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Abstract—For real-time embedded systems, QoS (Quality of
Service), fault tolerance, and energy budget constraint are among
the primary design concerns. In this research, we investigate the
problem of energy constrained standby-sparing for weakly hard
real-time systems. The standby-sparing systems adopt a primary
processor and a spare processor to provide fault tolerance
for both permanent and transient faults. With the purpose of
ensuring the feasibility of such kind of systems, we firstly present
two novel scheduling schemes for the standby-sparing systems
with tighter energy budget constraint than the traditional ones.
Then based on them a hybrid approach is proposed to achieve
better performance. The evaluation results demonstrated that
the proposed techniques significantly outperformed the existing
state of the art approaches in terms of feasibility and system
performance while ensuring QoS and fault tolerance under given
energy budget constraint.

Index Terms—energy constraint, fault tolerance, QoS

I. INTRODUCTION

With the advance of IC technology, energy constraint has
been an increasingly important factor for the design of real-
time embedded systems. In some real-time applications, the
systems are driven by power supplies with limited energy bud-
get constraint, which has to remain operational during a well-
defined mission cycle. Examples include Heart Pacemakers
[1] or other portable embedded devices whose power supply
can only be charged to full capacity right before the beginning
of certain mission/operation cycle/period(s). For such kind
of applications, efforts must be made by all means to avoid
exhausting the energy budget before the end of the mission
cycle. On the other hand, fault tolerance has also been a
major concern for pervasive computing systems as system
fault(s) could occur anytime [2]. Generally, computing system
faults can be classified into permanent faults and transient
faults [3]. Permanent faults could be caused by hardware
failure or permanent damage in processing unit(s) whereas
transient faults are mainly due to transient factors such as
electromagnetic interference and/or cosmic ray radiations.

Recently a lot of researches (e.g. [4], [5]) have been con-
ducted on dealing with energy consumption for fault-tolerant
real-time systems. Many of them have focused on dealing with
transient faults. A widely adopted strategy is to use software
redundancy, i.e., to reserve recovery jobs, whenever possible,
for the jobs subject to transient faults. For mission critical
applications such as nuclear plant control systems, permanent

faults need to be dealt with by all means to avoid system fail-
ure. Otherwise catastrophical consequences could occur. More
recently, solutions adopting hardware redundancy are pro-
posed to address this issue. Among them the standby-sparing
technique has gained much attention [6]-[9]. Generally, the
standby-sparing makes use of the redundancy of processing
units in multicore/multiprocessor systems. More specifically,
a standby-sparing system consists of two processors, a primary
one and a spare one, executing in parallel. For each real-time
job executed in the primary processor, there is a corresponding
backup job reserved for it in the spare processor [8]. As such,
whenever a permanent fault occurs to the primary or the spare
processor, the other one can still continue without causing
system failure. Moreover, it is not hard to see that the backup
tasks/jobs in the spare processor can also help tolerate transient
faults for their corresponding main tasks/jobs in the primary
processor.

In a standby-sparing system, due to the deadline constraint,
the execution of the main jobs in the primary processor and
their corresponding backup jobs in the spare processor might
need to be overlapped with each other in time. Thus the total
energy consumption could be quite considerable. Regarding
that, some recent works (e.g. [6]-[9]) have been reported to
reduce energy by letting the executions of the main jobs and
their backup jobs be shifted away such that, once the main
jobs are completed successfully, their corresponding backup
jobs could be canceled early. For standby-sparing systems with
mixed criticality, advanced energy management schemes were
proposed in [10]. When considering the chip thermal effect,
peak-power-aware standby-sparing techniques utilizing energy
management schemes were presented in [11].

All of the above works are mainly focused on hard real-
time systems, i.e., the systems which require all real-time
tasks/jobs meet their deadlines. However, in practical time-
sensitive applications, such as multimedia or time-critical com-
munication systems, occasional deadline misses are acceptable
so long as the user perceived quality of service (QoS) can be
ensured at certain levels. For such kind of systems, the existing
techniques solely based on hard real-time constraints are
insufficient in dealing with energy reduction under standby-
sparing and more advanced techniques incorporating the QoS
systematically are desired. To achieve this goal, the QoS
requirements need to be quantified in certain ways. One



popular existing approach is to use some statistic information
such as the average deadline miss rate as the QoS metric.
Although such kind of metric can ensure the quality of service
in a probabilistic manner, it can still be problematic for
some real-time applications. For example, for certain real-time
systems, when the deadline misses happened to some tasks,
the information carried by those tasks can be estimated in a
reasonable accuracy using techniques such as interpolation.
However, even a very low overall miss rate tolerance cannot
prevent a large number of deadline misses from occurring
consecutively in such a short period of time that the critical
data could be lost.

The weakly hard QoS model is more appropriate to model
such kind of systems. Under the weakly hard QoS model, tasks
have both firm deadlines (i.e., task(s) with deadline(s) missed
generate(s) no useful values) and a throughput requirement
(i.e., sufficient task instances must finish before their deadlines
to provide acceptable QoS levels) [12]. Two well known
weakly hard QoS models are the (m,k)-model [13] and the
window-constrained model [14]. The (m,k)-model requires
that m jobs out of any sliding window of k consecutive
jobs of the task meet their deadlines, whereas the window-
constrained model requires that m jobs out of each fixed
and nonoverlapped window of k consecutive jobs meet their
deadlines. It is not hard to see that the window-constrained
model is weaker than the (m,k)-model as the latter one is more
restrictive. To ensure the (m,k)-constraints, Ramanathan er
al. [15] adopted a partitioning strategy which divides the jobs
into mandatory and optional ones. The mandatory ones are
the jobs that must meet their deadlines in order to satisfy the
(m, k)-constraints. In other words, so long as all the mandatory
jobs can meet their deadlines, the (m,k)-constraints can be
satisfied.

With energy budget constraint in mind, in [16], Zhao et al.
proposed an approach to maximize the overall reliability of
the systems under given time and energy constraints. Their
approach only considered the transient faults. When both
permanent and transient faults are taken into consideration in
the context of standby-sparing, the energy-constrained issue is
especially critical as the backup jobs in the spare processor
could also incur significant energy consumption which could
make the total energy consumption beyond the given energy
budget constraint. In this paper, we study the problem of
energy constrained standby-sparing for weakly hard real-time
systems under the requirement of tolerating both permanent
and transient faults. To the best of our knowledge, this is the
first work to explore improving feasibility and performance of
standby-sparing systems under given energy budget constraint.

The rest of the paper is organized as follows. Section II
presents the preliminaries. Section III presents our approach
based on the floating redundant job scheme. Section IV
presents our approach based on the window transferring
scheme. Section V presents our hybrid approach. In Section VI
and Section VII, we present our evaluation results and con-
clusions.

II. PRELIMINARIES

A. System model

The real-time system considered in this paper contains N
independent periodic tasks, 7 = {t,T2,---,Tn}, scheduled
according to the earliest deadline first (EDF) scheduling
scheme. Each task contains an infinite sequence of periodically
arriving instances called jobs. Task 7; is characterized using
five parameters, i.e., (D;, P;, Ci, m;, k;). D; (< P), P;, and C;
represent the deadline, period, and worst case execution time
(WCET) for t; respectively. A pair of integers, ie., (m;,k;)
(0 <m; <k;), are used to denote the (m,k)-constraint for task
T; which requires that, among any k; consecutive jobs, at least
m; jobs must be executed successfully. The j”* job of task T
is represented with J;; and we use r;j, cij(=C;), and d;; to
denote its release time, execution time, and absolute deadline,
respectively.

