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Abstract—A widely-regarded approach in Printed Circuit
Board (PCB) reverse engineering (RE) uses non-destructive X-
ray computed tomography (CT) to produce three-dimensional
volumes with several slices of data corresponding to multi-layered
PCBs. The noise sources specific to X-ray CT and variability from
designers make it difficult to acquire the features needed for the
RE process. Hence, these X-ray CT images require specialized
image processing techniques to examine the various features of
a single PCB to later be translated to a readable CAD format.
Previously, we presented an approach where the Hough Circle
Transform was used for initial feature detection, and then an
iterative false positive removal process was developed specifically
for detecting vias on PCBs. Its performance was compared to an
off-the-shelf application of the Mask Region-based Convolutional
Network (M-RCNN). M-RCNN is an excellent deep learning
approach that is able to localize and classify numerous objects
of different scales within a single image. In this paper, we
present a version of M-RCNN that is fine-tuned for via detection.
Changes include polygon boundary annotations on the single X-
ray images of vias for training and transfer learning to leverage
the full potential of the network. We discuss the challenges of
detecting vias using deep learning, our working solution, and our
experimental procedure. Additionally, we provide a qualitative
evaluation of our approach and use quantitative metrics to
compare the proposed approach with the previous iterative one

Keywords—printed circuit board; machine learning; x-ray
computed tomography; mask region-based convolutional neural
network; transfer learning.

I. INTRODUCTION

In October of 2018, Bloomberg published an article entitled
“The Big Hack: How China Used a Tiny Chip to Infiltrate
U.S. Companies.” The story claimed that servers in companies
like Apple and Amazon had been compromised by secretly
embedded spy chips. Although the companies mentioned in
the article refuted its claims, the possible existence of such a
threat highlighted the need for more research in the field of
hardware security and assurance. Access to hardware designs
allows adversaries to not only alter existing designs, but also
replicate them. These counterfeit designs penetrate various
markets and industries. The country’s military supply chain is
especially vulnerable to counterfeit products, which affects the
safety of service members and mission success. According to
a report submitted to Congress by the Department of Defense
(DoD) in 2017, the United States of America is struggling to
keep up with the global printed circuit board (PCB) market. It
notes that 90% of global manufacturing occurs in Asia, with
the United States accounting for only 5%. The DoD depends
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on these foreign-produced PCBs to meet military demands,
which raises additional security concerns.

Two issues that are often encountered in the quest for
seamless hardware security and assurance frameworks are
the time and manual labor involved in reverse engineering
(RE). An example, which is especially relevant to this paper,
is assessing PCB designs at the final stages of the supply
chain. Experts are required to manually examine the devices,
with each sample taking a considerable amount of time. Any
deviations from the original blueprints must be flagged and
investigated. Even with a task force numbering 20, a 5-minute
check will yield just above 1900 verified devices during an
8-hour shift. For companies that ship or accept thousands of
PCBs per day, that is very unsatisfactory.

It is also worth mentioning the destructiveness that comes
along with PCB RE for assurance. Destructive methods involve
physically delayering a PCB and imaging it layer-by-layer
with a digital camera or optical microscope [1]. More recent
innovations have focused on non-destructive options like PCB
RE using X-ray Computed Tomography (CT). X-ray CT non-
destructively reproduces a 3D point cluster of the PCB sample
followed by reconstruction to produce a 3D volumetric model.
In [2], the authors combine image-stitching and reconstruction
with filtering and segmentation to produce a model that can
be examined along all three-dimensional axes. The images
across layers in the top-down direction reveal via and trace
information for the PCB undergoing examination. Vias are
the vertical interconnects between layers for multi-layered
PCBs, while traces are horizontal interconnects within layers.
Although this framework is non-invasive, noise can impait its
effectivness as it affects the quality of vias and traces identified
within the layers and restricts the extent of automation [2].

