Paired Training Framework for Time-Constrained Learning

Jung-Eun Kim Richard Bradford
Computer Science
Yale University
New Haven, CT, USA

jung-eun.kim@yale.edu

Collins Aerospace
Cedar Rapids, 1A, USA
richard.bradford @collins.com

Abstract—This paper presents a design framework for machine
learning applications that operate in systems such as cyber-physical
systems where time is a scarce resource. We manage the tradeoff
between processing time and solution quality by performing as much
preprocessing of data as time will allow. This approach leads us to a
design framework in which there are two separate learning networks:
one for preprocessing and one for the core application functionality. We
show how these networks can be trained together and how they can
operate in an anytime fashion to optimize performance.

I. INTRODUCTION

A Cyber-Physical System (CPS) interacts with the physical world
and often faces resource — especially timing — constraints depending
on the state of its dynamic environment. Moreover, in a CPS,
software components’ interactions are carefully controlled, therefore
determinism and predictability are important requirements. Meanwhile,
CPSes are expected to evolve by obtaining intelligence from emerging
learning frameworks to achieve advanced autonomy [6]. In contrast
with current CPS where determinism is of the utmost importance,
learning technologies are intrinsically non-deterministic. This issue
can hinder a CPS equipped with learning modules from managing its
constituent learning components in a controllable manner.

This paper presents a framework for designing learning applications
to operate in time-constrained systems. We consider applications in
which the input data may be imperfect but may be amenable to
refinement by preprocessing. We also consider environments in which
the call for an inference may arise with little advance warning, with
a response then needed no later than a given deadline. Given these
assumptions, we consider a learning-enabled system that operates in
an anytime fashion, where a usable answer is derived quickly but is
improved by additional processing as time allows.

We assume that the core application runs to completion with
relatively predictable performance. In contrast, at least over the ranges
of interest, additional time spent preprocessing the input data will
result in monotonic improvement of the quality of the system’s output.
As a result, we consider it useful to think of the system as being
composed of two separate networks — a preprocessor and a target
network. The preprocessor processes input data and feeds its output
(processed data) to the target network which provides the functionality
of interest. Additional processing may be performed as time allows.

Our framework of the system as including separate preprocessing
and target networks raises interesting questions as to how best to train
such a system. In particular, if we are concerned with the performance
of the overall system, how should we train each of the two networks?
Note that our goal lies in exploring the practicality of the paired
training framework, not in achieving state-of-the-art performance of
any individual or entire network.

This work is supported in part by NSF grants 1945541, 1763399, and
1521523. All views expressed here are those of the authors and not necessarily
those of sponsors.

Commercial Avionics Engineering

Max Del Giudice
Computer Science
Yale University
New Haven, CT, USA
max.delgiudice @yale.edu

Zhong Shao
Computer Science
Yale University
New Haven, CT, USA
zhong.shao@yale.edu

To illustrate the various design issues associated with our general
framework, we consider two possible example applications for the
autonomous vehicle domain. One application includes a classification
neural network that classifies traffic sign images; the other predicts
the best angle of the steering wheel based on images of the upcoming
segment of road. Each application has a denoising (i.e., noise-
removing) network, so the target network can keep receiving (possibly)
improved data from the denoising network as time allows. Removal of
noise from the input data would increase the likelihood that the target
network generates a high-quality output. When the inputs are observed
in poor weather conditions, e.g., fog, rain or snow, the benefit from a
preprocessor (denoiser, in this case) should be especially significant.

We illustrate the implementation of our example two-network
applications by describing each one’s training and operational phases.
We show how the preprocessing and target networks can be trained
so as to optimize the performance of the overall system. We show
that our proposed Paired Training approach results in better system
performance than an alternative approach of training the two networks
separately. For the operational phase, we illustrate the efficient use
of processing time, so that the system achieves anytime performance,
i.e. it provides a usable answer initially, with improved results when
time allows for additional processing [12], [17], [23]. To the best
of our knowledge, this is the first framework that provides anytime
performance by employing two different networks working in tandem.

