Customizing ML Predictions For Online Algorithms

Keerti Anand' Rong Ge! Debmalya Panigrahi'

Abstract

A popular line of recent research incorporates
ML advice in the design of online algorithms to
improve their performance in typical instances.
These papers treat the ML algorithm as a black-
box, and redesign online algorithms to take ad-
vantage of ML predictions. In this paper, we ask
the complementary question: can we redesign ML
algorithms to provide better predictions for on-
line algorithms? We explore this question in the
context of the classic rent-or-buy problem, and
show that incorporating optimization benchmarks
in ML loss functions leads to significantly bet-
ter performance, while maintaining a worst-case
adversarial result when the advice is completely
wrong. We support this finding both through the-
oretical bounds and numerical simulations.

1. Introduction

Optimization under uncertainty is a classic theme in the
fields of algorithm design and machine learning. In the
former, the framework of online algorithms adopts a con-
servative approach and optimizes for the worst case (or
adversarial) future. While this ensures robustness, the inher-
ent pessimism of the adversarial approach often results in
weak guarantees. Machine learning (ML), on the other hand,
takes a more optimistic approach of trying to predict the
future by fitting an appropriate model to past data. Indeed,
a popular line of recent research is to incorporate ML pre-
dictions in the design of online algorithms to improve their
performance while preserving the inherent robustness of the
framework (see related work for references). In this line of
research, ML is used as a black box, and the focus is on re-
designing online algorithms to use predictions generated by
any ML technique. In this paper, we ask the complementary
question: can we re-design learning algorithms to better
serve optimization objectives?

"Department of Computer Science, Duke University, Durham
NC, United States. Correspondence to: Keerti Anand
<kanand @cs.duke.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

The key to this question is the observation that unlike in a
generic learning setting, we are not interested in traditional
loss functions such as classification error or mean-squared
loss, but only in the eventual performance of the online algo-
rithm. The performance of the online algorithm is measured
by its competitive ratio — the worst-case ratio between the
cost of the online algorithm’s solution and that of the (of-
fline) optimum. By leveraging ML predictions, one can hope
to achieve a better competitive ratio in the typical case. Even
if the ML algorithm does not make accurate predictions, it
suffices if the learning errors do not adversely affect the
decisions taken by the online algorithm. Instead of treating
the learning algorithm and the subsequent optimization as
independent modules as in the previous line of work, we
ask if we can improve the overall online algorithm by de-
signing them in conjunction. That is, we seek to design a
learning algorithm specific to the optimization task at hand,
and an optimization algorithm that is aware of the learning
algorithm that generated the predictions.

We investigate this question in the context of the classic
rent-or-buy (a.k.a. ski rental) problem. In this problem,
the algorithm is faced with one of two choices: a small
recurring (rental) cost, or a large (buying) cost that has to
be paid once but no cost thereafter. This choice routinely
arises in our daily lives such as in the decision to rent or
buy a house, corporate decisions to rent or buy data centers,
expensive equipment, and so on. Naturally, the optimal
choice depends on the duration of use, a longer duration
justifying the decision to buy instead of renting. But, this
is where the uncertainty lies: the length of use is often not
known in advance. The ski rental problem is perhaps the
most fundamental, and structurally simplest, of all problems
in online algorithms, and has been widely studied in many
contexts (see, e.g., Karlin et al. (1994; 2003); Lotker et al.
(2008); Khanafer et al. (2013); Kodialam (2014)), including
that of online algorithms with ML predictions (Purohit et al.,
2018; Gollapudi & Panigrahi, 2019). We formally define
this problem next.

The ski rental problem. In the ski rental problem, a skier
has two options: to buy skis at a one time cost of $B or to
rent them at a cost of $1 per day. The skier does not know the
length of the ski season in advance, and only learns it once
the season ends. Note that if the length of the season were
known, then the optimal policy is to buy at the beginning of

mailto:kanand@cs.duke.edu
mailto:kanand@cs.duke.edu

Customizing ML Predictions For Online Algorithms

the season if it lasts longer than B days, and rent every day
if it is shorter. But, in the absence of this information, an
algorithm has to decide the duration of renting skis before
buying them. It is well-known that the best competitive ratio
achievable by a deterministic algorithm for this problem is
2 (e.g., Karlin et al. (1988)), and that by a randomized
algorithm is —=5 (e.g., Karlin et al. (1994)). The ski-rental
problem (Karlin et al., 1994; Lotker et al., 2008; Khanafer
et al., 2013; Kodialam, 2014), and variants such as TCP
acknowledgment (Karlin et al., 2003), the parking permit
problem (Meyerson, 2005), snoopy caching (Karlin et al.,
1988), etc. model the fundamental difficulty in decision
making under uncertainty in many situations.

The learning framework. We use a classic PAC learning
framework. Namely, the learning algorithm observes feature
vectors = € R? comprising, e.g., weather predictions, skier
history, etc. and aims to predict scalars y € RT denoting
the length of the ski season. We assume that (z, y) belongs
to an unknown joint distribution K. The learning algorithm
observes n samples (the “training set”) from K. Typically,
these samples would be used to train a model that maps
feature vectors z to predictions § = f(x) that minimizes
some loss function (e.g., mean squared error, hinge loss,
etc.) defined on K. In our problem, however, the goal is not
to predict the unknown y, but rather to optimize the solution
to the ski rental instance defined by y. Consequently, the
learning algorithm skips y altogether and outputs a solution
to the optimization problem directly. For the ski rental
problem, this amounts to defining a function §(z) that maps
the feature vector x to the duration of renting skis. The
expected competitive ratio is then given by the competitive
ratio of this policy 0(x) defined on distribution K. We call
this a “learning-to-rent” algorithm.