We assume the task set is to be executed in a standby-
sparing system with a limited energy budget/supply of £, units
during its mission cycle. Moreover, we assume this energy
budget is a hard constraint in a sense that it cannot be exceeded
at any time during its mission cycle. Without loss of generality,
we let the mission cycle be the hyper period of the task set,
i.e., H=LCM(k;P;) and assume that the energy supply can
only be charged to full capacity right before the beginning of
each mission cycle.

The standby-sparing system consists of two identical pro-
cessors which are denoted as primary processor and spare
processor, respectively. For the purpose of tolerating perma-
nent/transient faults, each mandatory job of a task t; has two
duplicate copies running in the primary and the spare proces-
sors separately. Whenever a permanent fault is encountered in
either processor, the other one will take over the whole system
(to continue as normal). For convenience, we call each task
T; main task and its corresponding copy running in the other
processor backup task, denoted as ’c;. The j™* job of task ‘c;
is denoted as J;j Moreover, we call each mandatory job J;;
of task t; main job and its corresponding job running in the
other processor (to compensate its failure, if happened) backup
job, denoted as J;;. Note that in this paper J;;’s backup job,
ie., J; ; might be different from Jll-j, i.e., the job of ‘c;- in the
same time frame as J;; because, as will be shown in later
part of this paper, J;; and J;; can be shifted away from each
other completely such that they might belong to different time
frames.

B. Energy Model

The processor can be in one of the three states: busy, idle
and sleeping states. When the processor is busy executing a
job, it consumes the busy power (denoted as Pps) which
includes dynamic and static components during its active
operation. The dynamic power (Pyy,) consists of the switching
power for charging and discharging the load capacitance, and
the short circuit power due to the non-zero rising and falling



time of the input and output signals. The dynamic power can
be represented [17] as

Py = aCLVf, (1)

where o is the switching activity, Cy, is the load capacitance,
V is the supply voltage, and f is the system clock frequency.
The static power (Py;) can be expressed as

Py = IstV7 (2)

where I is mainly due to the leakage current which consists
of both the subthreshold leakage current and the reverse bias
junction current in the CMOS circuit. The power consumption
when the processor is busy, i.e, Pyyy, is thus

Pbusy = den + Py, 3

When the processor is idle, it consumes the idle power
(denoted as P;g;,) whose major portion comes from the static
power. When the processor is in the sleeping state, it consumes
the sleeping power (denoted as Py..,) which is assumed to be
negligible. Note that although dynamic power can be reduced
effectively by dynamic voltage scaling (DVS) techniques, the
efficiency of DVS in reducing the overall energy is becoming
seriously degraded with the dramatic increase in static power
(mainly due to leakage) with the shrinking of IC technology
size. Dynamic power down (DPD), i.e., put the processor into
its sleeping state, on the other hand, can greatly reduce the
leakage energy when the processor is not in use. With that in
mind, in this paper we assume that, when the processors is
busy, it always consumes P, at the maximal supply voltage
Vinax- Without loss of generality, we normalize Py, and the
processor speed under V,,,, (denoted as s,,,y) to 1 and assume
that one unit of energy will be consumed for a processor to
execute a job for one time unit. When no job is pending
for execution, the processors can be put into sleeping state
with DPD. Assume that the energy overhead and the timing
overhead of shutting-down/waking-up the processor are E, and
t,, respectively. Then the processor can be shut down with
positive energy gains only when the length of the idle interval
is larger than #,; = max(p Eq ,t,). We therefore call tyy

T . idleiPA‘leep
the minimal shut-down interval.

C. Fault Model

Similar to the standby-sparing systems in [7], [8], the system
we considered can tolerate both permanent and transient faults.
With the redundancy of the processing units, our system can
tolerate at least one permanent fault in the primary or the spare
processor. For transient faults which can occur anytime during
the task execution, we assume they can be detected at the end
of a job’s execution using sanity (or consistency) checks [18]
and the overhead for detection can be integrated into the job’s
execution time. Whenever a main job encounters transient
fault(s), its backup job needs to be executed to completion.

D. Problem Formulation

Based on the above system models, the problem to be solved
in this paper can be formulated as followed:

Problem 1: Given system T = {t},T2,---,Tn}, schedule T
with EDF scheme in a standby-sparing system such that the
total energy consumption does not exceed the given energy
budget constraint E. while satisfying the (m, k)-constraints for
all tasks under the fault tolerant requirement.

III. ENERGY-CONSTRAINED STANDBY-SPARING BASED ON
FLOATING REDUNDANT JOB SCHEME

To solve Problem 1, one essential part is to determine
the mandatory jobs to be scheduled under standby-sparing.
A widely known strategy to do so is to adopt the evenly
distributed pattern (or E-pattern) [15] to partition the jobs into
mandatory jobs and optional jobs. According to E-pattern, the
pattern 7;; for job Jjj, i.e., the j’h job of a task 7;, is defined
by:

ﬂij:{

“1”

“17if j= H7<J*‘kf,x’""1 X AL 4
“0” otherwise j=1,2,---

“4)
where represents the mandatory job and “0” represents the
optional job.

Note that the job patterns defined with E-pattern have the
property that they define a minimal set of mandatory jobs
that “just” satisfies the given (m,k)-constraint in each sliding
window. Due to this property, in order to ensure the system
reliability under standby-sparing, a popular approach is to
reserve a backup job in the same time frame of the backup
task running in the other processor for each mandatory job
of the main task. Consequently, the total energy consumption

will be two times of that consumed by one processor, i.e.
Hm,'

E= Z(ZTCiJFPidleH(l -
T Ki B

m;C;
kiP;

) ®)

where H is the hyper period.

From Equation (5), the energy consumed in a standby-
sparing system could be quite considerable. In order to reduce
energy consumption, in [7], Haque et. al proposed to run
the main tasks/jobs in the primary processor according to
the earliest deadline as soon as possible (EDS) scheme while
the backup tasks/jobs in the spare processor according to the
earliest deadline as late as possible (EDL) scheme [19] such
that, once the main tasks/jobs are completed successfully, their
corresponding backup tasks/jobs could be (partially) canceled.
In [8], a more advanced technique named preference oriented
scheme was adopted which, in both the primary and backup
processors, lets some tasks be scheduled under EDS scheme
while the other tasks be scheduled under EDL scheme. In [20],
an energy-aware approach based on the execution of optional
jobs was proposed for task sets partitioned under deeply-red
pattern [21] which is weaker than E-pattern in ensuring the
schedulability of the task sets [22]. Although the approaches in
[71, [8], [20] are able to reduce the actual energy consumption
of the standby-sparing system to some extent, since none of
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Fig. 1. The schedule for the mandatory main/bakcup jobs under the preference
oriented scheme in [8]: (a) in the primary processor; (b) in the spare processor.
them could predict the quantifiable amount of energy that can
be saved in advance, the total energy budget still has to be at
least the energy computed in Equation (5) in order to ensure
the systems feasibility for the worst case. Otherwise if the
given energy budget constraint £, during the hyper period is
less than the energy consumption computed with Equation (5),
the task set can not be guaranteed to be feasible in advance.
Regrading that, some more advanced technique needs to be
explored in order to ensure the feasibility of the task set
under tighter given energy budget constraint E.. This could
be illustrated using the following example.