Vias mostly appear as circles in the X-ray images, while
traces look like sets of lines running in different directions.
Smaller vias and thinner traces are hard to identify in the
presence of the noise that accompanies the parameterized X-
ray process [2]. To address this issue for vias, we initially
proposed a via-focused detection approach that started with
Hough Circle Transform and iteratively removed false-positive
detections [3]. By incorporating frequency-based filtering, we
mitigated the noisy results of the X-ray CT and automated the
detection pipeline. We began with vias because they are the
simplest category we can model in the RE process. In spite
of its remarkable performance on the test set, one drawback
is that achieving this accuracy requires a priori information
such as via radii range and a number of sizes. The generalized



alternative takes a longer time to remove false positives during
the radial template matching process. This is because the
process requires time to learn the characterization of undefined
via sizes. The lack of pre-defined sizes makes creating tem-
plates more difficult. We overcome this generalization issue
in this paper by taking advantage of a deep learning approach
that captures feature extraction at varying scales. We are able
to identify vias from different PCB designs without altering
any parameters. We evaluate our approach by conducting
experiments on a custom-designed 6-layer PCB (Test PCB),
as well as a commercial-off-the-shelf (COTS) Xilinx Spartan
3 PCB.

In the next section, we discuss the R-CNN family and the
metrics commonly applied to evaluate object detection. Section
IIT explains our modifications to the out-of-box Mask R-CNN
implementation. We emphasize the steps taken to train and
how important they are to tackle such a nuanced problem.
Section IV provides quantitative results and discussion. The
final section concludes the paper and provides directions for
future work.

II. BACKGROUND

A. Region-based Convolutional Neural Network

The Region-based Convolutional Neural Network (R-CNN)
method implements bounding-box object detection by propos-
ing candidate object regions and applying convolutional net-
works on each region of interest [4], [5]. Faster R-CNN [5]
builds on the original R-CNN by using a Region Proposal
Network (RPN) to propose candidate object bounding boxes.
Its second stage extracts features using Region of Interest
pooling (RolPool) from each candidate box and performs
classification and bounding-box regression. For each possible
object, it outputs a class label and a bounding box offset.
The class label is the name of the object, while the bounding
box indicates its location. Based on the framework of Faster
R-CNN, Mask R-CNN adds a third branch for predicting
an object mask (captures form) in parallel with the existing
branches for classification and localization. A block diagram
of Mask R-CNN is shown in Fig.1.

B. Transfer Learning

Previously-learned tasks are the very foundation of transfer
learning. Essentially, the knowledge gained from solving one
machine learning problem can be used to address another
one. Therefore, the main motivations and benefits of utilising
transfer learning are faster training times, increased accuracy,
and eliminating the need for large amounts of data. Pan
and Yang [6] use domain, task, and marginal probabilities to
describe transfer learning.

Take a domain D, a two-element tuple with feature space
x and marginal probability P(X). X is a sample data point,
and the entire domain is represented as

D = {x, P(X)}. (1

Now consider a task 7', another two-element tuple of label
space v and predictive function 7. The objective function can
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Fig. 1: Overview of Mask R-CNN Framework

be denoted as P(y| X). Also, Y is a corresponding label point
for X. Therefore,

T ={y,P(Y|X)}={v,n}, (2)

A source domain can be represented as Dy, source task as 7%,
target domain as Dy, and target task as 7;. Hence, the aim of
transfer learning is to learn the target conditional probability
function 7; or P(Y;|X;) in D; with information gained from
Dg and T;.

C. Structural Similarity Index

In order to measure the decrease in the quality of an image
during processing, the Structural Similarity Index (SSIM) was
created. Two visually-identical images from the same shot are
compared using this metric. It deduces perceptual differences
between images [7]. For two images of a and b with common
size NxN, the SSIM score is computed as follows:

(2papip + €1)(20ab + C2)
(1 + pp + c1)(03 + 0 + c2)
where j1, and j1;, are the means of a and b respectively. Both o2

and Uf represent their individual variances, while o, indicates
their covariance [7].

