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Abstract

Stochastic Programming (SP) is used in disaster management, supply chain design, and other complex problems.
Many of the real-world problems that SP is applied to produce large-size models. It is important but challenging that
they are optimized quickly and efficiently. Existing optimization algorithms are limited in capability of solving these
larger problems. Sample Average Approximation (SAA) method is a common approach for solving large scale SP
problems by using the Monte Carlo simulation. This paper focuses on applying clustering algorithms to the data
before the random sample is selected for the SAA algorithm. Once clustered, a sample is randomly selected from
each of the clusters instead of from the entire dataset. This project looks to analyze five clustering techniques
compared to each other and compared to the original SAA algorithm in order to see if clustering improves both the
speed and the optimal solution of the SAA method for solving stochastic optimization problems.
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1. Introduction

Stochastic Programming (SP) [1] is defined as modeling optimization problems in which a portion of the dataset
being inputted into the objective function or constraints is uncertain. SP is commonly used in disaster management,
supply chain design, and other complex problems. Many of the real-world problems that SP is applied to, produce
large models, and it is important that they are optimized quickly and efficiently. Applications include disaster supply
management [2], supply chain design [3], and healthcare [4], all of which require highly efficient and optimal
solutions to extremely complex problems. Although the data for this research was related to disaster supply
management, this work focuses more on the optimization of the SAA algorithm than its application.

Existing optimization algorithms are limited in the capability of solving these large problems. Sample Average
Approximation (SAA) method is a common approach for solving large scale SP problems by using the Monte Carlo
simulation. SAA approximates the SP objective function by a sample average estimation derived from a random
sample. The resulting SAA problem is solved deterministically. The process is repeated with different random
samples to obtain potential solutions.

This paper proposes a method to create a machine learning based computational framework. Many research studies
focus on applying machine learning algorithms to improve SP optimization. For example, Cotter’s work (2013)
improves stochastic algorithm by applying two common machine learning algorithms: binary classification using
kernelized linear classifiers and Principle Component Analysis [5]. In another study by Verweij et al. (2013), the
SAA algorithm was applied to stochastic routing problems and found to have a computational complexity that grows
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linearly with the number of sample scenarios [6]. The studies concluded that SAA can become computationally
expensive for more complex and larger datasets. In the case of this study, disaster management data was used, which
is a large multidimensional dataset. The utilization of machine learning ideas to the optimization algorithms such as
heuristic algorithms for SP problems, is not as common. This project focused on applying clustering algorithms to
the data before the random sample is selected. Once clustered, the random sample is randomly selected from each of
the clusters instead of from the entire dataset.

This paper is outlined as follows: Section 2 focuses on literature relating to the model and integration of machine
learning into the SAA algorithm. Section 3 details the model itself and the data being used as input. Section 4
overviews the various clustering methods and some of their advantages and disadvantages. Lastly, Section 5 and 6
explain the results and conclusions of this work.

2. Literature Review

2.1 Model

Heuristic algorithms are those that focus more on reaching an approximate solution for the sake of speed, sometimes
sacrificing the exact solution. Heuristic algorithms are commonly used to solve stochastic programming problems.
The use of SAA algorithms, as one of efficient heuristic algorithms, to solve stochastic programming problems is
quite common. Kleywegt et al. (2002) apply the SAA algorithm to solve stochastic discrete optimization problems.
The study analyzes convergence rates and computational complexity of the SAA algorithm [7].

It is important that solutions should be found to reduce the computational expense of running these algorithms
without sacrificing the overall performance of the objective function. Many scenario reduction methods [8] are
applied to the SAA algorithm to enhance the computational efficiency of this algorithm. Pasupathy and Song (2021)
present an adaptive sequential SAA algorithms to solve large-scale two-stage stochastic linear programs [9].
Henrion et al. (2009) develop a scenario reduction method based on discrepancy distances to derive the upper and
lower bounds, and some explicit solutions for optimal scenario reduction problems [10].