II. SYSTEM MODEL
A. Overview

We propose a framework consisting of two learning networks — one
network refines the input that is passed to the other network, which is
ultimately responsible for executing the given target task. The network
executing the target functionality is called the target network. A target
network can provide one-time prediction from raw input. However, by
employing an additional network called the preprocessor, the target
network can take advantage of potentially improved inputs from the
preprocessor as shown in Fig. 1.

During training, the two networks interact so each network can
learn the counterpart’s behavior. The interactions are detailed in
various training schemes that we propose in this paper, and the
experimental results show that these interactions improve the overall
system performance, when compared to the case of no interaction.
Fig. 1 shows an abstract view of our proposed framework with a
denoising and classifying network example.

B. System Description

o Target Network, T: Take an input from the problem domain
and execute the target functionality. Target functionality can be
classification, regression, clustering, etc: T : X — Y, where X
is a (general) problem domain, and Y is the output space, e.g.,
classes, values between [0, 1], etc. Because X and Y are generally

/olass0:false, /ciassO:faise, /GiassO:faise, class2Ztrue’ class22itue class 22:true

Target Target Target Target Target Target
network, T network, T network, T network, T network, T

/ "E'WU'k"// / / / /

AR

L, Prepru::essar‘|_' Prapm;,eaam

P

(a) Example 1: Traffic sign is correctly classified at the 4th result.
Jclass Oitelse, /class 0:false/ /class 0:felse, /class Oifalss, /class 0:false /class 22:tue
t t t * t t
Target Target Target Target Target
network, I network, T network, T network, I network, T

Target
network, T

(b) Example 2: Traffic sign is correctly classified at the 6th result.
Fig. 1: Overview with denoised and classified image examples.

different, the output from the target network cannot serve as the
input to another iteration of the target’s execution.

« Preprocessor, P: Refine the input data into a form that is optimized
by the target network: P : X — X, where X is the problem domain.
The specific form of the mapping P depends on the training data
and the task at hand. Because the input and output spaces are the
same, it is mathematically feasible for the preprocessor to operate
iteratively; i.e., the output from executing the preprocessor can
serve as the input to another execution. We use a recurrent neural
network (RNN) to achieve this functionality.

While the data for image denoising is not sequential, the problem-
space we are working in is; the structure of an RNN is fundamentally
well-suited to the task of iterative refinement of a result. The input
at each iteration can be a combination of the original low resolution
image and the super-resolved image from the previous iteration.
Our preprocessor network is trained to produce a prediction at each
timestep. Let s; represent the output of P after iteration ¢. The
ultimate prediction of the network at iteration ¢ is defined as the
output, at time ¢, averaged with all of the available outputs, i.e.:
st + conv (= Y!_ w;), where conv(-) refers to convolution
(for a moving average), and w; is a full pass through the ith iteration
of the network (the sum and convolution operation effectively define
the output layer of an iteration through the preprocessor). This
formulation ensures that the output of each iteration contributes to
the final output. This strengthens gradient flow through the network
and aids in training a deep recurrent network.

o Unified network, T o P: We are ultimately interested in the
performance of the unified network where the two networks work
in tandem, T o P : X — Y. More specifically, we are interested
in the set of predictions {T'(so), ..., T(s¢)} defined by the output
s; of P at each timestep.

III. PAIRED TRAINING TECHNIQUES

We use two techniques to connect the preprocessor and target
network during training: dependent loss protocols, and interleaved
training schemes. The technical details are following.

A. Loss Protocols

When considered independently, the preprocessor and target network
have individual goals (e.g., denoising an image and classifying images).

As parts of a larger system (e.g., classifying noisy images), we
associate their training processes to optimize system performance, by
encoding this insight through their respective loss functions.

The preprocessor can either try to solely optimize its goal (train
independently), or it can receive feedback from the target network,
by running the target on the preprocessed outputs and checking the
target loss (the preprocessor loss is now dependent on the target loss).
Likewise, the classifier can be trained on non-processed clean data,
or it can be trained on the preprocessor’s output data. We detail such
dependent/independent loss functions below. Henceforth, = indicates
noisy inputs, & indicates clean (non-noisy) labels as a reference, and
¢ indicates the (task)-label for x.