SSIM/(a,b) = 3)

D. Intersection Over Union

Intersection over Union (IoU), also known as the Jaccard
index, is the most popular evaluation metric for object detec-
tion. Two sets of bounding boxes, the ground truth box, and
the predicted box, are required to compute the IoU score [8]:
M,N M
p 79t 4)
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Fig. 2: Visualization of Mask R-CNN Applied to Via Detection

where M, is the predicted mask and Mg, is the ground
truth mask. For this task, the IoU is computed for both the
foreground and background separately and then averaged to
provide a mean score.

E. DICE Coefficient/ F1 Score

The DICE coefficient, also referred to as F1-Score, is
computed similarly to IoU, and we once again prefer the mean
DICE score result due to class imbalance between foreground
and background classes in the segmentation masks [9]. DICE
is computed as follows

2 % Mp N M gt ( 5)
Total # of Pixels
DICE coefficient behaves similarly to IoU, and both are
positively correlated with one another. In other words, they
are often in accordance with one another when evaluating
model performance. However, an important difference is that

IoU penalizes instances of misclassified pixels harsher than
DICE.

DICE =

III. METHODOLOGY

Deep learning has a significant role to play in in PCB
RE process. In the publication by Botero et. al. [3], the
unaltered Mask R-CNN implementation is compared to the
unsupervised, specialized Hough Circle Detection method pro-
posed in their work. Although it performed poorly by missing
many obvious vias, it nevertheless presented an opportunity
for further exploration. In this paper, we seek to not only
improve the Mask R-CNN method mentioned earlier, but to
supersede the unsupervised Hough Circle Detection method.
Our framework assures faster via detection time and does not
require prior knowledge of via radii sizes for each design.
Since it is a feature-based learning solution, we overcome
noisy x-ray images by adding noisy samples to the training
dataset.

A visual representation of the workflow is shown in
Fig. ??. Like most deep learning problems, the pipeline is
divided into two main stages; the training phase and the
inference/application phase. The training stage itself is very
straightforward. Single via images are annotated for the train-
ing process. Once the training step is completed, the model is
available for the inference stage. Depending on the size and

complexity of the test image, the process takes 1-3 minutes.
The details of each part are enumerated in the following
subsections.

A. Training Stage

The Mask R-CNN implementation we build upon [10]
provides weights pre-trained on the MS COCO [11] dataset.
The original dataset is made up of 80 different categories
of everyday objects. The pre-trained weights allow us to
utilize transfer learning (see Sec. II-B). We adjust only the
prediction heads and freeze the main backbone layers for
training. This is because the backbone layers already work
for feature extraction at different levels. We only require the
heads to be able to effectively classify, localize and segment
a via object.

1) Annotated Training Images: The annotation style used
by the collaborators of the implementation [10] is a single
polygon of data-points surrounding the object of interest.
During earlier experiments, it was realized that this method
significantly under-performed during the via-object inference
stage. One reason is the nature of vias on the X-ray CT images.
Different X-ray conditions produce vias that do not appear as
copper circles. Some open vias appear to be closed on raw x-
ray CT images due to the presence of high-Z solder material.
Open vias also have image background within their inner cir-
cumferences. Hence, we annotate both inner and outer regions
of visibly open vias. All these have to be accounted for when
the model is learning how to identify a via. More annotation
points provide more descriptive points for the model to learn.
The VGG Image Annotator (VIA) [12] is the annotation tool
used to define the vias in each training image. Each training
image contains a single via obtained from the Test board or
Xilinx Spartan 3 PCB. They are a randomly chosen set of all
via sizes available. Single via images reduce the likelihood
of overfitting. They also prevent group localization during the
inference stage. Although we test on the same PCBs, it must
be emphasized that the single via images are different from
the entire PCB X-ray CT images. The test images (see Section
IV) are significantly more complex than the training set (see
Fig. 2).