Consider a task set of two tasks, i.e., T| = (4,4,3,4,6), and
T, = (8,8,2,2,3), to be executed in a standby-sparing system
with given energy budget constraint £, = 28 units within its
hyper period 24.

If we assume no fault occurred during the hyper period,
Figure 1 shows the schedule for the mandatory jobs based
on E-pattern for the original given (m,k)-constraints based on
the preference oriented scheme in [8] (the empty rectangles
represent the canceled part of the jobs). Note that although
in the result schedule the total energy consumption could be
reduced by 7 units, this amount of energy reduction cannot
be accurately estimated in advance, especially considering the
possible transient/permanent faults that could happen anytime
during the job execution. Therefore, in order to prepare for
the worst case, we still need to assume the total busy energy
consumption to be twice of that for executing the mandatory
jobs in one processor, which is 32 units and has already
exceeded the given energy budget constraint. As a result, the
feasibility of the task set cannot be ensured.

However, if we adopt a different way of scheduling the task
set, it is still possible to ensure the feasibility of the system.
The main idea is: we firstly temporarily increase the m; values
of each task T; by 1 such that the (m,k)-constraints of tasks T;
and T, become (5,6) and (3,3), respectively; after that for each
task we use one of its mandatory jobs under the new (m,k)-
constraint as the “temporary extra mandatory job” to help us
reduce the energy budget required. The detailed schedule are
shown in Figure 2. As shown Figure 2(a), for task 7;, since
its new job pattern under the new temporary (m,k)-constraint
is “111110” which contains an extra mandatory job in it, this
extra mandatory job does not need to have a backup job for
it (because even if it had failed, the remaining ones can still
satisfy the original (m,k)-constraint). As shown Figure 2, in
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Fig. 2. The schedule for the mandatory main/bakcup jobs under the floating
redundant job scheme: (a) in primary processor; (b) in spare processor.

the beginning we designated the first mandatory job of 1y, i.e.,
J11 in the primary processor as the temporary extra mandatory
job and executed it without backup job at all (its backup job Jil
was canceled as soon as Ji; was designated as the temporary
extra mandatory job). Once Ji; was completed successfully
at time 3, we switched the temporary extra mandatory job
to J;z in the spare processor while canceling Ji>. After ]12
was completed at time 8, we switched the temporary extra
mandatory job to Ji3 in the primary processor while canceling
J;3 ... This procedure could be repeated until all mandatory
jobs of t; under its new temporary (m,k)-constraint had been
executed. The procedure for task T, could also be conducted
in a similar way. From Figure 2 it is not hard to see that,
if no fault occurred during the hyper period, each task T;
will have totally (m;+ 1) mandatory jobs executed in either
the primary or the spare processor within each window of k;
jobs. Therefore the total busy energy consumption within the
hyper period will be 21 units. Even when we have the energy
consumption during the idle period included, assuming the
idle power of the processor Py, to be 0.05, the estimated total
energy consumption of the system within the hyper period will
be (21 + Pig x 27=) 22.35 units, which is less than E. and
therefore feasible.

The above calculation is based on the assumption that
no fault ever occurred. If during runtime a permanent fault
occurred to one processor, only the mandatory jobs in the other
processor will be executed to resume the system, which will
not increase the total energy consumption computed above.
On the other hand, if during runtime some transient fault(s)
occurred, some temporary extra mandatory job might be failed
due to it. In this case all the other mandatory jobs within the
same window of k; jobs become required ones whose backup
jobs also need to be executed. Under this scenario the esti-
mation of the total energy consumption also needs to take the
energy consumption of those backup jobs into consideration
based on probability. For example, in the above task set, if we
assume the probability of transient fault to be 107, then the
expected energy consumption of all backup jobs within one
window of k; jobs will be (3 x4+2x2)x 1073 =0.00016
units. After adding it to the above result, the total estimated
energy consumption of the system subject to fault(s) will be
22.35016 units, which is still less than the given energy budget
constraint and therefore feasible.

Note that in the above approach the mandatory main/backup



Algorithm 1 The algorithm based on floating redundant job

1: Preparations: For each task t; € 7, re-partition it based on its
new temporary (m,k)-constraint of (m; + 1,k;) and determine
its mandatory main/backup jobs in both primary and spare
processors correspondingly. In primary processor, mark J;i, i.e.,
the first job of each task 7; as its initial floating redundant job;

2:

3: For either the primary processor or the spare processor:

4:

5. Upon the execution of a mandatory job J;; at time 7,

6: if J;; is the floating redundant job then

7. Cancel Jj;’s corresponding job in the other processor and add
its time budget to the slack queue S7Q;

8:  Execute J;; following the EDF scheme;

9: if any slack time STQ;(¢r) with higher priority than J;; is
available then

10: Reclaim the slack time to execute J;; as soon as possible;

11:  end if

12: else if J;; is within the same window of k; jobs as the most
recent failed floating redundant job then
13:  if J;; is a mandatory main job then

14: repeat lines 8-11;

15:  else

16: Revise r;j to max{(rij + ;) (tcur + ST Qi(tcur))};
17: Execute J;; following the EDF scheme;

18:  end if

19: else

20: mark J;; as the current floating redundant job;

21: end if

22:

23:  Upon the completion of a job J;; at current time 7.,,:
24: if the execution of job J;; is successful then

25:  if Jj; is the floating redundant job then

26: Let J, be the next mandatory job after J;; in the other
processor;

27: Mark J, as the floating redundant job;

28: Cancel J,’s corresponding job in the other processor and
add its time budget to the slack queue .§;

29:  else

30: Cancel J;;’s corresponding job in the other processor and

add its residue time budget to the slack queue $;
31:  end if
32:  if J;; was the only job in the mandatory job queue at time

t., then
33: Let NTA be the earliest arrival time of the next upcoming
mandatory job in the same processor;
34: if (NTA —teyr) > t5q then
35: Shut down the processor and set wake-up timer as
(NTA — teur);
36: end if
37:  end if
38: end if

jobs of each task under the new temporary (m,k)-constraint
was used as the temporary extra mandatory job alternatively.
It appears in effect as if the temporary extra mandatory job
was “floating” through the mandatory main/backup jobs one
by one within each window of k; jobs and jumping back
and forth between the primary and the spare processors.
Since this temporary extra mandatory job is not required for
satisfying the original (m,k)-constraint, for convenience, we
call it floating redundant job. As shown, this floating redundant
job is very useful in helping us to reduce the estimation of

the total energy consumption and meeting the overall energy
budget constraint. Correspondingly the above approach is also
called the floating redundant job scheme. The details of it are
presented in Algorithm 1.