« Training preprocessor: When training preprocessor independently
or dependently (to target network’s loss) the following protocols
are used, respectively:

— Independent training: Train the preprocessor with the standard

mean squared error (MSE) loss which counts the difference
between the objective (reference) and a predicted value:

L= Lyse(P(z),#) = (P(z) — 2)* (1)

— Dependent training: Feed the prediction Z into a target network
and use the resulting performance loss L, (dependent upon
the target task) to inform the preprocessor training. We call
this protocol as Pair Target Feedback (PTF). Assuming x has
appropriate task-label ¢, we define L as:

L= Luse(P(x),2) + ALy(ToP)(z),¢) ()

where A, is the weight of the classifier loss relative to the MSE
loss. The precise formulation of L, is contingent upon the goal
of the target network.
« Training target network: We consider two protocols:
— Independent training: Train the target network with clean input
in isolation from the preprocessor:

L = Ly(T(2),) (©)

— Dependent training: Use a preprocessor to process the noisy
input, and then run the target network on the processed output:

L= Ly((T o P)(z),c) ©)

B. Interleaved Training Framework

Given the proposed system where the target performance is
dependent on the preprocessor output, we discovered that training the
preprocessor and target network by turns, which we call Interleaved
Training (see Fig. 2), and pairing one another’s loss results in
improved system performance. It stems from the fact that even
though in the course of one’s training the counterpart’s behavior
(performance loss) is taken into account, if the counterpart is already
pre-trained (independently too mature) or is not trained at all (too
immature), the performance is not promising. As a result, we have
found that the following training cases do not show competitive
performance: (a) Preprocessor and target network are separately
trained; (b) Target network has been separately trained although it is
involved in preprocessor’s training procedure. With this motivation
in mind, we devised the following interleaved training techniques.
The following training schemes connect the training processes of the
preprocessor and target network in different ways. Let 2E be the
number of epochs for an entire training procedure.

o ALTERNATING: (i) Train target network independently for E epochs,

(i1) Train preprocessor for 2E epochs dependently with “frozen”

(i.e., keeping the weights) target network and PTF loss (see (2)),

E E+]

Taget network

(1) Trained | Frozen [@ Trained
Paired
Preprocessor | (2) Trained | Frozen :
IE epachs
(a) Interleaved training ALTERNATING.
' E E+ 2E epachs
Togonoworc |G Taned | o | @manea |
Paired
Preprocessar | (2) Trained | {3) Trained |
] 2E gpochs
(b) Interleaved training MERGEI.
i E 2E ppochs
Target network [@maned [(3 Tranes |
Paired
Preprocessor (1) Trained | | Frozen | (3) Trained

E E+i 2E gpochs

(c) Interleaved training MERGE?2.
Fig. 2: Visual representation of Interleaved Training.

and then (iii) Train target network for £ epochs dependently with

preprocessor output. See Fig. 2(a).

e« MERGEI: (i) Train target network independently for E epochs, (ii)
Train preprocessor for E epochs dependently with frozen target
network and PTF loss, and then (iii) Train both networks, using
the preprocessor output to train the target network and PTF loss to
train the preprocessor. See Fig. 2(b).

e MERGE2: (i) Train preprocessor for E epochs, (ii) Train target
network for E epochs with frozen preprocessor, and then (iii) Train
both networks, using the preprocessor output to train the target
network and PTF loss to train the preprocessor. See Fig. 2(c).

By training the target network directly with the preprocessor output,

and using feedback from the target network, we optimize the whole

system rather than each network individually.

Our aim does not lie in developing an optimal paired training
scheme, rather we intend to show the impact of paired training
approaches by comparing them with non-paired approaches. To
achieve the goal, through the experiments, we answer the following
questions: Is the entire system performance aligned with the individual
performance of the component networks, preprocessor and target
network?; How do we train and optimize the component networks to
perform well in tandem?; How do we optimize anytime performance?