2) Backbone CNN Layers (ResNetl01 + FPN): The deep
convolutional neural network used is a version of ResNet,
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Fig. 3: Feature Pyramid Network a) Bottom-Up Pathway b)
Top-Down Pathway c) Lateral Connection

whose core idea is an “identity shortcut connection” that
skips one or more layers during training [13]. The ResNet101
model can successively be trained for 1000 different categories
of objects. Since only the layers after ResNet are adjusted,
the Feature Pyramid Network (FPN) is our primary focus. It
generates multi-scale feature maps with essential information.
It combines low-resolution, semantically strong features with
high-resolution, semantically weak features via a top-down
pathway and lateral connections [14]. The low-resolution
features are the result of the bottom-up pathway, which is
the ResNet101 model in this case. One pyramid level is set
for each stage of the network. The output of the last layer
of each stage is used as the reference set of feature maps for
the top-down pathway. The connection is made laterally. On
the other hand, the top-down pathway involves upsampling
the higher levels of the pyramid. The feature maps generated
are semantically strong. As seen in Fig. 3, the feature maps
from the bottom-up pathway (after 1x1 convolution) and the
top-down pathway are merged by element-wise addition. Note
that the final feature map is generated by a 3x3 convolution
on each merged map.

3) Region Proposal Network (RPN) + ROIAlign: The input
of this stage is the feature maps from the FPN. Its output is
a number of regions of interest (ROIs) that will be examined
by a classifier, regressor, and mask branch to eventually check
the occurrence of objects. The steps in the RPN step are:

1) Generate anchor boxes.

2) Classify each anchor as foreground or background.

3) Learn shape offsets for anchor boxes to fit them for
objects.

Every point in the feature map generated by the backbone is an
anchor point. Each anchor point has anchor boxes generated
around it. The parameters used to create the boxes are scale
and aspect ratio. After anchor box generation, boxes are clas-
sified into the foreground or background images. During the
training stage, offsets are learned for the foreground boxes to

adjust for fitting the objects. The foreground objects are found
by calculating IoU between anchors and ground truths, while
the background objects are computed using the difference in
the coordinates. The difference in the coordinates is calculated
and learned as targets by a regressor. Some portion of the
foreground and background boxes are considered according
to confidence scores. The offsets are applied to those boxes
to get the actual ROIs to be processed further. Due to the
bounding box refinement step in the RPN, the ROI boxes may
have different sizes. This can cause misalignment. ROIAlign
prevents this by accurately mapping an ROI from the original
image onto the feature map without rounding up to integers.
This is achieved using bilinear interpolation.

4) Softmax Classifier, Bounding Box Regressor, and Mask
Predictor: The softmax classifier network is deeper and has
the capacity to group regions to specific classes. Bounding
box regression is similar to the mechanism in the RPN, and
its purpose is to further refine the location and size of the
bounding box to encapsulate the object. The mask predictor
branch is based on the FCN Semantic Segmentation algorithm
proposed by Long et al. in 2015 [15]. It takes the positive
regions selected by the ROI classifier and generates masks for
them. During training, we scale down ground truth masks to
28x28 to compute the loss, and during inferencing we scale
up the predicted masks to the size of the ROI bounding box.
The multi-task loss function of Mask R-CNN is calculated as
follows:

L= Lcls + Lbow + L’mask‘ (6)

where L is the total loss, L., is the classifier loss, Ly, 1S
localization loss and L, 45 is the mask predictor loss.

B. Inference Stage

This is the test of the completely-trained model. It is a
sequence of events that ends with bounded, classified and
masked object(s). Although Mask R-CNN is reasonably scale-
invariant, their features must be recognizable. The original
implementation provides a bounding box with the predicted
class. The code is refactored to provide a bounding circle for
each detected via. A database of 2D coordinates and radii sizes
is also generated for each image under analysis.