2.2 Integration of Machine Learning Algorithms

Studies that have tried to resolve this issue utilize clustering algorithms to group similar scenarios together, and from
this, generate samples. This idea can be seen in studies by Crainic et al. (2014)[11] and Emelogu et al. (2016)[12].
This technique was seen to generate samples more efficiently than the original SAA algorithm. It is common for
optimization algorithms to be used to improve machine learning techniques, but not the other way around. Although
the SAA algorithm achieve good performance, the computational expense makes it difficult and inefficient to use on
much larger problems that can be seen in disaster management and other real world situations. This paper explores
machine learning based clustering algorithms to more efficiently generate samples for the SAA algorithm.

3. Stochastic Programming Model and Data

3.1 Data

The data for this study are extracted from a facility location problem which allocated certain products to given
facilities. The products had a demand and volume associated with them, as well as a procurement, transportation,
holding, and shortage cost. The facilities had given storage capacities, distances to locations, and fixed costs
associated with them. The decision variables included whether to open a facility. Determining how much product
should be held at each facility as well as the amount of product to deliver from an open facility to a designated
location were also decision variables. These variables correlated to the fixed, procurement, and transportation costs
of operating an open facility. Holding costs are also relevant for products that are being held in a location, and
shortage costs are relevant when a product runs out at a given facility. The ultimate goal of this work is to minimize
the cost while improving the run time of the SAA algorithm.

3.2 Model

Notations:

N Set of locations, indexed by i, j

L Set of size categories, indexed by /

A Set of item types, indexed by a

S Set of disaster scenarios, indexed by s
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fc= Z’_ CF, - x,, Fixed costs for operating facilities
pc= Za CP, -y, Procurement costs for all products across all facilities
te, = Z{”’j CT,-H,,-9q,,,, Transportation costs for all products in scenario s

Holding costs for surplus quantities in scenario s

i,

he, = Za’i’j CH, z,

we, = Za’j G, w,,, Penalty costs for shortage quantities in scenarios s
D,js  Demand for products (type a, location j, disaster scenario s)

Ds Probability of scenario s occurring

H;; Distance from facility 7 to location j

U Storage capacity of facility in category /

CF; Fixed cost of facility in category /

Va Volume of type a products

CP, Unit procurement price of type a products

CT, Unit transportation cost of type a products
CH, Unit holding cost of type a products

G, Unit penalty cost for shortage of type a products

M A large positive number

Xil 1 if open facility i in category /, otherwise 0.

Va,i Procurement quantity of type a products for facility i

qaijs  Amount of type a products delivered from facility 7 to location j in scenario s

Formulation
The following is the mathematical model formulated for disaster facilities.
minf:fc+pc+zxps (tc, + he, +we,) €))
Zdyw, v, < ZIUZ X, Vi 2)
Za,i,s = ya,i _quasi»j»s (3)
Wass = Dajis = Z;qa,f,f',s 4)
lei’/ <1, Vi (5)
X, € {0,1}, Vi,l (6)
Vaiwraiss 20, Va,i,j,s (7

The objective function (1) minimizes the overall cost (f), including fixed cost (fc), procurement costs (pc),
transportation, costs (tc), holding costs (hc), and shortage costs (wc). Constraint (2) restricts that at each facility the
total procurement quantities would not exceed the storage capacity, (3) calculates surplus quantity of type a products
at facility i in scenario s. Line (4) calculates shortage quantity of type a products at location j in scenario s and the
inequality (5) makes sure one facility will be operated at most. Lines (6) and (7) define the integrity of the variables.

4. Clustering Technologies

The SAA algorithm is a Monte Carlo simulation-based approach. Several clustering methods were used before the
SAA algorithm’s random sample selection to improve the speed and optimal solution of the SAA method. One
sample scenario was selected from each of the produced clusters for input into the SAA algorithm.