IV. EXPERIMENTS
A. Evaluation Setup

1) Applications: While the training scheme with preprocessor and
target network generalizes to multiple applications, our experiments
examine the case where the preprocessor is a denoising network and
the target network is either a classification or regression network:

o Preprocessor (Denoising): removes different types of noise from an
image. The denoising network shares some architectural similarities
with one in [8]. Our denoiser begins with a learning rate of le—4,
reduced to 1le—5 after 100 (= E) epochs, as the entire training lasts
200 epochs. Depending on the training scheme, the loss function is
either represented by (1) or (2). In (2), we empirically determine
0.25 to be a good value for \,. The denoiser is trained for 6
iterations since improvements level off after this point.

o Target network (Classification): contains 43 traffic sign classes.
The classification target network is based on an 18-layer ResNet [9].
Our ResNet implementation begins with a learning rate of le—4,
reduced to 1le—5 after 100 epochs of training. In the loss function,
L, is cross entropy with logits. The standard cross entropy loss is
augmented with a L2-regularization term with weight A = le — 4.

2E epochs

(b) Indoor track

(c) Example frame of
STEERINGPATTERN.

(a) Miniaturized 4-
wheel motor vehicle

Fig. 3: Experiment environment

« Target network (Regression): its training model is learning driving
patterns of a human driver (controller) of a ground vehicle from the
mapping of a steering angle and the image taken from the frontal
camera. In inference time, when an image of track is received, the
trained model infers the most plausible steering angle by regression.
The model learns to emulate a human driver’s steering pattern from
recorded steering angle and frontal images (i.e., behavior cloning;
refer to Fig. 3(c) - white arrow is a reference (ground truth) and
green arrow is a predicted angle). The architecture of the target
network, RegressionNet, loosely follows the model detailed in [2].
Our RegressionNet implementation begins with a learning rate of
le—4, reduced to 1le—6 after 100 epochs of training. The dropout
layers have probability p = 0.5. L, is mean squared error.

2) Data Sets: We use the German Traffic Sign Recognition Bench-
mark Dataset GTSRB [19] and CIFAR-10 [13] for classification and
the STEERINGPATTERN dataset (self-collected) for regression.

« GTSRB: This dataset consists of a pre-divided training and test
dataset, covering 43 classes of traffic signs. The training and test
datasets contain 39209 and 12630 images, respectively. [19] We
perform several preprocessing steps on the raw images:

1) Convert the image to HSV, and perform histogram equalization
on the value component. This increases the contrast of the image
and potentially improves classification performance. We convert
the image back to RGB after this operation.

2) Center the images, cropping unnecessary background pixels.

3) Resize each image to 48 X 48 resolution and scale the pixel
values between [0, 1].

o CIFAR-10: The CIFAR-10 dataset consists of 60,000 32 x 32
color images, divided into a training set of 50,000 images and a
test set of 10,000 images. There are ten classes. [13]

o STEERINGPATTERN: We collected this dataset for regression to
correctly predict steering angle given an input image. The data is
collected from a frontal camera of a miniaturized 4-wheel motor
vehicle on indoor tracks - refer to Fig. 3. The dataset is composed
of 17923 images. The label consists of the steering angle, as similar
to the data collected in [2]. The dataset is augmented by performing
flips along the vertical axis of each image, resulting in an opposite
turn angle, resulting in 35486 images in total. Each image is resized
to dimension 60 X 80.

3) Data Preparation - Manual Noising Procedure: the denoiser
+ classification/regression pipeline was inspired by real-world noise,
such as weather conditions, that may affect the performance of a neural
network embedded in a self-driving car (e.g., fog, rain, snow, etc).
However, for experimental purposes, we use two noising procedures:
o GAUSSIAN noise: We add GAUSSIAN noise with 4 = 0 and o = 50

to our images as shown in Fig. 4(b).

o SYNTHETIC noise: We randomly white-out (change the pixel-value
to 1) 25% of the pixels of a given input image, resulting in a
static-like effect (see Fig. 4(c)).

(a) Unaltered images (from GTSRB)

(b) From (a) w/ GAUSSIAN noise (¢ = 0; o = 50)

(¢) From (a) w/ SYNTHETIC noise

Fig. 4: Examples of different data noising types.

