

R(K),

and
K̂2 = min(K̂1, K̃2),

where K̃2 = min{K ∈ {1, · · · ,Kmax}, R(K) ≤ hn} if min1≤K≤Kmax R(K) ≤ hn
and K̃2 = Kmax otherwise.

a. If P̂ij(ẐK) in the denominator is zero, one can replace it by a constant that is sufficiently small, say, 2−52.

To understand our algorithm of estimating K0, we focus on the case where K0 ≥ 2. If we know
that K0 ≥ 2 for sure, we can redefine K̂1 = arg min2≤K≤Kmax

R(K). By Theorems 5 and 6 in
Section 3.3, we have

Ln(ẐbK , ẐK−1) � n2 for 2 ≤ K ≤ K0 and Ln(ẐbK0+1, ẐK0) ≤ Oa.s.(nρ−1
n ),

where an � bn means that P (c ≤ an/bn ≤ C) → 1 as n → ∞ for some positive constants c and
C, a.s. denotes almost surely, and the parameter ρn characterizes the sparsity of the network such
that nρn/ log(n) is sufficiently large (see Assumption 4 in Section 3.2). This result directly implies
that

R (K) � 1 for 2 ≤ K < K0 and R (K0) = op (1) .

The above results indicate that forK = K0, R (K) is very small and close to zero, but forK < K0,
R (K) is relatively large. It is worth noting that for K > K0, it is possible that R (K) is also
small. As a result, the minimizer of R(K) is only guaranteed to satisfy K̂1 ≥ K0 with probability
approaching 1 (w.p.a.1) as n → ∞. Such a result is similar to that in Chen and Lei (2018) who

5



MA, SU AND ZHANG

show that NCV do not underestimate the number of communities w.p.a.1 as n → ∞. Based on
our theory, we expect to observe a gap of the values of R (K) at K = K0, so we introduce K̃2

which is the first K such that R(K) is less than hn, where hn → 0 and nρnhn → ∞. Then we
have K̃2 = K0 w.p.a.1 as n → ∞. For better numerical performance, we make use of both K̂1

and K̃2 by letting K̂2 = min(K̂1, K̃2), and thus it satisfies P (K̂2 = K0) → 1 as n → ∞, i.e., K̂2

consistently estimates the number of communities in large samples. In our algorithm, two tuning
parameters cη and hn are involved. Among them, cη is only needed to deal with the case K = 1 in
which the pseudo-LR cannot be defined. If we are sure that K0 ≥ 2, i.e., there are more than one
communities, we can obtain the estimate K̂1 by searching over K ∈ [2,Kmax] . Alternatively, one
can separately test K0 = 1 using other methods and then use our methods to select K for K ≥ 2.
2 In both cases, one can avoid the use of cη. Theoretically, cη only needs to satisfy cη ∈ (0,∞).
Practically, We choose a value for cη given in Section 4.3 that works well in our numerical analysis.
For the choice of hn, we have a detailed discussion given after Theorem 6 in Section 3.3.

Our pseudo-LR defined in (2) has a connection with the original likelihood ratio (LR) statistic:

∑
i 6=j

Aij log

(
P̂ij(Ẑ

b
K+1)

P̂ij(ẐK)

)
+ (1−Aij) log

(
1− P̂ij(ẐbK+1)

1− P̂ij(ẐK)

)
.

In the semi-dense networks where Pij decays to zero, log

(
1−P̂ij(Ẑb

K+1)

1−P̂ij(ẐK)

)
is approximately given

by log (1) = 0 so that the second term in the above display is asymptotically negligible. As a result,

the major contribution to the LR statistic is attributable to log
(

P̂ij(ZK)

P̂ij(ZK−1)

)
. This motivates us to

construct our pseudo-LR defined in (2). Moreover, the estimate of K constructed directly from the
original LR requires a more restrictive assumption on the average degree than our estimate obtained
from the pseudo-LR (c.f., (Wang and Bickel, 2017)), as the slow-convergent estimates of the node
degree parameters that are involved in the original LR statistic are mutually cancelled out by our
pseudo-LR.

The pseudo-LR statistic in (2) is also connected to the traditional χ2-test for goodness of fit
(Williams Jr, 1950; Cochran, 1952) where the test statistic can be written as χ2 =

∑k
i=1

(oi−ei)2
ei

,
where oi denotes the observed frequency of the ith category and ei denotes the expected frequency
of the ith category under the null hypothesis. Accordingly, a pseudo χ2-type test statistic can be
defined as follows

L0
n

(
ẐbK+1, ẐK

)
=

1

2

∑
i 6=j

[
P̂ij(Ẑ

b
K+1)− P̂ij(ẐK)

]2

P̂ij(ẐK)
=

1

2

∑
i 6=j

[
P̂ij(Ẑ

b
K+1)

P̂ij(ẐK)
− 1

]2

P̂ij(ẐK),

where P̂ij(ẐbK+1) and P̂ij(ẐK) play the roles of oi and ei, respectively. Nevertheless, due to the fact
that P̂ij(ẐK) can shrink to zero in sparse networks, the investigation of the asymptotic behavior of

L0
n

(
ẐbK+1, ẐK

)
is not as convenient as that of the pseudo-LR statistic in (2), which can be regarded

as a weighted version of L0
n

(
ẐbK+1, ẐK

)
.

2. Bickel and Sarkar (2016) propose one method based on the limiting distribution of the principal eigenvalue of the suit-
ably centered and scaled adjacency matrix generated from a SBM. To extend such result to DCSBM is an interesting
topic for future research.

6



DCSBM K

2.3 Estimation of the memberships

The proposed pseudo-LR given in (2) depends on (ẐK , Ẑ
b
K+1) which are obtained through spectral

clustering and binary segmentation, respectively. In the following, we describe the algorithm in
detail. Let d̂i =

∑n
j=1Aij denote the degree of node i, D = diag(d̂1, . . . , d̂n). We regularize the

degree for each node as d̂τi = d̂i + τ where τ is a regularization parameter. Let Dτ = diag(d̂1 +
τ, . . . , d̂n + τ). The regularized sample graph Laplacian is

Lτ = D−1/2
τ AD−1/2

τ .

We regularize the sample degree matrix D to improve the finite sample performance of spectral
clustering. The same regularization strategy is considered by Rohe et al. (2011), Joseph and Yu
(2016) and Su et al. (2020). The corresponding theoretical property is established in Section 3.

Denote the spectral decomposition of Lτ as

Lτ = ÛnΣ̂nÛ
T
n ,

where Σ̂n = diag(σ̂1n, . . . , σ̂nn) with |σ̂1n| ≥ |σ̂2n| ≥ · · · ≥ |σ̂nn| ≥ 0, and Ûn is the correspond-
ing eigenvectors such that ÛTn Ûn = In. For each K = 1, · · · ,Kmax, let

ν̂iK =
ûi(K)

||ûi(K)||
, (4)

where ûTi is the i-th row of Ûn and ûTi (K) collects the first K elements of ûTi . We estimate the pair
of community memberships (ẐK , Ẑ

b
K+1) by the following algorithm.

Algorithm 2: Estimation of the memberships
input : {ν̂iK , ν̂iK+1}ni=1 and K
output: ẐK and ẐbK+1

divide {ν̂iK}ni=1 into K groups by the k-means algorithm with K centroids. Denote the
membership matrix as ẐK with the corresponding communities {Ĉk,K}Kk=1;

for k ← 1 to K do
divide Ĉk,K into two subgroups by applying the k-means algorithm on
{ν̂iK+1}i∈Ĉk,K . Denote the two subgroups as Ĉk,K(1) and Ĉk,K(2);

compute

Q̂K(k) =
Φ̂(Ĉk,K)− Φ̂(Ĉk,K(1))− Φ̂(Ĉk,K(2))

#Ĉk,K
, (5)

where for an arbitrary index set C, Φ̂(C) =
∑

i∈C ||ν̂iK+1 −
∑

i∈C ν̂iK+1

#C ||2;
end
choose k̂ = arg max1≤k≤K Q̂K(k) and denote

{Ĉbk,K+1}K+1
k=1 = {{Ĉk,K}k<k̂, Ĉk̂,K(1), {Ĉk,K}k>k̂, Ĉk̂,K(2)}

as the new groups for K + 1. The corresponding membership matrix is denoted as
ẐbK+1.
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Algorithm 2 applies the standard spectral clustering approach to obtain ẐK and a binary seg-
mentation method to obtain ẐbK+1. This procedure is computationally fast. Moreover, the algorithm
leads to Ĉbk,K+1 = Ĉk,K for k 6= k̂ and Ĉb

k̂,K+1
∪ ĈbK+1,K+1 = Ĉk̂,K , which ensures that the param-

eter estimators P̂ij(ẐK) and P̂ij(ẐbK+1) in the DCSBM are consistent when K = K0.

It is worth mentioning that the binary segmentation step is crucial for our theoretical derivation.
To use our pseudo LR statistic in (2), we need to obtain the estimated group memberships at K and
K + 1, respectively. When K = K0, the estimates of the memberships for (K0 + 1) obtained from
the spectral clustering no longer have a theoretical guarantee, as the (K0 + 1)-th largest eigenvalue
of the population Graph Laplacian is zero, and the corresponding (K0 + 1)-th column of the eigen-
vector matrix is not uniquely identified. On the other hand, the binary segmentation step obtains the
(K0 + 1)-th group via dividing one of the K0 groups into two groups. This nested structure ensures
estimation consistency of the model with (K0 + 1) groups as long as the estimator of the model
with K0 communities is consistent.

3. Theory

3.1 Identification

The population counterpart of Lτ is

Lτ = D−1/2
τ PD−1/2

τ ,

where Dτ = D + τIn and D = diag(d1, . . . , dn) with di =
∑n

j=1 Pij . Let πkn = nk,K0/n and
Πn = diag(π1n, · · · , πK0n).

Assumption 1 Let HK0 = ρ−1
n BK0 = [Hkl,K0 ] for some ρn > 0, Wk =

∑K0
l=1Hkl,K0πln, DH =

diag(W1, · · · ,WK0), and H0,K0 = D−1/2
H HK0D

−1/2
H . Then,

(1) HK0 is not varying with n,

(2) as n→∞, H0,K0 → H∗0,K0
where H∗0,K0

has full rank K0 and K0 is fixed,

(3) all elements of H∗0,K0
are positive,

(4) there exist two constants θ and θ such that 0 < θ ≤ infi θi ≤ supi θi ≤ θ.

Several remarks are in order. First, Assumption 1 implies that the average node degree is of
order nρn. The network can be semi-dense if ρn → 0 but nρn → ∞. Second, Assumption 1(1)
is just for notational simplicity. All our results still hold if HK0 depends on n and converges to
some limit. Third, Assumption 1(2) ensures that the DCSBM has K0 communities. To see this,
note that Assumption 1(2) implies both HK0 and BK0 have full rank. Suppose there exist {θ̃i}ni=1,
Θ̃ = diag(θ̃1, · · · , θ̃n), Z̃K′0 , and B̃K′0 such that B̃K′0 is a full rank K ′0 ×K ′0 matrix and

ΘZK0BK0Z
T
K0

ΘT = P = Θ̃Z̃K′0B̃K′0Z̃
T
K′0

Θ̃T .
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Further suppose that the membership matrix Z̃K′0 is non-degenerate in the sense that each commu-
nity identified by Z̃K′0 is nonempty, which implies that Z̃K′0 has full column rank. Then, the full
rank condition of BK0 and B̃K′0 implies that

K0 = rank(BK0) =rank(ΘZK0BK0Z
T
K0

ΘT )

=rank(P )

=rank(Θ̃Z̃K′0B̃K′0Z̃
T
K′0

Θ̃T ) = rank(B̃K′0) = K ′0.

That is, the number of communities is identified. It is possible that some SBMs can be rewritten
as DCSBMs with specific degree corrections. For example, a SBM with K0 = 2 and the block
probability

B =

(
4/9 2/9
2/9 1/9

)
can be viewed as a DCSBM with K0 = 1, B = 4/9, and

θi =

{
1 if node i belongs group 1
1/2 if node i belongs group 2

.

In this case, the full rank condition rules out the SBM model with K0 = 2 and the model of
DCSBM with K0 = 1 is the one considered in the paper. Fourth, from the perspective of real data
applications, the full-rank condition on BK0 is reasonable. In networks, communities are usually
groups of nodes that have a higher probability of being connected to each other within the same
group than to members of other groups. This directly implies the full rank condition of BK0 if
K0 = 2. In general, by the Gershgorin circle theorem, for each row, if the sum of off-diagonal
elements is strictly less than the diagonal element, i.e., for k = 1, · · · ,K0∑

l=1,··· ,K0, l 6=k
Bkl,K0 < Bkk,K0 ,

then B has full rank. Such condition is just a sufficient condition for our full rank requirement. For
estimating the SBMs, the semi-definite programming method can also be used. It needs the strong
assortativity condition (Cai and Li, 2015) given as

min
k=1,··· ,K0

Bkk,K0 > max
k,l=1,··· ,K0, k 6=l

Bkl,K0 .

In general, the strong assortativity and Assumption 1(2) do not nest within each other. Which
assumption is more plausible depends on the empirical data at hand. Fifth, from the theoretical
perspective, the full-rank condition (i.e., the K0-th largest absolute eigenvalue of the Lτ is bounded
away from zero) is a common assumption in the literature. See, for example, Rohe et al. (2011), Lei
and Rinaldo (2015), and Joseph and Yu (2016). It is fundamental for the spectral clustering method.
If it does not hold, i.e., the K0-th eigenvalue of the population graph Laplacian is exactly zero,
then the corresponding population eigenvector is not uniquely defined. Sixth, Assumption 1(3) is
a technical condition which is sufficient for ν̂iK in (4) to be well-defined, as shown in Lemma 7
in Appendix E. Last, for simplicity, we restrict θi to be bounded between zero and infinity. This
assumption can be relaxed at the cost of more complicated notations.

Next, let Θτ = diag(θτ1 , . . . , θ
τ
n), where θτi = θidi/(di + τ) for i = 1, . . . , n, nτk,K0

=∑
i∈Ck,K0

θτi , and Πτ
n = diag(nτ1,K0

/n, · · · , nτK0,K0
/n).
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Assumption 2 Suppose

(1) there exist {πk∞}K0
k=1 and {π′k∞}

K0
k=1 that are bounded between zero and infinity such that

Πn → Π∞ = diag(π1∞, . . . , πK0∞) and Πτ
n → Π′∞ = diag (π′1∞, . . . , π

′
K0∞),

(2) (Π′∞)1/2H∗0,K0
(Π′∞)1/2 has K0 distinct eigenvalues.

The second convergence in Assumption 2(1) can be easily satisfied by choosing τ to be the aver-
age degree (d̄) in the network. Let |λ1| ≥ · · · ≥ |λK0 | be the eigenvalues of (Π′∞)1/2H∗0,K0

(Π′∞)1/2

and
eigsp((Π′∞)1/2H∗0,K0

(Π′∞)1/2) = min
k=1,··· ,K0−1

|λk+1 − λk|

be the gap between adjacent eigenvalues of (Π′∞)1/2H∗0,K0
(Π′∞)1/2, as defined in Jin (2015). Then,

Assumption 2(2) requires that

eigsp((Π′∞)1/2H∗0,K0
(Π′∞)1/2) ≥ C > 0

for some constant C. The same condition is assumed in Jin (2015).3 Assumption 2(2) is mild
from a practical point of view. If we denote H∗0,K0

as vec(H∗0,K0
) ∈ <K2

0 such that H∗0,K0
is

symmetric and full rank, then Assumption 2(2) is only violated for a set in <K2
0 with zero Lebesgue

measure. Theoretically, as K0 is not known a priori, we need to apply spectral clustering to the first
K eigenvectors of the graph Laplacian for K = 1, · · · ,K0. Therefore, at the population level, we
require that the eigenspace generated by the firstK eigenvectors is identified for allK = 1, · · · ,K0,
which is equivalent to Assumption 2(2).

Consider the spectral decomposition of Lτ ,

Lτ = U1nΣ1nU
T
1n,

where Σ1n = diag(σ1n, . . . , σK0n) is a K0 × K0 matrix that contains the eigenvalues of Lτ such
that |σ1n| ≥ |σ2n| ≥ · · · ≥ |σK0n| > 0 and UT1nU1n = IK0 .

Theorem 1 Suppose Assumptions 1 and 2 hold. Let uTi and ui(K) be the i-th row of U1n and the
top K elements of ui, respectively.

(1) If [ZK0 ]i = [ZK0 ]j , then ‖ ui
‖ui‖ −

uj
‖uj‖‖ = 0; if [ZK0 ]i 6= [ZK0 ]j , then ‖ ui

‖ui‖ −
uj
‖uj‖‖ =

√
2.

(2) There exist LK distinctK×1 vectors, denoted as (ν̄1,K , · · · , ν̄LK ,K), such that the nodes can
be divided into LK groups, denoted by {Gl,K}LK

l=1, K ≤ LK ≤ K0, for any l = 1, · · · , LK ,

lim sup
n

sup
i,j∈Gl,K

∥∥∥∥ ui(K)

||ui(K)||
− ν̄l,K

∥∥∥∥ = 0,

and for any l 6= l′ and some constant c > 0 independent of n,

lim inf
n

inf
i∈Gl,K ,j∈Gl′,K

∥∥∥∥ ui(K)

||ui(K)||
− ν̄l,K

∥∥∥∥ ≥ c.
3. See Jin (2015, Lemma 2.3).
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Several remarks are in order. First, Theorem 1(1) has already been established in the literature.
See Qin and Rohe (2013) and Su et al. (2020). It implies that the eigenvectors of the graph Lapla-
cian contain information about the group structure. Second, Theorem 1(2) implies that the first K
columns of eigenvectors after row normalization contain information for LK communities, when
K ≤ K0. In particular, when K = K0, LK0 = K0 and Theorem 1(1) implies that Theorem 1(2)
holds with the true communities, i.e., {Gl,LK0

}LK0
l=1 = {Ck,K0}

K0
k=1. Therefore, {Gl,K}LK

l=1 can be
viewed as the true communities identified by the first K columns of eigenvectors. Third, Lemma
7 in Appendix E implies that ||ui(K)|| is bounded away from zero for K = 1, · · · ,K0, which
guarantees that ui(K)

||ui(K)|| is well defined. This result is similar to Jin (2015, Lemma 2.5).

3.2 Properties of the estimated memberships

In the following, we aim to show that, under certain conditions, if K ≤ K0, then ẐK = ZK and
ẐbK = ZbK almost surely (a.s.) for some deterministic membership matrices ZK and ZbK . We denote
the communities identified by ZK and ZbK as {Ck,K}Kk=1 and {Cbk,K}Kk=1, respectively. Note that
LK is not necessarily equal to K. This implies that neither {Ck,K}Kk=1 nor {Cbk,K}Kk=1 is necessarily
equal to the true communities {Gl,K}LK

l=1. We can view ZK and ZbK+1 as the pseudo true values
of our estimation procedure described in Section 2.2. We slightly abuse the notation by calling ZK
evaluated at K = K0 as the pseudo true membership matrix when K = K0 while ZK0 as the true
membership matrix. Theorem 4 below shows that when K = K0, the pseudo true values ZK and
ZbK are equal to the true membership matrix ZK0 . Therefore, the notation is still consistent and we
can just write ZK0 as the (pseudo) true membership matrix for K = K0.