As shown in Algorithm 1, in the beginning, for each task
T; € T, we firstly re-partition it with its new temporary (m, k)-
constraint of (m;+ 1,k;) based on E-pattern and mark its first
job (represented as J;1) as its initial floating redundant job
(note that each task has a floating redundant job of its own).
During runtime, in both the primary and the spare processors, a
mandatory job ready queue (MQ) is maintained. Upon arrival,
a job of task t; is inserted into the MQ if its job pattern
is “17. All jobs in MQ will be executed following the EDF
scheme. A slack time queue S7 Q is also maintained for each
processor to keep track of the slack time(s) from (partially)
canceled job(s) in it. Whenever the current job J;; of task T;
got chance to be executed, if it has been designated as the
current floating redundant job of 7;, its corresponding job in
the other processor should be canceled immediately (because
the floating redundant job does not need backup job) whose
time budget should be inserted into the slack time queue
ST Q based on its deadline (line 28). Once the current floating
redundant job J;; is completed successfully, it is counted as
an effective job and the next mandatory main/backup job after
Jij in the other processor should be designated as the new
floating redundant job (lines 26-27). Otherwise in order to
maintain the original (m,k)-constraint under fault tolerance
all jobs following J;; in the same window of k; jobs should
not be designated as floating redundant job and therefore
should be executed in parallel with their corresponding jobs
in the other processor (lines 12-18). For jobs more than k; job
patterns/positions after J;;, since they are not within the range
of the same window which J;; belongs to, they will not be
affected by the failure of J;; at all and can be designated as
the floating redundant job in turn again, similar to the case of
the initial floating redundant job in the beginning (line 20).

Note that in the case when the current floating redundant
job J;j is found to have failed due to transient fault, since
all mandatory jobs following J;; in all windows containing
Jij cannot be designated as floating redundant job, totally m;
mandatory jobs after J;; need to be executed concurrently
with their corresponding jobs in the other processor. In this
scenario in order to reduce the energy consumption further,
the execution of the corresponding jobs in the other processor
should be procrastinated as late as possible such that the
overlapped executions of the jobs in the primary and the
spare processors could be reduced (lines 16-17). Regarding
that, the corresponding jobs in the other processor could be
procrastinated by a time interval @; calculated based on the
following theorem. For easy of presentation, we adopt the
following notation, i.e., [x]™ to represent (1+ |x]) throughout
this paper.

Theorem 1: Given task set 7= {11,72,...,Tx} to be sched-
uled with Algorithm 1. Let all tasks be ordered by increasing
value of D;, all mandatory job deadlines can be guaranteed if
any mandatory job J;; of task T; is delayed by no more than



@; time units (called the delay period of task t;) if for any
instant of time #:

my,+1_t—D,
Vi 1<i<n t>2¢i+ ) [Z—[——171C,  (6)
qugz kq I, !
and
Vi<i 0;<o; (7

Proof: Use contradiction. Assuming at certain time point ¢/,
some mandatory job missed its deadline. Then we can always
find another time point #y < ¢’ such that during the time interval
[to, ] the processor is kept busy executing only mandatory jobs
with arrival times or delayed starting times no earlier than #
and with deadlines less than or equal to #’. Since no job has
arrival time or delayed starting time earlier than time 0, #( is
well defined. We consider two cases:

¢ 1) At time fy, there is no pending workload from manda-
tory jobs with delayed starting time and with dead-
lines less than or equal to /. Then according to [15],
the total mandatory work demand within the interval

. mg+1 ' —ty—D,
[to,#'] is bounded by ZDqS(,/_,O)[%[ttgiqq]ﬂCq.

Since some job misss:d the deadline at ¢, we

have ZDqg(z’fro)[m}ii:l[t _I%:DqTqu > (' —1p). On

the other hand, considering the first busy inter-
val, let t = (¢ — 1), from Equation (6), we have
Lo, <[ " [ 241716, < (¢ = 10). Contradic-
tion!

o 2) At time 7y, there is pending workload from mandatory
jobs with delayed starting time and with deadlines less
than or equal to #. In this case the processor is idle at
1, - Let 11(< to) be the latest time before ¢ when there
are no pending mandatory jobs prior to #; with deadlines
less than or equal to #’. The the mandatory work de-
mand consumed in the interval [fy,?'] is generated by the
mandatory jobs arriving in the interval [r;,#']. Obviously
the mandatory work demand within the interval [t1,£] is
bounded by £, <) [ 4 [ 4] 7]C,. Let k be the
maximal index among the tasks with deadlines no larger
than (1" —1). Since there is deadline missing at ¢/, we
have

mq—|—1 ’,l‘/—tl —Dq_|+

|— kq Tq

Dy<(t'—n)

1C,> (1'—10)  (8)

Note that the idle interval [fj,#] can only caused by
the delay of certain task arriving at f;, say T,, whose
delay time is bounded by .. Since T, also contribute
to the work demand within [r,#], from Equation (7),
©x < @. So the idle interval length (zp —#;) is bounded
by @k. Together with the result from Equation (8) we
have (' —1;) = (t07t1)+(t’—to) <@+ (' —10) <@+
Y.<) [%[%W *1C,. In Equation (6), letting

t = (' — 1), contradiction reached!
O
The rationale of Equation (6) is to find the maximal time
@; before any absolute deadline of the mandatory jobs from

T; that the work-demand of the mandatory jobs from t; and
other mandatory job(s) with deadline(s) no later than it can be
delayed such that no mandatory job deadline will be missed.
Based on it, @; can be computed as

. my+1 _di—D
¢; =min{d;— () ((qTf%
Dy=d; q q

™NC)y O

for all d; < L, where L is the ending point of the first busy
period when executing the mandatory jobs only and d; is the
absolute deadline of any mandatory job of task t; belonging
to L. Note that, when calculating @;, if ¢; < ¢; for any task T;
with index less than 7T;, i.e., j <1, the value of ¢; should be
reset to be the same as ¢; due to condition (7) in Theorem 1.
Based on Algorithm 1, the estimation of the total energy
consumption of task set 7 could be calculated as:

H(m;+1 Hm;
E — Z%q.j{’ M 5mar)C
i 1 l 1
1 (m,-+1)Ci
2Py H(1 — =) ———— 10
+ 2R3 ) ) (10)

where A(s,q¢) is the average fault rate at the maximal proces-
sor speed Spqx-

Note that the energy calculated above is indeed an upper
bound of the energy consumption by Algorithm 1 because
during execution, if some idle intervals are longer than ¢y,
those idle intervals can be shutdown/wake-up dynamically to
reduce actual energy consumption further (lines 32-37).

Moreover, during the runtime of Algorithm 1, at any time
there are at most n mandatory main/backup jobs in its read
queue. So the online complexity of Algorithm 1 is O(n).

IV. ENERGY-CONSTRAINED STANDBY-SPARING BASED ON
WINDOW TRANSFERRING SCHEME

Although the floating redundant job scheme in Section III is
quite helpful in estimating the required total energy consump-
tion of the standby-sparing system and checking its feasibility
under the given energy budget constraint, it needs to increase
the m; value of each task by 1 (to accommodate the extra
mandatory job used as the floating redundant job), which
might sometime affect the schedulability of the task set. This
could be illustrated using the following example.

