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Abstract 
 

Stochastic Programming (SP) is used in disaster management, supply chain design, and other complex problems. 

Many of the real-world problems that SP is applied to produce large-size models. It is important but challenging that 

they are optimized quickly and efficiently. Existing optimization algorithms are limited in capability of solving these 

larger problems. Sample Average Approximation (SAA) method is a common approach for solving large scale SP 

problems by using the Monte Carlo simulation. This paper focuses on applying clustering algorithms to the data 

before the random sample is selected for the SAA algorithm. Once clustered, a sample is randomly selected from 

each of the clusters instead of from the entire dataset. This project looks to analyze five clustering techniques 

compared to each other and compared to the original SAA algorithm in order to see if clustering improves both the 

speed and the optimal solution of the SAA method for solving stochastic optimization problems.  
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1. Introduction 
Stochastic Programming (SP) [1] is defined as modeling optimization problems in which a portion of the dataset 

being inputted into the objective function or constraints is uncertain. SP is commonly used in disaster management, 

supply chain design, and other complex problems. Many of the real-world problems that SP is applied to, produce 

large models, and it is important that they are optimized quickly and efficiently. Applications include disaster supply 

management [2], supply chain design [3], and healthcare [4], all of which require highly efficient and optimal 

solutions to extremely complex problems. Although the data for this research was related to disaster supply 

management, this work focuses more on the optimization of the SAA algorithm than its application. 

 

Existing optimization algorithms are limited in the capability of solving these large problems. Sample Average 

Approximation (SAA) method is a common approach for solving large scale SP problems by using the Monte Carlo 

simulation. SAA approximates the SP objective function by a sample average estimation derived from a random 

sample. The resulting SAA problem is solved deterministically. The process is repeated with different random 

samples to obtain potential solutions.   

 

This paper proposes a method to create a machine learning based computational framework. Many research studies 

focus on applying machine learning algorithms to improve SP optimization. For example, Cotter’s work (2013) 

improves stochastic algorithm by applying two common machine learning algorithms: binary classification using 

kernelized linear classifiers and Principle Component Analysis [5]. In another study by Verweij et al. (2013), the 

SAA algorithm was applied to stochastic routing problems and found to have a computational complexity that grows 
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linearly with the number of sample scenarios [6]. The studies concluded that SAA can become computationally 

expensive for more complex and larger datasets. In the case of this study, disaster management data was used, which 

is a large multidimensional dataset. The utilization of machine learning ideas to the optimization algorithms such as 

heuristic algorithms for SP problems, is not as common. This project focused on applying clustering algorithms to 

the data before the random sample is selected. Once clustered, the random sample is randomly selected from each of 

the clusters instead of from the entire dataset. 

 

This paper is outlined as follows: Section 2 focuses on literature relating to the model and integration of machine 

learning into the SAA algorithm. Section 3 details the model itself and the data being used as input. Section 4 

overviews the various clustering methods and some of their advantages and disadvantages. Lastly, Section 5 and 6 

explain the results and conclusions of this work.  

  

2. Literature Review 
2.1 Model 
Heuristic algorithms are those that focus more on reaching an approximate solution for the sake of speed, sometimes 

sacrificing the exact solution. Heuristic algorithms are commonly used to solve stochastic programming problems. 

The use of SAA algorithms, as one of efficient heuristic algorithms, to solve stochastic programming problems is 

quite common. Kleywegt et al. (2002) apply the SAA algorithm to solve stochastic discrete optimization problems. 

The study analyzes convergence rates and computational complexity of the SAA algorithm [7].  

 

It is important that solutions should be found to reduce the computational expense of running these algorithms 

without sacrificing the overall performance of the objective function. Many scenario reduction methods [8] are 

applied to the SAA algorithm to enhance the computational efficiency of this algorithm. Pasupathy and Song (2021) 

present an adaptive sequential SAA algorithms to solve large-scale two-stage stochastic linear programs [9]. 

Henrion et al. (2009) develop a scenario reduction method based on discrepancy distances to derive the upper and 

lower bounds, and some explicit solutions for optimal scenario reduction problems [10]. 

 

2.2 Integration of Machine Learning Algorithms 

Studies that have tried to resolve this issue utilize clustering algorithms to group similar scenarios together, and from 

this, generate samples. This idea can be seen in studies by Crainic et al. (2014)[11] and Emelogu et al. (2016)[12]. 