Our Contributions. Our goal is to design a learning-to-
rent algorithm with an expected competitive ratio of (1+¢),
and analyze the dependence of the number of samples n on
the value of €. Contrast this with online algorithms for this
problem that can at best achieve a competitive ratio of _%;
(e.g., Karlin et al. (1994)). If the joint distribution (z,y)
is arbitrary, then one cannot hope to achieve a competitive
ratio of (1 + ¢) since every sample may have a different
z and the conditional distributions y|z may be unrelated
for different values of z. However, it is natural to assume
that the joint distribution on (x, y) is Lipschitz in the sense
that nearby values of « imply similar conditional distribu-
tions y|x. Our first contribution (Theorem 1) is to design a
learning-to-rent algorithm whose competitive ratio is within
a factor of (1+¢) of the best competitive ratio achievable for
that distribution, under only the Lipschitz assumption. First,
we discretize the domain of x using an e-net. Then, for each
cell in the e-net, we have one of two cases. Either, there
are sufficiently many samples to estimate the conditional
distribution y|x. Or, a baseline online algorithm can be used

for the cell if it has very few samples. The dependence of
the number of samples n on the number of feature dimen-
sions d is exponential, which we show is indeed necessary
(Theorem 2).

Our next goal is to improve the dependence on d since the
number of features in a typical setting can be rather large,
which would make the previous algorithm prohibitively
expensive. To this end, we use a PAC learning approach
to address the problem. Since the optimal ski rental policy
exhibits threshold behavior (rent throughout if y < B and
buy at the outset if y > B), we treat the underlying learning
problem as a classification task. In particular, we introduce
an auxiliary binary variable z that captures the two regimes
for the optimal ski rental policy:

(1
7o

Our first result is that if z belongs to a concept class that is
(e,8) PAC-learnable from x, then we can obtain a learning-
to-rent algorithm that achieves a competitive ratio of (1 +
24/¢€) with probability 1 — . This implies, for instance, that
if there were a linear classifier for z, then the number of
required training samples n to obtain a (1 + &) competitive
algorithm can be decreased from exponential to linear in d,
specifically O(d/s?).

ify > B
ify < B

While it’s a significant improvement over the previous
bound, we hope to do even better by exploiting the spe-
cific structure of the ski rental problem. In particular, we
observe that the classification error is almost entirely due to
samples close to the threshold, but for values of y close to
B, mis-classifying z does not cost us significantly in the ski
rental objective. This allows us to create an artificial margin
around the classification boundary and discard all samples
that appear in this margin. Using this improvement, we can
improve the sample complexity of the training set to remove
the dependence on d entirely (although at a slightly worse
dependence on ¢€).

We also consider a noisy model where the labels in the train-
ing set are noisy. By this, we mean that labels for a certain
fraction of the input distribution are flipped adverserially.
We design a noise tolerant algorithm for the learning-to-rent
problem with a competitive ratio of 1 + 3,/p, where p is the
mis-classification error of a noise tolerant binary classifier.
We complement this bound by showing that for a noise level

of 7, the best competitive ratio achievable is 1 + 4

Next, we consider robustness of our algorithms, i.e., their
performance under no assumptions on the input. An impor-
tant distinction between the recent line of research on online
algorithms with predictions and previous “beyond worst
case” approaches to competitive analysis is that the recent
work simultaneously provides worst case guarantees while
also improving the bounds if the additional assumptions on

Customizing ML Predictions For Online Algorithms

the input hold. Therefore, it is crucial that our algorithms
are also robust in this sense. Indeed, we show that in order
to obtain a competitive ratio of (1 4 ¢€) in the optimistic
scenario, none of our algorithms has competitive ratios any
worse than 1 + % in the adversarial setting.

Finally, we perform numerical simulations to evaluate
our learning-to-rent policies. We consider three differ-
ent regimes, corresponding to small (d = 2), moderate
(d = 100), and large (d = 5000) number of feature dimen-
sions. Recall that our margin-based technique outperforms
the black box learning approach for a large number of fea-
ture dimensions. This is indeed the case in our experiments:
while the two approaches are comparable for d = 2 and
exhibit relatively mild differences for d = 100, the margin-
based approach is decidedly superior for d = 5000. In
principle, this shows that in large instances, there is con-
siderable benefit to customizing ML predictions to make
them conducive to the objectives of the online algorithm.
In fact, we also show experimentally that although margin-
based predictions achieve a smaller competitive ratio, their
corresponding mis-classification error is rather large. This
provides further evidence that a black box learning approach
that simply tries to minimize classification error is not suffi-
cient for generating good predictions for online algorithms.
In addition, we also empirically evaluate the performance of
our noise-tolerant algorithm and map the competitive ratio
as a function of the mis-classification error.

Related Work. A robust literature is beginning to emerge
in incorporating ML predictions in online algorithms. While
the list of papers in this domain continues to grow by the
day, some of the representative problems that this theme has
been applied to include: auction pricing (Medina & Vassil-
vitskii, 2017), rent or buy (Purohit et al., 2018; Gollapudi &
Panigrahi, 2019), caching (Lykouris & Vassilvitskii, 2018;
Rohatgi, 2020; Jiang et al., 2020), scheduling (Purohit et al.,
2018; Lattanzi et al., 2020; Mitzenmacher, 2020), frequency
estimation (Hsu et al., 2019), Bloom filters (Mitzenmacher,
2018), etc. As described earlier, these results consider ML
as a black box and re-design the online algorithm, whereas
we take the complementary approach of re-designing the
learning algorithm to suit the optimization task.

Our main idea is to modify the loss function in the learning
algorithm to incorporate the optimization objective. There
has been previous research in a similar spirit, where the
loss function in learning is adapted to suit specific purposes,
albeit different ones from our work. For instance, Huang
et al. (2019) give an “Adaptive Loss Alignment” scheme to
meta-learn the loss function to directly optimize the evalua-
tion metric in the context of Reinforcement Learning. Gupta
& Roughgarden (2017) present a framework for algorithm
selection as a statistical learning problem. This framework
captures, for instance, the notion of “self-improving algo-

rithms”, where the goal is to learn the input distribution and
adaptively design an optimal policy (originally proposed by
Ailon et al. (2011)). A related line of research, pioneered
by Cole & Roughgarden (2014), is that of optimizing on
samples of the input rather than the entire input (see also
Morgenstern & Roughgarden (2016); Balkanski et al. (2016;
2017)). Yet another example of adapting the loss function in
learning is in Cost Sensitive Learning (Elkan, 2001), where
mis-classication errors incur non-uniform penalties (see also
Kamalaruban & Williamson (2018); Ling & Sheng (2008)).