Consider another task set of two tasks, ie, T =
(4,4,3,2,4), and 1, = (10,10,4,1,3), to be executed in a
standby-sparing system with given energy budget constraint
within its hyper period 240 to be 120 units. In order to
apply algorithm 1, the task set needs to firstly increase the
(m, k)-constraints of tasks T; and T, to be (3,4) and (2,3),
respectively. However, it is easy to verify that the task set
will not be schedulable under such new temporary (m,k)-
constraints. On the other hand, to preserve the scheduability of
the task set, if we apply the approach in [8] to execute the task
set under the original (m, k)-constraints, although the task set is
schedulable, the estimated total busy energy consumption will
be 136 units, which has exceeded the given energy budget



constraint and therefore cannot ensure the feasibility of the
task set.

However, if we follow a different way of scheduling the
task set, it is still possible to ensure the feasibility of the task
set. Before presenting our new approach, we need to define a
variation of the E-pattern as followed. Based on it, the pattern
;; for job J;;, is defined as [23]:

j =1 ) 2a e

7c~{ if j = |[Ultrxmig o ki oy
ij =
(11)

k; m;
otherwise

Note that the above definition is actually a rotated version
of the original E-pattern which can be regarded as rotating the
E-pattern defined in Equation (4) to the right by r; bits. For
example, for a given (m, k)-constraint of (3,6), its original E-
patten is “101010”. If we rotate it to the right by r; = 1 bit,
the resulting patterns will be “010101” which are the same as
defined according to Equation (11). For convenience, we call
the pattern defined by (11) a rotation of the original E-pattern
and represent it as E'i-pattern.

With the above definition, we have the following lemma.

Lemma 1: For any task t; with (m,k)-constraint of (m;,k;),
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“0”

let y; = m; mil if mil is an integer and m; < k;; or let y; =
ki —1if S0 <mp < k;— 1. Let r; = [Y-"]. Let the jobs

of 1; W1th1n each separate window of y; ]obs be partitioned
with either E-pattern or E’i-pattern based on the new (m,k)-
constraint of (m;,y;), its original (m,k)-constraint is satisfied.
Proof: According to Lemma 1, there are two possibilities for

k+ kil
the value of y;: if I is an integer, then y; = m,m ~; or

if k"; L < m; < k; — 1, vi = ki — 1. Under both possibilities y;
is an integer. When we inspect any two consecutive separate
windows of y; jobs in the resulting job patterns from Lemma 1,
obviously there are two cases in general, (i) both windows
are determined with same type of patterns; or (ii) they are
determined with different type of patterns.

For case (i), without lose of generality, let’s assume the case
when the two consecutive windows of y; jobs, namely window
1 and window 2, are partitioned with E-pattern and E’i-
pattern, respectively, as shown in Figure 3. Then in Window 1,
according to [24], the maximal number of consecutive “0’s is
equal to r; defined in Lemma 1, which happened at rightmost
side of Window 1. Meanwhile, in window 2, since according
to Definition (11) E"i-pattern is achieved by rotating E-pattern
to the right by r; bits, then in the leftmost side of Window
2 there are exactly »; “0”s. Considering any sliding window
of (y;+r;) jobs starting from the current position of Window
x (obviously in the beginning there are m; “1”s in it), each
time when we move window x to the right by one position,
the number of “1”’s in it will not change because the patterns
for the leftmost (y; —r;) jobs in Window 1 are the same as
the rightmost (y; —r;) jobs in Window 2, according to the
definition of E’i-pattern. As such, until Window x reached
the position of Window y, the number of “1”s in the sliding
Window x is always m,;.

For case (ii), let’s assume after Window 2, the next window,
namely Window 3, has the same patterns as Window 2, i.e.,

Window x Wl‘ndowy l
[
T 1 3 i
1...10...00---01---10 - o1 1
t 1t 11 1

T T T
Window 1 Window 2 Window 3

Fig. 3. The job patterns under consecutive windows.

E’i-pattern. Then obviously the patterns for the leftmost (y; —
r;) jobs in Window 3 are the same as the rightmost (y; — r;)
jobs in Window 1. So if we continue to move Window y to
the right, until Window y reached the position of Window z,
the number of “1”s in the sliding Window y will remain the
same, i.e., m;. After that, if we continue move Window z to
the right, obviously the number of “1”s in it will be no less
than my;, either. The case when both two consecutive windows
are partitioned based on E-pattern is similar.

Based on the above statements, the resulting pattern from
Lemma 1 can always satisfy the (m,k)-constraint of (m;, (y; +
ri)). Next we will show that (y; +7;) = k;. We also check it
under the two p0531b111t1es:

Possibility (i): k“ =
,’l;fl, ryn’; = rl;,j-ll 1s an integer. So
_ ki+1  yi—mio  ki+1
ikt = lmi—|—1+f m; W_mm,—|—1 [ 1
ki+1 ki+1 ki+1 k 1
= m +[ 1-1=m + -1
m;+ 1 m;+1 mi+1 mi+1
ki+1
= 1 1=k 12
(m; + >mi+1 (12)
Possibility (ii): k’;] < m; < ki — 1. Since in this case y; =
ki—1,
ki—1 ki—1
L <mi<ki-1a1< <2e1<2 <2 (13
ml ml
As such, in this case
Yi—m; Yi
= =[=]-1=2-1=1 14
=[P = 12 (14)
So,
yi+ri:(ki—l)+1:ki (15)

From the above, for both possibilities, (y; + r;) = k;. O

To help understand Lemma 1, let us consider a task T;
with (m, k)-constraint of (3,7). According to Lemma 1, y; =6
and r; = 1. Then based on Equation (11), E! =<010101”.
From Lemma 1, one possible pattern for task 7; is
“101010010101010101---”. It is easy to verify that it can
satisfy the original (m,k)-constraint of (3,7).

Note that Lemma 1 effectively sets up a straightforward
way of converting a window-constraint of m;/y; (within each
separate window of y; jobs) to the original (m,k)-constraint of
(mi,k;). It is similar to, but tighter than, the result in [14] which
can convert a window constraint of m; / e +k) to the original
(m, k)-constraint of (m;, k;). For example, for the above task T;
with (m,k)-constraint of (3,7), in order to satisfy its original



(m, k)-constraint, based on Lemma 1 it only needs to satisfy
the window-constraint of 3/6 in each separate window of 6 jobs
whereas according to the approach in [14], it needs to satisfy
the window-constraint of (3,5) in each separate window of 5
jobs. Obviously the former one is easier to be schedulable than
the latter one. In the following, we will formulate this result
into a lemma.

Lemma 2: For any task 7;, if both the window constraints
of m,/(m,m‘frll) and ml/L;k') can be used to define T;’s
job patterns successfully under E-pattern, the job patterns
determined based on the former one has better schedulability
than the job patterns determined based on the latter one.
Proof: Since m; value is the same, to prove m; /ml +1 has

’n
better schedulability than m; /"~ '"’Jrk

, we only need to prove:

kit 1 _ (mitk)

m; ml+1 5 = 2(ki+l)mi2(mi+ki)(m,-+1)
& 2kimi+2m; > ml2 + m; + mik; + k;
< (1—mj)(mi—kj)) >0 (16)

Which is true because (m; > 1) and (k; > m;). O

Based Lemma 1, our new approach of scheduling the task
set with the given energy budget constraint can be described
as followed for each task 1;, if k"“ is an integer and m; < k;

or ki1 l <m; <ki—1, welet y; and r; be determined according
to Lemma 1. Then base on it we can determine the mandatory
main jobs of task 7T; in one processor with E-pattern and their
backup jobs in the other processor with E’i-pattern, both based
on the window constraint of m; /y; first. Since r; > 1 if m; < k;

k"z_ L<mi<ki—1,in any separate window of y; jobs, each
mandatory main job and its backup job in the other processor
are not in the same time frame. In other words, they are totally
shifted way. As such, if any mandatory main job is completed
successfully, its backup job can be canceled entirely. Even
if the mandatory main job were found to have failed upon
completion, its backup job can still be executed timely. In the
worst case, if all mandatory main jobs in a separate window
of y; jobs have failed, their backup jobs in the other processor
will all need to be executed. In this scenario the resulting job
pattern will be equivalent to case (i) in the proof of Lemma 1.
Then according to Lemma 1, its original (m, k)-constraint will
be satisfied.