This technique was seen to generate samples more efficiently than the original SAA algorithm. It is common for 

optimization algorithms to be used to improve machine learning techniques, but not the other way around. Although 

the SAA algorithm achieve good performance, the computational expense makes it difficult and inefficient to use on 

much larger problems that can be seen in disaster management and other real world situations. This paper explores 

machine learning based clustering algorithms to more efficiently generate samples for the SAA algorithm. 

 

3. Stochastic Programming Model and Data 
3.1 Data 

The data for this study are extracted from a facility location problem which allocated certain products to given 

facilities. The products had a demand and volume associated with them, as well as a procurement, transportation, 

holding, and shortage cost. The facilities had given storage capacities, distances to locations, and fixed costs 

associated with them. The decision variables included whether to open a facility. Determining how much product 

should be held at each facility as well as the amount of product to deliver from an open facility to a designated 

location were also decision variables. These variables correlated to the fixed, procurement, and transportation costs 

of operating an open facility. Holding costs are also relevant for products that are being held in a location, and 

shortage costs are relevant when a product runs out at a given facility. The ultimate goal of this work is to minimize 

the cost while improving the run time of the SAA algorithm. 

 
3.2 Model 

Notations:  

N  Set of locations, indexed by i, j 

L  Set of size categories, indexed by l 

A  Set of item types, indexed by a 

S  Set of disaster scenarios, indexed by s 
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,, l i li l
fc CF x=                  Fixed costs for operating facilities 

,, a a ia i
pc CP y=                   Procurement costs for all products across all facilities 

, , , ,, ,s a i j a i j sa i j
tc CT H q=      Transportation costs for all products in scenario s 

, ,, ,s a a i sa i j
hc CH z=                    Holding costs for surplus quantities in scenario s 

, ,,s a a j sa j
wc G w=                    Penalty costs for shortage quantities in scenarios s 

Da,j,s  Demand for products (type a, location j, disaster scenario s) 

ps  Probability of scenario s occurring 

Hi,j  Distance from facility i to location j 

Ul  Storage capacity of facility in category l 

CFl  Fixed cost of facility in category l  

Va  Volume of type a products 

CPa  Unit procurement price of type a products 

CTa  Unit transportation cost of type a products 

CHa  Unit holding cost of type a products 

Ga  Unit penalty cost for shortage of type a products 

M  A large positive number  

xi,l  1 if open facility i in category l, otherwise 0. 

ya,i  Procurement quantity of type a products for facility i 

qa,i,j,s  Amount of type a products delivered from facility i to location j in scenario s 

 

 Formulation 

The following is the mathematical model formulated for disaster facilities. 

( )min s s s ss
f fc pc p tc hc wc= + + + +  (1) 

, , ,a i a l i la l
y V U x i      (2) 

, , , , , ,a i s a i a i j sj
z y q= −  (3)  

, , , , , , ,a j s a j s a i j si
w D q= −  (4) 

, 1,i ll
x i   (5) 

 , 0,1 , ,i lx i l   (6) 

, , , , ,, 0, , , ,a i s a i j sy q a i j s   (7) 

The objective function (1) minimizes the overall cost (f), including fixed cost (fc), procurement costs (pc), 

transportation, costs (tc), holding costs (hc), and shortage costs (wc). Constraint (2) restricts that at each facility the 

total procurement quantities would not exceed the storage capacity, (3) calculates surplus quantity of type a products 

at facility i in scenario s. Line (4) calculates shortage quantity of type a products at location j in scenario s and the 

inequality (5) makes sure one facility will be operated at most. Lines (6) and (7) define the integrity of the variables. 

 

4. Clustering Technologies 
The SAA algorithm is a Monte Carlo simulation-based approach. Several clustering methods were used before the 

SAA algorithm’s random sample selection to improve the speed and optimal solution of the SAA method. One 

sample scenario was selected from each of the produced clusters for input into the SAA algorithm. 