Definition 2 For i ∈ Gl,K and l = 1, ..., LK , K = 2, · · · ,K0, let

νiK = ν̄l,K ,

where ν̄l,K is defined in Theorem 1. Then, (ZK , Z
b
K+1) is defined by applying Algorithm 2 to

{νiK}ni=1,K = 1, · · · ,K0−1. WhenK = 1, we can trivially defineZ1 = Zb1 = [n] = {1, 2, ..., n}.

Assumption 3 Suppose that

(1) the above definitions of ZK and ZbK are unique for K = 1, · · · ,K0;

(2) there exist a positive constant c independent of n and k∗ = 1, · · · ,K such that QK(k∗) −
maxk 6=k∗ QK(k) ≥ c for K = 2, · · · ,K0 − 1, where QK(·) is similarly defined as Q̂K(·) in
(5) with ν̂iK+1 and {Ĉk,K} replaced by νiK+1 and {Ck,K}, respectively.

Several remarks are in order. First, the communities identified by ZbK+1 can be written as

{Cbk,K+1}K+1
k=1 = {C1,K , · · · , Ck∗−1,K , Ck∗,K(1), Ck∗,K(2), Ck∗+1,K , · · · , CK,K}.

Second, we provide more details on ZK , ZbK , and QK(·) in Appendix A. Third, the uniqueness
requirement is mild. If LK = K, then obviously {Ck,K}Kk=1 = {Gl,K}LK

l=1, which implies ZK is
uniquely defined. Fourth, we have LK0 = K0. Therefore, by definition, {Ck,K0}

K0
k=1 defined by

ZK0 equal {Gl,K0}
K0
l=1, which are the true communities. Fifth, when LK = K and LK+1 = K + 1

11
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for K ≤ K0 − 1, by the pigeonhole principle, there only exists one k ∈ {1, · · · ,K}, denoted as
k† such that Ck†,K = Gk†,K contains two of {Gl,K+1}K+1

l=1 . Then by Theorem 1(2), there exists
some constant c > 0 such that QK(k†) ≥ c and QK(k) → 0 for k 6= k†. In this case, k∗ = k†

and Assumption 3(2) holds. Sixth, Assumption 3 is similar to Wang and Bickel (2017, Assumption
2.1). It is used as a matter of notational convenience but not of necessity. Under Assumption 3, we
will show that the pseudo-LR after re-centering is asymptotically normal. If Assumption 3 fails and
(ZK , Z

b
K) are not unique, it can be anticipated that the pseudo-LR after re-centering will be asymp-

totically mixture normal with weights depending on the probability of choosing one classification
among all possibilities. Last, although Assumption 3 is used to characterize the limiting distribution
of the re-centered pseudo-LR, it does not affect the rate of bias term in the under-fitting case. Be-
cause the bias term will dominate the centered term, we actually only need the rate of bias to show
the validity of our selection procedure. Therefore, even if Assumption 3 fails, it is reasonable to
expect that our procedure can still consistently select the true number of communities as established
in Section 3.3.

Assumption 4 Assume ρnn/ log(n) ≥ C1 for some constant C1 > 0 sufficiently large and τ =
O(nρn).

Recall that the degree of the network is of order nρn. Assumption 4 requires the degree to
diverge at a rate no slower than log(n), which is the most relaxed degree growth rate for exact
community recovery when K is known. See Abbe (2018) for an excellent survey on the recent
development of estimation of SBMs and DCSBMs.4 For determining the number of communities,
Chen and Lei (2018) require the same condition on the degree for SBMs, but they do not provide
any theory for DCSBMs. Wang and Bickel (2017) establish the theories for DCSBMs but require
that n1/2ρn/ log(n) → ∞, or equivalently, the degree diverges to infinity at a rate faster than
n1/2 log(n). We require a weaker condition compared to Wang and Bickel (2017), mainly due to the
fact that we use a pseudo instead of the true likelihood ratio. In DCSBMs, the rate of convergence
for the estimator θ̂i of θi is much slower than that for the estimator of the block probability matrix.

By using the ratio
P̂ij(Ẑb

K+1)

P̂ij(ẐK)
in the definition of pseudo-LR, the components of θ̂i’s that cause the

slower convergence rate in both the numerator and the denominator cancel each other out, so that

the convergence rate of
P̂ij(Ẑb

K+1)

P̂ij(ẐK)
is unaffected. We recommend using regularization to improve the

finite sample performance of spectral clustering. By Assumption 1, setting τ as the average degree
d̄ satisfies Assumption 4. In practice, d̄ is unobserved and we replace it by the sample version,
following the lead of Qin and Rohe (2013). In the proof of Theorem 5 in Appendix D, we show that
the sample average degree is of the same order of magnitude as its population counterpart almost
surely because

sup
i

∣∣∣∣∣ d̂idi − 1

∣∣∣∣∣ ≤ C
√

log(n)

nρn

for some fixed constantC > 0. One can also use the data-driven method proposed by Joseph and Yu
(2016) to select the regularizer. Based on the simulation study in Su et al. (2020), the performances
of spectral clustering using sample average degree and data-driven regularizer are similar.

4. We thank a referee for this reference.
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Definition 3 Suppose there are two membership matrices Z1 and Z2 with corresponding commu-
nities {Cjk}

Kj

k=1, j = 1, 2, respectively. Then we say Z1 is finer than Z2 if for any k1 = 1, · · · ,K1,
there exists k2 = 1, · · · ,K2 such that

C1
k1 ⊂ C

2
k2 .

In this case, we write Z1 � Z2.

Theorem 4 If Assumptions 1–4 hold, then

(1) for K = 1, · · · ,K0,
ẐK = ZK a.s. and ZK0 � ZK ,

(2) for K = 1, · · · ,K0 − 1,

ẐbK+1 = ZbK+1 a.s. and ZK0 � ZbK+1,

(3) after relabeling, we have Ĉbk,K+1 = Ck,K for k = 1, · · · ,K − 1 and CK,K = ĈbK,K+1 ∪
ĈbK+1,K+1, for K = 1, · · · ,K0, a.s.

Theorem 4(1) and (2) show that ẐK and ẐbK equal their pseudo true counterparts almost surely.
This is the oracle property of estimating the community membership when we either under- or just-
fit the model, i.e., K ≤ K0. On the other hand, it is very difficult, if not completely impossible,
to show the similar oracle property for the over-fitting case, i.e., K > K0. In particular, we are
unable to uniquely define ZbK0+1 and show that ẐbK0+1 = ZbK0+1 a.s. As pointed out by Wang and
Bickel (2017), even in the population level (i.e., the probability matrix is observed), “embedding a
K-block model in a larger model can be achieved by appropriately splitting the labels Z and there
are an exponential number of possible splits.” However, Theorem 4(3) withK = K0 shows that, for
any k = 1, · · · ,K0 + 1, there exists some k′ such that Ĉbk,K0+1 ⊂ Ĉk′,K0 , which should be one of
the true communities based on the oracle property. We can use this feature to handle the over-fitting
case.

3.3 Properties of the pseudo-LR and the estimated number of communities

Without loss of generality, we assume that ẐbK is obtained by splitting the last group in ẐK−1 into
the (K − 1)-th and K-th groups in ẐbK . Further denote, for k, l = 1, · · · ,K and k ≤ l,

Γ0b
kl,K =

∑
s∈I(Cbk,K), t∈I(Cbl,K)

Hst,K0πs∞πt∞ and Γ0b
K = [Γ0b

kl,K ],

where I(Cbk,K) denotes a subset of [K0] such that if m ∈ I(Cbk,K), then Cm,K0 ⊂ Cbk,K .

Assumption 5 ForK = 2, · · · ,K0, Γ0b
K /∈WK , where WK is a class of symmetricK×K matrices

which is specified in Appendix D.

Several remarks are in order. First, the expression of WK is complicated and can be found in
the proof of Theorem 5 in Appendix D. Second, when K = 2,

W2 = {W ∈ <2×2 : W = W T , W 2
12 = W11W22}.
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In general, we can view WK as a set of K(K + 1)/2 × 1 vectors. Then, the Lebesgue measure of
WK is zero, which means Assumption 5 is mild. Third, if the last two columns of Γ0b

K are exactly
the same, then Γ0b

K ∈WK . Assumption 5 rules out this case when K ≤ K0.

Theorem 5 If Assumptions 1–4 hold, then, for 2 ≤ K ≤ K0, there exists B̃K,n such that

$̃−1
K,n

{
n−1ρ1/2

n [Ln(ẐK , ẐK−1)− B̃K,n]
}
 N(0, 1)

where the asymptotic bias B̃K,n and variance $̃2
K,n are defined in (22) and (38), respectively, in

Appendix D. If, in addition, Assumption 5 holds, then there exist two positive constants (cK1, cK2)
potentially dependent on K such that

cK2n
2 ≥ B̃K,n ≥ cK1n

2.

Theorem 5 shows that in the under-fitting case, the asymptotic bias term that is of order n2 will
dominate the centered pseudo-LR that is of order nρ−1/2

n . However, when we over-fit the model,
i.e., K > K0, the asymptotic bias term will be zero. The sudden change in the orders of magnitude
of the pseudo-LR Ln(ẐbK , ẐK−1) provides useful information on the true number of communities.

Next, we consider the over-fitting case. Let zK0+1 be a generic n × (K0 + 1) membership
matrix,

nkl(zK0+1) =

n∑
i=1

∑
j 6=i

1{[zK0+1]ik = 1, [zK0+1]jl = 1}

=

{
nk(zK0+1)nl(zK0+1) if k 6= l

nk(zK0+1)(nk(zK0+1)− 1) if k = l,
(6)

and nk(zK0+1) =
∑K0+1

l=1 nkl(zK0+1). We emphasize the dependence of nkl and nk on the mem-
bership matrix zK0+1 because when K > K0, neither ZK nor ZbK is uniquely defined. The follow-
ing assumption restricts the possible realizations ẐbK0+1 can take.

Assumption 6 There exists some sufficiently small constant ε such that

inf
1≤k≤K0+1

nk(Ẑ
b
K0+1)/n ≥ ε.

Assumption 6 always holds in our simulation. By Theorem 4, ẐK0 = ZK0 a.s. Suppose we
obtain ẐbK0+1 by splitting the last community (i.e., the CK0,K0) into two groups by binary segmen-
tation. In simulation, we observe that the two new groups ĈbK0,K0+1 and ĈbK0+1,K0+1 have close to
even sizes. In addition, we can modify the binary segmentation procedure to ensure that Assumption
6 holds automatically. In particular, suppose nK0(ẐbK0+1) ≤ nε, then let

Ĉb,newK0,K0+1 = ĈbK0,K0+1 ∪ C̆bK0+1,K0+1 and Ĉb,newK0+1,K0+1 = ĈK0,K0\Ĉ
b,new
K0,K0+1,

where C̆bK0+1,K0+1 is half of ĈbK0+1,K0+1 by random splitting. Then Ĉb,newK0,K0+1 and Ĉb,newK0+1,K0+1

satisfy Assumption 6. Although we do not know K0 a priori, we can apply this modification for any
K = 1, · · · ,Kmax. When K < K0, Theorem 4(2) shows that, for some sufficiently small ε,

nk(Ẑ
b
K+1) = nk(Z

b
K+1) ≥ inf

k
nk,K0 ≥ nε a.s.
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Therefore, the modification will never take action when K < K0, which implies that all our results
still hold under this modification.

Theorem 6 Suppose that Assumptions 1–6 hold. Then

0 ≤ Ln(ẐbK0+1, ẐK0) ≤ Op(nρ−1
n ).

In addition, if hn → 0 and nρnhn →∞, then

P (K̂1 ≥ K0)→ 1 and P (K̂2 = K0)→ 1.

Several remarks are in order. First, Theorem 6 establishes the upper bound for the pseudo-LR
in the over-fitting case. Like Wang and Bickel (2017), we are unable to obtain its exact limiting
distribution because we do not have the oracle property for ẐbK0+1. The more profound reason for
the lack of oracle property is that we have limited knowledge on the asymptotic behavior of the
(K0 + 1)-th column of the eigenvector matrix Ûn. Fortunately, the upper bound is sufficient for the
consistent estimation of K0 with the help of the tuning parameter hn. Second, we show that K̂1

cannot under-estimate the number of communities in large samples. This result is similar to that in
Chen and Lei (2018) who showed that NCV does not under-estimate the number of communities in
large samples. Third, to obtain a consistent estimate of K0, we can employ the estimator K̂2 which
requires to specify the tuning parameter hn. This parameter plays the same role as the penalty term
in Wang and Bickel (2017)’s BIC-type information criterion. As the average degree d̄ is of order
nρn →∞, hn = chd̄

−1/2 satisfies hn → 0 and nρnhn = ch(nρn)1/2 →∞. Similarly, the average
degree is not feasible and is replaced by its sample counterpart in practice. This replacement has
theoretical guarantee as discussed after Assumption 4. In Section 4, we investigate the sensitivity
of the performance of K̂2 with respect to the constant ch. We suggest setting ch = 1 based on our
simulation results. Last, as mentioned in the introduction, our pseudo-LR method has computa-
tional advantages over the existing methods. In particular, it is well known that the likelihood-based
method of Wang and Bickel (2017) is computationally expensive even when one uses a variational
EM algorithm to approximate the true likelihood. The NCV method of Chen and Lei (2018) and
the ECV method of Li et al. (2020) can also be computationally intensive when the number of folds
is large.

4. Numerical Examples on Simulated Networks

4.1 Background and methods

In this section, we conduct simulations to evaluate the performance of our proposed method. We
call our pseudo-LR estimators K̂1 and K̂2 as PLR1 and PLR2, respectively. Moreover, we compare
our proposed method with four other approaches, including LRBIC (Wang and Bickel, 2017), NCV
(Chen and Lei, 2018), ECV (Li et al., 2020) and BHMC (Le and Levina, 2015). LRBIC considers a
likelihood-based approach for estimating the latent node labels and selecting models. LRBIC is only
designed for the standard SBMs. It requires one to choose a tuning parameter to control the order of
the BIC-type penalty. NCV applies cross-validation (CV) from the regularized spectral clustering,
while ECV uses CV with edge sampling for choosing between SBM and DCSBM and selecting
the number of communities simultaneously. NCV requires one to choose two tuning parameters,
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viz, the number of folds for the CV and the number of repetitions to reduce the randomness of
the estimator due to random sample splitting. ECV requires one to choose two tuning parameters,
viz, the probability for an edge to be drawn and the number of replications. BHMC is developed
by using the network Bethe-Hessian matrix with moment correction. It requires the selection of
a scalar parameter to define the Bethe Hessian matrix and another one for fine-tuning. Like our
method, BHMC can be generally applied to both SBM and DCSBM. All methods require to set the
maximum number of communities (Kmax) while searching over K’s, and we let Kmax = 10. We
use the R package “randnet” to implement these four methods. The matrix completion procedure
for ECV is the default one used in the “randnet” package.

4.2 Data generation mechanisms and settings

We consider the following mechanisms to generate the connectivity matrix B = {Bk`}1≤k,`≤K0 .
Setting 1 (S1). Let Bk` = 0.5ρn−1/2{1 + I(k = `)} for 1 ≤ k, ` ≤ K0, and for some ρ > 0.
Setting 2 (S2). Let Bk` = 0.9ρn−3/5{1 + I(k = `)} for 1 ≤ k, ` ≤ K0, and for some ρ > 0.
Setting 3 (S3). We first simulate W = (W1, . . . ,WM0)> from Unif(0, 0.3)M0 , where Unif(a, b)M0

denotes an M0-dimensional uniform distribution on [a, b] and M0 = (K0 + 1)K0/2. Let the main
diagonal of B be the K0 largest elements in W and the upper triangular part of B contain the rest
elements in W . Let Bk` = B`k for all 1 ≤ k, ` ≤ K0. We use the generated B with the smallest
singular value no smaller than 0.1.

All simulation results are based on 200 realizations. S1 and S2 consider different sparsity levels
for different values of ρ, and S3 allows all entries in B to be different. The membership vector
is generated by sampling each entry independently from {1, . . . ,K0} with probabilities {0.4, 0.6},
{0.3, 0.3, 0.4} and {0.25, 0.25, 0.25, 0.25} for K0 = 2, 3 and 4, respectively. We consider both
SBMs and DCSBMs. For the DCSBMs, we generate the degree parameters θi from Unif(0.2, 1)
and further normalize them to satisfy the condition (1).

4.3 Results

For our method, we let τ = d̄ and cη = 0.05. Note that for computing the PLR2 estimator K̂2, we
need a tuning parameter hn. We set hn = chd̄

−1/2. We first would like to examine the performance
of the PLR2 estimator when ch takes different values. Consider ch = 0.5, 1.0, 1.5, 2.0. Let ρ =
3, 4, 5 for designs S1 and S2. Tables 1 and 2 report the mean of K̂2 and K̂1 by the PLR2 and PLR1
methods, respectively, and the proportion (prop) of correctly estimating K0 among 200 simulated
datasets when data are generated from the DCSBMs of designs S1-S3, for n = 500, 1000 and
K0 = 1, 2, 3, 4. For saving space, Tables 4 and 5 given in the Supplemental Materials report those
statistics when data are generated from the SBMs. The results in Tables 4 and 5 for the SBMs have
similar patterns as those in Tables 1 and 2 for the DCSBMs. It is worth noting that when ch = 0, the
two estimates K̂1 and K̂2 are exactly the same. Comparing Tables 1 and 4 to Tables 2 and 5, we
see that for smaller values of ch, the behavior of K̂2 is more similar to that of K̂1. Moreover, Table
1 shows that the PLR2 estimator has similar performance at ch = 0.5, 1.0, 1.5, 2.0 for designs S1
and S2, and its performance improves when the value of ρ or the sample size n increases. However,
for design S3, PLR2 behaves better at ch = 0.5, 1.0. Overall, PLR2 at ch = 0.5, 1.0 has good
performance for all designs, and PLR2 with ch = 1.0 slightly outperforms PLR1 and PLR2 with
ch = 0.5.
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Table 1: The mean of K̂2 and the proportion (prop) of correctly estimatingK among 200 simulated
datasets when data are generated from DCSBMs.