Particularly, for tasks t; and T, in the above example task
set, their corresponding window constraints will be 2/3 and
1/2, respectively. Then based on them the mandatory main
jobs of tasks t; and T, are determined under E-pattern and
they can be scheduled in different processors, as shown in
Figure 4. Meanwhile, the backup jobs for t; and T, will
be determined based on E’i-pattern and can be reserved in
different processors as well. As such, since each mandatory
main job and its backup job are totally shifted away, once a
mandatory main job (for example, J;;) is completed success-
fully, its backup job (i.e., 112) in the other processor could be
canceled entirely. If any mandatory main job of task 7; had
failed, its corresponding backup job in the other processor

could still be invoked and executed timely (for example, if
the main job Ji7 in the primary processor had failed, its
backup job J;S could still be executed timely in the spare
processor, as shown in Figure 4(b)). In this way, even in the
worst case that all mandatory main jobs in one window had
failed, as stated above, its original (m,k)-constraint can still
be ensured. Following the same rationale, if we assume the
probability of transient fault to be 107>, then the expected
energy consumption of all backup jobs within one window of
y; jobs for all tasks will be (3 x 244 x 1) x 1073 = 0.0001.
Therefore the estimated total busy energy consumption subject
to faults before the hyper period 240 will be 90+0.0001=
90.0001 units, which is much less than the given energy budget
constraint. If we assume the idle power Py, = 0.05, the total
energy consumption should be calculated based on Equation
(17), which will be 105.6001 units, still below the given energy
budget constraint and therefore feasible.

From the above example we can see that there is great
potential for meeting the given energy budget constraint by
determining the mandatory main jobs and their backup jobs
based on E-pattern and E’i-pattern, respectively (which can
satisfy the original (m,k)-constraint according to Lemma 1).
Based on the above principles, our standby-sparing scheduling
scheme based on window transferring is presented in Algo-
rithm 2.

As shown in Algorithm 2, in the begmmng, for each task
T, €T, if ’JfH is an integer and m; < k; or k’ <ml <ki—1
(how to handle the case when these COHdlthHS are not met will
be discussed in next section), we firstly determine the values
of y; and r; according to Lemma 1 and re-partition task t; and
its backup task 1:;- with E-pattern and E’i-pattern (both based
on its new temporary QoS constraint of m;/y;), respectively.
Note that task T; or its backup task 1:;- can be executed in
either the primary processor or the spare processor, without
affecting their schedulablility. As such, for any mandatory
main job J;;, its backup job (denoted as J;;) will be the job
J;(Hn) of its backup task T, (line 1). Similar to Algorithm 1,
during runtime, in both the primary and the spare processors,
a mandatory job ready queue (MQ) and a slack time queue
ST Q are maintained. Upon arrival, a job of task 7; is inserted
into the MQ only when its job pattern is “1”. All jobs in
MQ will be executed according to the EDF scheme. When
the current job J;; of task T; got chance to be executed, if
Jij is a mandatory main job, it should be executed as soon as
possible and the slack time in the §7 Q, if available, should be
reclaimed to facilitate its early completion (line 9); otherwise
it should be executed as late as possible (line 11).

Note that, when the current mandatory main job J;; is
completed successfully, whether its backup job in the other
processor should be canceled or not needs to be handled
carefully. Specifically, if job J;; is within the same time frame
of the backup job of some other job, its backup job cannot
be canceled. For example, in Figure 4, assuming Jj7 in the
primary processor had failed, then its backup job J;S in the
spare processor needed to be executed. Meanwhile, in the
primary processor, the mandatory main job Jijg was executed




failed

Ji1 J17 Jis |
o i
1 4 8 12 16 20 24 28 32 36 a0 N

Primary
Processor:
T, o R o N — | q—-
0 10 20 30 40
(a)
J"12 J’18 J"19
T e I 1 IO s B s ____I_l_ﬁ_,
Spare 4 3 20 24 28 32 36 40
Processor:
T, m— | | om | | ff—
0 10 20 () 30 40

Fig. 4. The schedule for the mandatory main/bakcup jobs based on window transferring scheme (a) in the primary processor; (b) in the spare processor.

Algorithm 2 The algorithm based on window transferring
I: Preparations For each task 1; € 7, if k'“l
1

is an integer and

m; <mj; < kj — 1, determine y; and i according to
Lemma 1. Re -partition t; and its backup task ‘c with the new
temporary QoS constraint of m;/y; based on E- pattern and E"i-

pattern, respectively. For any mandatory main job J;;, mark job

J;(j +r) in the other processor as its backup job (denoted as J; i)

For either the primary processor or the spare processor:

Upon the execution of a mandatory job J;; at time 7,,:
Execute J;; following the EDF scheme;

if any slack time STQ;(r) with earlier deadline than J;; is
available then

8:  if J;; is a mandatory main job then

AR AN R

9: Reclaim the slack time to execute J;; as soon as possible;
10:  else

11: Use the slack time to procrastinate J;; as late as possible;
12:  end if

13: end if

14:

15: Upon the completion of a job J;; at current time 7., :
16: if the execution of job J;; is successful then
17:  Let J,I» j be the job in the other processor within the same time

frame as J;j;

18:  if J/ is not a mandatory main/backup job then

19: Cancel Jij’s backup job J,j, ie., Jl<j+r) in the other
processor entirely and add its time budget to the slack
queue ST Q;

20:  else

21: Cancel the remaining part of J; ; and add its residue time
budget to the slack queue S7°Q;

22:  end if

23:  Repeat lines 32-37 in Algorithm 1

24: end if

in the same time frame as J;8. Suppose Jig was completed
successfully In this case, if we had canceled its backup job
J19 in the spare processor, then in the time 1nterval [24,36]
there would be only one valid job because Jig and J18 were in
the same time frame and would effectively generate only one
valid job. Consequently the window constraint of 2/3 will be

violated in this interval and the original (m,k)-constraint of
(2,4) will be violated in the time interval of [20,36].

As mentioned, the main reason for the above problem is
that, in Algorithm 2, due to the pattern rotation, all mandatory
main jobs and their backup jobs are shifted away into different
time frames. As a result it is possible that within the current
time frame the execution of the current mandatory main job
could be overlapped with that of the backup job of some other
mandatory job (for example, Jig and J;S in Figure 4). When
that happened, they effectively contributed only one valid job
to the window they belong to. As such, if the backup job
of the current mandatory main job is canceled, the number of
valid jobs in the same window will decrease by 1 which could
cause the QoS constraint in it to be violated and subsequently
cause the original (m,k)-constraint to be violated as well.
Therefore, in this case, even if the current mandatory main
job is completed successfully, its backup job should not be
canceled, as implied in line 18 of Algorithm 2.