2. Preliminaries

For notational convenience, we consider a continuous ver-
sion of the ski rental problem, where the buying cost is
$1, and the length of the ski season is denoted by y. (The
assumption on the buying cost is w.l.o.g. by appropriate
scaling.) Therefore, the optimal offline solution is to buy
at the outset when y > 1 and rent throughout when y < 1.
We also denote the feature vector by z € R? (e.g., weather
predictions, skier behavior, etc.) and assume that (z,y)
is drawn from an unknown joint distribution K. Given a
feature vector x, the goal of the algorithm is to produce a
threshold () such that the skier rents till time 6(z) and
buys at that point if the ski season is longer. We call 6(x)
the wait time of the algorithm.

If the distribution K were known to the algorithm, then for
each input z, it can compute the conditional distribution y|z
and solve the resulting stochastic ski rental problem, i.e.,
where the input is drawn from a given distribution. It is well
known that the optimal strategy in this case can be described
by a fixed wait time that we denote 6*(z).

Of course, in general, the distribution K is not known to the
algorithm, and has to be “learned” from training data. The
“learning-to-rent” algorithm observes n training samples
(zi,y:) ~ K, and based on them, generates a function 6(x)
that maps feature vectors x to the wait time. The (expected)
competitive ratio of the algorithm is given by:

CR(0,K) = Ezy)~x[9(0(2),)] (1)

—4— wheny < 0(x)
where g(0(z),y) = { min{y.1} ()
riiif;l)} when y > 0(x).

The goal of the learning-to-rent algorithm is to output a
function 6(+) that minimizes CR in Eq. (1). Since the ideal
strategy is to output the function 6*(-), we measure the
performance of the algorithm as the ratio between CR(6, K)
and CrR(6*,K).

Definition 1. A learning-to-rent algorithm A with threshold
Sunction 0(-) is said be (¢, 0)-accurate with n. samples, if for
any distribution K, after observing n samples, we have the

Customizing ML Predictions For Online Algorithms

following guarantee with probability at least 1 — §:
CrR(0,K) < (1+¢€) - Cr(0",K). 3)

If we say that an algorithm is (1 + €)-accurate, we mean
Eq. (3) holds for some fixed constant 6.

The additional parameter K can be dropped when the distri-
bution is clear from the context.

3. A General Learning-to-Rent Algorithm

As described in the introduction, it is natural (and required)
to assume that the joint distribution K on (z, y) is Lipschitz
in the sense that similar feature vectors imply similar
conditional distributions y|z. In this section, our main con-
tribution is to design a learning-to-rent algorithm under this
minimal assumption.

First, we give the precise definition of the Lipschitz property
we require. In particular, we measure distances between
distributions using the earth mover distance (EMD) metric.

Definition 2. For probability distributions X, Y over RY,

EMD(X,Y) = (E@y)~xlllz —ylll) -

min
K:K|z=X,K|y=Y

The joint distribution K above is such that its marginals with
respect to y and z are equal to X and Y respectively.

We now define the Lipschitz property using EMD as the
distance measure between distributions.

Definition 3. A joint distribution on (x,y) € R? x R
is said to be L-Lipschitz iff for all 1,25 € R% the
marginal distributions Y1 = ylz1, Yo = y|zo satisfy
EMD(Y1,Ys) < L - ||a1 — 22|,

Now we are ready to state our main result in this section:

Theorem 1. For the learning-to-rent problem, if v € [0, 1],
and the joint distribution (x,y) is L-Lipschitz, then there

(=)™

is (1 + €)-accurate with high probability."

exists an algorithm that uses n = samples and

Algorithm 1 Outputs 6 4 for a given distribution on y

Query (F%) samples for some constant 6 > 0.
Initialize array [of length 6%

Let £[0] « average of g(6, y) over all samples y.
return 04 < argminge(. 1 /¢j,9/een ¢10]-

Let us first consider the simple case where we have a fixed
x and only consider the conditional distribution y|x. In this
case, it is natural to optimize 6 over the empirical samples

'with probability exceeding 1 — SHD

of y. However, if we don’t put any constraint on 6, the
competitive ratio for a sample y can be unbounded (this can
happen when 6 is close to O or very large), which might
hurt generalization. We solve this problem by proving that
it suffices to consider ¢ in the range [e, 1/€] in order to get
an (1 + €)-accurate solution. (See Algorithm 1.)

Algorithm 2 Outputs 6 4 () for multi-dimensional 2

Divide the hyper-cube [0, 1]¢ into sub-cubes of side length
64L3\/é> d_

E3

GiLva each. The number of such cubes is N = (
Index the cubes by 7, where 1 <7 < N.

Query TI = (1024LVd . les, and let I, =
yII = o samples, and let I, = [¢, 1/€].

d
Set threshold 7 = (64578\/&> .

for each sub-cube C;:
if the number of samples from the sub-cube exceeds 7
then
ComPUte 0; « arg minGEIg,H/eEN E(w,y):xeci [9(03 y)]
For all z € C;: return 64 (x) + 6;.
else
For all z € C;: return 64 (z) < 1.

To go from a single = to the whole distribution, the main
idea is to discretize the domain of x using an e-net for small
enough ¢.2 For each cell in the e-net, we show that if there
are enough samples in the training set from that cell, then we
can estimate the conditional probability y|z to a sufficient
degree of accuracy for the optimization loss to be bounded
by 1 + €. On the other hand, if there are too few samples,
then the probability density in the cell is small enough that it
suffices to use a worst case online algorithm for all test data
in the cell. (The formal algorithm is given in Algorithm 2.)
We refer the reader to the full version of the paper for a
formal analysis of this algorithm.