K0 = 1 K0 = 2 K0 = 3 K4 = 4

ρ ch 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

n = 500

S1 3 mean 1.000 1.000 1.000 1.000 2.095 2.000 2.000 2.000 3.070 3.070 3.000 3.000 3.675 3.675 3.615 3.380
prop 1.000 1.000 1.000 1.000 0.980 1.000 1.000 1.000 0.980 0.980 1.000 1.000 0.380 0.380 0.390 0.370

4 mean 1.000 1.000 1.000 1.000 2.035 2.000 2.000 2.000 3.025 3.000 3.000 3.000 4.175 4.150 4.100 4.050
prop 1.000 1.000 1.000 1.000 0.990 1.000 1.000 1.000 0.990 1.000 1.000 1.000 0.915 0.920 0.935 0.940

5 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.020 3.000 3.000 3.000 4.045 4.015 4.000 4.000
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.985 0.995 1.000 1.000

S2 3 mean 1.320 1.320 1.320 1.000 2.115 2.000 2.000 2.000 3.090 3.085 3.020 2.990 3.725 3.725 3.680 3.235
prop 0.880 0.880 0.880 1.000 0.985 1.000 1.000 1.000 0.970 0.975 0.990 0.990 0.290 0.290 0.295 0.280

4 mean 1.030 1.030 1.000 1.000 2.100 2.000 2.000 2.000 3.030 3.020 3.000 3.000 4.225 4.225 4.150 4.060
prop 0.995 0.995 1.000 1.000 0.990 1.000 1.000 1.000 0.995 0.995 1.000 1.000 0.915 0.915 0.930 0.945

5 mean 1.045 1.045 1.000 1.000 2.050 2.000 2.000 2.000 3.025 3.000 3.000 3.000 4.080 4.060 4.040 4.005
prop 0.995 0.995 1.000 1.000 0.995 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.970 0.975 0.985 0.990

S3 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.000 3.000 2.010 2.000 4.000 4.000 3.835 3.665
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.001 0.000 1.000 1.000 0.910 0.825

n = 1000

S1 3 mean 1.000 1.000 1.000 1.000 2.050 2.000 2.000 2.000 3.000 3.000 3.000 3.000 4.060 4.045 4.025 4.020
prop 1.000 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.985 0.990 0.995

4 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.000 3.000 3.000 3.000 4.020 4.000 4.000 4.000
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000

5 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.000 3.000 3.000 3.000 4.020 4.000 4.000 4.000
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000 1.000

S2 3 mean 1.045 1.045 1.045 1.000 2.050 2.000 2.000 2.000 3.030 3.030 3.000 3.000 4.225 4.205 4.160 4.020
prop 0.995 0.995 0.995 1.000 0.990 1.000 1.000 1.000 0.995 0.995 1.000 1.000 0.940 0.945 0.955 0.940

4 mean 1.040 1.040 1.040 1.000 2.000 2.000 2.000 2.000 3.020 3.000 3.000 3.000 4.015 4.000 4.000 4.000
prop 0.995 0.995 0.995 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.995 1.000 1.000 1.000

5 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.015 3.000 3.000 3.000 4.000 4.000 4.000 4.000
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000

S3 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.000 3.000 3.000 2.030 4.000 4.000 4.000 3.210
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.030 1.000 1.000 1.000 0.605
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Table 2: The mean of K̂1 and the proportion (prop) of correctly estimatingK0 among 200 simulated
datasets when data are generated from DCSBMs.

n = 500 n = 1000

ρ K0 = 1 K0 = 2 K0 = 3 K4 = 4 K0 = 1 K0 = 2 K0 = 3 K4 = 4

S1 3 mean 1.000 2.095 3.070 3.675 1.000 2.050 3.000 4.060
prop 1.000 0.980 0.980 0.380 1.000 0.990 1.000 0.980

4 mean 1.000 2.090 3.025 4.175 1.000 2.000 3.000 4.020
prop 1.000 0.980 0.990 0.915 1.000 1.000 1.000 0.995

5 mean 1.000 2.035 3.030 4.045 1.000 2.000 3.000 4.045
prop 1.000 0.990 0.995 0.985 1.000 1.000 1.000 0.985

S2 3 mean 1.320 2.115 3.090 3.725 1.045 2.050 3.030 4.225
prop 0.880 0.985 0.970 0.290 0.995 0.990 0.995 0.940

4 mean 1.030 2.100 3.045 4.225 1.040 2.000 3.020 4.015
prop 0.995 0.990 0.990 0.915 0.995 1.000 0.995 0.995

5 mean 1.000 2.050 3.025 4.080 1.000 2.000 3.015 4.000
prop 1.000 0.995 0.990 0.970 1.000 1.000 0.995 1.000

S3 mean 1.000 2.000 3.035 4.005 1.000 2.000 3.000 4.000
prop 1.000 1.000 0.995 0.995 1.000 1.000 1.000 1.000

Based on the above results, we choose ch = 1.0 for the PLR2 estimator. Next, we study the
clustering accuracy and the estimation errors of the degree parameters given that the number of
communities is correctly selected. We use two commonly used criteria for evaluating the clustering
accuracy, which are the Normalized Mutual Information (NMI) calculated from the R package
‘aricode’ and the percentage (per) of nodes whose memberships are correctly identified. They all
give a value between 0 and 1, where 1 means a perfect membership estimation. Moreover, we use
the square root of the mean square error (RMSE) for evaluating the estimation accuracy of the degree

parameters, defined as RMSEθ =
√∑

i(θ̂i − θi)2/n. Table 3 presents the average of the NMI, per
and RMSE values given that the number of communities is correctly selected by the PLR2 method
based on the 200 realizations for K0 = 2, 3, 4. It also reports the proportion (prop) of correctly
estimating K0 by the PLR2 method. The values of NMI and prop get closer to 1 and the RMSEθ
values become smaller as the value of ρ or the sample size n increases for all cases. Moreover, we
see thatK0 can still be correctly estimated when both clustering errors and estimation errors for θi’s
present. For instance, for design S1 with n = 500, the proportions (prop) of correctly estimating
K0 are 100%, 100% and 99.5% for K0 = 2 with ρ = 3, K0 = 3 with ρ = 4 and K0 = 4 with
ρ = 5, respectively, while the corresponding NMI values are only 0.873, 0. 849 and 0.822, and the
RMSEθ values are 0.131, 0.119 and 0.109.

For evaluating the performance of the six methods at different sparsity levels, we let ρ =
0.5, 1, 2, 3, 4, 5, 6 for designs S1 and S2. Then the average expected degree ranges from 7.0 to 83.9,
for instance, at K0 = 4 and n = 500 for the DCSBMs of design S1. Figure 1 shows the proportions
of correctly estimating K0 among 200 simulated datasets versus the values of ρ for the six meth-
ods: PLR1 (solid lines), PLR2 (dash-dot lines), LRBIC (dashed lines), NCV (dotted lines), ECV
(thin dash-dot lines) and BHMC (thin dotted lines), when data are simulated from the DCSBMs of
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Table 3: The proportion (prop) of correctly estimating K0, and the statistics for clustering accuracy
(average of NMI and per) and for estimation errors (average of RMSEθ) given that K0 is
correctly selected by the PLR2 method based on the 200 realizations.

K0 = 2 K0 = 3 K0 = 4

ρ prop NMI per RMSEθ prop NMI per RMSEθ prop NMI per RMSEθ
n = 500

S1 3 1.000 0.873 0.982 0.131 0.980 0.698 0.918 0.141 0.380 0.488 0.793 0.145
4 1.000 0.951 0.994 0.110 1.000 0.849 0.966 0.119 0.920 0.685 0.894 0.124
5 1.000 0.979 0.999 0.096 1.000 0.929 0.986 0.105 0.995 0.822 0.948 0.109

S2 3 1.000 0.861 0.980 0.134 0.975 0.677 0.910 0.144 0.290 0.477 0.787 0.148
4 1.000 0.945 0.993 0.113 0.995 0.833 0.961 0.122 0.915 0.658 0.881 0.127
5 1.000 0.976 0.997 0.098 1.000 0.920 0.983 0.107 0.975 0.802 0.941 0.111

S3 1.000 1.000 1.000 0.127 1.000 0.989 0.999 0.150 0.995 0.999 0.999 0.142

n = 1000

S1 3 1.000 0.950 0.994 0.113 1.000 0.834 0.962 0.121 0.985 0.669 0.890 0.125
4 1.000 0.986 0.999 0.096 1.000 0.930 0.987 0.103 1.000 0.836 0.955 0.107
5 1.000 0.996 0.999 0.084 1.000 0.974 0.995 0.091 1.000 0.922 0.981 0.094

S2 3 1.000 0.929 0.991 0.119 1.000 0.786 0.948 0.128 0.945 0.598 0.857 0.132
4 1.000 0.975 0.997 0.102 1.000 0.902 0.980 0.109 1.000 0.783 0.936 0.113
5 1.000 0.992 0.999 0.090 1.000 0.958 0.992 0.096 1.000 0.887 0.971 0.100

S3 1.000 1.000 1.000 0.090 1.000 0.999 0.999 0.107 1.000 1.000 1.000 0.094

designs S1 and S2 with K0 = 2, 3, 4 and n = 500. The results for designs S1 and S2 are shown
in the left and right panels, respectively. The results of the SBMs are presented in Figure 4 given
in Appendix B. We observe that our proposed methods PLR1 and PLR2 have similar performance
with PLR2 moderately better when K0 = 2. Moreover, PLR1 and PLR2 have larger proportions of
correctly estimating K0 than the other four methods at small values of ρ. This indicates that PLR1
and PLR2 outperform other methods for semi-dense designs. The BHMC method performs better
than LRBIC, NCV and ECV at K0 = 2, 3, but its performance becomes inferior to that of the other
three methods when K0 = 4. It is worth noting that for larger K0, it correspondingly requires a
larger ρ in order to successfully estimate K0. When ρ is sufficiently large, eventually all methods
can successfully estimate K0. Compared to the other four methods, PLR1 and PLR2 require less
constraints on the sparsity level ρ in order to correctly estimate K0. For example, for the DCSBMs
of design S1 with K0 = 4, the proportions of correctly estimating K0 are 0.38 for PLR1 and PLR2,
whereas the proportions are close to zero for other methods at ρ = 3. For the DCSBMs of design
S1 with K0 = 2, the proportions are 0.71 and 0.89 for PLR1 and PLR2, respectively, and they are
less than 0.1 for other methods at ρ = 0.5.

For further demonstration, Tables 6–8 given in Appendix B report the mean of the estimated
number of communities and the proportion (prop) of correctly estimating K0 for designs S1 and S3
with n = 500 obtained from the six methods. Since the results of S2 are similar to those of S1 as
shown in Figure 1, we choose to only report those summary statistics for S1. We observe the same
pattern as shown in Figure 1 for S1, while the six methods have comparable performance for S3 in
which all entries of B are different and the sparsity level is a constant with respect to the sample
size.
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Figure 1: The proportions of correctly estimating K0 versus the values of ρ for the six methods,
when data are simulated from the DCSBMs of designs S1 and S2 with K0 = 2, 3, 4 and
n = 500. Left panel: design S1; right panel: design S2

(a) design S1 (b) design S2
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Figure 2: Degree distribution of jazz band network.
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5. Real Data Examples

In this section, we evaluate the performance of our method on several real-world networks.

5.1 Jazz musicians network

We apply the methods to analyze the collaboration network of Jazz musicians. The data are obtained
from The Red Hot Jazz Archive digital database (www.redhotjazz.com). In our analysis, we include
198 bands that performed between 1912 and 1940. We study the community structure of the band
network in which there are 198 nodes representing bands and 2742 unweighted edges indicating at
least one common musician between two bands. Figure 2 shows the degree distribution for the jazz
band network. The minimal, average and maximum degrees of this network are 1.0, 27.7 and 100.0,
respectively. Moreover, the distribution of degrees spreads over the range from 1 to 62 with four
degree values outside this range. This indicates that the node degrees are highly varying for this
network.

Let Kmax = 10 for all methods. We apply our proposed PLR1 and PLR2 methods to estimate
the number of communities and obtain that K̂1 = 3 and K̂2 = 3, so that three communities are
identified by both methods. For further illustration, the left panel of Figure 3 depicts the band net-
work with 198 nodes divided into three communities. The results confirm the community structure
mentioned in Gleiser and Danon (2003) that the band network is divided into two large communities
based on geographical locations where the bands recorded, and the largest community also splits
into two communities due to a racial segregation. Moreover, we obtain the estimated edge probabili-
ties within communities which are B̂kk = 0.349, 0.297, 0.358 for k = 1, 2, 3, respectively, and edge
probabilities between communities which are B̂12 = 0.029, B̂13 = 0.087 and B̂23 = 0.007. Next,
we reorganize the observed adjacency matrix according to the memberships of the nodes, i.e., the
nodes in the same estimated community are put together in the adjacency matrix. We use blue dots
to represent the edges between nodes. The right panel of Figure 3 shows the reorganized adjacency
matrix. We can see that the nodes in the diagonal block matrices, i.e., within each community, are
densely connected; while the nodes in the off-diagonal block matrices, i.e., between communities,
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Figure 3: left panel depicts the jazz band network with three communities; right panel shows the
adjacency matrix reorganized according to the node’s memberships.
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are sparsely connected. This corroborates the results that the estimated edge probabilities within
communities are much larger than those values between communities. Moreover, we observe that
the nodes between communities 1 and 3 are more densely connected than the nodes between com-
munities 1 and 3 and communities 2 and 3. This is also consistent with the different estimated edge
probabilities between communities that we have obtained. Lastly, we obtain the estimated number
of communities as 8, 3, 6 and 7, respectively, by the LRBIC, NCV, ECV and BHMC methods.

5.2 Political books network and Facebook friendship network

We apply our methods to a network of US political books (available at www.orgnet.com), and to a
large social network which contains friendship data of Facebook users (available at www.snap.stanford.edu).
The detailed descriptions of the data applications as well as the numerical results are given in Ap-
pendix C.

6. Conclusion

We propose a new pseudo conditional likelihood ratio method for selecting the number of com-
munities in DCSBMs. The method can be naturally applied to SBMs. For estimating the model,
we consider the spectral clustering together with a binary segmentation algorithm. This estimation
approach enables us to establish the limiting distribution of the pseudo likelihood ratio when the
model is under-fitted, and derive the upper bound for it when the model is over-fitted. Based on
these properties, we show the consistency of our estimator for the true number of communities.
Our method is computationally fast as the estimation is based on spectral clustering, and it also has
appealing theoretical properties for the semi-dense and degree-corrected designs. Moreover, our
numerical results show that the proposed method has good finite sample performance in various
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simulation designs and real data applications, and it outperforms several other popular methods in
semi-dense networks.
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Appendix A. More details on Algorithms 1 and 2

A.1 Estimators P̂ij(ẐK) and P̂ij(ẐbK)

By Wilson et al. (2016), for a given number of communities K and a generic estimator ẐK of
the community memberships with corresponding estimated communities {Ĉk,K}Kk=1, the maximum

likelihood estimators (MLEs) for θi and Bkl(ẐK) in DCSBM are θ̂i =
d̂in̂k,K∑
i′∈Ĉk,K

d̂i′
for i ∈ Ĉk,K

and B̂kl(ẐK) =
Ôkl,K

n̂kl,K
for k, l = 1, · · · ,K, respectively, where n̂k,K =

∑n
i=1 1{[ẐK ]ik = 1},

Ôkl,K =

n∑
i=1

∑
j 6=i

1{[ẐK ]ik = 1, [ẐK ]jl = 1}Aij ; (7)

n̂kl,K =

n∑
i=1

∑
j 6=i

1{[ẐK ]ik = 1, [ẐK ]jl = 1}

=

{
n̂k,K n̂l,K if k 6= l

n̂k,K(n̂k,K − 1) if k = l.
(8)

Therefore, for i ∈ Ĉk,K and j ∈ Ĉl,K , when k 6= l,

P̂ij(ẐK) =θ̂iθ̂jB̂kl(ẐK) =
Ôkl,K d̂id̂j

(
∑

i′∈Ĉk,K d̂i
′)(
∑

j′∈Ĉl,K d̂j
′)

=
Ôkl,K d̂id̂j

(
∑K

l′=1 Ôkl′,K)(
∑K

l′=1 Ôll′,K)
;

when k = l and i, j ∈ Ĉk,K ,

P̂ij(ẐK) =
Ôkk,K d̂id̂j∑

i′,j′∈Ĉk,K ,i′ 6=j′ d̂i
′ d̂j′

.

We can compute P̂ij(ẐbK) in the same manner by replacing ẐK in the above procedure by ẐbK .
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A.2 More details on the k-means algorithm

In Algorithm 2, we propose to estimate ẐK and ẐbK+1 by the k-means algorithm. Let {βi}i∈C be
a sequence of dβ × 1 vectors. The k-means algorithm with K centroids divides {βi}i∈C into K
clusters via solving the following minimization problem:

(α∗1, · · · , α∗K) = arg min
α1,··· ,αK

∑
i∈C

min
1≤k≤K

||βi − αk||2, (9)

where the i-th node is classified into cluster k if k = arg min1≤l≤K ||βi − α∗l || and if there exists
a tie, i.e., arg min1≤l≤K ||βi − α∗l || is not a singleton, then we denote k as the smallest minimizer.
Then, ẐK is obtained by solving (9) with βi = ν̂iK , i = 1, · · · , n with K centroids. For ẐbK+1, the
binary segmentation step is implemented via solving (9) with 2 centroids and βi = ν̂iK+1, i ∈ Ĉk,K ,
for k = 1, · · · ,K.

In Section 3.2, we define (ZK , Z
b
K) by applying Algorithm 2 on νiK . In view of Theorem 1(2),

νiK takes LK distinct values (ν̄1K , · · · , ν̄LKK). Let

πl,K = #{i : νiK = ν̄lK}/n ≥ inf
1≤k≤K0

πkn

and giK be the membership for node i obtained this way, i.e., giK = arg min1≤k≤K ||νiK − α∗k||
where

{α∗k}Kk=1 = arg min
α1,··· ,αK

n−1
n∑
i=1

min
1≤k≤K

||νiK − αk||2

= arg min
α1,··· ,αK

LK∑
l=1

πl,K min
1≤k≤K

||ν̄lK − αk||2. (10)

Then [ZK ]ik = 1 if giK = k, [ZK ]ik = 0 otherwise, and Ck,K = {i : giK = k}. We define ZbK+1

for K = 1, · · · ,K0 − 1 as follows.

1. Given {Ck,K}Kk=1, let C̃lk,K = Ck,K∩Gl,K+1, for l = 1, · · · , LK , 5 whereGl,K+1 is defined in
Theorem 1(2). We divide each Ck,K into two subgroups by applying the k-means algorithm to
{νiK+1}i∈Ck,K with two centroids. Denote the two subgroups as Ck,K(1) and Ck,K(2). Note
that, by the proof of Theorem 1(2), for i ∈ C̃lk,K , νiK+1 take the same value.

2. For each k = 1, · · · ,K, compute

QK(k) =
Φ(Ck,K)− Φ(Ck,K(1))− Φ(Ck,K(2))

#Ck,K
, (11)

where for an arbitrary index set C, Φ(C) =
∑

i∈C ||νiK+1 −
∑

i∈C νiK+1

#C ||2.

3. Choose k∗ = arg max1≤k≤K QK(k). Denote

{Cbk,K+1}K+1
k=1 = {{Ck,K}k<k∗ , Ck∗,K(1), {Ck,K}k>k∗ , Ck∗,K(2)}

as the new groups in ZbK+1.