4) Performance Measures:

« System performance: For the GTSRB and CIFAR-10 datasets,
we use Top-1 classification accuracy. For the STEERINGPATTERN
dataset, we observe the mean-square error. We evaluate the
performance with respect to each iteration of the preprocessor.

« Preprocessor performance: We independently evaluate the prepro-
cessor’s performance by computing the average mean squared error
over noisy test images. We evaluate the performance with respect
to each iteration of the preprocessor.

o Target network performance: For the classification network, we
evaluate performance by computing average Top-1 accuracy over
clean (non-noisy) test images. For the regression network, we
compute average mean squared error over clean test images.

5) Approaches: In addition to the paired training approaches
proposed in Section III-B, ALTERNATING, MERGE1, and MERGE?2,
we evaluate the following baseline approaches for comparison:

« NOPREPROCESSOR: target network runs without preprocessor
support. Since Anytime performance is realized by the support
from a preprocessor, any further performance improvement is not
expected - only a single result is expected.

o SEPARATE: target network and preprocessor are independently

Accuracy per Iteration

0.95 .

(13
ox

o
9
8

Accuracy
.

085
Alternating
Mergel

Merge2
TrainedTarget
Separate
NoPreprocessor

X o m»

O

0 1 2 3 4 5 6
Iteration

(a) On GTSRB with GAUSSIAN noise.

Loss per Iteration Alternating
Mergel
Merge2
TrainedTarget
Separate

N
]
0035 .
x

0030
® O

0025

0.020~ -

Loss

0003~ -
0002 x x
0001 L L

0.000
1 2 3 4 5 6

Iteration

NoPreprocessc

trained with no knowledge about each other. Preprocessor conforms
to loss function (1) and target network does to (3). For the
classification network, L, is cross entropy with logits; for the
regression network, L, is mean squared error.

TRAINEDTARGET: preprocessor is trained with a pre-trained target
network (which has been independently trained) according to loss
function as shown in (3). Target network’s weights stay the same.

B. System Performance

To begin, in Fig. 5, the impact of the preprocessor is seen by
comparing NOPREPROCESSOR with the later iteration outputs of the
other approaches. By having a preprocessor we can expect further
improved accuracy. With no support from any preprocessor, the result
of NOPREPROCESSOR is the only output that we can expect.

We notice the impact of employing paired training schemes, which
is shown by comparing SEPARATE and ALTERNATING, MERGE1, and
MERGE2. As explained in Sec. IV-A, in ALTERNATING, MERGEI,
and MERGE?2, either the preprocessor or target network considers the
other in its training procedure, while in SEPARATE, the two networks
are trained independently. The distinction between SEPARATE and
the other schemes shows the positive contribution of paired training
to overall system performance. That is, generally and independently

Accuracy per lteration

Xom »

095 (]

)

Accuracy

Alternating
Mergel

Merge2
TrainedTarget
Separate
NoPreprocessor

X o m»

0 1 2 3 4 5 6
lteration

(b) On GTSRB with SYNTHETIC noise

Loss per Iteration Alternating
Mergel

Merge2
TrainedTarget
Separate

O NoPreprocessor

N
.

0.065 .

0060 & *

0055

0.050

0.045

0.040~ -

Loss

0,003~

ox m»
»

0,002
0,001 L

0.000

lteration

(c) On STEERINGPATTERN with GAUSSIAN noise (d) On STEERINGPATTERN with SYNTHETIC noise

Fig. 5: System performance evaluations on GTSRB/STEERINGPATTERN with GAUSSIAN/SYNTHETIC noise types.

Accuracy per Iteration

H
0.95]

(=
ox
>

090 05

mex

Accuracy
.
Accuracy
°
2

085
Alternating
Mergel
Merge2
TrainedTarget 02
Separate

NoPreprocessor

0.80

X eom»
BX

O
°c »®

0 1 2 3 4 5 6
lteration

(a) On GTSRB.

Accuracy per lteration

Iteration

(b) On CIFAR-10.