The main shortcoming of Theorem 1 is that there is an expo-
nential dependence of the sample complexity on the number
of feature dimensions d. Unfortunately, this dependence is
necessary, as shown by the next theorem:

Theorem 2. For any learning-to-rent algorithm, there exists
a family of 1-Lipschitz joint distributions (z,y) where x €
[0, 1]¢ such that the algorithm must query eﬂﬁ samples in
order to be (1 + €)-accurate, for small enough € > 0.

4. A PAC Learning Approach to the
Learning-to-Rent Problem

In the previous section, we saw that without making further
assumptions, the number of samples required by a learning-

The € in the e-net is not the same as the accuracy parameter e.
We are overloading e in this description because the reader may be
familiar with the term e-net; in the formal algorithm (Algorithm 2),
we avoid this overloading.

Customizing ML Predictions For Online Algorithms

to-rent algorithm will be exponential in the dimension of the
feature space. To avoid this, we try to identify reasonable
assumptions that allow the learning-to-rent algorithm to be
more efficient.

We follow the traditional framework of PAC learning. Recall
that in PAC learning, the true function mapping features to
labels is restricted to a given concept class C:

Definition 4. Consider a set X € R and a concept class C
of Boolean functions X — {0, 1}. Let ¢ be an arbitrary hy-
pothesis in C. Let P be a PAC learning algorithm that takes
as input the set S comprising m samples (x;,vy;) where x;
is sampled from a distribution D on X and y; = c(x;), and
outputs a hypothesis ¢. P is said to be have € error with
failure probability o, if with probability at least 1 — §:

P,plé(@) # c(@)] < e.

Standard results in learning theory show that if the function
class C is “simple”, the PAC-learning problem can be solved
with a small number of samples. In the learning-to-rent
problem, our goal is to learn the optimal policy 6*(+).

We consider the situation where the value of y is determin-
istic given x. This assumption says that the features contain
enough information to predict the length of the ski season.

Assumption 1. In the input distribution (x,y) ~ K for the
learning-to-rent algorithm, the value of y is a deterministic
Sunction of x i.e y = f(x) for some function f.

Note that in this case, the optimal solution is going to have
competitive ratio of 1, so an (14 ¢)-accurate learning-to-rent
algorithm must have competitive ratio 1 + €.

Because of Assumption 1, the entire feature space can be
divided into two regions: one where y < 1 and renting is
optimal, and the other where y > 1 and buying at the outset
is optimal. If the boundary between these two regions is
PAC-learnable, we can hope to improve on the result from
the previous section. This could also be seen as a weakening
of Assumption 1:

Assumption 2. In the input distribution (x,y) ~ K for the
learning-to-rent algorithm where X is the domain for x,
there exists a hypothesis ¢ : X — {0, 1} lying in a concept
class C such that c separates the regions y > 1 and y < 1.
For notational purposes, we say c(x) = 1 wheny > 1 and
c(x) =0wheny < 1.

PAC-learning as a black box. We first show that in this
setting, one can use the PAC-learning algorithm as a black-
box. In other words, if we can PAC-learn the concept class
C accurately, then we can get a competitive algorithm for
the ski-rental problem. The precise algorithm is given in
Algorithm 3. Note that we only use Assumption 2 here.

Algorithm 3 Black box learning-to-rent algorithm

Set T = /e

Learning: Query n samples. Train a PAC-learner.

For test input x:

if PAC-learner predicts y > 1
then 0(z) = 7

else 6(z) = 1.

The next theorem relates the competitive ratio achieved by
Algorithm 3 with the accuracy of the black-box PAC learner.
This implies an upper bound on the sample complexity of
learning-to-rent, using the sample complexity bounds for
PAC learners.

Theorem 3. Given an algorithm that PAC-learns the con-
cept class C with error € and failure probability 6, there
exists a learning-to-rent algorithm that has a competitive
ratio of (1 + 2+/€) with probability 1 — 4.

Remark: The above theorem can be refined for asymmetri-
cal errors (where the classification errors on the two sides
are different) showing that the algorithm is more sensitive
to errors of one type than the other.

Next, we show that the relationship between PAC-learning
and learning-to-rent, established in one direction in Theo-
rem 3, actually holds in other direction too. In other words,
we can derive a PAC-learning algorithm from a learning-to-
rent algorithm. This implies, for instance, that existing lower
bounds for PAC-learning also apply to learning-to-rent al-
gorithms. Therefore, in principle, the sample complexity of
the algorithm in Theorem 3 is (nearly) optimal without any
further assumptions.

Theorem 4. If there exists an (¢, §)-accurate learning-to-
rent algorithm for a concept class C with n samples, then
there exists an O(e, §) PAC-learning algorithm for C with
the same number of samples.

4.1. Margin-based PAC-learning for Learning-to-Rent

Theorem 3 is very general in that there are many concept
classes for which we have existing PAC-learning bounds.
On the other hand, even for a simple linear separator, PAC-
learning requires at least 2(d) samples in d dimensions,
which can be costly for large d. However, the sample com-
plexity can be reduced when the VC-dimension of the con-
cept class is small:

Theorem 5 (e.g., (Kearns & Vazirani, 1994)). A concept
class of VC-dimension D is (e,0) PAC-learnable using n =

S} (%(1/5)) samples. For fixed 6, the sample complexity
of PAC-learning is © (%)

Customizing ML Predictions For Online Algorithms

In particular, this result is used when the underlying data
distribution has a margin, which is the distance of the closest
point to the decision boundary:

Definition 5. Given a data set D € R? x {0,1} and a
separator c, the margin of D with respect to c is defined as

minaz’eRd,(w,y)eD,c(m’)iy ||J,‘ - '1:/”

The advantage of having a large margin is that it reduces
the VC-dimension of the concept class. Since the precise
dependence of the VC-dimension on the width of the margin
(denoted «) depends on the concept class C, let us denote
the VC-dimension by D(«).