Similar to the upper bound of the energy consumption calcu-
lated in Section III based on Algorithm 2, if for each and every
task T; s m +1 is an integer and m; < k; or ‘ < m; < ki —
an upper bound of the total energy consumptlon of task set T
could be calculated as:

Hm; Hm; 1
: lC 7\4 smax) +2P.H ( E Z
i

mici)
yiP;
(17

EZ C+Z

where y; is determined according to Lemma 1.

Note that the worst case in Algorithm 2 happens when at
certain point, all mandatory main jobs in one separate window
have failed consecutively and all their backup jobs in the other
processor need to be executed, which will be equivalent to one
of the scenarios in Lemma 1. Then according to Lemma 1, its
original (m,k)-constraint can be ensured.

Similar to Algorithm 1, the online complexity of Algo-
rithm 2 is also O(n). Moreover, we have the following
theorem.

Theorem 2: Given task set 7 = {1;,T2,---,Tv} to be
scheduled with Algorithm 2 in a standby-sparing system with



total energy budget of E, within its hyper period, the system

is feasible if: (i) for each and every task T; € 7, r]:z',ill is an
integer and m; < k; or k’;] <m; < k;j—1; (ii) T is schedulable

with the (m,k)-constraint of each task t; in it replaced by
(mi,yi), where y; is determined according to Lemma 1; and
(iii) the energy consumption E calculated based on Equation
(17) does not exceed E,.

Proof: If for any task T, € T
then :1"111 >2.S0r= [3—1"] —1= 51’1’_:11 — 1 is also an integer
and r; > 1. If k’;l <m; <k;j—1, from Lemma 1 r; = 1. Thus
in either case Algorithm 2 can be applied. The main issue
is to ensure the original (m,k)-constraint. The worst case in
Algorithm 2 happens when at certain point, all mandatory
main jobs in one separate window have failed consecutively,
then all their backup jobs in the other processor need to be
executed, which will be equivalent to one of the scenarios in
Lemma 1. Then according to Lemma 1, its original (m,k)-
constraint can be assured. O

ki+1 - : X X
w18 an integer and m; < k;,

V. INTEGRATED APPROACH BASED ON HYBRID SCHEMES

Although the above window transferring scheme in Algo-
rithm 2 could be more efficient than the floating redundant
job scheme in Section IV in meeting the given energy budget
constraint, the main issue for it is that, for tasks which do
not satisfy the conditions in line 1 of Algorithm 2, they will
not be able to be transferred in this way. On the other hand,
the floating redundant job scheme in Section IV also has the
issue that it might affect the schedulability of the task set
because it needs to have one more mandatory job reserved for
each task. Regarding that, in order to still meet the energy
budget constraint while respecting the schedulability of the
task set, the best way is to partition the original task set 7 into
three parts and schedule them with the schemes in Section IV,
Section III, and the regular job procrastination scheme similar
to lines 13-18 in algorithm 1, respectively, in an integrated
approach. Correspondingly, Problem 1 could be reformulated
as follows:

Problem 2: Given system 7 = {t;,T2,--+,Tn}, partition the
original task set 7 into three subsets, i.e., X, 9, and Z to
be scheduled with the window transferring scheme in Algo-
rithm 2, floating redundant job scheme in Algorithm 1, and
the regular job procrastination scheme, respectively such that
the estimated total energy consumption does not exceed the
given energy budget constraint £, while satisfying the (m,k)-
constraints for all tasks under the fault tolerant requirement.

In order to solve Problem 2, in this paper we proposed a
heuristics based on “branch-and-bound”, which is presented
in Algorithm 3.

From Algorithm 3, our approach determines task by task
if each task t; € T should be scheduled with the window
transferring scheme in Section IV, the floating redundant
job scheme in Section III, or the regular job procrastina-
tion scheme. When Algorithm 3 is finished, it is possible
to reach certain hybrid configuration in which the tasks in
subsets X, ", Z are partitioned based on the QoS constraint

Algorithm 3 Task set partitioning using Branch-and-Bound.

1: Input: task set T with original (m,k)-constraints;

2: Output: task set 7 = XUY'UZ, where X, ¥ and Z are the sub-
sets to be scheduled with the schemes in Section IV, Section III,
and the regular job procrastination scheme, respectively;

3 X =0;

4. ¥ =0;

5: Z = all tasks in 7T

6: Sort the tasks in Z according to non-increasing order of ’Z”g’ Ji=

1,_7 [s} n;
7. T = XUYUZ;
: Erotal = Epound = Z(Zi{ci Hkl:“ } + PidleH(l -Yi r]’::}g} ))’

9: //The estimated total energy consumption using standby-sparing
for all mandatory main/bakcup jobs based on the original (m,k)-
constraints without energy management;

10: SS-Partition (X, 9, Z, T, Epound);

11: output (7);

12: 5

13: FUNCTION SS-Partition(X, Y, Z, T, Eppuna)
14: for each task 1, € 7 do

o0

15: if ’I:I"’_il] is an integer and m; < k; or k';l <m; <ki—1 then
16: Determine y; according to Lemma 1;

17: Set T;’s new temporary QoS constraint to be m;/y;;

18: X =xu{t};

19: else

20: Set 1;’s new temporary QoS constraint to be (m; + 1,k;);
21: ¥ =9U{t};

22: end if

23: Remove 7; from Z;
24: if XU U Z is schedulable then

25: Compute the energy consumption Ey for all mandatory
jobs in X based on Equation (17);

26: Compute the energy consumption Ey for all mandatory jobs
in 9 based on Equation (10);

27: Compute the energy consumption Ez for all mandatory jobs
in Z based on Equation (5);

28: Etoral = Ex + Ey + Ez;

29: if E;5r01 < Epouna then

30: Epound = Etotal’

31 T =XUYUZ;

32: end if _

33: SS-Partition (X, &, Z, T, Epound);

34:  else

35: Restore T;’s QoS constraint to its original (m;, k;)-constraint
and put it back to Z;

36:  end if

37: end for

of mi/(miz=y) or my/(ki— 1), (mi+1,k;), and (mi, ki) to

be scheduled with the window transferring scheme in Al-
gorithm 2, floating redundant job scheme in Algorithm 1,
and the job procrastination scheme following lines 13-18 in
Algorithm 1, respectively. And the resulting configuration
should be the one with the minimum estimated total energy
consumption E;,,; computed in line 28. Once the final E;;; is
calculated, we will compare it with the given energy constraint
E.. If E;p0 < E, the task set is guaranteed to be feasible.
Otherwise the feasibility of the task set cannot be guaranteed.

Note that after the original task set 7 was divided into three
subsets X, 9, Z, the calculation of the delay period of ¢; for
each task T; under the hybrid configuration should be updated
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Fig. 5. Feasibility comparison of the different approaches.
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for all d; < L, where d; is the absolute deadline of a mandatory
job of task t; and L is the ending point of the first busy period
when executing the mandatory jobs, and Vj <i ¢; < @;.