5. As can be shown, C̃l
k,K = Gl,K+1 or ∅.
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Appendix B. Additional simulation results

Tables 4 and 5 given below report the mean of K̂2 and K̂1 by the PLR2 and PLR1 methods, respec-
tively, and the proportion (prop) of correctly estimating K0 among 200 simulated datasets when
data are generated from the SBMs of designs S1 and S3 described in Section 4.2, for n = 500, 1000
and K0 = 1, 2, 3, 4. Since the results of design S2 have similar patterns as those of S1 when data
are generated from the DCSBMs, as shown in Tables 1 and 2, here we choose to only report the
results of S1 when data are generated from the SBMs.

Table 4: The mean of K̂2 and the proportion (prop) of correctly estimatingK0 among 200 simulated
datasets when data are generated from SBMs of designs S1 and S3.

K0 = 1 K0 = 2 K0 = 3 K4 = 4
ρ ch 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

n = 500
S1 3 mean 1.035 1.000 1.000 1.000 2.025 2.000 2.000 2.000 3.060 3.060 3.000 3.000 3.465 3.465 3.430 3.355

prop 0.995 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.990 0.990 1.000 1.000 0.355 0.355 0.350 0.330
4 mean 1.000 1.000 1.000 1.000 2.030 2.000 2.000 2.000 3.115 3.015 3.000 3.000 4.085 4.085 4.085 4.005

prop 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.975 0.995 1.000 1.000 0.925 0.925 0.925 0.925
5 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.000 3.000 3.000 3.000 4.060 4.060 4.060 4.000

prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.980 0.980 1.000
S3 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.000 3.000 2.035 2.000 4.000 3.995 3.820 3.620

prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.035 0.000 1.000 0.995 0.895 0.795
n = 1000

S1 3 mean 1.000 1.000 1.000 1.000 2.055 2.000 2.000 2.000 3.040 3.005 3.000 3.000 4.080 4.050 4.020 3.990
prop 1.000 1.000 1.000 1.000 0.990 1.000 1.000 1.000 0.985 0.995 1.000 1.000 0.980 0.990 0.995 0.995

4 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.015 3.000 3.000 3.000 4.020 4.000 4.000 4.000
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.995 1.000 1.000 1.000

5 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.045 3.000 3.000 3.000 4.030 4.020 4.000 4.000
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000 1.000 1.000 0.990 0.995 1.000 1.000

S3 mean 1.000 1.000 1.000 1.000 2.000 2.000 2.000 2.000 3.000 3.000 3.000 2.035 4.000 4.000 4.000 3.320
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.035 1.000 1.000 1.000 0.660

Figure 4 shows the the proportions of correctly estimating K0 versus the values of ρ for the six
methods, PLR1, PLR2, LRBIC, NCV, ECV and BHMC, mentioned in Section 4.1, when the data
are simulated from the SBMs of design S1 with K0 = 2, 3, 4 and n = 500. We see that our PLR1
and PLR2 outperform the other four methods at small values of ρ. For further comparisons of the
six methods, Tables 6-8 report the mean of the estimated number of communities and the proportion
(prop) of correctly estimatingK0 for designs S1 and S3 with n = 500. For S1, we observe the same
pattern as shown in Figures 1 and 4. For S3 in which all entries of B are different, the six methods
have comparable performance.

Next, we replace the pseudo likelihood function by the k-means loss function to compare the
estimated K communities with the estimated K + 1 communities obtained from our spectral clus-
tering with binary segmentation method. To this end, we letQn(ẐbK+1, ẐK) be the difference of the
k-means loss functions for the estimated K and K + 1 communities obtained from the first K + 1
normalized eigenvectors of the regularized graph Laplacian. Then the estimated number of commu-
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Table 5: The mean of K̂1 and the proportion (prop) of correctly estimatingK0 among 200 simulated
datasets when data are generated from SBMs of designs S1 and S3.

n = 500 n = 1000
ρ K0 = 1 K0 = 2 K0 = 3 K4 = 4 K0 = 1 K0 = 2 K0 = 3 K4 = 4

S1 3 mean 1.035 2.095 3.115 3.465 1.000 2.055 3.040 4.080
prop 0.995 0.980 0.975 0.355 1.000 0.990 0.985 0.980

4 mean 1.000 2.045 3.060 4.085 1.000 2.000 3.015 4.020
prop 1.000 0.990 0.990 0.925 1.000 1.000 0.995 0.995

5 mean 1.000 2.020 3.015 4.060 1.000 2.000 3.045 4.030
prop 1.000 0.995 0.995 0.980 1.000 1.000 0.990 0.990

S3 mean 1.000 2.000 3.110 4.000 1.000 2.000 3.000 4.000
prop 1.000 1.000 0.980 1.000 1.000 1.000 1.000 1.000

Figure 4: The proportions of correctly estimating K0 versus the values of ρ for the six methods,
when data are simulated from the SBMs of design S1 with K0 = 2, 3, 4 and n = 500.
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Table 6: The mean of K̂ by the six methods and the proportion (prop) of correctly estimating K0

among 200 simulated datasets for K0 = 2 and n = 500.

S1 S3
ρ 0.5 1 2 3 4 5 6

SBM
PLR1 mean 2.865 2.380 2.235 2.095 2.045 2.020 2.000 2.000

prop 0.765 0.880 0.960 0.980 0.990 0.995 1.000 1.000
PLR2 mean 2.290 2.285 2.025 2.000 2.000 2.000 2.000 2.000

prop 0.875 0.900 0.995 1.000 1.000 1.000 1.000 1.000
LRBIC mean 1.000 1.000 2.000 2.000 2.000 2.000 2.000 2.000

prop 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
NCV mean 1.055 1.105 2.205 2.005 2.010 2.020 2.000 2.005

prop 0.045 0.095 0.815 0.995 0.990 0.995 1.000 0.995
ECV mean 1.000 1.000 2.005 2.000 2.000 2.000 2.000 2.000

prop 0.000 0.000 0.995 1.000 1.000 1.000 1.000 1.000
BHMC mean 1.065 1.865 2.000 2.000 2.000 2.000 2.000 2.000

prop 0.065 0.845 1.000 1.000 1.000 1.000 1.000 1.000
DCSBM

PLR1 mean 3.015 2.425 2.120 2.095 2.090 2.035 2.025 2.000
prop 0.710 0.905 0.980 0.980 0.980 0.990 0.995 1.000

PLR2 mean 2.275 2.205 2.000 2.000 2.000 2.000 2.000 2.000
prop 0.890 0.950 1.000 1.000 1.000 1.000 1.000 1.000

LRBIC mean 1.000 1.000 2.000 2.000 2.000 2.000 2.000 2.000
prop 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

NCV mean 1.150 1.170 2.040 1.970 1.995 2.000 2.000 2.005
prop 0.090 0.130 0.790 0.960 0.975 1.000 1.000 0.995

ECV mean 1.000 1.010 2.000 2.005 2.000 2.000 2.000 2.000
prop 0.000 0.010 0.990 0.995 1.000 1.000 1.000 1.000

BHMC mean 1.080 1.880 2.000 2.000 2.000 2.000 2.000 2.000
prop 0.080 0.880 1.000 1.000 1.000 1.000 1.000 1.000
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Table 7: The mean of K̂ by the six methods and the proportion (prop) of correctly estimating K0

among 200 simulated datasets for K0 = 3 and n = 500.

S1 S3
ρ 0.5 1 2 3 4 5 6

SBM
PLR1 mean 3.035 2.715 2.975 3.115 3.060 3.015 3.000 3.110

prop 0.080 0.085 0.535 0.975 0.990 0.995 1.000 0.980
PLR2 mean 2.125 2.595 2.975 3.060 3.015 3.000 3.000 3.000

prop 0.045 0.075 0.535 0.990 0.995 1.000 1.000 1.000
LRBIC mean 1.000 1.000 1.005 2.960 3.000 3.000 3.000 3.000

prop 0.000 0.000 0.000 0.960 1.000 1.000 1.000 1.000
NCV mean 1.045 1.050 1.495 2.830 3.015 3.015 3.000 3.030

prop 0.000 0.000 0.070 0.710 0.985 0.995 1.000 0.970
ECV mean 1.000 1.000 1.400 2.905 3.005 3.000 3.000 3.005

prop 0.000 0.000 0.045 0.905 0.995 1.000 1.000 0.995
BHMC mean 1.055 1.160 2.335 3.000 3.000 3.000 3.000 3.000

prop 0.000 0.000 0.335 1.000 1.000 1.000 1.000 1.000
DCSBM

PLR1 mean 2.925 2.930 3.180 3.070 3.025 3.030 3.025 3.035
prop 0.070 0.149 0.530 0.980 0.990 0.995 0.995 0.995

PLR2 mean 2.125 2.830 3.150 3.070 3.000 3.000 3.000 3.000
prop 0.075 0.100 0.535 0.980 1.000 1.000 1.000 1.000

LRBIC mean 1.000 1.000 1.025 2.955 3.000 3.000 3.000 3.000
prop 0.000 0.000 0.000 0.955 1.000 1.000 1.000 1.000

NCV mean 1.040 1.065 1.595 2.955 3.000 3.005 3.000 3.010
prop 0.005 0.000 0.085 0.820 0.990 0.995 1.000 0.990

ECV mean 1.000 1.000 1.350 2.940 3.005 3.000 3.000 3.000
prop 0.000 0.000 0.030 0.930 0.995 1.000 1.000 1.000

BHMC mean 1.055 1.145 2.415 2.995 3.000 3.000 3.000 3.000
prop 0.000 0.000 0.415 0.995 1.000 1.000 1.000 1.000
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Table 8: The mean of K̂ by the six methods and the proportion (prop) of correctly estimating K0

among 200 simulated datasets for K0 = 4 and n = 500.

S1 S3
ρ 0.5 1 2 3 4 5 6

SBM
PLR1 mean 2.665 2.850 3.200 3.465 4.085 4.060 4.000 4.000

prop 0.015 0.025 0.035 0.355 0.925 0.980 1.000 1.000
PLR2 mean 2.300 2.850 2.665 3.465 4.085 4.060 4.000 3.995

prop 0.015 0.025 0.025 0.355 0.925 0.980 1.000 0.995
LRBIC mean 1.000 1.000 1.000 1.005 3.840 4.000 4.000 4.000

prop 0.000 0.000 0.000 0.000 0.920 1.000 1.000 1.000
NCV mean 1.015 1.020 1.004 1.500 4.030 4.005 4.000 4.060

prop 0.000 0.000 0.000 0.070 0.740 0.965 1.000 0.940
ECV mean 1.000 1.000 1.000 1.370 3.905 4.000 4.000 4.000

prop 0.000 0.000 0.000 0.035 0.845 1.000 1.000 1.000
BHMC mean 1.035 1.020 1.200 2.330 3.610 3.985 4.000 4.000

prop 0.000 0.000 0.000 0.015 0.630 0.985 1.000 1.000
DCSBM

PLR1 mean 2.750 2.780 2.765 3.675 4.175 4.045 4.010 4.005
prop 0.030 0.040 0.040 0.380 0.915 0.985 0.995 0.995

PLR2 mean 2.105 2.655 2.745 3.675 4.150 4.015 4.000 4.005
prop 0.000 0.015 0.040 0.380 0.920 0.995 1.000 0.995

LRBIC mean 1.000 1.000 1.000 1.005 3.845 4.000 4.000 4.000
prop 0.000 0.000 0.000 0.000 0.920 1.000 1.000 1.000

NCV mean 1.050 1.003 1.045 1.805 4.005 4.015 4.020 4.060
prop 0.000 0.000 0.000 0.100 0.700 0.980 0.980 0.940

ECV mean 1.000 1.000 1.000 1.435 3.895 4.000 4.005 4.005
prop 0.000 0.000 0.000 0.040 0.840 1.000 0.995 0.995

BHMC mean 1.075 1.015 1.285 2.360 3.575 3.985 4.000 4.000
prop 0.000 0.000 0.000 0.050 0.600 0.985 1.000 1.000
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nities minimizes
Qn(Ẑb

K+1,ẐK)/(K+1)

Qn(Ẑb
K ,ẐK−1)/K

, and we call this estimator “KML”. Note that Qn(ẐbK+1, ẐK)

involves the eigenvectors with dimension n× (K + 1). Thus we need to normalize it via dividing it
by K + 1. In addition, we apply the gap statistic proposed in Tibshirani et al. (2001) for estimating
the number of communities by using the R package “cluster”. The gap statistic was proposed for
clustering p-dimensional independent vectors intoK groups forK = 1, · · · ,Kmax, where p is fixed
and do not change with K. We let p = Kmax in our setting, so that we apply this method to the
first Kmax normalized eigenvectors of the regularized graph Laplacian. Moreover, Yan et al. (2018)
proposed a semi-definite programming method (SPUR) for determining the number of communities
in SBMs. We compare our proposed estimator PLR1 with these three estimators, KML, GAP and
SPUR. Since the proposed estimator PLR2 performs slightly better than PLR1, we only compare
PLR1 with other three estimators.

Table 9 reports the mean of the estimated number of communities by the four methods, PLR1,
KML, GAP and SPUR, and the proportion (prop) of correctly estimating K0 among 200 simulated
datasets when data are generated from the SBMs and designs S1 and S3 given in Section 4.2 with
n = 500. In Table 10, we report those statistics for the three methods, PLR1, KML, and GAP, when
the data are generated from the DCSBMs given in Section 4.2, as the SPUR method was proposed
only for the SBMs. Tables 9 and 10 show that our proposed PLR1 has the best performance for all
cases. Specifically, the gap statistic method applies the k-means to p-dimensional vectors, where p
is fixed and is not allowed to change with K. Hence, it is not directly applicable to network data
clustering. As a result, it performs worse than other methods. The KML method performs better
than the GAP and SPUR for most cases of design S1, but it is inferior to the proposed PLR1 method,
especially for large K’s. This is due to the fact that for determining the number of communities, the
KML method only uses the information from the eigenvectors, whereas the proposed PLR1 method
uses the likelihood which involves all information from the parameter estimates. Moreover, the
proposed PLR methods are built on the spectral clustering with binary segmentation algorithm for
estimation, and thus they are computationally fast. They have the advantage over the semi-definite
programming method, SPUR, in terms of computational speed. Computational efficiency needs to
be taken into account for model selection in large network data.

Lastly, for the DCSBMs, we generate the degree parameters θi from the Pareto distribution with
the scale parameter 1 and the shape parameter 5, and further normalize them to satisfy the condition
(1). Tables 11 and 12 report the mean of K̂1 and K̂2 with ch = 1.0, respectively, and the proportion
(prop) of correctly estimating K0 among 200 simulated datasets. We see that both PLR1 and PLR2
perform well, and the results in Tables 11 and 12 are comparable to those for K̂1 and K̂2 with
ch = 1.0 shown in Tables 1 and 2 when θi are generated from the uniform distribution.

Appendix C. Additional real data applications

C.1 Political books network

We investigate the community structure of a network of US political books (available at www.orgnet.com)
by different methods. In this network, there are 105 nodes representing books about US politics
published around the 2004 presidential election and sold by the online bookseller Amazon.com,
and there are 441 edges representing frequent co-purchasing of books by the same buyers. Fig-
ure 5 shows the degree distribution for the political books network with the average degree being
8.4. We see that the degree has a right skewed distribution with most values ranging from 2 to 9.
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Table 9: The mean of K̂ by the four methods, PLR1, KML, GAP and SPUR, and the proportion
(prop) of correctly estimating K0 among 200 simulated datasets when data are generated
from SBMs of S1 and S3 with n = 500 .

K0 = 2 K0 = 3 K0 = 4
ρ PLR1 KML GAP SPUR PLR1 KML GAP SPUR PLR1 KML GAP SPUR

S1 3 mean 2.095 2.110 7.715 1.815 3.115 2.955 8.615 2.540 3.465 3.155 9.290 3.005
prop 0.980 0.975 0.115 0.815 0.975 0.895 0.060 0.540 0.355 0.140 0.000 0.115

4 mean 2.045 2.085 6.265 1.860 3.060 2.965 6.830 2.655 4.085 3.655 8.115 3.515
prop 0.990 0.980 0.265 0.860 0.990 0.975 0.350 0.655 0.925 0.725 0.115 0.545

5 mean 2.020 2.040 5.080 1.880 3.015 3.020 5.265 2.755 4.060 3.840 6.320 3.735
prop 0.995 0.990 0.400 0.880 0.995 0.990 0.610 0.785 0.980 0.900 0.535 0.785

S3 mean 2.000 2.320 9.470 2.000 3.110 3.200 9.265 2.935 4.000 4.000 9.335 3.905
prop 1.000 0.915 0.000 1.000 0.980 0.970 0.000 0.945 1.000 1.000 0.010 0.925

Table 10: The mean of K̂ by the three methods, PLR1, KML and GAP, and the proportion (prop)
of correctly estimating K0 among 200 simulated datasets when data are generated from
DCSBMs of S1 and S3 with n = 500.