4.1 K-means

The K-means algorithm requires a preset number of clusters k, each of which has a randomly generated centroid. K-
means simply consists of two basic steps. First, every data point is assigned to its nearest centroid based on its
Euclidean distance. Next, every centroid’s average is re-calculated based on all of its assigned data points. These
steps are recomputed until there is convergence. Some of the strengths of the K-means method include the fact that
it is a very common and well-known algorithm. The simplicity of the algorithm also makes it fast and reaches
convergence quickly. But one of the major draw backs is that the total number of clusters must be known before it is
run. Lastly there are two ways to use the K-means solution in the original SAA algorithm. Stratified sampling where
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the scenarios are strategically selected from each cluster and Random sampling where they are randomly selected
from each cluster.

4.2 Mean-Shift

The Mean Shift algorithm begins with a centroid at every single data point. Then the centroids store all of their
neighbors within a certain radius r. Then the mean of those points will be taken and the centroid will then be
assigned to that point. Lastly the unique centroids are kept and stored. The three steps are repeated until convergence
of the centroids. Unlike the K-means algorithm the mean-shift algorithm does not require a preset number of
clusters. However, the algorithm does require a preset radius r. Additionally it can be very inefficient to begin at
every data point.

4.3 Density-Based Spatial Clustering (DBSCAN)

The Density-Based Spatial Clustering Algorithm (DBSCAN) begins with a single data point. The algorithm then
finds all of the points that are within a preset distance epsilon away. If fewer than a preset number of points
(minPoints) are within epsilon distance, the point is labeled as noise. If more than minPoints are found, the
algorithm creates a cluster of that point and all its neighboring points. Then it continuously adds all the neighbors
within epsilon distance until no more points in the cluster have data points within epsilon. The algorithm repeats
until all points have either been assigned as a cluster or visited and labeled as noise. The DBSCAN algorithm is
excellent for identifying and omitting outliers in the dataset and does not require a preset number of clusters, unlike
K-Means. However, this algorithm has two drawbacks. It does not perform well in high dimension because it is easy
for a lot of points to be within an epsilon distance of each other. It also requires two preset parameters: minPoints
and epsilon.

4.4 Expectation-Maximization using Gaussian Mixture Models (EM-GMM)

Gaussian Mixture Models (GMMs) assume the Gaussian distribution of clusters so that both the cluster’s mean and
standard deviation can describe the cluster (as opposed to just the mean being used to describe the cluster center as
in K-means). GMMs give more flexibility than K-means since the assumption that clusters are Gaussian is less
restrictive than the assumption that clusters are circular, which is the case in K-means. The EM (Expectation
Maximization Algorithm) is used to optimize the parameters of the Gaussian distribution for each cluster. The E-
step in the EM algorithm focuses on parameter initialization and probability estimation, the M-step then seeks to
maximize the parameters using the probability estimates calculated in the E step.

4.5 Parameter Estimation

One of the major factors in the quality of clustering is the selection
of the parameters. Each of the clustering algorithms required at least
one parameter that needed to be preset before the clustering began.
The assumption was that in order to get the best results out of the
SAA algorithm, the samples should be chosen from robust, well
distributed clusters. To select the parameters, histogram graphs were
observed in order to view the distributions of the clusters. The two

Distribution of Data of Kmeans Random when k = 18
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Number of Data Points
@

objectives were to not allow any one cluster to have too many data 2
points (ideally under 25) and to have the majority of the clusters o e 5y a5 1o 5 o 5%
contain multiple data points (more than 1). Figure 1 shows the Cluster Number
Table 1: Summary of the parameter selection for each algorithm Figure 1: The distribution of data for K-Means
Random when k = 18
Clustering Parameter(s) Parameter | Numberof | Largest distribution of the data among the clusters for
Algorithm Value(s) Clusters Cluster the K-means Random algorithm with parameter
Kmeans Random K 18 18 16 k = 18. The clusters appear to satisfy both of the
Kmeans Stratified K 13 13 18 objectives. The largest cluster only has 15 data
DBSCAN (minP, eps) | (3, 650) 8 49 points and only one cluster appears to have one
Mean Shift r 1050 21 21 data point. Table 1 displays the results of the
EM Gauss k 15 15 20 parameter estimation. The DBSCAN algorithm

was the hardest to estimate. The best results
only produced eight clusters, one of which contained almost half of the data. The remaining algorithms all had the
number of clusters between 13 and 21, with the largest cluster containing between 16 and 21 data points.
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5 Results Optimal Solution vs Algorithm