Crucially, we will show that in the learning-to-rent algo-
rithm, it is possible to reduce the sample complexity even if
the original data (x,y) ~ K does not have any margin. The
main idea is that the learning-to-rent algorithm can ignore
training data in a suitably chosen margin. This is because
y =~ 1 for points in the margin, and the competitive ratio
of ski rental is close to 1 for these points even with no ad-
ditional information. Thus, although the algorithm fails to
learn the label of test data near the margin reliably, this does
not significantly affect the eventual competitive ratio of the
learning-to-rent algorithm.

Note that the L-Lipschitz property under Assumption 1 is:

Assumption 3. For xq,x2 € X where X is the domain of

z, ify1 = f(x1) and yo = f(x2), we have |y1 — yo| <
L2y — a2l

We now give a learning-to-rent algorithm that uses this
margin-based approach (Algorithm 4). Recall that « is the
width of the margin used by the algorithm; we will set the
value of « later.

Algorithm 4 Margin-based learning-to-rent algorithm

Set v = La.

Learning: Query n samples. Discard samples (z;,y;)
where y; € [1 —,1+ 4]. Use the remaining samples to
train a PAC-learner with margin «.

For test input x:

if PAC-learner predicts y > 1
then 0(z) =~

else (z) =1+ 7.

The filtering process creates an artificial margin:

Lemma 6. In Algorithm 4, the samples used in the PAC
learning algorithm have a margin of .

We now analyze the sample complexity of Algorithm 4.

Theorem 7. Given a concept class C with VC-dimension
D(«) under margin «, there exists a learning-to-rent al-
gorithm that has a competitive ratio of 1 + O(La) for n

samples with constant failure probability, where « satisfies:

Dla) _ p,, (4)
n

Proof. Let g denote the probability that (z;,y;) satisfies
1—v <y, <14 7,ie.,isin the margin. With probability
1 — g, a test input does not lie in the margin and we have the
following two scenarios:

e With probability (1 — €), the prediction is correct and
the competitive ratio is at most (1 + 7).

e With probability e, the prediction is incorrect and the
competitive ratio is at most max (1 + %, 24 7). For

small v (say v < 1/2, which will hold for any reason-
able sample size n), this value is 1 + %

With probability g, a test input lies in the margin and the
competitive ratio is at most if—z The expected competitive
ratio is:

CR(O,K) < (1—¢q)-(1—¢)- (1 +7)+

o (o0 (1)

<1+ (1—q)‘(1—6)-v+(1—q)'6-%+q~

€

<1l+4v+(1-9q) fory <1/2.

Now, note that by Chernoff bounds (see, e.g., Motwani &
Raghavan (1997)), the number of samples used for training
the classifier after filtering is ny > n(1—gq)/2 with constant
probability. Also, by Theorem 5 and Lemma 6, we predict
D(«
(%)
using n s samples with constant probability. This implies:

)}

n

whether y < 1 ory > 1 with an error rate of e = O

(1—q)~6=0<

Thus, CR(0,K) < 1+ 4y+ O (lzl(—f;)) Optimizing for

D(a)

v, we have v = 0 (> But, we also have v = La

in the algorithm. This implies that we choose « to satisfy
Eq. (4) and obtain a competitive ratio of 1 + O(La). O

We now apply this theorem for the important and widely
used case of linear separators. The following well-known
theorem establishes the VC-dimension of linear separators
with a margin.

Theorem 8 (see, e.g., Vapnik & Vapnik (1998)). For an
input parameter space X € R¢ that lies inside a sphere of

Customizing ML Predictions For Online Algorithms

radius R, the concept class of a-margin separating hyper-
planes for X has the VC dimension D given by:

Feature vectors are typically assumed to be normalized to
have constant norm, i.e., R = O(1). Thus, Theorem 7 gives
the sampling complexity for linear separators as follows:

Corollary 9. For the class of linear separators, there is a
learning-to-rent algorithm that takes as input n samples

and has a competitive ratio of 1 + O (nﬁ)

For instances where a linear separator does not exist, a pop-
ular technique called kernelization (see Rasmussen (2003)),
is to transform the data points « to a different space ¢(z)
where they become linearly separable.

Corollary 10. For a kernel function ¢ satisfying
1 .
lp(z1) — p(x2)|| > 5 - |1 — 22| for all x1, x5, assuming
the data is linearly separable in kernel space, there exists a
learning-to-rent algorithm that achieves a competitive ratio

of 1+ 0 (;L/lLTZ) with n samples,

Conceptually, the corollary states that we can make use of
these kernel mappings without hurting the competitive ratio
bounds achieved by the algorithm. This is because the sam-
ple complexity in the margin-based algorithm (Algorithm 4)
is independent of the number of dimensions.

5. Learning-to-rent with a Noisy Classifier

So far, we have seen that PAC-learning a binary classifier
with deterministic labels (Assumption 1) is sufficient for a
learning-to-rent algorithm. However, in practice, the data
is often noisy, which leads us to relax Assumption 1 in this
section. Instead of requiring y|z to be deterministic, we
only insist that y|z is predictable with sufficient probability.
In other words, we replace Assumption 1 with the following
(weaker) assumption:

Assumption 1°. In the input distribution (z,y) ~ K, there
exists a deterministic function f and a parameter p such
that the conditional distribution of y|x satisfies y = f(x)
with probability at least 1 — p.

This definition follows the setting of binary classification
with noise first introduced by Bylander (1994). Indeed, the
existence of noise-tolerant binary classifiers (e.g., (Blum
et al., 1998; Awasthi et al., 2014; Natarajan et al., 2013)),
leads us to ask if these classifiers can be utilized to design
learning-to-rent algorithms under Assumption 1°. We an-
swer this question in the affirmative by designing a learning-
to-rent algorithm in this noisy setting (see Algorithm 5).
This algorithm assumes the existence of a binary classifier

than can tolerate a noise rate of p and achieves classification
error of . Let pg = max(p,e€). If py is large, then the
noise/error rate is too high for the classifier to give reliable
information about test data; in this case, the algorithm re-
verts to a worst-case (randomized) strategy. On the other
hand, if pg is small, the the algorithm uses the label output
by the classifier, but with a minimum wait time of /Do on
all instances to make it robust to noise and/or classification
error.