K0 = 2 K0 = 3 K0 = 4
ρ PLR1 KML GAP PLR1 KML GAP PLR1 KML GAP

S1 3 mean 2.095 2.110 8.210 3.070 2.895 8.855 3.675 3.115 9.300
prop 0.980 0.975 0.055 0.980 0.875 0.045 0.380 0.135 0.000

4 mean 2.090 2.095 6.730 3.025 2.955 7.015 4.175 3.525 8.585
prop 0.980 0.980 0.315 0.990 0.970 0.175 0.915 0.725 0.095

5 mean 2.035 2.040 5.455 3.030 3.050 6.410 4.045 3.840 6.990
prop 0.990 0.990 0.490 0.995 0.985 0.420 0.985 0.900 0.410

S2 mean 2.000 2.585 9.375 3.035 3.055 9.440 4.005 4.010 9.455
prop 1.000 0.850 0.000 0.995 0.990 0.000 0.995 0.990 0.010
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Table 11: The mean of K̂1 and the proportion (prop) of correctly estimating K0 among 200 sim-
ulated datasets when data are simulated from DCSBMs of S1 and S3 with the degree
parameters θi generated from the Pareto distribution.

n = 500 n = 1000
ρ K0 = 1 K0 = 2 K0 = 3 K4 = 4 K0 = 1 K0 = 2 K0 = 3 K4 = 4

S1 3 mean 1.085 2.095 3.135 3.510 1.000 2.090 3.035 4.045
prop 0.965 0.985 0.950 0.360 1.000 0.985 0.990 0.990

4 mean 1.010 2.080 3.040 4.140 1.000 2.050 3.000 4.040
prop 0.995 0.985 0.990 0.910 1.000 0.990 1.000 0.990

5 mean 1.000 2.000 3.000 4.045 1.000 2.000 3.000 4.035
prop 1.000 1.000 1.000 0.985 1.000 1.000 1.000 0.990

S3 mean 1.000 2.000 3.000 4.000 1.000 2.000 3.000 4.000
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 12: The mean of K̂2 and the proportion (prop) of correctly estimating K0 among 200 sim-
ulated datasets when data are simulated from DCSBMs with the degree parameters θi
generated from the Pareto distribution.

n = 500 n = 1000
ρ K0 = 1 K0 = 2 K0 = 3 K4 = 4 K0 = 1 K0 = 2 K0 = 3 K4 = 4

S1 3 mean 1.085 2.000 3.080 3.510 1.000 2.000 3.015 4.045
prop 0.965 1.000 0.965 0.360 1.000 1.000 0.995 0.990

4 mean 1.010 2.000 3.000 4.140 1.000 2.000 3.000 4.040
prop 0.995 1.000 1.000 0.910 1.000 1.000 1.000 0.990

5 mean 1.000 2.000 3.000 4.020 1.000 2.000 3.000 4.000
prop 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000

S3 mean 1.000 2.000 3.000 4.000 1.000 2.000 3.000 4.000
prop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 5: The degree distribution of the political books network.
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Let Kmax = 10. We identify K̂1 = K̂2 = 3 communities by both PLR1 and PLR2. This result
is consistent with the ground-truth community structure that these books are actually divided into
three categories “liberal”, “neutral” and “conservative” according to their political views (Newman,
2006). For further demonstration, we plot the political books network with three communities in
the left panel of Figure 6. Groups 1, 2 and 3 represent the estimated communities of liberal, con-
servative and neutral books. We also obtain the estimated edge probabilities within communities
which are B̂kk = 0.219, 0.224, 0.164 for k = 1, 2, 3, and the edge probabilities between commu-
nities which are B̂12 = 0.001, B̂13 = 0.019 and B̂23 = 0.035. We see that groups 1 and 2 from
two different political affiliations are very weakly connected. Moreover, the right panel of Figure 6
shows the adjacency matrix reorganized according to the memberships of the nodes. We use blue
dots to represent the edges between nodes. We observe that the nodes are very sparsely connected
between communities 1 and 2. The plots in Figure 6 are consistent with the results of the estimated
edge probabilities. Lastly, we apply the LRBIC, NCV, ECV and BHMC methods, and obtain the
estimated number of communities as 3, 6, 8 and 4, respectively, by these four methods.

C.2 Facebook friendship network

We apply our methods to a large social network which contains friendship data of Facebook users
(available at www.snap.stanford.edu). A node represents a user and an edge represents a friendship
between two users. The data have 4039 nodes and 88218 edges. We use the nodes with the degree
between 10 and 400. As a result, there are 2901 nodes and 80259 edges in our analysis. The left
panel of Figure 7 shows the degree distribution for the Facebook friendship network with the aver-
age degree being 55.33. The degree distribution is again right skewed. Let Kmax = 20. By using
the proposed PLR1 and PLR2 methods, we identify K̂1 = K̂2 = 11 communities. The right panel
of Figure 7 shows the estimated community structure of the Facebook friendship network with
eleven identified communities. We can observe sub-communities of friends who are tightly con-
nected through mutual friendships. We also obtain the estimated edge probabilities within commu-
nities which are B̂kk = 0.090, 0.202, 0.198, 0.586, 0.147, 0.094, 0.344, 0.232, 0.098, 0.237, 0.297
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Figure 6: Left panel depicts the political books network with three communities; right panel shows
the adjacency matrix reorganized according to the node’s memberships.
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Figure 7: Left panel shows the degree distribution; right panel depicts the facebook friendship net-
work with eleven communities.
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for k = 1, ..., 11, and the edge probabilities between communities range from 0 to 0.016. Moreover,
Figure 8 shows the adjacency matrix reorganized according to the memberships of the nodes. We
see that the nodes are closely connected within the communities. Lastly, the LRBIC, NCV, ECV
and BHMC methods found 19, 19, 20 and 14 communities, respectively.
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Figure 8: The adjacency matrix of the facebook friendship network reorganized according to the
node’s memberships.

Appendix D. Proofs of results in Section 3

D.1 Proof of Theorem 1

The first result is proved in Su et al. (2020, Theorem 3.3). For part (2), by Lemma 7(1), if i ∈ Ck,K0 ,
then

uTi (K) = (θτi )1/2(nτk,K0
)−1/2Sτn(K).

Because Sτn(K) is a K0×K matrix, it is easy to see that LK ≤ K0. By the proof of Su et al. (2020,
Theorem 3.3), Sτn is theK0×K0 eigenvector matrix of (Πτ

n)1/2H0,K0(Πτ
n)1/2 with the correspond-

ing eigenvalues ordered from the biggest to the smallest in absolute values. By Assumptions 1 and
2, we have

(Πτ
n)1/2H0,K0(Πτ

n)1/2 → Π′1/2∞ H∗0,K0
Π′1/2∞ := S∞Σ∞S∞.

By Davis-Kahan Theorem in Yu et al. (2015) and Assumption 2(2), there exists aK×K orthogonal
matrix Os such that Sτn(K)Os → S∞[K] where S∞ is the eigenvector matrix of Π

′1/2
∞ H∗0,K0

Π
′1/2
∞

and is of full rank. Therefore, if i ∈ Ck,K0 and j ∈ Cl,K0 ,∥∥∥∥∥ uTi (K)

||uTi (K)||
−

uTj (K)

||uTj (K)||

∥∥∥∥∥ =

∥∥∥∥( [Sτn]k(K)

||[Sτn]k(K)||
− [Sτn]l(K)

||[Sτn]l(K)||

)
Os

∥∥∥∥
→
∥∥∥∥ [S∞]k(K)

||[S∞]k(K)||
− [S∞]l(K)

||[S∞]l(K)||

∥∥∥∥ . (12)

Because S∞ is of full rank, the first K columns of S∞ should have rank K. This implies the
K-dimensional row vectors { [S∞]k(K)

||[S∞]k(K)||}
K0
k=1 take at least K distinct values, which are denoted as

ν̄1,K , · · · , ν̄LK ,K . Therefore, LK ≥ K . Next, we call nodes i and j are equivalent if both uTi (K)

||uTi (K)||
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and
uTj (K)

||uTj (K)|| converges to one of (ν̄l,K), l = 1, · · · , LK . Then Gl,K can be constructed as the

equivalence class of the above equivalence relation. Let

I =

{
(k, l) :

∥∥∥∥ [S∞]k(K)

||[S∞]k(K)||
− [S∞]l(K)

||[S∞]l(K)||

∥∥∥∥ 6= 0, k = 1, · · · ,K0, l = 1, · · · ,K0

}
.

In view of the fact that the cardinality of I is finite, we have

c∗ = min
(k,l)∈I

∥∥∥∥ [S∞]k(K)

||[S∞]k(K)||
− [S∞]l(K)

||[S∞]l(K)||
= min

`6=`′
||ν̄`,K − ν̄`′,K ||

∥∥∥∥ > 0.

Then, by (12), if nodes i /∈ Gl,K ,

lim inf
n

∥∥∥∥ uTi (K)

||uTi (K)||
− ν̄l,K

∥∥∥∥ ≥ c∗ > 0.

This implies that {Gl,K}LK
l=1 constructed as the equivalence class satisfy the two requirements in

Theorem 1(2) with c = c∗.

D.2 Proof of Theorem 4

First, we prove Theorem 4(1). Let ĝiK be the membership estimated by the k-means algorithm
with K centroids, i.e.,

ĝiK = arg min
1≤k≤K

||ν̂iK − α̂k|| and {α̂k}Kk=1 = arg min
α1,··· ,αK

1

n

n∑
i=1

min
1≤k≤K

||ν̂iK − αk||2.

Because the L2-norm is invariant under rotation,

ĝiK = arg min
1≤k≤K

||ν̂iKÔKnOs−α̂k|| and {α̂k}Kk=1 = arg min
α1,··· ,αK

1

n

n∑
i=1

min
1≤k≤K

||ν̂iKÔKnOs−αk||2.

(13)
where ÔKn is a K ×K orthonormal matrix such that ÔKn = Ū V̄ T , Ū Σ̄V̄ T is the singular value
decomposition of Ûn(K)TUn(K), Un is the population analogue of Ûn : Lτ = UnΣnU

T
n , and

Os is another K × K orthonormal matrix defined in the proof of Theorem 1(2). Here, Σn =
diag(σ1n, . . . , σK0n, 0, ..., 0) is a n× n matrix and we suppress the dependence of Ū , Σ̄, and V̄ on
K. We aim to show

sup
i

1{ĝiK 6= giK} = 0 a.s. (14)

Suppose that
sup

1≤i≤n
||ν̂TiKÔKnOs − νTiK || ≤ c1 a.s., (15)

for some sufficiently small c1 > 0, which we will prove later. In addition, by (10),

{α∗k}Kk=1 = arg min
α1,··· ,αK

K0∑
l=1

πln min
1≤k≤K

||ν̄lK − αk||2.
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Then for any k = 1, · · · ,K, we have

α∗k =
∑

l≤K0:Cl,K0
⊂Ck,K

ψn,k,lν̄lK ,

or in matrix form,

(α∗1, · · · , α∗K) = (ν̄1K , · · · , ν̄LK ,K)Ψ′n,

where ψn,k,l = πln/(
∑

l≤K0:Cl,K0
⊂Ck,K πln) for k = 1, · · · ,K and l = 1, · · · , LK , and Ψn =

[ψn,k,l]. Note thatLK ≥ K. By Assumption 2, Ψn → Ψ∞, where [Ψ∞]k,l = πl∞/
∑

l≤K0:Cl,K0
⊂Ck,K πl∞ >

0. Because ZK is unique by Assumption 3(1) and πl∞ is positive for l = 1, · · · ,K0, we have that
each column of Ψ∞ has one and only one nonzero entry. In addition, there exist at least LK ≥ K
distinct vectors in {ν̄lK}K0

l=1. Therefore, by relabeling both {α∗k}Kk=1 and {ν̄lK}K0
l=1, we can make

Ψ′∞ = (Ψ1,∞,Ψ2,∞),

where Ψ1,∞ is a K ×K diagonal matrix with strictly positive diagonal elements. Therefore, Ψ∞
has rank K. By Theorem 1(3), (ν̄1K , · · · , ν̄LK ,K) also has rank K. This implies, the limit of the
K ×K matrix (α∗1, · · · , α∗K) is of full rank. Therefore, there exists a constant c > 0 such that

lim inf
n

min
k 6=k′
|α∗k − α∗k′ | > c. (16)

Then (14) follows (15) and Lemma 8(3) with β̂in = ν̂iKÔKnOs and βin = νiK .
Now we turn to prove (15). Since (Πτ

n)1/2H0,K0(Πτ
n)1/2 → (Π′∞)1/2H∗0,K0

(Π′∞)1/2 and As-
sumption 2(2), we have infn |σK+1n−σKn| ≥ C > 0 for any K ≤ K0− 1. Second, Assumption 4
implies Su et al. (2020, Assumption 11). Last, let dτi = di + τ. Since τ ≤ Mnρn for some M > 0
and di � nρn, we have,

dτi /di � 1.

Therefore, there exist constants C > c > 0 such that

C ≥ sup
k,n

nτkd
τ
i /(ndi) ≥ inf

k,n
nτkd

τ
i /(ndi) ≥ c.

This verifies Su et al. (2020, Assumption 10). Hence, by Su et al. (2020, Theorem 3.4),

sup
i

(nτgiK0
)1/2θ

−1/2
i ||ûi(K)T ÔKn − uTi (K)|| ≤ C∗ log1/2(n)(nρn + τ)−1/2 ≤ C∗C−1/2

1 a.s.,

(17)
where C∗ is a constant independent of n and giK0 denotes the membership index of node i, , viz,
giK0 = k if [ZK0 ]ik = 1.

In addition, Lemma 7(2) shows that, if i ∈ Ck,K0 for any k = 1, · · · ,K0, then

lim inf
n

(nτk)1/2θ
−1/2
i ||ui(K)|| = lim inf

n
||[Sn]k(K)|| ≥ c.
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Therefore,

sup
i
||ν̂TiKÔKnOs − νTiK ||

≤ sup
i

∥∥∥∥ν̂TiKÔKn − uTi (K)

||ui(K)||

∥∥∥∥+ sup
i

∥∥∥∥uTi (K)Os
||ui(K)||

− νTiK
∥∥∥∥

≤ sup
1≤i≤n

||ÔTKnûi(K)− ui(K)||
||ûi(K)||

+ o(1)

≤ C∗C
−1/2
1

c− C∗C−1/2
1

+ o(1) ≤ c1, a.s., (18)

where the second inequality holds because of the definition of νiK and Theorem 1. By Assumption
4, C1 is sufficiently large, which implies that c′1 can be sufficiently small. This concludes the proof
of (14).

We also note that, by definition, for any K = 1, · · · ,K0 and k = 1, · · · ,K0 , there exists
l = 1, · · · , LK such that Ck,K0 ⊂ Gl,K . In addition, by (10), Assumption 3(1), and Lemma 8(1),
for any l = 1, · · · , LK , there exists k′ = 1, · · · ,K such that Gl,K ⊂ Ck′,K . Therefore,

Ck,K0 ⊂ Gl,K ⊂ Ck′,K and ZK0 � ZK .

Second, we prove Theorem 4(2). We know from Theorem 4(1) that ẐK−1 = ZK−1 a.s., i.e.,
Ĉk,K−1 = Ck,K−1 for k = 1, · · · ,K − 1. We aim to show that ẐbK = ZbK a.s. for K = 2, · · · ,K0.
Recall C̃lk,K−1 = Ck,K−1 ∩Gl,K . We divide [K − 1] into two subsets K1 and K2 such that k ∈ K1

if there exists at least two indexes l1 and l2 such that both C̃l1k,K−1 and C̃l2k,K−1 are nonempty sets
and K2 = [K − 1]\K1. Note that LK ≥ K > K − 1. Therefore, by the pigeonhole principle,
K1 is nonempty. We divide the proof into three steps. For a generic k ∈ K1, denote Ĉk,K−1(1)

and Ĉk,K−1(2) as two subsets of Ck,K−1 which are obtained by applying k-means algorithm on
{ν̂in(K)}i∈Ck,K−1

with two centroids. Similarly, let Ck,K−1(1) and Ck,K−1(2) as two subsets of
Ck,K−1 which are obtained by applying k-means algorithm on {νiK}i∈Ck,K−1

with two centroids. In
the first step, we aim to show k̂ = k∗ ∈ K1 a.s., where k̂ is defined in Algorithm 2 in Section 2.2.
In the second step, we aim to show that Ĉk∗,K−1(1) = Ck∗,K−1(1) and Ĉk∗,K−1(2) = Ck∗,K−1(2)
a.s. These two results imply that

Ck∗,K−1(1) = Ĉk̂,K−1(1) and Ck∗,K−1(2) = Ĉk̂,K−1(2),

which completes the proof of ẐbK = ZbK for k = 1, · · · ,K0. Last, in the third step, we show that
ZK0 � ZbK+1.

Step 1. We show that k̂ = k∗ ∈ K1 a.s. For a generic k ∈ K1, because theL2-norm is invariant
under rotation, we can regard the procedure as applying k-means algorithm to β̂in = OTs Ô

T
Knν̂iK
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for i ∈ Ck,K−1. Further denote βin = νiK . Then, βin = βjn if i, j ∈ C̃lk,K−1 for some l, and

sup
i∈Ck,K−1

||β̂in − βin||

≤ sup
i∈Ck,K−1

∥∥∥∥ν̂TiKÔKnOs − uTi (K)

||ui(K)||

∥∥∥∥+ sup
i∈ Ck,K−1

∥∥∥∥uTi (K)Os
||ui(K)||

− νTiK
∥∥∥∥

≤ C∗C
−1/2
1

c− C∗C−1/2
1

+ o(1) ≤ c1 a.s.,

where the first inequality holds by the triangle inequality, the second inequality holds because of
Theorem 1(2) and the fact that the constant c1 is sufficiently small. In addition, by the definition of
{Gl,K}LK

l=1 in Theorem 1(2), there exists some positive constant c such that, for l 6= l′, C̃lk,K 6= ∅,
and C̃l′k,K 6= ∅,

inf
i∈C̃lk,K ,j∈C̃

l′
k,K

||βin − βjn|| ≥ c > 0.

Recall the definitions of QK(·) and Q̂K(·) in (11) and (5), respectively. Then, by Lemma 8(2), we
have, for any k ∈ K1, |QK−1(k)− Q̂K−1(k)| ≤ C ′c1 a.s. for some constant C ′ > 0. For k ∈ K2,
QK−1(k) = o(1) and |Q̂K−1(k)| ≤ C

′′
c1. Therefore, |QK−1(k) − Q̂K−1(k)| ≤ Cc1 a.s. for

k = 1, · · · ,K − 1. Recall that
k∗ = arg max

1≤k≤K−1
QK−1(k)

We claim k̂ = k∗ a.s. Suppose not. Then by Assumption 3(2),

0 ≤ Q̂K−1(k̂)− Q̂K−1(k∗) = QK−1(k̂)−QK−1(k∗) + 2C ′c1 ≤ 2Cc1 − c.

As c1 is sufficiently small, we reach a contradiction.
Step 2. We show that Ĉk∗,K−1(1) = Ck∗,K−1(1) and Ĉk∗,K−1(2) = Ck∗,K−1(2) a.s. Because

ZK−1 and ZbK are unique, Lemma 8(3) implies, up to some relabeling,

Ck∗,K−1(1) = Ĉk∗,K−1(1) and Ck∗,K−1(2) = Ĉk∗,K−1(2). (19)

Therefore, ẐbK = ZbK for k = 1, · · · ,K0.
Step 3. We show thatZK0 � ZbK+1. For any k = 1, · · · ,K0 and anyK = 2, · · · ,K0, Theorem

4 (1) shows that there exists k′ ∈ {1, · · · ,K − 1} such that Ck,K0 ⊂ Ck′,K−1. If k′ 6= k∗, then
Ck,K0 ⊂ Ck′,K−1 = Cbk′′,K for some k′′ = 1, · · · ,K. If k′ = k∗, we know that Ck,K0 ⊂ Gl,K for
some l = 1, · · · , LK . Therefore,

Ck,K0 ⊂ Ck∗,K−1 ∩Gl,K = C̃lk∗,K−1.

Last, by Lemma 8, we know that

C̃lk∗,K−1 ⊂ either Ck∗,K−1(1) or Ck∗,K−1(2).

Therefore, there exists k′′ = 1, · · · ,K such that

Ck,K0 ⊂ C̃lk∗,K−1 ⊂ Cbk′′,K .