The variables this project focused on for model comparison - | ° o 8 8
were the average optimization time and the average = : ’

optimal solution of the SAA algorithm. Each algorithm 2 Z | .

found an optimal solution 50 times. The boxplots of the N . . L
optimal solution for each algorithm are displayed in figure % 7 i . : e

2. The Original SAA algorithm appears to have the R o : H
smallest distribution. The EM-GMM and Mean-Shift & 7 5 E e ' -
algorithms also have small distributions but have both 8 ! o — ! .

more outliers and outliers that are farther away from the
mean. The Original SAA algorithm has the smallest

average optimal solution of 31.57 million as well as the
smallest variance at 0.98 million. No other algorithm was Figure 2: Boxplots of the optimal solution for each algorithm.

DBSCAN EM-GMM  MeanShift  Original Random Stratified

Algorithm

able to achieve an average optimal solution below 32 Time vs Algorithm
million. EM-GMM was the next best algorithm in terms . BE
of both average optimal solution and standard deviation 8 - i 0 3 _F
with the second smallest average of 32.45 million and the 7 ’ e -
second smallest standard deviation of 2.99 million. g g - ! N - RE
DBSCAN and K-means stratified had the two largest % o ‘
averages of 33.31 and 33.99 million and two largest g R : o
standard deviations of 3.36 and 3.43 million respectively. R -
| = 58
The ultimate goal of the SAA algorithm is to reduce DBS‘CAN EM—éMM Mear‘wSh\ﬂ OHQ;H’WE\ Raﬂ‘dom Strat‘med
compute time. When comparing clustering algorithms that Agoritn
assist the SAA algorithm, time to solve the stochastic Figure 3: Boxplots of the time to solve for each algorithm.

problem was also considered. Figure 3 shows the boxplots

of the time each algorithm took to solve the problem for each of the 50 trials. DBSCAN has a significant advantage
in speed compared to the other algorithms. K-means Stratified and K-means random have the largest distribution of
times. The Original SAA algorithm has the slowest time. The DBSCAN algorithm proved to be the fastest averaging
26.75 seconds with the lowest standard deviation of 4.82 seconds. The K-means Stratified algorithm was second

fastest averaging 40.13 seconds but with the highest Table 2: Statistics for each algorithm.

standard deviation of 13.09 seconds. The Original

. . . . Optimal Solution . Time Standard
SAA algorithm was the slowest averaging 72.28 Clustering Average Optimal | ¢ 1 Deviation | Ve Time | iation
.o . Algorithm Solution (millions) - (seconds)
seconds. This is an entire 7 seconds slower than — — (m‘o"‘;ﬂs) — (Segcolf;ds)
. riginia . s . .
the next slowest algorithm, EM-GMM. Table 2 Kmeans Random 3278 3.06 520 83
shows the detailed statistics of the optimal Kmeans Stratified 33.99 3.43 40.13 13.09
1 t d t fth ) 1 SAA DBSCAN 3331 3.36 26.75 4.82
solutions and run times ol the origina Mean Shift 3272 2.85 62.10 7.73
algorithm and the clustering methods. EM Gauss 32.45 2.99 65.21 9.89
Table 3: Tukey's range test on the mean optimal solution.
Tukey’s range test is used to pairwise compare all of the _— > r upr o adi
. . . . . . 1 1
means and determine which, if any, are significantly different EM-GMVM-DBSCAN 0.8 254 082 0688
from the rest. Tukey’s test was performed on both the mean MeanShift-DBSCAN 059 227 1.09] 0917
optimal solutions and the mean time. The results of Tukey’s Original-DBSCAN -174]  -3.42]  -0.06]  0.037
test can be viewed in Tables 3 and 4. The first column shows Random-DBSCAN 053] -2.21 115] 0.946
which two algorithm means are subtracted from each other. i;rat'f;tt'::;cé:ﬂm 2'23 '1'22 i'gg g'ggs
. ean - = . -1l . '
The sef:ond column shows the Q1fference between the means. Original- EM-GMM 088l 256 080 0.659
The '[hlI'.d and fou.rth columns give the lower and upper bounds  [g3ndom-EM-GMM 033 135 201l 0993
of the difference in means estimation. Lastly, the fifth column Stratified-EM-GMM 154 014 3.22]  0.095
gives an adjusted p-value for the likelihood the event occurs. Original-MeanShift -115)  -2.84 053] 0.362
Using a = 0.05, there are only two occurrences in which one Random-Meanshift 006]  -1.62 174  1.000
algorithm performed statistically significantly better than the :tra;'f'ec';jm_e?"slh'ft iiz ’g':i i:g gggg
. . . o g andom-Urigina . -U. . '
next. The orilglnal SAA algorithm has a statlstlcall.y lower Stratified-Original > 072 210 0001
average optimal solution than the DBSCAN algorithm by an Stratified-Random 1211 047 280 0312