Algorithm 5 Learning-to-rent with a noisy classifier

Set pp = max(p, €).

Learning:
if po < ﬁ
then PAC-learn the classifier on n (noisy) training samples.

For test input z:
if Po > ﬁ

z

then P[f(z) — 2] = 4 10 72 € [0:1]
0, for z > 1.
else
if PAC-learner predicts y < 1
then 0(z) =1

else 0(x) = \/po.

The next theorem shows that this algorithm has a competi-
tive ratio of 14O (,/pg) for small py, and does no worse than
the worst case bound of % irrespective of the noise/error:

Theorem 11. [f there is a PAC-learning algorithm that can
tolerate noise of p and achieve accuracy ¢, the above algo-
rithm achieves a competitive ratio of min(1 + 3./po, %)
where py = max{p, €}.

We also show that the above result is optimal in a rather
strong sense: namely, even with no classification error, the
competitive ratio achieved cannot be improved.

Theorem 12. For a given noise rate p < %, no (random-
ized) algorithm can achieve a competitive ratio smaller
than 1 + ﬁ, even when the algorithm has access to a
PAC-learner that has zero classification error.

6. Robustness Bounds

In this section, we address the scenario when there is no
assumption on the input, i.e., the choice of the input is adver-
sarial. The desirable property in this setting is encapsulated
in the following definition of “robustness” adapted from the
corresponding notion in (Purohit et al., 2018):

Definition 6. A learning-to-rent algorithm A with threshold
Sunction 0(-) is said to be y-robust if g(0(x),y) < =y for any
feature x and any length of the ski season y.

Customizing ML Predictions For Online Algorithms

First, we show an upper bound on the competitive ratio for
any algorithm based on the shortest wait time for any input.

Lemma 13. A learning-to-rent algorithm with threshold
Sunction 0(-) is (1 + %) -robust where:

6o = min 6(x).

zERC

Proof. Note that the function g(6, y) achieves its maximum
value at y = 6+ p where p — 0. In this case, the algorithm
pays 1+ 6, while the optimal offline cost approaches 6. This
gives us that max, g+ g(6,y) = (1 +). Now, since there
is no x such that f(x) < 6y, we get:

max
yeR+ xeRd

9(0(z),y) < (1+ 91) O

0

The robustness bounds for our algorithms are straightfor-
ward applications of the above lemma. We derive these
bounds below. First, we consider Algorithm 2 based only
on the Lipschitz assumption.

Theorem 14. Algorithm 2 is (1 + %)—robust.

Proof. Algorithm 2 always chooses a threshold in the range
[e,1/¢€], i.e., @ > e for all inputs. The theorem now follows
by Lemma 13. O

Next, we consider the black box algorithm that uses the PAC
learning approach, i.e., Algorithm 3.

Theorem 15. Algorithm 3 is (1 + 1)-robust.

Ve

Proof. Note that Algorithm 3 has § > /e for all inputs,
which by Lemma 13 gives a robustness bound of 1+%. O

Next, we show robustness bounds for the margin-based
approach, i.e., Algorithm 4.

Theorem 16. Algorithm 4 is (1 +

Lla) -robust.

Proof. This follows from Lemma 13, with the observation
that the shortest wait time in Algorithm 4 is v = La. [

Finally, we consider the noisy classification setting in Algo-
rithm 5.

Theorem 17. Algorithm 5 is max (e 14 -1)-robust.

e—1’ NG

Proof. In the two cases in Algorithm 5, either the threshold
0 satisfies 8 > /Po or a random threshold is chosen for
which the expected competitive ratio is —<; for any input.
In the first, case, we further note that py = max(p,¢) > ¢,
<1+ % The theorem now follows by

: 1
ie., 1+ N/
applying Lemma 13. O

7. Numerical Simulations

In this section, we use numerical simulations to evaluate the
algorithms that we designed for the learning-to-rent prob-
lem: the black box algorithm (Algorithm 3), the margin-
based algorithm (Algorithm 4), and the algorithm for a
noisy classifier (Algorithm 5). We compare the first two
algorithms and show that as the predicted by the theoretical
analysis, the margin-based algorithm substantially outper-
forms the black box algorithm in high dimensions. For
learning-to-rent with a noisy classifier, we show that its
competitive ratio follows the (1 + /p)-curve predicted by
the theoretical analysis with increasing noise rate p.

Experimental Setup. We first describe the joint distribu-
tion (x,y) ~ K used in the experiments. We choose a
random vector W € R% as W ~ N(0,1/d). We view W
as a hyper-plane passing through the origin (W72 = 0).
The value of y, representing the length of the ski season, is
calculated as W, such that y > 1 when W7z > 0
and y < 1 otherwise. Note that this satisfies the Lipschitz
condition given in Definition 3, with L = 2 for || < 1.

Training and Validation. For a given training set, we split
it in two equal halves, the first half is used to train our PAC
learner and the second half is used as a validation set to
optimize the design parameters in the algorithms, namely 7
in Algorithm 3 and y in Algorithm 4.

The input z is drawn from a mixture distribution, where
with probability 1/2 we sample z from a Gaussian = ~
N(0,1I/d), and with probability 1/2, we sample = as x =
aW 4+ n, here o ~ N(0, 1) is a coefficient in the direction
of W and n ~ N (0, 1I). Choosing x from the Gaussian
distribution ensures that the data-set has no margin; however,
in high dimensions, W7 2 will concentrate in a small region,
which makes all the label y very close to 1. We address this
issue by mixing in the second component which ensures
that the distribution of y is diverse.