This completes the proof of Theorem 4(2).
For Theorem 4(3), the result holds by the construction of ẐbK+1 for K = 1, · · · ,K0 and the

fact that ẐK = ZK for K = 1, · · · ,K0.
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D.3 Proof of Theorem 5

We first state WK : if K = 2,

WK =


W ∈ <K×K : W is symmetric,

WK−1K−1(WK−1· +WK·)
2 = W 2

K−1·(WK−1K−1 + 2WK−1K +WKK),
WK−1K(WK−1· +WK·)

2 = WK−1·WK·(WK−1K−1 + 2WK−1K +WKK),
WKK(WK−1· +WK·)

2 = W 2
K·(WK−1K−1 + 2WK−1K +WKK),


and if K ≥ 3

WK =



W ∈ <K×K : W is symmetric,
Wkl(WK−1· +WK·) = Wl·(WkK−1 +WkK), k = 1, · · · ,K − 2, l = K − 1,K,

WK−1K−1(WK−1· +WK·)
2 = W 2

K−1·(WK−1K−1 + 2WK−1K +WKK),
WK−1K(WK−1· +WK·)

2 = WK−1·WK·(WK−1K−1 + 2WK−1K +WKK),
WKK(WK−1· +WK·)

2 = W 2
K·(WK−1K−1 + 2WK−1K +WKK),


where Wk· =

∑K
l=1Wkl for W = [Wkl] ∈ <K×K .

By Theorem 4, we have ẐbK = ZbK a.s. for K ≤ K0. By Theorem 4(3), without loss of
generality, we assume that ẐbK = ZbK is obtained by splitting the last group in ẐK−1 = ZK−1 into
the (K − 1)-th and K-th groups in ẐK , i.e.,

#Ck,K−1 = #Cbk,K , for k = 1, · · · ,K − 2 and #CK−1,K−1 = #CbK−1,K ∪#CbK,K .

Define Obkl,K and Okl,K as (7) with ẐK replaced by ZbK and ZK , respectively, and nbkl,K and nkl,K
as (8) with ẐK replaced by ZbK and ZK , respectively. Further define

M̂kl,K =
Okl,K

(
∑K

l′=1Okl′,K)(
∑K

l′=1Oll′,K)
and M̂ b

kl,K =
Obkl,K

(
∑K

l′=1O
b
kl′,K)(

∑K
l′=1O

b
ll′,K)

, k 6= l,

M̂kk,K =
Okk,K∑

i,j∈Ck,K ,i 6=j d̂id̂j
, and M̂ b

kk,K =
Obkk,K∑

i,j∈Cb
k,K ,i 6=j

d̂id̂j
.

Then, almost surely, for i ∈ Ĉk,K and i ∈ Ĉl,K

P̂ij(ẐK) = M̂kl,K d̂id̂j ,

and for i ∈ Ĉbk,K and i ∈ Ĉbl,K
P̂ij(Ẑ

b
K) = M̂ b

kl,K d̂id̂j .

Then, for any k, l ≤ K − 2, if i ∈ Cbk,K = Ck,K−1 and j ∈ Cbl,K = Cl,K−1, we have

Obkl,K = Okl,K−1,
∑

i′∈Cbk,K

d̂i′ =
∑

i′∈Ck,K−1

d̂i′ , and thus, P̂ij(Ẑ
b
K) = P̂ij(ẐK−1).
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By (2),

Ln(ẐbK , ẐK−1)

=2
K−2∑
k=1

{ K∑
l=K−1

0.5nbkl,K

(
M̂ b
kl,K

M̂kK−1,K−1

− 1

)2}

+

{
0.5

[
nbK−1K−1,K

(
M̂ b
K−1K−1,K

M̂K−1K−1,K−1

− 1

)2

+ 2nbK−1K,K

(
M̂ b
K−1K,K

M̂K−1K−1,K−1

− 1

)2

+ nbKK,K

(
M̂ b
KK,K

M̂K−1K−1,K−1

− 1

)2]}

=:2
K−2∑
k=1

Îkn + ÎIn.

For i ∈ Cbk,K and j ∈ Cbl,K , k, l = 1, · · · ,K, the population counterparts of P̂ij(ẐK) and P̂ij(ẐbK)
are

Pij(ZK) =
E[Okl,K ]didj∑

i′∈Ck,K ,j′∈Cl,K ,i′ 6=j′ di′dj′
:= M b

kl,Kdidj (20)

and

Pij(Z
b
K) =

E[Obkl,K ]didj∑
i′∈ Cbk,K ,j′∈Cbl,K ,i′ 6=j′

di′dj′
:= M b

kl,Kdidj , (21)

respectively. Let

B̃K,n = 2

K−2∑
k=1

Ikn + IIn, (22)

where

Ikn =
K∑

l=K−1

0.5nbkl,K

(
M b
kl,K

MkK−1,K−1
− 1

)2

and (23)

IIn = 0.5nbK−1K−1,K

(
M b
K−1K−1,K

MK−1K−1,K−1
− 1

)2

+ nbK−1K,K

(
M b
K−1K,K

MK−1K−1,K−1
− 1

)2

+ 0.5nbKK,K

(
M b
KK,K

MK−1K−1,K−1
− 1

)2

. (24)

Note that Obkl,K is independent across 1 ≤ k, l ≤ K. Let

V b
kl,K =

∑
s∈I(Cbk,K),t∈I(Cbl,K)[n

(1)
θ (s, t)Hst,K0 − n

(2)
θ (s, t)Hst,K0Bst(ZK0)]

n2
,

where n(m)
θ (k) =

∑
i∈Ck,K0

θmi for m = 1, · · · , 4,

n
(1)
θ (s, t) = n

(1)
θ (s)n

(1)
θ (t)− n(2)

θ (s)1{s = t},
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and
n

(2)
θ (s, t) = n

(2)
θ (s)n

(2)
θ (t)− n(4)

θ (s)1{s = t}.
Then,

n−1ρ−1/2
n {Obkl,K − E[Obkl,K ]} −NK(k, l) = op(1), k 6= l, (25)

where NK(k, l) is normally distributed with expectation zero and variance V b
kl,K ,

n−1ρ−1/2
n {Obkk,K − E[Obkk,K ]} −NK(k, k) = op(1), k = K − 1,K,

where NK(k, k) is normally distributed with zero expectation and variance 2V b
kk,K , and

{{NK(k, l)}k=1,··· ,K−2,l=K−1,K , NK(K − 1,K), NK(K − 1,K − 1), NK(K,K)}

are mutually independent.
Next, we consider the linear expansions for Îkn − Ikn and ÎIn − IIn separately in Steps 1 and

2 below.
Step 1. We consider the linear expansion of Îkn − Ikn.

In this step, we focus on the case in which k = 1, · · · ,K − 2 and l = K − 1,K. Note that

M̂ b
kl,K

M̂kK−1,K−1

=
Obkl,K/[

∑K
l′=1O

b
ll′,K ]

OkK−1,K−1/[
∑K−1

l′=1 OK−1l′,K−1]

=
Obkl,K/[

∑K
l′=1O

b
ll′,K ]

[
∑K

l=K−1O
b
kl,K ]/[

∑K
l=K−1

∑K
l′=1O

b
ll′,K ]

.

Similarly,

M b
kl,K

MkK−1,K−1
=

E[Obkl,K ]/{
∑K

l′=1E[Obll′,K ]}
{
∑K

l=K−1E[Obkl,K ]}/{
∑K

l=K−1

∑K
l′=1E[Obll′,K ]}

. (26)

Then, by the delta method and some tedious calculation, we have

nρ1/2
n [M̂ b

kl,K −M b
kl,K ] =

NK(k, l)

Γbl·,K
−

Γbkl,K [
∑K

l′=1NK(l, l′)]

(Γbl·,K)2
+ op(1),

where NK(K − 1,K) = NK(K,K − 1),

Γbkl,K = n−2ρ−1
n E[Okl] = Γ0b

kl,K + o(1), (27)

and

Γbl·,K = n−2ρ−1
n

K∑
l′=1

E[Obll′,K ] = Γ0b
l·,K + o(1). (28)

Similarly,

nρ1/2
n [M̂kK−1,K−1 −MkK−1,K−1]

=
NK(k,K − 1) +NK(k,K)

ΓbK−1·,K + ΓbK·,K

−
[ΓbkK−1,K + ΓbkK,K ][

∑K
l′=1NK(l′,K − 1) +NK(l′,K)]

[ΓbK−1·,K + ΓbK·,K ]2
+ op(1).
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By Taylor expansion, we have

nρ1/2
n

(
M̂ b
kl,K

M̂kK−1,K−1

−
M b
kl,K

MkK−1,K−1

)

=
1

MkK−1,K−1

[
NK(k, l)

Γbl·,K
−

Γbkl,K(
∑K

l′=1NK(l, l′))

(Γbl·,K)2

]

−
M b
kl,K

M2
kK−1,K−1

[
NK(k,K − 1) +NK(k,K)

ΓbK−1·,K + ΓbK·,K

−
(ΓbkK−1,K + ΓbkK,K)(

∑K
l′=1NK(l′,K − 1) +NK(l′,K))

(ΓbK−1·,K + ΓbK·,K)2

]
+ op(1).

This, in conjunction with the fact that a2 − b2 = (a− b)2 + 2 (a− b) b, implies that

n−1ρ1/2
n (Îkn − Ikn) (29)

=
K∑

l=K−1

0.5n−1ρ1/2
n nbkl,K

(
M̂ b
kl,K

M̂kK−1,K−1

−
M b
kl,K

MkK−1,K−1

)2

+
K∑

l=K−1

n−1ρ1/2
n nbkl,K

(
M̂ b
kl,K

M̂kK−1,K−1

−
M b
kl,K

MkK−1,K−1

)(
M b
kl,K

MkK−1,K−1
− 1

)

=
K∑

l=K−1

πbk,Kπ
b
l,K

(
M b
kl,K

MkK−1,K−1
− 1

)

× nρ1/2
n

(
M̂ b
kl,K

M̂kK−1,K−1

−
M b
kl,K

MkK−1,K−1

)
+ op(1)

=
K−2∑
l′=1

K∑
l=K−1

φl′,l(k)NK(l′, l) + φK−1,K−1(k)NK(K − 1,K − 1) + φK−1,K(k)NK(K − 1,K)

+ φK,K(k)NK(K,K) + op(1),

where the second equality follows from the facts that nbkl,K = nbk,Kn
b
l,K , nbk,K =

∑n
i=1 1{[ZbK ]ik =

1}, and

nbk,K
n
→ πbk,K :=

∑
m∈I(Cbk,K)

πm∞
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with πm∞ defined in Assumption 2 and that nρ1/2
n → ∞ as n → ∞ under Assumption 4. For the

last line of the above display,

φl′,l(k)

=πbk,Kπ
b
l,K

(
M b
kl,K

M2
kK−1,K−1

− 1

MkK−1,K−1

)[
1{l′ = k}

Γbl·,K
−

Γbkl,K

(Γbl·,K)2

]

−
K∑

l=K−1

πbk,Kπ
b
l,K

(
(M b

kl,K)2

M3
kK−1,K−1

−
M b
kl,K

M2
kK−1,K−1

)

×
[

1{l′ = k}
ΓbK−1·,K + ΓbK·,K

−
ΓbkK−1,K + ΓbkK,K

[ΓbK−1·,K + ΓbK·,K ]2

]
, l′ = 1, · · · ,K − 2, l = K − 1,K,

φK−1,K−1(k)

=− πbk,KπbK−1,K

(
M b
kK−1,K

M2
kK−1,K−1

− 1

MkK−1,K−1

)
ΓbkK−1,K

(ΓbK−1·,K)2

+
K∑

l=K−1

πbk,Kπ
b
l,K

(
(M b

kl,K)2

M3
kK−1,K−1

−
M b
kl,K

M2
kK−1,K−1

)
ΓbkK−1,K + ΓbkK,K

[ΓbK−1·,K + ΓbK·,K ]2
,

φK−1,K(k)

=−
K∑

l=K−1

πbk,Kπ
b
l,K

(
M b
kl,K

M2
kK−1,K−1

− 1

MkK−1,K−1

)
Γbkl,K

(Γbl·,K)2

+
K∑

l=K−1

πbk,Kπ
b
l,K

(
(M b

kl,K)2

M3
kK−1,K−1

−
M b
kl,K

M2
kK−1,K−1

)
2[ΓbkK−1,K + ΓbkK,K ]

[ΓbK−1·,K + ΓbK·,K ]2
,

and

φK,K(k)

=− πbk,KπbK,K
(

M b
kK,K

M2
kK−1,K−1

− 1

MkK−1,K−1

)
ΓbkK,K

(ΓbK·,K)2

+

K∑
l=K−1

πbk,Kπ
b
l,K

(
(M b

kl,K)2

M3
kK−1,K−1

−
M b
kl,K

M2
kK−1,K−1

)
ΓbkK−1,K + ΓbkK,K

[ΓbK−1·,K + ΓbK·,K ]2
.

Step 2. We consider the linear expansion of ÎIn − IIn.
Note that

M̂ b
K−1K−1,K −M b

K−1K−1,K

=
ObK−1K−1,K − E[ObK−1K−1,K ]∑

i′,j′∈CbK−1,K ,i
′ 6=j′ d̂i′ d̂j′

−
E[ObK−1K−1,K ][

∑
i′,j′∈CbK−1,K ,i

′ 6=j′(d̂i′ d̂j′ − di′dj′)]

(
∑

i′,j′∈CbK−1,K ,i
′ 6=j′ d̂i′ d̂j′)(

∑
i′,j′∈CbK−1,K ,i

′ 6=j′ di′dj′)
.
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By the proof of Su et al. (2020, Lemma 3.1), we have, for some positive constant C > 0,

sup
i
|d̂i/di − 1| ≤ C(log1/2(n)(nρn)−1/2) ≤ CC−1/2

1 a.s. (30)

Therefore,

n−4ρ−2
n

∑
i′,j′∈CbK−1,K ,i

′ 6=j′
d̂i′ d̂j′ =n−4ρ−2

n

(
∑

i′∈CbK−1,K

d̂i′)
2 −

∑
i′∈CbK−1,K

d̂2
i′


=n−4ρ−2

n

( K∑
k=1

(EObkK−1,K +ObkK−1,K − EObkK−1,K)

)2

−
∑

i′∈CbK−1,K

d̂2
i′


=[ΓbK−1·,K +Op((nρ

1/2
n )−1)]2 − n−4ρ−2

n

∑
i′∈CbK−1,K

d̂2
i′

=(ΓbK−1·,K)2 + op(1),

where the third equality holds because ObkK−1,K − EObkK−1,K = Op(nρ
1/2
n ) and the last equality

holds because

n−4ρ−2
n

∑
i′∈CbK−1,K

d̂2
i′ ≤ n−4ρ−2

n

∑
i′∈CbK−1,K

d2
i (1 + CC

−1/2
1 ) = Oa.s.(n

−1).

Also note that, by (30),

n−3ρ−3/2
n

∑
i′,j′∈CbK−1,K ,i

′ 6=j′
(d̂i′ d̂j′ − di′dj′)

=n−3ρ−3/2
n

[
(
∑

i′∈CbK−1,K

d̂i′)
2 − (

∑
i′∈CbK−1,K

di′)
2

]
− n−3ρ−3/2

n

[ ∑
i′∈CbK−1,K

(d̂2
i′ − d2

i′)

]

=n−3ρ−3/2
n

[
(
∑

i′∈CbK−1,K

d̂i′ − di′)(
∑

i′∈CbK−1,K

di′ + d̂i′)

]
+ oa.s.(1)

=n−3ρ−3/2
n

[
(
∑

i′∈CbK−1,K

d̂i′ − di′)2(
∑

i′∈CbK−1,K

di′)

]
+ n−3ρ−3/2

n (
∑

i′∈CbK−1,K

d̂i′ − di′)2

+ oa.s.(1)

=2ΓK−1·,K

( K∑
l′=1

NK(K − 1, l′)

)
+ op(1),
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where the second equality holds because

n−3ρ−3/2
n

∣∣∣∣∣∣∣
∑

i′∈CbK−1,K

(d̂2
i′ − d2

i′)

∣∣∣∣∣∣∣
=n−3ρ−3/2

n

∣∣∣∣∣∣∣
∑

i′∈CbK−1,K

(d̂i′ − di′)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑

i′∈CbK−1,K

(d̂i′ + di′)

∣∣∣∣∣∣∣
≤n−3ρ−3/2

n

(
1 + CC

−1/2
1

) ∑
i′∈CbK−1,K

di′


2

C(log1/2(n)(nρn)−1/2) = oa.s.(1),

and the last equality holds because∑
i′∈CbK−1,K

(d̂i′ − di′) = Op(nρ
1/2
n ).

Then, by the delta method,

n3ρ3/2
n [M̂ b

K−1K−1,K −M b
K−1K−1,K ] (31)

=
NK(K − 1,K − 1)

(ΓbK−1·,K)2
−

2ΓbK−1K−1,K [
∑K

l′=1NK(K − 1, l′)]

(ΓbK−1·,K)3
+ op(1).

Similarly,

n3ρ3/2
n (M̂ b

KK,K −M b
KK,K) =

NK(K,K)

(ΓbK·,K)2
−

2ΓbKK,K [
∑K

l′=1NK(K, l′)]

(ΓbK·,K)3
+ op(1).

Furthermore, we have

M̂ b
K−1K,K −M b

K−1K,K

=
ObK−1K,K − E[ObK−1K,K ]

(
∑

i′∈CbK−1,K
d̂i′)(

∑
j′∈CbK,K

d̂j′)

−
E[ObK−1K,K ][(

∑
i′∈CbK−1,K

d̂i′)(
∑

j′∈CbK,K
d̂j′)− (

∑
i′∈CbK−1,K

di′)(
∑

j′∈CbK,K
dj′)]

(
∑

i′∈CbK−1,K
d̂i′)(

∑
j′∈CbK,K

d̂j′)(
∑

i′∈CbK−1,K
di′)(

∑
j′∈CbK,K

dj′)
.

Therefore,

n3ρ3/2
n [M̂ b

K−1K,K −M b
K−1K,K ]

=
NK(K − 1,K)

ΓbK−1·,KΓbK·,K
(32)

−
ΓbK−1K,K [ΓbK−1·,K

∑K
l′=1NK(l′,K) + ΓbK·,K

∑K
l′=1NK(l′,K − 1)]

(ΓbK−1·,K)2(ΓbK·,K)2
+ op(1).
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Finally, noting that

M̂K−1K−1,K−1

=
OK−1K−1,K−1∑

i′,j′∈CK−1,K−1,i′ 6=j′ d̂i′ d̂j′

=
ObK−1K−1,K + 2ObK−1K,K +ObKK,K∑

i′,j′∈CbK−1,K ,i
′ 6=j′ d̂i′ d̂j′ +

∑
i′,j′bK,K ,i

′ 6=j′ d̂i′ d̂j′ + 2
∑

i′∈CbK−1,K ,j
′∈CbK,K

d̂i′ d̂j′
,

we have

n3ρ3/2
n (M̂K−1K−1,K−1 −MK−1K−1,K−1) (33)

=
NK(K − 1,K − 1) + 2NK(K − 1,K) +NK(K,K)

[ΓbK−1·,K + ΓbK·,K ]2

−
ΓbK−1K−1,K + 2ΓbK−1K,K + ΓbKK,K

[ΓbK−1·,K + ΓbK·,K ]3

×

{
K∑
l′=1

2[NK(K − 1, l′) +NK(K, l′)]

}
+ op(1).