Loss per Iteration Alternating
Mergel
Merge2
TrainedTarget
] Separate

0030 NoPreprocessor

0.035

X o m»

u

™
.
(@)

xm»>

0.025

0.020~ -

Loss

0,003~ -

Alternating
Mergel
Merge2 . 2

TrainedTarget 0001 . H

Separate P
NoPreprocessor §

0.002 x X

X e mp»

O

0.000
3 4 5 6 0 1 2 3 4 5 6

lteration

(c) On STEERINGPATTERN.

Fig. 6: Comparison of training approaches on different data sets with GAUSSIAN noise.

pre-trained networks are not expected to provide optimal performance
if they are supposed to interact with each other in inference time.

1) Impact of Target Task: In order to determine the generalizability
of this framework over various potential target networks, we trained
a regression network in addition to the classification network. Our
RegressionNet takes as input an image from the front-facing camera
of a vehicle, and then performs steering angle prediction. The model
is trained on the STEERINGPATTERN dataset. Results are shown in
Fig. 5(c) and 5(d). Note that the first iteration (no iterations of the
denoiser) is omitted, as it is an order of magnitude higher than the
following iterations, and it compresses the results shown in the figures.

We notice ALTERNATING and MERGE1 perform worse than
SEPARATE in earlier iterations, but excel by the final iteration.
Likewise, MERGE2 displays more steady performance, outperforming
SEPARATE for each iteration, and roughly matching SEPARATE by the
final iteration. This is particularly notable in the Gaussian noise case.
While this trend is much more visible in the regression context, it is
present in the classification context as well — that is, we see MERGE2
outperform MERGE1 and ALTERNATING for the first iteration or two,
after which MERGE1 and ALTERNATING tend to surpass MERGE2.

For ALTERNATING and MERGEI, the results are showing that
training the target network first, and using the trained target network
to provide feedback across the rest of the training process, directs
the gradient descent process towards the ultimate goal of classifica-
tion/regression rather than the ancillary (denoiser) goal of reducing
mean squared error. This leads to ultimately superior performance by
the final iteration. However, leading with training the denoiser, as in
MERGE?2, translates to a more stable and quickly converging training
process, at the cost of final performance.

The result indicates that there are tradeoffs implicit in the proposed
interleaved approaches with respect to anytime performance. Namely,
better performing earlier iterations corresponds with a less optimal
final iteration, whereas better performing later iterations corresponds
with a worse-performing earlier iterations. This can be more broadly
related with the convergence of an “anytime system” such as the
one proposed in the paper. Our experimental setup remained largely
unchanged between classification and regression - with a longer, more
careful training procedure, ALTERNATING and MERGE] could excel
over MERGE2 in most iterations, similar to the classification case.

2) Impact of Noise Complexity: Comparing the accuracy curves
in Fig. 5, the noise type impacts the potential benefits of paired
training. The more complex the noise type, the more significant the
improvement in performance. GAUSSIAN noise is relatively complex,
given its randomized nature and application to each pixel, whereas
SYNTHETIC noise is simpler. In GAUSSIAN noise curves, all paired

training schemes exceed SEPARATE, both in final performance and in
earlier iterations. For SYNTHETIC noise, the paired training schemes
also outperform SEPARATE, but the improvement is slightly less
significant. The complexity of denoising is responsible for this variance.
For more complex noise, the denoiser is more likely introducing
artifacts or impacting the performance of the classifier. Then, training
the classifier with output from the denoiser or the denoiser with
classifier feedback allows the system to optimize with knowledge of
the artifacts, resulting in a substantial performance boost.

3) Dataset Impact: We examined the performance of paired training
schemes across the CIFAR-10 and GTSRB datasets on Gaussian
noise (see Fig. 6). We found similar trends across both datasets:
ALTERNATING and MERGE] ultimately outperform MERGE2, but
MERGE2 displays stronger performance in the earlier iterations.