We test our algorithms for dimensions d = 2, 100, and 5000.
For each d, we create a large corpus of samples and select
N of them randomly and designate this as the training set;
the remaining samples form the test set.

Comparison between the two algorithms. The compar-
ative performance of Algorithm 3 and Algorithm 4 for
d = 2,100, and 5000 is given in Fig. 1.> For small d
(d = 2), we do not see a significant difference in the per-
formance of the two algorithms because the curse of dimen-
sionality suffered by Algorithm 3 is not prominent at this
stage. In fact, in this case the optimal margin on validation
set is very close to 0. However, as d increases, Algorithm 4
starts outperforming Algorithm 3 as expected from the theo-

*In all the figures, the vertical bars represent standard deviation
of the output value and the value plotted on the curve is the mean.

Customizing ML Predictions For Online Algorithms

0.006

0.005

.003 I
\ |||I
nh

I|'
0.001

o-1
e
o
o
-
< e
o
o

Competitive Ratio -

e o

o

o

N

Competitive Ratio - 1

°
o
w

o.000 (l]]]]

1 o
11 11, “ 0.025
\4-__

2000 4000 6000 8000 10000
Number of Samples

500 750 1000 1250 1500 1750 2000 2250
Number of Samples

500 750 1000 1250 1500 1750 2000 2250
Number of Samples

Figure 1. Comparison of Algorithm 3 (blue) and Algorithm 4 (orange). From left to right, d = 2, 100, and 5000.

0.25
0.20

Misclassification Error

500 750 1000 1250 1500 1750 2000 2250
Number of Samples

Figure 2. Classification error in Algorithm 3 (green) and Algo-
rithm 4 (blue for all samples, orange for filtered samples).

retical analysis. For d = 100, this difference of performance
is prominent at small sample size but disappears for larger
samples, because of the trade-off between sample size and
number of dimensions in Corollary 9 and Theorem 3. Even-
tually, at d = 5000, Algorithm 4 is clearly superior.

To further understand the difference between the black box
approach and the margin-based approach, in Figure 2, we
plot the error of the two binary classifiers used in Algo-
rithm 3 and Algorithm 4 when d = 5000. Although both
classifiers achieve very low accuracy on the entire data-set,
the margin-based classifier was able to correctly label the
data points that are far from the decision boundary, i.e.,
the data points where mis-classification would be costly
from the optimization perspective. As a result, Algorithm 4
performs much better overall.

Learning with noise. We now evaluate the learning-to-rent
algorithm with a noisy classifier (Algorithm 5), We fix the
number of dimensions d = 100, and create a training set of
N = 10° samples using the same distribution as earlier. But
now, we add noise to the data by declaring each data point as
noisy with probability p (we will vary the parameter p over
our experiments). There are two types of noisy data points:
ones where the classifier predicts y > 1 and the actual value
is y < 1, or vice-versa. For data points of the first type, we
choose y from the worst case input distribution in the lower
bound given by Theorem 12,i.e, Ply = 2] = -4 - z- ™7
for z € [0,1] and point mass of 1/(e — 1) at some z > 1,
say at z = 2. For data points of the second type, the input
distribution is not crucial, so we simply choose a uniform
random y in [1, 2]. The testing is done on a batch of 1000
samples from the same distribution. We use a noise tolerant

Perceptron Learner (see, e.g., Bylander (1994)) to learn the
classes (y > 1 and y < 1) in the presence of noise. We can
see that even for noise rates as high as 40%, the competitive
ratio of the learning-to-rent algorithm is still better than the

—=7 that is the best achievable in the worst case. (Figure 3)

0.5

0.4

0.3

0.2

0.1

—— Competitive Ratio - 1
Mis-classification Error

0.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Noise

Figure 3. Algorithm 5 with varying noise rate with d = 100.

8. Conclusion and Future Work

In this paper, we explored the question of customizing ma-
chine learning algorithms for optimization tasks, by incor-
porating optimization objectives in the loss function. We
demonstrated, using PAC learning, that for the classical rent
or buy problem, the sample complexity of learning can be
substantially improved by incorporating the insensitivity
of the objective to mis-classification near the classification
boundary (which is responsible for large sample complexity
if accurate classification were the end goal). In addition, we
showed worst-case robustness bounds for our algorithms,
i.e., that they exhibit bounded competitive ratios even if the
input is adversarial.

This general approach of “learning for optimization” opens
up a new direction for future research at the boundary of
machine learning and algorithm design, by providing an
alternative “white box” approach to the existing “black box”
approaches for using ML predictions in beyond worst case
algorithm design. While we explored this for an online
problem in this paper, the principle itself can be applied to
any scenario where an algorithm hopes to learn patterns in
the input that can be exploited to achieve performance gains.
We posit that this is a rich direction for future research.

Customizing ML Predictions For Online Algorithms

Acknowledgments

The authors thank the anonymous reviewers for their help-
ful comments and feedback. This work was done under
the auspices of the Indo-US Virtual Networked Joint Center
on Algorithms under Uncertainty. K. Anand and D. Pani-
grahi were supported in part by NSF grants CCF-1535972,
CCF-1955703, and an NSF CAREER Award CCF-1750140.
R. Ge was supported in part by NSF CCF-1704656, NSF
CCF-1845171 (CAREER), a Sloan Fellowship and a Google
Faculty Research Award.

References

Ailon, N., Chazelle, B., Clarkson, K. L., Liu, D., Mulzer,
W., and Seshadhri, C. Self-improving algorithms. SIAM
Journal on Computing, 40(2):350-375, 2011.

Awasthi, P., Balcan, M. F., and Long, P. M. The power
of localization for efficiently learning linear separators
with noise. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pp. 449-458. ACM,
2014.

Balkanski, E., Rubinstein, A., and Singer, Y. The power
of optimization from samples. In Lee, D. D., Sugiyama,
M., von Luxburg, U., Guyon, I., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain,
pp. 4017-4025, 2016.