 

4.1 K-means 

The K-means algorithm requires a preset number of clusters k, each of which has a randomly generated centroid.  K-

means simply consists of two basic steps. First, every data point is assigned to its nearest centroid based on its 

Euclidean distance. Next, every centroid’s average is re-calculated based on all of its assigned data points. These 

steps are recomputed until there is convergence. Some of the strengths of the K-means method include the fact that 

it is a very common and well-known algorithm. The simplicity of the algorithm also makes it fast and reaches 

convergence quickly. But one of the major draw backs is that the total number of clusters must be known before it is 

run. Lastly there are two ways to use the K-means solution in the original SAA algorithm. Stratified sampling where 
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the scenarios are strategically selected from each cluster and Random sampling where they are randomly selected 

from each cluster. 

 

4.2 Mean-Shift 

The Mean Shift algorithm begins with a centroid at every single data point. Then the centroids store all of their 

neighbors within a certain radius r. Then the mean of those points will be taken and the centroid will then be 

assigned to that point. Lastly the unique centroids are kept and stored. The three steps are repeated until convergence 

of the centroids. Unlike the K-means algorithm the mean-shift algorithm does not require a preset number of 

clusters. However, the algorithm does require a preset radius r. Additionally it can be very inefficient to begin at 

every data point. 

 

4.3 Density-Based Spatial Clustering (DBSCAN) 

The Density-Based Spatial Clustering Algorithm (DBSCAN) begins with a single data point. The algorithm then 

finds all of the points that are within a preset distance epsilon away. If fewer than a preset number of points 

(minPoints) are within epsilon distance, the point is labeled as noise.  If more than minPoints are found, the 

algorithm creates a cluster of that point and all its neighboring points. Then it continuously adds all the neighbors 

within epsilon distance until no more points in the cluster have data points within epsilon. The algorithm repeats 

until all points have either been assigned as a cluster or visited and labeled as noise. The DBSCAN algorithm is 

excellent for identifying and omitting outliers in the dataset and does not require a preset number of clusters, unlike 

K-Means. However, this algorithm has two drawbacks. It does not perform well in high dimension because it is easy 

for a lot of points to be within an epsilon distance of each other. It also requires two preset parameters: minPoints 

and epsilon.  

 

4.4 Expectation-Maximization using Gaussian Mixture Models (EM-GMM) 

Gaussian Mixture Models (GMMs) assume the Gaussian distribution of clusters so that both the cluster’s mean and 

standard deviation can describe the cluster (as opposed to just the mean being used to describe the cluster center as 

in K-means).  GMMs give more flexibility than K-means since the assumption that clusters are Gaussian is less 

restrictive than the assumption that clusters are circular, which is the case in K-means. The EM (Expectation 

Maximization Algorithm) is used to optimize the parameters of the Gaussian distribution for each cluster. The E-

step in the EM algorithm focuses on parameter initialization and probability estimation, the M-step then seeks to 

maximize the parameters using the probability estimates calculated in the E step. 

 

4.5 Parameter Estimation 

One of the major factors in the quality of clustering is the selection 

of the parameters. Each of the clustering algorithms required at least 

one parameter that needed to be preset before the clustering began. 

The assumption was that in order to get the best results out of the 

SAA algorithm, the samples should be chosen from robust, well 

distributed clusters. To select the parameters, histogram graphs were 

observed in order to view the distributions of the clusters. The two 

objectives were to not allow any one cluster to have too many data 

points (ideally under 25) and to have the majority of the clusters 

contain multiple data points (more than 1). Figure 1 shows the 

distribution of the data among the clusters for 

the K-means Random algorithm with parameter 

k = 18. The clusters appear to satisfy both of the 

objectives.  The largest cluster only has 15 data 

points and only one cluster appears to have one 

data point. Table 1 displays the results of the 

parameter estimation. The DBSCAN algorithm 

was the hardest to estimate. The best results 

only produced eight clusters, one of which contained almost half of the data. The remaining algorithms all had the 

number of clusters between 13 and 21, with the largest cluster containing between 16 and 21 data points.  

Figure 1: The distribution of data for K-Means 

Random when k = 18 
Table 1: Summary of the parameter selection for each algorithm 



Jacobson, Hassan, Dong 

5 Results 
The variables this project focused on for model comparison 

were the average optimization time and the average 

optimal solution of the SAA algorithm. Each algorithm 

found an optimal solution 50 times. The boxplots of the 

optimal solution for each algorithm are displayed in figure 

2. The Original SAA algorithm appears to have the 

smallest distribution. The EM-GMM and Mean-Shift 

algorithms also have small distributions but have both 

more outliers and outliers that are farther away from the 

mean. The Original SAA algorithm has the smallest 

average optimal solution of 31.57 million as well as the 

smallest variance at 0.98 million. No other algorithm was 

able to achieve an average optimal solution below 32 

million. EM-GMM was the next best algorithm in terms 

of both average optimal solution and standard deviation 

with the second smallest average of 32.45 million and the 

second smallest standard deviation of 2.99 million. 