For s, t = K − 1,K, let m̂b
st,K = n2ρnM̂

b
st,K and

mb
st,K = n2ρnM

b
st,K =

Γ0b
st,K

Γ0b
s·,KΓ0b

t·,K
[1 + o(1)].

Define mK−1K−1,K−1 and m̂K−1K−1,K−1 similarly. By the previous calculations, we have

m̂b
st,K = mb

st,K [1 + oa.s.(1)].

Hence,

nρ1/2
n

(
M̂ b
K−1K−1,K

M̂K−1K−1,K−1

−
M b
K−1K−1,K

MK−1K−1,K−1

)

=
n3ρ

3/2
n [M̂ b

K−1K−1,K −M b
K−1K−1,K ]

mK−1K−1,K−1

−
mb
K−1K−1,Kn

3ρ
3/2
n [M̂K−1K−1,K−1 −MK−1K−1,K−1]

m2
K−1K−1,K−1

+ op(1), (34)

nρ1/2
n

(
M̂ b
KK,K

M̂K−1K−1,K−1

−
M b
KK,K

MK−1K−1,K−1

)

=
n3ρ

3/2
n [M̂ b

KK,K −M b
KK,K ]

mK−1K−1,K−1

−
mb
KK,Kn

3ρ
3/2
n [M̂K−1K−1,K−1 −MK−1K−1,K−1]

m2
K−1K−1,K−1

+ op(1), (35)
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and

nρ1/2
n

(
M̂ b
K−1K,K

M̂K−1K−1,K−1

−
M b
K−1K,K

MK−1K−1,K−1

)

=
n3ρ

3/2
n [M̂ b

K−1K,K −M b
K−1K,K ]

mK−1K−1,K−1

−
mb
K−1K,Kn

3ρ
3/2
n [M̂K−1K−1,K−1 −MK−1K−1,K−1]

m2
K−1K−1,K−1

+ op(1). (36)

Then, by (31)–(36),

n−1ρ1/2
n (ÎIn − IIn) (37)

=nρ1/2
n

[
(πbK−1,K)2

(
M̂ b
K−1K−1,K

M̂K−1K−1,K−1

−
M b
K−1K−1,K

MK−1K−1,K−1

)

+ 2πbK−1,Kπ
b
K,K

(
M̂ b
K−1K,K

M̂K−1K−1,K−1

−
M b
K−1K,K

MK−1K−1,K−1

)

+ (πbK,K)2

(
M̂ b
KK,K

M̂K−1K−1,K−1

−
M b
KK,K

MK−1K−1,K−1

)]
+ op(1)

=n3ρ3/2
n

[
(πbK−1,K)2[M̂ b

K−1K−1,K −M b
K−1K−1,K ]

mK−1K−1,K−1

+
2πbK−1,Kπ

b
K,K [M̂ b

K−1K,K −M b
K−1K,K ]

mK−1K−1,K−1

+
(πbK,K)2[M̂ b

KK,K −M b
KK,K ]

mK−1K−1,K−1

]
+

(πbK−1,K)2mb
K−1K−1,K + 2πbK−1,Kπ

b
K,Km

b
K−1K,K + (πbK,K)2mb

KK,K

m2
K−1K−1,K−1

× n3ρ3/2
n [M̂K−1K−1,K−1 −MK−1K−1,K−1] + op(1)

=

K−2∑
l′=1

K∑
l=K−1

φl′,l(K − 1)NK(l′, l) + φK−1,K−1(K − 1)NK(K − 1,K − 1)

+ φK−1,K(K − 1)NK(K − 1,K) + φK,K(K − 1)NK(K,K) + op(1),

where, by denoting

φ =
(πbK−1,K)2mb

K−1K−1,K + 2πbK−1,Kπ
b
K,Km

b
K−1K,K + (πbK,K)2mb

KK,K

m2
K−1K−1,K−1

,
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we have

φl′,K−1(K − 1)

=−
2(πbK−1,K)2ΓbK−1K−1,K

(ΓbK−1·,K)3mK−1K−1,K−1
−

2πbK−1,Kπ
b
K,KΓbK−1K,K

ΓbK·,K(ΓbK−1·,K)2mK−1K−1,K−1

−
2φ[ΓbK−1K−1,K + 2ΓbK−1K,K + ΓbKK,K ]

[ΓbK−1·,K + ΓbK·,K ]3m2
K−1K−1,K−1

, l′ = 1, · · · ,K − 2,

φl′,K(K − 1)

=−
2(πbK,K)2ΓbKK,K

(ΓbK·,K)3mK−1K−1,K−1
−

2πbK−1,Kπ
b
K,KΓbK−1K,K

(ΓbK·,K)2ΓbK−1·,KmK−1K−1,K−1

−
2φ[ΓbK−1K−1,K + 2ΓbK−1K,K + ΓbKK,K ]

[ΓbK−1·,K + ΓbK·,K ]3m2
K−1K−1,K−1

, l′ = 1, · · · ,K − 2,

φK−1,K−1(K − 1)

=
(πbK−1,K)2

(ΓbK−1·,K)2mK−1K−1,K−1
−

2(πbK−1,K)2ΓbK−1K−1,K

(ΓbK−1·,K)3mK−1K−1,K−1
−

2πbK−1,Kπ
b
K,KΓbK−1K,K

ΓbK·,K(ΓbK−1·,K)2mK−1K−1,K−1

+
φ

[ΓbK−1·,K + ΓbK·,K ]2m2
K−1K−1,K−1

−
2φ[ΓbK−1K−1,K + 2ΓbK−1K,K + ΓbKK,K ]

[ΓbK−1·,K + ΓbK·,K ]3m2
K−1K−1,K−1

,

φK,K(K − 1)

=
(πbK,K)2

(ΓbK·,K)2mK−1K−1,K−1
−

2(πbK,K)2ΓbKK,K

(ΓbK·,K)3mK−1K−1,K−1
−

2πbK−1,Kπ
b
K,KΓbK−1K,K

(ΓbK·,K)2ΓbK−1·,KmK−1K−1,K−1

+
φ

[ΓbK−1·,K + ΓbK·,K ]2m2
K−1K−1,K−1

−
2φ[ΓbK−1K−1,K + 2ΓbK−1K,K + ΓbKK,K ]

[ΓbK−1·,K + ΓbK·,K ]3m2
K−1K−1,K−1

,

and

φK−1,K(K − 1)

=−
2(πbK−1,K)2ΓbK−1K−1,K

(ΓbK−1·,K)3mK−1K−1,K−1
−

2(πbK,K)2ΓbKK,K

(ΓbK·,K)3mK−1K−1,K−1
+

2πbK−1,Kπ
b
K,K

ΓbK−1·,KΓbK·,KmK−1K−1,K−1

−
2πbK−1,Kπ

b
K,KΓbK−1K,K [ΓbK−1·,K + ΓbK·,K ]

(ΓbK·,K)2(ΓbK−1·,K)2mK−1K−1,K−1
+

2φ

[ΓbK−1·,K + ΓbK·,K ]2m2
K−1K−1,K−1

−
4φ[ΓbK−1K−1,K + 2ΓbK−1K,K + ΓbKK,K ]

[ΓbK−1·,K + ΓbK·,K ]3m2
K−1K−1,K−1

.
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Combining (29) and (37), we have

n−1ρ1/2
n [Ln(ẐK , ẐK−1)− B̃K,n]

=

K−2∑
l′=1

K∑
l=K−1

φl′,lNK(l′, l) + φK−1,K−1NK(K − 1,K − 1)

+ φK−1,KNK(K − 1,K) + φK,KNK(K,K) + op(1),

where

φl′,l =
K−2∑
k=1

2φl′,l(k) + φl′,l(K − 1), l′ = 1, · · · , l, l = K − 1, K.

Letting

$̃2
K,n =

∑
l′=1,··· ,K−2; l=K−1,K; l′≤l

φ2
l′,lV

b
l′l,K + φ2

K−1,K−12V b
K−1K−1,K

+ φ2
K,K2V b

KK,K + φ2
K−1,KV

b
K−1K,K , (38)

we have
$̃−1
K,n

{
n−1ρ1/2

n [Ln(ẐK , ẐK−1)− B̃K,n]
}
 N(0, 1).

Step 3. We now prove the second result in the theorem.
By (23), (26), (27) and (28) , for k = 1, · · · ,K − 2, we have

n−2Ikn →
K∑

l=K−1

0.5πbk,Kπ
b
l,K

(
Γ0b
kl,K [Γ0b

K−1·,K + Γ0b
K·,K ]

Γ0b
l·,K [ΓbkK−1,K + Γ0b

kK,K ]
− 1

)2

.

Similarly, by (24), (26), (27) and (28), we have

n−2IIn

→0.5(πbK−1,K)2

(
Γ0b
K−1K−1,K [Γ0b

K−1·,K + Γ0b
K·,K ]2

[Γ0b
K−1·,K ]2[Γ0b

K−1K−1,K + 2Γ0b
K−1K,K + Γ0b

KK,K ]
− 1

)2

+ πbK−1,Kπ
b
K,K

×
(

Γ0b
K−1K,K [Γ0b

K−1·,K + Γ0b
K·,K ]2

Γ0b
K−1·,KΓ0b

K·,K [Γ0b
K−1K−1,K + 2Γ0b

K−1K,K + Γ0b
KK,K ]

− 1

)2

+ 0.5(πbK,K)2

(
Γ0b
KK,K [Γ0b

K−1·,K + Γ0b
K·,K ]2

[Γ0b
K·,K ]2[Γ0b

K−1K−1,K + 2Γ0b
K−1K,K + Γ0b

KK,K ]
− 1

)2

.

Clearly, there exits cK2 <∞ such that

n−2B̃K,n =
K−2∑
k=1

n−2Ikn + n−2IIn ≤ cK2.

In addition, Assumption 5 implies that at least one of the squares is nonzero. Therefore, there exists
a constant ck1 > 0 such that

n−2B̃K,n =
K−2∑
k=1

n−2Ikn + n−2IIn ≥ cK1.
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D.4 Proof of Theorem 6

We consider the upper bound for Ln(ẐbK0+1, ẐK0). We say z is a n× (K0 + 1) membership matrix
for n nodes and K0 + 1 groups if there is only one element in each row of z that takes value 1, and
the rest of the entries are zero. Say Zik = 1, then we say that the i-th node is identified in group k.
Let

VK0+1 =


z is a n× (K0 + 1) membership matrix s.t.

every group identified by z is a subset of
one of the true communities and

inf1≤k≤K nk(z)/n ≥ ε

 .

Without loss of generality, we assume that ẐbK0+1 is obtained by splitting the last group in ẐK0

into the K0 -th and (K0 + 1)-th groups in ẐbK0+1. By Theorem 4 and Assumption 6, we have
ẐbK0+1 ∈ VK0+1 a.s. Let zK0+1 be an arbitrary realization of ẐbK0+1 such that zK0+1 ∈ VK0+1 and
h(·|zK0+1) be a surjective mapping: [K0 + 1] 7→ [K0] that maps the community index identified by
zK0+1 into the true community index in [K0] for any zK0+1 ∈ VK0+1. Then, we have

h(k|zK0+1) = k, k = 1, · · · ,K0 − 1

and
h(K0|zK0+1) = h(K0 + 1|zK0+1) = K0.

In the following, we explicitly write down the terms Mkl, M̂kl, and Okl as functions of zK0+1, i.e.,

Mkl(zK0+1) =
E[Okl(zK0+1)]∑

i′∈Ck(zK0+1),j′∈Cl(zK0+1),i′ 6=j′ di′dj′
, (39)

M̂kl(zK0+1) =
Okl(zK0+1)

(
∑K

l′=1Okl′(zK0+1))(
∑K

l′=1Oll′(zK0+1))
,

and

Okl(zK0+1) =
n∑
i=1

∑
j 6=i

1{[zK0+1]ik = 1, [zK0+1]jl = 1}Aij ,

where Cl(zK0+1) denotes the l-th cluster identified by zK0+1. Further recall nkl and nk defined in
(6) in Section 3.3. We emphasize the dependence on zK0+1 because, by Theorem 4, ZK and ZbK
for K = 1, · · · ,K0 are uniquely defined, while ZbK0+1 is not. By (39), for any zK0+1 ∈ VK0+1,
i ∈ Ck(zK0+1) and j ∈ Cl(zK0+1), k = 1, · · · ,K0 − 1, l = K0,K0 + 1. Then,

Pij(zK0+1) = Bh(k|zK0+1)h(l|zK0+1)θiθj = BkK0,K0θiθj = Pij(ZK0)

and
Mkl(zK0+1)

MkK0,K0

=
Pij(zK0+1)

Pij(ZK0)
= 1, k = 1, · · · ,K0 − 1, l = K0,K0 + 1. (40)

Similarly,

MK0K0(zK0+1)

MK0K0,K0

=
MK0K0+1(zK0+1)

MK0K0,K0

=
MK0+1K0+1(zK0+1)

MK0K0,K0

= 1. (41)
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By Theorem 4, ẐK0 = ZK0 and ẐbK0+1 ∈ VK0+1 a.s. Therefore, (40) and (41) still hold when
zK0+1 and ZK0 are replaced by ẐbK0+1 and ẐK0 . Then,

Ln(ẐbK0+1, ẐK0)

=2

K0−1∑
k=1

K0+1∑
l=K0

0.5nkl(Ẑ
b
K0+1)

(
M̂kl(Ẑ

b
K0+1)

M̂kK0,K0

− 1

)2

+ 0.5

[
nK0K0(ẐbK0+1)

(
M̂K0K0(ẐbK0+1)

M̂K0K0,K0

− 1

)2

+ 2nK0K0+1(ẐbK0+1)

(
M̂K0K0+1(ẐbK0+1)

M̂K0K0,K0

− 1

)2

+ nK0+1K0+1(ẐbK0+1)

(
M̂K0+1,K0+1(ẐbK0+1)

M̂K0K0,K0

− 1

)2]
. (42)

For the first term in (42),

0.5nkl(Ẑ
b
K0+1)

(
M̂kl(Ẑ

b
K0+1)

M̂kK0,K0

− 1

)2

. n2 sup
zK0+1∈VK0+1

(
M̂kl(zK0+1)

M̂kK0,K0

− Mkl(zK0+1)

MkK0,K0

)2

.

The rate of the RHS of the above display depends on that of

sup
zK0+1∈VK0+1

|Okl(zK0+1)− E[Okl(zK0+1)]|.

By Bernstein inequality,

P ( sup
zK0+1∈VK0+1

|Okl(zK0+1)− E[Okl(zK0+1)]| ≥ Cn3/2ρ1/2
n )

≤2n exp

(
− C2n3ρn/2

θ
2
n2ρn + Cn3/2ρ

1/2
n /3

)
≤ exp(−C ′n)

for some constant C ′ > 0. Therefore,

sup
zK0+1∈VK0+1

|Okl(zK0+1)− E[Okl(zK0+1)]| = Oa.s.(n
3/2ρ1/2

n ).

It also implies the uniform consistency that

sup
zK0+1∈VK0+1

|n−2ρ−1
n Okl(zK0+1)− Γkl(zK0+1)| = Oa.s.((nρn)−1/2) + o(1) = oa.s.(1),

where

Γkl(zK0+1) =
nl(zK0+1)

n

nk(zK0+1)

n
Hh(k|zK0+1)h(l|zK0+1).

Following the same and tedious Taylor expansion detailed in Steps 1 and 2 of the proof of
Theorem 5, we have

sup
zK0+1∈VK0+1

∣∣∣M̂kl(zK0+1)−Mkl(zK0+1)
∣∣∣ = Oa.s.((n

5/2ρ3/2
n )−1),
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|M̂kK0,K0 −MkK0,K0 | = Op((n
3ρ3/2
n )−1),

and
n2ρnMkK0,K0 ≥ c,

for some constant c > 0. Therefore,

sup
zK0+1∈VK0+1

∣∣∣∣M̂kl(zK0+1)

M̂kK0,K0

− Mkl(zK0+1)

MkK0,K0

∣∣∣∣ = Op((nρn)−1/2)

and

0.5nkl(Ẑ
b
K0+1)

(
M̂kl(Ẑ

b
K0+1)

M̂kK0,K0

− 1

)2

= Op(nρ
−1
n ).

The rest of the terms in (42) can be bounded similarly. Thus, we conclude that

Ln(ẐbK0+1, ẐK0) = Op(nρ
−1
n ). (43)

Next, we study the asymptotic property of K̂1. If K0 = 1, P (K̂1 ≥ 1) = 1 holds trivially. If
K0 ≥ 2,

R(1) � n2

ηn
� 1.

When 2 ≤ K < K0, by Theorem 5,

R(K) � B̃K−1 +Op(nρ
−1/2
n )

B̃K +Op(nρ
−1/2
n )

� 1.

When K = K0, by Theorem 5 and (43),

R(K0) .
nρ−1

n

cK1n2 +Op(nρ
−1/2
n )

→ 0.

Since n2/(nρ−1
n ) = nρn ≥ C1 log(n)→∞ under Assumption 4,

P (K̂1 ≥ K0) ≤ P
(
R(K0) < max

K<K0

R(K)

)
→ 1.

Now, we study the asymptotic property of K̃2. If K0 = 1,

R(1) .
1

nρn
→ 0.

Therefore, P (K̃2 = 1) = P (R(1) ≤ hn) → 1 because nρnhn → ∞ as n → ∞. If K0 ≥ 2, by
Theorem 5 and (43), 

R(K) � n2

nρn
→∞, if K = 1,

R(K) � 1, if 2 ≤ K < K0,

R(K) . nρ−1
n

n2 � 1
nρn
→ 0, if K = K0.

This, in conjunction with the conditions that nρnhn →∞ and hn → 0 as n→∞ implies that

P (K̃2 = K0) = P

(
min

1≤K<K0

R(K) > hn, R(K0) ≤ hn
)
→ 1.

It follows that P (K̂2 = K0) ≥ P (K̂1 ≥ K0, K̃2 = K0)→ 1.
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Appendix E. Technical lemmas

Lemma 7 Suppose Assumptions 1 and 2 hold. Let uTi be the i-th row of U1n.

(1) There exists aK0×K0 matrix Sτn such that (Sτn)TSτn = IK0 andU1n = Θ
1/2
τ ZK0(ZTK0

ΘτZK0)−1/2Sτn.

(2) Let [Sτn](K) and [Sτn]k(K) denote the first K columns of Sτn and its k-th row, respectively.
There exist some K × K orthonormal matrix Os, a K0 × K0 matrix S∞ and a positive
constant c such that for any K ≤ K0, [Sτn]k(K)Os → [S∞](K), [S∞](K) has rank K, and
for any k = 1, · · · ,K0 and K = 1, · · · ,K0,

lim inf
n
||[Sτn]k(K)|| ≥ c.