Balkanski, E., Rubinstein, A., and Singer, Y. The limitations
of optimization from samples. In Hatami, H., McKen-
zie, P., and King, V. (eds.), Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pp- 1016-1027. ACM, 2017.

Blum, A., Frieze, A., Kannan, R., and Vempala, S. A
polynomial-time algorithm for learning noisy linear
threshold functions. Algorithmica, 22(1-2):35-52, 1998.

Bylander, T. Learning linear threshold functions in the
presence of classification noise. In Proceedings of the
seventh annual conference on Computational learning
theory, pp. 340-347, 1994.

Cole, R. and Roughgarden, T. The sample complexity of
revenue maximization. In Shmoys, D. B. (ed.), Sympo-
sium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pp. 243-252. ACM, 2014.

Elkan, C. The foundations of cost-sensitive learning. In
International joint conference on artificial intelligence,
volume 17, pp. 973-978. Lawrence Erlbaum Associates
Ltd, 2001.

Gollapudi, S. and Panigrahi, D. Online algorithms for rent-
or-buy with expert advice. In Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, pp.
2319-2327, 2019.

Gupta, R. and Roughgarden, T. A pac approach to
application-specific algorithm selection. SIAM Journal
on Computing, 46(3):992-1017, 2017.

Hsu, C.-Y., Indyk, P., Katabi, D., and Vakilian, A.
Learning-based frequency estimation algorithms. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=rllohoCqg¥7.

Huang, C., Zhai, S., Talbott, W., Bautista, M. A., Sun, S.-Y.,
Guestrin, C., and Susskind, J. Addressing the loss-metric
mismatch with adaptive loss alignment. arXiv preprint
arXiv:1905.05895, 2019.

Jiang, Z., Panigrahi, D., and Sun, K. Online algorithms for
weighted caching with predictions. In 47th International
Colloguium on Automata, Languages, and Programming,
ICALP 2020, 2020.

Kamalaruban, P. and Williamson, R. C. Minimax lower
bounds for cost sensitive classification. arXiv preprint
arXiv:1805.07723, 2018.

Karlin, A. R., Manasse, M. S., Rudolph, L., and Sleator,
D. D. Competitive snoopy caching. Algorithmica, 3:
77-119, 1988.

Karlin, A. R., Manasse, M. S., McGeoch, L. A., and Owicki,
S. Competitive randomized algorithms for nonuniform
problems. Algorithmica, 11(6):542-571, 1994.

Karlin, A. R., Kenyon, C., and Randall, D. Dynamic TCP
acknowledgment and other stories about e/(e-1). Algo-
rithmica, 36(3):209-224, 2003.

Kearns, M. J. and Vazirani, U. V. An introduction to compu-
tational learning theory. MIT press, 1994.

Khanafer, A., Kodialam, M., and Puttaswamy, K. P. N. The
constrained ski-rental problem and its application to on-
line cloud cost optimization. In Proceedings of the INFO-
COM, pp. 1492-1500, 2013.

Kodialam, R. Competitive algorithms for an online rent or
buy problem with variable demand. SIAM Undergraduate
Research Online, 7:233-245, 2014.

Lattanzi, S., Lavastida, T., Moseley, B., and Vassilvitskii,
S. Online scheduling via learned weights. In Chawla, S.
(ed.), Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pp. 1859-1877. SIAM, 2020.

https://openreview.net/forum?id=r1lohoCqY7
https://openreview.net/forum?id=r1lohoCqY7

Customizing ML Predictions For Online Algorithms

Ling, C. X. and Sheng, V. S. Cost-sensitive learning and the
class imbalance problem, 2008.

Lotker, Z., Patt-Shamir, B., and Rawitz, D. Rent, lease or
buy: Randomized algorithms for multislope ski rental.
In Proceedings of the 25th Annual Symposium on the
Theoretical Aspects of Computer Science (STACS), pp.
503-514, 2008.

Lykouris, T. and Vassilvitskii, S. Competitive caching
with machine learned advice. arXiv preprint
arXiv:1802.05399, 2018.

Medina, A. M. and Vassilvitskii, S. Revenue optimization
with approximate bid predictions. In Advances in Neural
Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA, pp. 1858-1866,
2017.

Meyerson, A. The parking permit problem. In Proc. of 46th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 274-284, 2005.

Mitzenmacher, M. A model for learned bloom filters and
optimizing by sandwiching. In Advances in Neural Infor-
mation Processing Systems, pp. 464-473, 2018.

Mitzenmacher, M. Scheduling with predictions and the
price of misprediction. In Vidick, T. (ed.), I 1th Innova-
tions in Theoretical Computer Science Conference, ITCS
2020, January 12-14, 2020, Seattle, Washington, USA,
volume 151 of LIPIcs, pp. 14:1-14:18. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2020.

Morgenstern, J. and Roughgarden, T. Learning simple auc-
tions. In Feldman, V., Rakhlin, A., and Shamir, O. (eds.),
Proceedings of the 29th Conference on Learning The-
ory, COLT 2016, New York, USA, June 23-26, 2016, vol-
ume 49 of JMLR Workshop and Conference Proceedings,
pp. 1298-1318. JMLR.org, 2016.

Motwani, R. and Raghavan, P. Randomized Algorithms.
Cambridge University Press, 1997.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari,
A. Learning with noisy labels. In Advances in neural
information processing systems, pp. 1196-1204, 2013.

Purohit, M., Svitkina, Z., and Kumar, R. Improving online
algorithms via ml predictions. In Advances in Neural
Information Processing Systems, pp. 9661-9670, 2018.

Rasmussen, C. E. Gaussian processes in machine learn-
ing. In Summer School on Machine Learning, pp. 63-71.
Springer, 2003.

Rohatgi, D. Near-optimal bounds for online caching with
machine learned advice. In Chawla, S. (ed.), Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pp. 1834-1845. SIAM, 2020.

Vapnik, V. and Vapnik, V. Statistical learning theory wiley.
New York, pp. 156-160, 1998.

https://JMLR.org