We do note that the gap between the best approach and SEPARATE
for the final iteration of CIFAR-10 and GTSRB are of different
orders of magnitude. Indeed, there is a accuracy gap of 0.01 between
ALTERNATING and SEPARATE on the GTSRB dataset, while there
is a 0.08 accuracy gap between ALTERNATING and SEPARATE. We
attribute this difference to complexity of the target task — the CIFAR-
10 images are more complex than those in GTSRB, and they have
lower resolution. The different active ranges on the Y-axes of each
case reflect the fact. Consequently, the application of Gaussian noise
impacts the performance of the classifier more severely, making the
performance of the classifier much more tied to the performance of the
denoiser. In this situation, a form of interleaving is highly beneficial.

C. Independent Performance

The proposed framework
trains the two networks to
boost the system perfor-
mance through paired train-
ing approaches and loss

TABLE 1I: Performance (on clean
and ideal inputs) of independent tar-
get network trained under different
schemes/noise types on GTSRB.

protocols. In the proposed

system, each individual net- | Gaussian ~ Synthetic
work does not necessar- SEPARATE 0.991 0.991
ily display optimal perfor- TRAAINEDTARGET 8328 833(1)

. . LTERNATING . .
mance .respectlvely, since MERGEL 0.989 0,990
the paired loss protocol MERGE2 0.989 0.989

and training approaches op-
timize for system perfor-
mance rather than individual network performance. We show the cost
paid for overall performance by looking at the individual performance
of the two component networks: classification performance of the
target network on clean inputs, and mean squared error of the denoiser.

1) Target Performance: The impact of paired training on each

classifier’s independent performance, i.e., performance on clean inputs.

Table I shows how the paired training and separate training approaches
train the target networks over GAUSSIAN and SYNTHETIC noise. We
can see that the individual target networks produced by the four
paired training approaches perform worse than the SEPARATE and
TRAINEDTARGET target networks. This result corresponds to the
training processes for each paired approach. TRAINEDTARGET trains
the target network independently, so the performance should be roughly
equivalent to SEPARATE. Conversely, ALTERNATING, MERGEI, and

MERGE2 all use preprocessor output to train the target at some point.

Thus, the target networks for these approaches become optimized
with respect to the corresponding denoising network, resulting in a
small negative impact on their performance over clean data.

2) Preprocessor Performance: The independent performance of the
denoiser is also affected by the paired training scheme. Contrasting
with the independent performance of the target network, paired training
approaches improve the independent performance of the denoiser. The
feedback provided by the target helps the denoiser learn high-level
information about the images being denoised. Looking at the specific
approaches, those which begin by training the target and use that target
to train the denoiser (ALTERNATING, MERGEI, and SEPARATE) have
the most improved performance. MERGE?2 only training the denoiser
with paired loss at the end of training has the weakest performance.

V. RELATED WORK

For problems involving temporal sequences of data, a model must
be able to encode dependencies across multiple timesteps. RNNs
can model these sequential-type data: e.g., text-prediction, speech
recognition, or handwriting recognition. What differentiates RNNs
from typical feed-forward neural networks is the existence of internal

states that encode sequences of inputs that have occurred earlier.

This is a form of memory that enables RNNs to process sequential
data. Critical to the understanding of RNNSs is that the learnable
parameters, input, state, and output at a given timestep, are shared
between iterations. Were parameters not shared between iterations, the
number of parameters in the model would explode for any sequence
of appreciable length, making training intractable.

Many recent architectures have combined RNN and convolutional
neural network (CNN) structures: basic LSTM components with
convolutions [11], [14], [16]; more complex LSTMs [18]; dilated
convolutions [4], and quasi-recurrence [3]. The authors in [16]
designed recurrent convolutional layers for classification. The work
in [11] developed a deeply-recursive convolutional network for image
super-resolution. A single RCL to learn complex feature maps is used
not to introduce large numbers of parameters.

Image restoration has long been a central problem in low-level
image processing. Procedures such as K-SVD [1], BM3D [5], the
LRA-SVD method [7], and the LPG-PCA method [20] exploit the
structured nature of image data, deriving information from groups
of image patches to fill-in missing or obscured data. More recently,
neural network based approaches have begun to surpass the more
traditional approaches discussed above. Initially, autoencoders [22] and
convolutional neural networks [10] showed promising results. More
recently, deeper convolutional networks such as ResNets [21], GANs
[15], and RNNs [8] have all broken numerous existing benchmarks
for denoising and super-resolution.