Proof The first result is proved in Su et al. (2020). For part (2), by the proof of Theorem 1(2), we
have

Sτn[K]Os → S∞[K]

where S∞ is the eigenvector matrix of Π
′1/2
∞ H∗0,K0

Π
′1/2
∞ and is of full rank, and Os is a K × K

orthogonal matrix. In addition, by Assumptions 1(2) and 2, all elements in Π
′1/2
∞ H∗0,K0

Π
′1/2
∞ are

positive. By Horn and Johnson (1990, Lemma 8.2.1), all elements in the first column of S∞ are
strictly positive. This implies that, for any k = 1, · · · ,K0,

lim inf
n
||[Sτn]k(K)|| = lim inf

n
||[Sτn]k(K)Os|| = ||[S∞]k(K)|| ≥ ||[S∞]k1|| > 0.

This concludes the proof.

The following lemma is largely based on Wang and Su (2021, Theorem 3.2) and Su et al. (2020,
Theorem 2.3).

Lemma 8 Let C be a set of nodes and {β̂in}i∈C be a sequence of dβ×1 vectors such that supi∈C ||β̂in−
βin|| ≤ c1 a.s. and supi∈C ||βin|| ≤ M for some sufficiently small constant c1 > 0 and some con-
stant M > 0, respectively. In addition, suppose {βin}i∈C has L distinct vectors for some L ≥ K
and we group index i into L mutually exclusive groups {Cl}Ll=1 such that if i, j ∈ Cl, βin = βjn and
for any i ∈ Cl, j ∈ Cl′ , l 6= l′, infi,j,n ||βin − βjn|| > c2 > 0. Let πl = #Cl

n , l = 1, · · · , L. Then,
minl=1,··· ,L πl ≥ π > 0. We apply k-means algorithm on {βin}ni=1 and {β̂in}ni=1 and obtain K sets
of mutually exclusive groups (C(1), · · · , C(K)) and (Ĉ(1), · · · , Ĉ(K)), respectively. Suppose C(k),
k = 1, · · · ,K are uniquely defined, then

(1) for any l = 1, · · · , L,
Cl ⊂ one of {C(k), k = 1, · · · ,K};

(2) ∣∣∣∣∣ Φ̂(C)−
∑K

k=1 Φ̂(Ĉ(k))

#C
−

Φ(C)−
∑k

k=1 Φ(C(k))

#C

∣∣∣∣∣ ≤ Cc1, a.s.,
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where C > 0 is some constant independent of n and for a generic index set C,

Φ̂(C) =
∑
i∈C
||β̂in −

∑
i∈C β̂in

#C
||2

and

Φ(C) =
∑
i∈C
||βin −

∑
i∈C βin

#C
||2; and

(3) after relabeling, Ĉ(k) = C(k), k = 1, · · · ,K.

Proof Following the proof of Wang and Su (2021, Theorem 3.2), we focus on the case L = 3. The
proof for L ≥ 4 is similar but require more notation. When K = 1, the results are trivial. When
K = 3, Lemma 8(1) is trivial as C(k) = Ck, k = 1, 2, 3 after relabeling. Lemma 8(3) directly
follows Su et al. (2020, Theorem 2.3), given that c1 is sufficiently small so that

(2c1π
1/2 + 16K3/4M1/2c1)2 ≤ πc2

2.

Given Lemma 8(3), Lemma 8(2) holds with C = 16M because∣∣∣∣∣∣
∥∥∥∥∥β̂in −

∑
i∈C β̂in

#C

∥∥∥∥∥
2

−
∥∥∥∥βin − ∑i∈C βin

#C

∥∥∥∥2
∣∣∣∣∣∣ ≤ 8Mc1.

Next, we proof Lemma 8 for K = 2. Denote β̄l, l = 1, 2, 3 as the true values βin can take when
i ∈ C1, C2, and C3, respectively.

Step 1. Proof of Lemma 8(1). Suppose

π2π3

π2 + π3
||β̄2 − β̄3||2 <

π1π3

π1 + π3
||β̄1 − β̄3||2 <

π1π2

π1 + π2
||β̄1 − β̄2||2 (44)

In this case, we aim to show that C(1) = C1 and C(2) = C2 ∪ C3. Suppose that, by the k-means
algorithm, nπ∗l nodes of i ∈ Cl, π∗l ∈ [0, πl], l = 1, 2, 3 are classified into C(1) and the rest are in
C(2). We aim to show that (44) implies π∗1 = π1 and π∗2 = π∗3 = 0. The k-means objective function
for the classification (C(1), C(2)) is

F (α1, α2;π∗1, π
∗
2, π
∗
3) ≡

3∑
l=1

π∗l ||β̄l − α1||2 +
3∑
l=1

(πl − π∗l )||β̄l − α2||2,

where α1 =
∑3

l=1 π
∗
l β̄l∑3

l=1 π
∗
l

and α2 =
∑3

l=1(π−π∗l )β̄l∑3
l=1(π−π∗l )

. Suppose π∗1 ∈ (0, π1), then we have

||β̄1 − α1|| = ||β̄1 − α2||,

which implies that, for any π̃ ∈ (0, π),

F (α1, α2;π∗1, π
∗
2, π
∗
3) = F (α1, α2; π̃, π∗2, π

∗
3) ≥ F (α̃1, α̃2; π̃, π∗2, π

∗
3),
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where α̃1 =
π̃1β̄1+π∗2 β̄2+π∗3 β̄3

π̃1+π∗2+π∗3
and α̃2 =

(π1−π̃1)β̄1+(π2−π∗2)β̄2+(π3−π∗3)β̄3
1−π̃1−π∗2−π∗3

are the minimizer ofF (·, ·; π̃, π∗2, π∗3).
In addition, because F (α1, α2;π∗1, π

∗
2, π
∗
3) achieves the minimum of the k-means objective function

among all classifications, we have

F (α1, α2;π∗1, π
∗
2, π
∗
3) ≤ F (α̃1, α̃2; π̃, π∗2, π

∗
3),

which implies that the equality holds, for any π̃1 ∈ (0, π1). Then, by the uniqueness of the mini-
mizer for the quadratic objective function F (·, ·; π̃, π∗2, π∗3), we have, for any π̃ ∈ (0, π1),

(α1, α2) = (α̃1, α̃2).

This implies that β̄1 =
π∗2 β̄2+π∗3 β̄3
π∗2+π∗3

=
(π2−π∗2)β̄2+(π3−π∗3)β̄3

π2−π∗2+(π3−π∗3) = π2β̄2+π3β̄3
π2+π3

. Plugging this equality into
(44), we have

π2π3

π2 + π3
||β̄2 − β̄3||2 <

π1π2

π1 + π2
||β̄1 − β̄2||2 =

(
π1

π1 + π2

)(
π3

π2 + π3

)(
π2π3

π2 + π3
||β̄2 − β̄3||2

)
,

which is a contradiction. This implies that π∗1 = 0 or π1. Similarly, if π∗2 ∈ (0, π2), we can show
that β̄2 = π1β̄1+π3β̄3

π1+π3
. Then, by (44),

π1π3

π1 + π3
||β̄1 − β̄3||2 <

π1π2

π1 + π2
||β̄1 − β̄2||2 =

(
π3

π1 + π2

)(
π2

π2 + π3

)(
π1π3

π1 + π3
||β̄1 − β̄3||2

)
,

which is again a contradiction. Therefore, π∗2 = 0 or π2. This means, Ck ⊂ C(1) or C(2), for
k = 1, 2. Last, we assume the k-means algorithm classify π∗3 fraction of C3 with C1 and the rest
with C2. Then, the k-means objective function becomes

min
α1,α2

F (α1, α2;π1, π2, π
∗
3) =

π1π
∗
3

π1 + π∗3
||β̄1 − β̄3||2 +

π2(π3 − π∗3)

π2 + π3 − π∗3
||β̄2 − β̄3||2.

When π∗3 = 0, the above display becomes π2π3
π2+π3

||β̄2 − β̄3||2. In addition,(
π1π

∗
3

π1 + π∗3
||β̄1 − β̄3||2 +

π2(π3 − π∗3)

π2 + π3 − π∗3
||β̄2 − β̄3||2

)
−
(

π2π3

π2 + π3
||β̄2 − β̄3||2

)
=π∗3

(
π1

π1 + π∗3
||β̄1 − β̄3||2 −

π2
2

(π2 + π3)(π2 + π3 − π∗3)
||β̄2 − β̄3||2

)
≥π∗3

(
π1

π1 + π3
||β̄1 − β̄3||2 −

π2

(π2 + π3)
||β̄2 − β̄3||2

)
≥ 0,

where the first inequality holds because the term in the parenthesis after the first equal sign is a
decreasing function in π∗3 ∈ [0, π3] and the last inequality holds because of (44). This implies that
π∗3 = 0, i.e., C(1) = C1 and C(2) = C2 ∪ C3, which implies Lemma 8(1).

If the three terms in (44) take distinctive values, the above argument is valid after relabeling. If
at least two terms take same values, then the k-means algorithm applying to {βin}ni=1 do not have a
unique solution. This situation has been ruled out by our assumption.
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Step 2. Proof of Lemma 8(3). Let Qn(A) =
∑L

l=1 min1≤k≤K ‖β̄l − αk‖2πk, A ∈ M =
{(α1, . . . , αK) : sup1≤k≤K ‖αk‖ ≤ 2M} for some constant M independent of n, g0

i = k if
i ∈ C(k), and Rn = supi ‖β̂in − βin‖. By the assumptions in Lemma 8,

Rn ≤ c1 a.s. (45)

In addition,

‖β̂in − αk‖2 ≥ ‖βin − αk‖2 − 2|(βin − β̂in)T (βin − αl)| − ‖βin − β̂in‖2

≥ ‖βin − αk‖2 − 2‖βin − β̂in‖‖βin − αk‖ −R2
n

≥ ‖βin − αk‖2 − 6MRn −R2
n

≥ ‖βin − αk‖2 − 7MRn,

where the third inequality follows the Cauchy-Schwarz inequality. Taking min1≤k≤K on both sides
and averaging over i, we have

Q̂n(A) ≡n−1
n∑
i=1

min
1≤k≤K

||β̂in − αl||2

≥n−1
n∑
i=1

min
1≤k≤K

||βin − αl||2 − 7MRn ≥ Qn(A)− 7Mc1,

where the inequality is due to (45). Similarly, we have Q̂n(A) ≤ Qn(A) + 7Mc1, and thus,

R̆n ≡ sup
A∈M

|Q̂n(A)−Qn(A)| ≤ 7Mc1 a.s. (46)

We maintain (44). In this case, the minimizer of Qn(·), as shown in the previous step, is A∗ =

(α∗1, α
∗
2), where α∗1 = β̄1 and α∗2 = π2β̄2+π3β̄3

π2+π3
. Then, Qn(A∗) = π2π3

π2+π3
||β̄2 − β̄3||2. For a generic

A = (α1, α2) andH(A,A∗) ≥ η, whereH(·, ·) denotes the Hausdorff distance of two sets, we aim
to lower bound Qn(A) − Qn(A∗). In view of the definition of Qn(·), we consider the following
three cases: between α1 and α2,

(1) β̄1 is closer to α1 while (β̄2, β̄3) are closer to α2;

(2) β̄2 is closer to one of α1 while (β̄1, β̄3) are closer to α2;

(3) β̄3 is closer to one of α1 while (β̄1, β̄2) are closer to α2;

(4) (β̄1, β̄2, β3) are all closer to one of α1 and α2.

For case (1),

Qn(A)−Qn(A∗) =π1||β̄1 − α1||2 +
∑
l=2,3

πl
[
||β̄l − α2||2 − ||β̄l − α∗2||2

]
=π1||α∗1 − α1||2 +

∑
l=2,3

πl
[
2(β̄l − α∗2)T (α∗2 − α2) + ||α2 − α∗2||2

]
=π1||α∗1 − α1||2 + (π2 + π3)||α2 − α∗2||2

≥πmax(||α∗1 − α1||, ||α2 − α∗2||)2 ≥ πη2,
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where the third equality holds because α∗2 = π2β̄2+π3β̄3
π2+π3

, the first inequality holds because for arbi-
trary constants a, b > 0, a+ b ≥ max(a, b), and the last inequality holds because,

H(A,A∗) = max(H1(A,A∗),H2(A,A∗)),

where

H1(A,A∗) = max(min(||α∗1 − α1||, ||α∗1 − α2||),min(||α∗2 − α1||, ||α∗2 − α2||))
≤max(||α∗1 − α1||, ||α∗2 − α2||)

and

H2(A,A∗) = max(min(||α∗1 − α1||, ||α1 − α∗2||),min(||α2 − α∗1||, ||α∗2 − α2||))
≤max(||α∗1 − α1||, ||α∗2 − α2||).

For case (2), we have

Qn(A)−Qn(A∗) ≥ inf
α2

(
π1||β̄1 − α2||2 + π3||β̄3 − α2||2

)
− π2π3

π2 + π3
||β̄2 − β̄3||2

≥ π1π3

π1 + π3
||β̄1 − β̄3||2 −

π2π3

π2 + π3
||β̄2 − β̄3||2 ≥M > 0.

where

M = min

(
π1π3

π1 + π3
||β̄1 − β̄3||2,

π1π2

π1 + π2
||β̄1 − β̄2||2

)
− π2π3

π2 + π3
||β̄2 − β̄3||2

and the last inequality holds by (44).
Similarly, for case (3), we have

Qn(A)−Qn(A∗) ≥ inf
α2

(
π1||β̄1 − α2||2 + π2||β̄2 − α2||2

)
− π2π3

π2 + π3
||β̄2 − β̄3||2

≥ π1π2

π1 + π2
||β̄1 − β̄2||2 −

π2π3

π2 + π3
||β̄2 − β̄3||2 ≥M > 0.

Last, for the same reason, for case (4),

Qn(A)−Qn(A∗) ≥M > 0. (47)

Therefore, we have

inf
H(A,A∗)≥η

Qn(A)−Qn(A∗) ≥ min(πη2,M).

Further define Ân = (α̂1, α̂2) = arg minA Q̂n(A). Note α̂1 and α̂2 are weighted average of
{β̂in}ni=1 and supi ||β̂in|| ≤M + c1 ≤ 2M. Therefore, by (46),

|Q̂n(Ân)−Qn(Ân)| ≤ 7Mc1, a.s. (48)

and

|Q̂n(A∗)−Qn(A∗)| ≤ 7Mc1, a.s. (49)

58



DCSBM K

Then,

P (H(Ân,A∗) ≥ (15M/π)1/2c
1/2
1 i.o.)

=P (H(Ân,A∗) ≥ (15M/π)1/2c
1/2
1 , Qn(Ân)−Qn(A∗) ≥ min(15Mc1,M) i.o.)

≤P (14Mc1 + Q̂n(Ân)− Q̂n(A∗) ≥ min(15Mc1,M) i.o.)

≤P (14Mc1 ≥ min(15Mc1,M) i.o.)

=0,

where the first equality holds due to (47), the first inequality holds because of (48) and (49), the
second inequality holds because Q̂n(Ân) − Q̂n(A∗) ≥ 0, and the last equality holds because c1 is
sufficiently small so that 15Mc1 ≤M . This implies

H(Ân,A∗) ≤ (15M/π)1/2c
1/2
1 , a.s.

Further note that ||α∗1 − α∗2|| > 0, otherwise β̄1 = π2β̄2+π3β̄3
π2+π3

which is a contradiction as shown

in Step 1. Let c1 be sufficiently small so that (15M/π)1/2c
1/2
1 < ||α∗1 − α∗2||. Then there is a

one-to-one mapping Fn: {1, 2} 7→ {1, 2} such that

sup
k=1,2

||α̂k − α∗Fn(k)|| ≤ (15M/π)1/2c
1/2
1 .

W.l.o.g., we assume Fn(k) = k such that

sup
k=1,2

||α̂k − α∗k|| ≤ (15M/π)1/2c
1/2
1 .

Denote ĝi = k if i ∈ Ĉ(k), k = 1, 2 and g0
i = k if i ∈ C(k), k = 1, 2. If ĝi 6= g0

i , then
||β̂in − α̂ĝi || ≤ ||β̂in − α̂g0i ||. Therefore,

||βin − αg0i ||+ c1 + (15M/π)1/2c
1/2
1

≥||β̂in − α̂g0i ||

≥||β̂in − α̂ĝi || ≥ ||βin − α
∗
ĝi
|| − c1 − (15M/π)1/2c

1/2
1 .

Therefore,

1{ĝi 6= g0
i } ≤1{2c1 + 2(15M/π)1/2c

1/2
1 ≥ ||βin − α∗ĝi || − ||βin − α

∗
g0i
||} a.s.

By Lemma 8(1), we only need to consider the lower bound for the RHS of the above display in
three cases: (1) g0

i = 1 and βin = β̄1, (2) g0
i = 2 and βin = β̄2, and (3) g0

i = 2 and βin = β̄3. For
case (1),

||βin − α∗ĝi || − ||βin − α
∗
g0i
|| = ||α∗1 − α∗2|| =

∥∥∥∥β̄1 −
π2β̄2 + π3β̄3

π2 + π3

∥∥∥∥ > 0,

where the last inequality holds because by the argument in Step 1, β̄1 6= π2β̄2+π3β̄3
π2+π3

.
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For case (2), α∗ĝi = α∗1 = β̄1 and

||βin − α∗ĝi || − ||βin − α
∗
g0i
|| =||β̄2 − β̄1|| −

π3

π2 + π3
||β̄2 − β̄3||

≥||β̄2 − β̄3||
√

π3

π2 + π3

(√
π1 + π2

π1
−
√

π3

π2 + π3

)
> 0,

where the first inequality holds due to (44). Similarly, for case (3), we have

||βin − α∗ĝi || − ||βin − α
∗
g0i
|| =||β̄3 − β̄1|| −

π2

π2 + π3
||β̄2 − β̄3||

≥||β̄2 − β̄3||
√

π2

π2 + π3

(√
π1 + π3

π1
−
√

π2

π2 + π3

)
> 0.

Let constant C be

min

(∥∥∥∥β̄1 −
π2β̄2 + π3β̄3

π2 + π3

∥∥∥∥ , ||β̄2 − β̄1|| −
π3

π2 + π3
||β̄2 − β̄3||, ||β̄3 − β̄1|| −

π2

π2 + π3
||β̄2 − β̄3||

)
≥ C

such that C > 0. Then,

1{ĝi 6= g0
i } ≤1{2c1 + 2(15M/π)1/2c

1/2
1 ≥ ||βin − α∗ĝi || − ||βin − α

∗
g0i
||}

≤1{2c1 + 2(15M/π)1/2c
1/2
1 ≥ C}.

Noting that the RHS of the above display is independent of i and choosing c1 sufficiently small such
that

2c1 + 2(15M/π)1/2c
1/2
1 < C,

we have

P (sup
i

1{ĝi 6= g0
i } > 0, i.o.) ≤ P (2c1 + 2(15M/π)1/2c

1/2
1 ≥ C, i.o.) = 0

This concludes that Ĉ(k) = C(k) for k = 1, 2, which is the desired result for Lemma 8(3).
Step 3. Proof of Lemma 8(2). Given Lemma 8(3), the desired results can be derived by the

same argument for K = 3.
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