average difference of 1.74 million. Likewise, the original SAA
algorithm has a significantly lower average optimal solution than K-means Stratified by an average difference of
2.42 million. Tukey’s range test on the average times revealed a much different story. Almost all of the algorithms
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Table 4: Tukey's range test on the mean time to solve.

were sta.tlstlcally significant from each other. DBSCAN b e orr o o ad)
was statically faster than all of the other algorithms. Next,  [em-gMM-DESCAN 38.46 32.78 2a.14] 0000
K-means Stratified, which was statically slower than Meanshift-DBSCAN 35.35 29.67 41.03]  0.000
DBSCAN, was statistically faster than the remaining Original-DBSCAN 45.53 39.85 51.21)  0.000
algorithms. There was no statistical difference between E:”f,:’_"‘f;B:g&NN i;i; 2?22 i;i; gggg

. . ratiried- . . . .

K-Means Random and Mean-Shift or Mean-Shift 'an.d MeanShiftEM-GMM YT 879 2eal 0.620
EM-GMM. However, K-Means Random was statlstlcally Original-EM-GMM 7.07 1.39 12.75 0.006
faster than EM-GMM. Lastly, the original SAA algorithm  |Random-EM-GMM -6.88 -12.57 -1.20|  0.008
proved to be statistically significantly slower than all of Stratified-EM-GMM 2508  -3076]  -19.40] 0.000
the other 5 algorithms Original-MeanShift 10.18 4.50 15.86]  0.000
g ! Random-MeanShift -3.78 -9.46 1.90 0.399
Stratified-MeanShift -21.98 -27.66 -16.30]  0.000
6 Conclusions and Future Work Random-Original -13.96 -19.64 -8.28)  0.000
This paper focuses on applying clustering algorithms to Stratified Original 32,15 37.84  26.47) 0000
Stratified-Random -18.20 -23.88 -12.52 0.000

the sample generation for the SAA algorithm to enhance

its computational efficiency. We compare five clustering algorithms to examine their efficacy on optimal sample

selection. Based on the computational results, all five clustering algorithms increase the speed of the SAA
algorithm. However, they do not appear to improve the optimal solution value by a statistically significant amount.
The DBSCAN and K-means Stratified algorithms statistically worsened the average optimal solution compared to
the original SAA algorithm. The SAA algorithm is applied to large scale models and often computational efficiency
is equally important as the optimality of the solutions. This study ran each algorithm 50 times and concluded that
using any of the five clustering algorithms, was statistically faster than using the original SAA algorithm. Further
testing is needed to be done on a larger scale to understand the full tradeoffs between speed and optimal solutions.
Increasing the number of scenarios for each algorithm will reduce the variance and bring more clarity to each
algorithm's true average solution and average optimization time. This will help separate the algorithms that are faster
and more optimal than the original SAA algorithm.
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