IV. RESULTS AND DISCUSSION
A. Experimental Setup

The pre-trained weights on COCO allow the use of a
smaller dataset to facilitate training. The best-forming training
set size is found to contain 240 single via images. The
images are from X-ray CT results of the 6-layer PCB and
the Xilinx Spartan 3 PCB. The 6-layer PCB has physical
dimensions of 15mm by 15mm and 3-D referred stack di-
mensions of 1357x1286x157 slices. The Xilinx Spartan 3
PCB has estimated dimensions 280mm by 210mm and 3-
D stack dimensions of 1871x1858x58 slices. All training
images were 192x192 pixels. This was to minimize training
time and conform to the default dimension requirement of each
side divisible by 64 created by the original programmers. As
mentioned in the previous section, the VGG Image Annotator
(VIA) is the annotation tool used to define the vias in each



Training Parameter Value

Number of Epochs 30
Steps Per Epoch 100
Batch Size 8
Top Down Pyramid Size 256

RPN Anchor Scales (8, 16, 32, 64, 128)
RPN Anchor Ratios 0.5,1,2)
Minimum Image Dimension 192

Maximum Image Dimension 192

TABLE I: Main Parameters Used In Matterport Mask R-CNN
Implementation

training image. To supplement the existing Mask R-CNN in-
frastructure, we extend the Config class to modify the training
parameters, and the Dataset class to access training images,
test images, and annotations for the vias. Like the original
annotations used on the COCO dataset, polygons are used.
We keep the minimum detection confidence value at 5% to
allow all possible vias to be detected. The maximum possible
detection value is also increased from 100 to 6000, specifically
to accommodate the Spartan Board’s 800 via count. Although
a greater value may increase the number of false positives,
it is advisable to use the largest one possible and eliminate
false positives after inference. This will improve the chances
of finding marginally-defined vias in preparation for the vast
amount of possible via density in a design. The minimum and
maximum image dimensions are also changed from 800 and
1024 to 192 and 192 to suit our prepared dataset. Parameters
such as the number of epochs and batch size remain at 30 and
8, respectively. The most important parameters are listed in
Table I.

We implemented our experiments using Python version
3.8.5. The Mask R-CNN implementation uses Tensorflow
and Keras tools. To run the experiments, we utilize 2 GPUs
in the HiperGator Research Computing environment at the
University of Florida. Each GPU is an NVIDIA GeForce RTX
2080ti with 11GB of dedicated memory.

B. Acccuracy

We measure the accuracy of our design’s results using the
ground truth set. We hand-label the annotations using the
software in [16] for both the Xilinx Spartan PCB and the Test
Board layers to accomplish this. The ground truth files are
lists of vias with their 2D center coordinates and correspond-
ing radii. This addresses both localization and classification
requirements like any standard object detection model. The
methods we select to measure accuracy are IoU (Section II-D),
DICE coefficient (Section II-E), and SSIM (Section II-C).

Our results using these metrics are stated in Table II. The
previous unsupervised method begins by selecting suitable via
candidates. After going through pre-processing, the Hough
Circle Detector is used to select all possible vias in the image.
The two scenarios used for the parameter-based method are
prior knowledge of the specific via radii ranges (referred to
as “Known” in the table), and a non-specific upper and lower
bound value for small, medium, and large ranges (referred to as
“General” in the table) [3]. For both sets of instances, there is a
false-positive removal step, followed by a concentricity check
to eliminate multiple detections of the same via. We compare

O = Ground Truth

= Modified Mask R-CNN Prediction

O = False Positive Prediction

Fig. 4: Sample Results of Modified Mask R-CNN model on
Test Board (Top) and Xilinx Spartan 3 Board (Bottom)

our accuracy results to both known and generalized scenarios.
We also add the Mask R-CNN implementation used as a
benchmark in the publication. All layer images used in the ex-
periments presented in the previous paper are also reproduced.
The framework has minor issues with some vias across both
sets of X-ray CT images. Vias are classified reasonably well on
the Test board, but the localization is skewed, as seen in Fig. 2.
This is one issue that must be addressed in the next version