VI. CONCLUSION

We proposed a framework employing two networks, a preprocessor
and a target network, working in tandem; a raw input goes into a

preprocessor, and the target network generates the final output. Several
paired and interleaved training approaches, along with a joint loss
mechanism, are compared to a baseline of independently trained
networks. Pairing the training processes using these mechanisms
results in better system performance than training each network in
isolation. Further explorations into confidence levels at each iteration
to obtain a strict Anytime curve, hyperparameters on paired loss
functions, and different variations of interleaving mechanisms for
paired training approaches will be interesting future directions.

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein. rmk-svd: An algorithm for
designing overcomplete dictionaries for sparse representation. [EEE
Transactions on Signal Processing, 54(11):4311-4322, Nov 2006.

[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,

L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and

K. Zieba. End to end learning for self-driving cars. CoRR, abs/1604.07316,

2016.

J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-recurrent neural

networks. CoRR, abs/1611.01576, 2016.

S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui, M. Witbrock,

M. A. Hasegawa-Johnson, and T. S. Huang. Dilated recurrent neural

networks. In NIPS. 2017.

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by

sparse 3-d transform-domain collaborative filtering. IEEE Transactions

on Image Processing, 16(8):2080-2095, Aug 2007.

Defense Science Board. Report of the defense science board on autonomy.

Jun. 2016.

Q. Guo, C. Zhang, Y. Zhang, and H. Liu. An efficient svd-based method

for image denoising. IEEE Transactions on Circuits and Systems for

Video Technology, 26(5):868-880, May 2016.

[8] W. Han, S. Chang, D. Liu, M. Yu, M. J. Witbrock, and T. S. Huang. Image
super-resolution via dual-state recurrent networks. CoRR, abs/1805.02704,
2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[10] V. Jain and S. Seung. Natural image denoising with convolutional
networks. In NIPS. 2009.

[11] J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolutional network
for image super-resolution. In CVPR, 2016.

[12] J.-E. Kim, R. Bradford, and Z. Shao. Anytimenet: Controlling time-quality

tradeoffs in deep neural network architectures. In the 23rd Conference

on Design, Automation and Test in Europe, DATE, page 945-950, 2020.

A. Krizhevsky. Learning multiple layers of features from tiny images.

Technical report, 2009.

[14] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutional neural
networks for text classification. In AAAI 2015.

[15] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi. Photo-realistic single image super-resolution using
a generative adversarial network. CoRR, abs/1609.04802, 2016.

[16] M. Liang and X. Hu. Recurrent convolutional neural network for object
recognition. In CVPR, 2015.

[17] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and
W. Zhao. Algorithms for Scheduling Imprecise Computations, pages
203-249. Springer US, Boston, MA, 1991.

[18] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo. Convolu-
tional LSTM network: A machine learning approach for precipitation
nowcasting. CoRR, abs/1506.04214, 2015.

[19] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition.
Neural Networks, 32(0):323-332, 2012.

[20] M. Vijay and S. V. Subha. Spatially adaptive image restoration method
using Ipg-pca and jbf. In MVIP, 2012.

[21] T. Wang, M. Sun, and K. Hu. Dilated residual network for image
denoising. CoRR, abs/1708.05473, 2017.

[22] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep
neural networks. In NIPS. 2012.

[23] S. Zilberstein and S. Russell. Approximate Reasoning Using Anytime
Algorithms, pages 43—-62. Springer US, Boston, MA, 1995.

[3

[ty

[4

[l

[6

[7

—

[13

[ty

	Introduction
	System Model
	Overview
	System Description

	Paired Training Techniques
	Loss Protocols
	Interleaved Training Framework

	Experiments
	Evaluation Setup
	Applications
	Data Sets
	Data Preparation - Manual Noising Procedure
	Performance Measures
	Approaches

	System Performance
	Impact of Target Task
	Impact of Noise Complexity
	Dataset Impact

	Independent Performance
	Target Performance
	Preprocessor Performance

	Related Work
	Conclusion
	References