DBSCAN and K-means stratified had the two largest 

averages of 33.31 and 33.99 million and two largest 

standard deviations of 3.36 and 3.43 million respectively.  

 

The ultimate goal of the SAA algorithm is to reduce 

compute time. When comparing clustering algorithms that 

assist the SAA algorithm, time to solve the stochastic 

problem was also considered. Figure 3 shows the boxplots 

of the time each algorithm took to solve the problem for each of the 50 trials. DBSCAN has a significant advantage 

in speed compared to the other algorithms. K-means Stratified and K-means random have the largest distribution of 

times. The Original SAA algorithm has the slowest time. The DBSCAN algorithm proved to be the fastest averaging 

26.75 seconds with the lowest standard deviation of 4.82 seconds. The K-means Stratified algorithm was second 

fastest averaging 40.13 seconds but with the highest 

standard deviation of 13.09 seconds.  The Original 

SAA algorithm was the slowest averaging 72.28 

seconds. This is an entire 7 seconds slower than 

the next slowest algorithm, EM-GMM. Table 2 

shows the detailed statistics of the optimal 

solutions and run times of the original SAA 

algorithm and the clustering methods. 

 

Tukey’s range test is used to pairwise compare all of the 

means and determine which, if any, are significantly different 

from the rest. Tukey’s test was performed on both the mean 

optimal solutions and the mean time. The results of Tukey’s 

test can be viewed in Tables 3 and 4. The first column shows 

which two algorithm means are subtracted from each other. 

The second column shows the difference between the means. 

The third and fourth columns give the lower and upper bounds 

of the difference in means estimation. Lastly, the fifth column 

gives an adjusted p-value for the likelihood the event occurs. 

Using α = 0.05, there are only two occurrences in which one 

algorithm performed statistically significantly better than the 

next. The original SAA algorithm has a statistically lower 

average optimal solution than the DBSCAN algorithm by an 

average difference of 1.74 million. Likewise, the original SAA 

algorithm has a significantly lower average optimal solution than K-means Stratified by an average difference of 

2.42 million. Tukey’s range test on the average times revealed a much different story. Almost all of the algorithms 

Figure 2: Boxplots of the optimal solution for each algorithm. 

Figure 3: Boxplots of the time to solve for each algorithm. 

Table 2: Statistics for each algorithm. 

Table 3: Tukey's range test on the mean optimal solution. 
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were statistically significant from each other. DBSCAN 

was statically faster than all of the other algorithms. Next, 

K-means Stratified, which was statically slower than 

DBSCAN, was statistically faster than the remaining 

algorithms. There was no statistical difference between 

K-Means Random and Mean-Shift or Mean-Shift and 

EM-GMM. However, K-Means Random was statistically 

faster than EM-GMM. Lastly, the original SAA algorithm 

proved to be statistically significantly slower than all of 

the other 5 algorithms.  

 

6 Conclusions and Future Work 
This paper focuses on applying clustering algorithms to 

the sample generation for the SAA algorithm to enhance 

its computational efficiency. We compare five clustering algorithms to examine their efficacy on optimal sample 

selection.  Based on the computational results, all five clustering algorithms increase the speed of the SAA 

algorithm. However, they do not appear to improve the optimal solution value by a statistically significant amount. 

The DBSCAN and K-means Stratified algorithms statistically worsened the average optimal solution compared to 

the original SAA algorithm. The SAA algorithm is applied to large scale models and often computational efficiency 

is equally important as the optimality of the solutions. This study ran each algorithm 50 times and concluded that 

using any of the five clustering algorithms, was statistically faster than using the original SAA algorithm. Further 

testing is needed to be done on a larger scale to understand the full tradeoffs between speed and optimal solutions. 

Increasing the number of scenarios for each algorithm will reduce the variance and bring more clarity to each 

algorithm's true average solution and average optimization time. This will help separate the algorithms that are faster 

and more optimal than the original SAA algorithm. 
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