Layer TIoU DICE SSIM
Known  General OMRCNN MMRCNN | Known General OMRCNN MMRCNN | Known General OMRCNN MMRCNN
T-0 .8623 .8521 4872 .6313 9209 9140 4935 7126 9732 9716 0 .9665
T-1 .8860 8722 5816 .6579 9362 9274 .6533 7437 9734 9715 9567 .9690
T-2 .8832 .8407 5831 7202 9345 9065 .6550 .8082 9726 9691 9548 9711
T-3 .8800 .8495 .6591 7225 9325 9124 7484 .8103 9724 9698 9597 9714
T-4 .8863 .8579 .5835 7295 9364 9182 .6561 .8168 9735 9695 9569 9718
T-5 .8620 .8253 4875 7254 9206 .8955 4937 8130 9728 9674 0 9715
S-0 7190 .6947 .5062 .6574 .8108 7891 .5865 7437 9477 9410 .8694 9431
S-1 7361 7052 .5382 .6809 .8261 7992 5753 7691 9487 9403 8912 .9497
S-2 7342 .6976 4903 .6606 .8244 7921 .5380 7472 9498 9411 71815 9452

TABLE II: Comparing accuracy scores for the unsupervised Hough Circle Detection method (previously -known radii sizes
versus generalized radii sizes for each layer) against the out-of-box Mask R-CNN (OMRCNN) presented in [3]. The final
column under each header shows the results of our modified version (MMRCNN). Test board layer is marked with T, while

Spartan board layers are S.

of the tool. It is prevalent in the largest-sized vias. During the
detection pipeline, the RPN must generate initial bounding
boxes that contain the required objects. Several boxes based
on the anchors sizes controlled by the entered scales and ratios
(as in Table. I) are generated for each proposed object, and
non-maximum suppression eliminates the surplus. There is no
issue with the sizes, but the localization itself is not accurate.
In Table II, IoU results are lower due to this disparity. There
are also missed and false detections among layers of the Test
board. One problem we faced is the accurate extraction of
features, especially in the presence of noise. Features on a
populous image may be missed or incorrectly identified, and
this can be seen in our results. The Xilinx Spartan 3 PCB is
significantly more challenging, and the obstacles faced with
the Test PCB are multiplied many times over. Some vias
look like pads and contacts. Although we also test on filtered
versions of the data, the smaller sizes increase the likelihood
of false-positive and -negative detection (See Table III). Like
the unsupervised Hough Circle detection method, certain pre-
processing techniques may help with this. One option to
consider is the parameter-free edge segment detector (EDPF).
It is able to make required edges more conspicuous, especially
in the presence of noise [17]. This is vital for identifying via
shapes.

One other drawback of the deep learning approach is the
time factor. It is well-known that training deep learning models
takes time, but the inference step leaves much to ponder
over. The average time inference runtime on a Test Board
layer is 2 minutes, whilst a Spartan layer, with 12 times
the number of vias on the Test Board, takes 5 minutes. In
a future implementation, a method that allows early exiting
when the required features are identified will reduce runtime
considerably.

Layer False Negative Count  False Positive Rate
Test 1 10 0.0156%
Test 2 8 0.0156%

Test 3 0 0.0156%
Test 4 1 0.0156%
Test 5 0 0.0156%
Test 6 0 0.0156%
Spartan 1 66 0.0649%
Spartan 2 171 0.2500%
Spartan 3 219 0.0858%

TABLE III: False positive rate and false negative (missed
detection) count for each layer

V. CONCLUSION

We present an application of deep learning to PCB via
detection in X-ray CT images. As a vital step in the PCB
reverse engineering process, an automated mechanism pro-
vides the foundation for solving other detection problems. The
addition of refined pre-processing techniques and optimization
of the pipeline will make the current design more potent. After
achieving sufficient potency with the current method, we can
apply the framework to other parts of the PCB design, such
as traces.
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