VI. EVALUATION

In this section, we evaluate the performance of our ap-
proach by comparing with the existing approaches in literature.
Specifically, the performance of six different approaches were
studied:

e SSNEM The task sets were partitioned with E-pattern,
and the mandatory jobs in the primary and the spare
processors were executed concurrently without delay.

e SSPO The task sets were partitioned with E-pattern to
satisfy the given (m,k)-constraints. Then the mandatory
jobs were scheduled with the preference oriented scheme
in [8] but without applying DVS.

o MKSSseiocrive The task sets were scheduled with the
approach from [20] but based on EDF scheme. The task
set were partitioned with deeply-red pattern first to satisfy
the given (m,k)-constraints. Then the selective approach
in [20] was applied.

e ECSSppy; This is our approach purely based on the
floating redundant job scheme proposed in Section III.

e ECSSwr This is our approach purely based on the win-
dow transferring scheme proposed in Section IV.

o ECSSyyp This is our hybrid approach proposed in Section
V.

The periodic task sets in our experiments consists of five
to ten tasks with the periods randomly chosen in the range
of [5, 50]ms. The m; and k; for the (m,k)-constraint were
also randomly generated such that k; was uniformly distributed
between 2 to 10, and 1 < m; < k;. The worst case execution
time (WCET) of a task was also uniformly distributed. We
assume the processor idle power P, = 0.05 and minimal
shut-down interval #,; = 2ms.
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Fig. 6. Actual energy subject to (a) No faults; (b) System faults.

Firstly, we inspected the feasibility of the different ap-
proaches under different density of mandatory jobs. The
density of mandatory jobs, defined as %Zi %i’ was divided into
intervals of length 0.1 each of which contained at least 5000
task sets generated. Based on it we checked the feasibility of
the task sets when scheduled by the different approaches. We
assumed the maximal energy budget constraint is randomly
picked from [1.5X, 2.5X], where X is the energy consumption
for executing the mandatory jobs of all tasks under their origi-
nal (m,k)-constraints within the hyper period in one processor
without energy management. The numbers of feasible task
sets were normalized to that by ECSSyyp. The results are
shown in Figure 5. From Figure 5, it is not hard to see that, in
all cases, ECSSyyp always has the best feasibility. Moreover,
for different density of mandatory jobs, the other approaches
presented different performance on feasibilities. As can be
seen, when the density of mandatory jobs is very small, i.e.,
close to 0.1, the total number of task sets feasible by the other
approaches were all very close to that by ECSSyyp. However,
with the increase of density of the mandatory jobs, the
feasibility of the different approaches became much different.
For ECSSpgr; and ECSSwr, their feasibilities were always
decreasing because ECSSrr; needed to increase the value of
m; by 1 while ECSSwr needed to reduce the window size from
ki to y; =m; ’1:11-.:11 , both can affect the schedulability of the task
sets. On the other hand, the feasibilities of SSNEM, SSPO,
and MKSSg.jocrive decreased fast first but then became close
to ECSSyyp again when the density of mandatory jobs were
relatively high, for example, larger than 0.8. This is because,
when the density of mandatory jobs is high, the hybrid
approach in ECSSyyp might not be able to partition plenty
of tasks to be scheduled under Algorithm 1 or Algoirthm 2
due to schedulability constraint. Instead in this case most tasks
can only be scheduled under the regular job procrastination
scheme whose estimated total energy consumption is the same
as SSPO. However, as shown in Figure 5, when the density
of mandatory jobs is moderate, for example, between 0.3
and 0.7, the feasibility of ECSSyyp is much better than the
other approaches, with maximal improvement of nearly 60%,
mainly due to its capability of combining the advantages of the
different schemes under the hybrid configuration. On the other
hand, the feasibility of SSNEM and SSPO overlapped with
each other completely because both of them are based on E-
pattern. So their schedulabilities were the same (their estimated
total energy consumptions were also equal to each other,
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Fig. 7. The QoS subject to (a) No faults; (b) System faults.

as discussed earlier). It is also noted that the feasibility of
MKSSseiective 1 lower than that by SSNEM and SSPO mainly
because it is based on deeply-red pattern whose schedulability
is not as good as E-pattern [22].

Next, we inspected the actual energy consumption of the
different approaches. With system feasibility in mind, this time
we mainly compared our proposed approach with the most
typical one in the previous approaches, i.e., SSPO which is
the previous approach with the best feasibility. Moreover, since
according to the above results, the feasibilities of ECSSFgry and
ECSSwr are much worse than the other approaches when the
density of the mandatory jobs were relatively high, we did not
include them in this part of test, either. Also considering the
impact of workloads on energy performance, we checked the
actual energy consumption of the different approaches based
on the system utilization, i.e., }; ’,’(’l’g’ which was divided into
intervals of length 0.1 and each interval contains at least 20
task sets feasible or at least 1000 task sets generated. We
conducted two sets of tests.

In the first set, we checked the energy performance when
no fault occurred during the hyper period. The results were
normalized to that by SSNEM and shown in Figure 6(a).

From Figure 6(a), it is easy to see that even when all
approaches were feasible, both the approaches with energy
management, i.e., ECSSyyp and SSPO still consumed much
less actual energy than the approach without energy manage-
ment, i.e., SSNEM. Moreover, the actual energy consumption
of ECSSyyg is much lower than SSPO in most intervals. For
example, when the system workload is moderate, the actual
energy consumed by ECSSgyyp can be around 22% less than
that by SSPO. The main reason is that, under this scenario, by
adopting the hybrid approach in Section V, ECSSyyp can help
minimize the overlapped execution between the mandatory
jobs and their backup jobs in two processors more efficiently.
Moreover, for those tasks that cannot be applied with the
window transferring scheme or the floating redundant job
scheme, letting them be applied with the job procrastination
scheme with delay intervals calculated in Equation (18) also
helped save energy consumption effectively.

In the second set, we assumed the system could be subject to
permanent and/or transient faults. The transient fault model is
similar to that in [2] by assuming Poisson distribution with an
average fault rate of 107>, The result is shown in Figure 6(b).

As could be seen, under this scenario, the actual energy
consumption by our new approach, i.e., ECSSyyp is still much
less than the previous approaches. The actual energy reduction
by ECSSyyp over SSPO can be up to 20%. This is also because
of the capability of ECSSgyyp in scheduling the tasks with
the hybrid configuration as mentioned above. Additionally,
when fault(s) occurred, procrastinating the backup jobs within
the same window of the failed job using the delay intervals
calculated in Equation (18) also contributed to part of the
energy savings due to its capability of shifting the executions
of the mandatory main job(s) and their backup job(s) when
necessary.

Finally, with the QoS in mind, we also inspected the QoS
levels that the different approaches could provide when all
approaches were feasible. The QoS level was defined as the
ratio of the number of effective jobs over the total number of
jobs within the hyperperiod. We also conducted two sets of
tests.

In the first set, we checked the QoS when no fault occurred
within the hyperperiod. The results were normalized to that by
SSNEM and shown in Figure 7(a). From Figure 7(a), we can
see that our newly proposed approach, i.e., ECSSyyp could
provide much better QoS levels than the previous approaches.
Compared with SSNEM and SSPO, the maximal QoS im-
provement could be around 25%. This is because, different
from SSNEM and SSPO which could only provide a minimum
set of jobs that “just” satisfied the (m, k)-constraints, ECSSyyp,
by adopting hybrid configurations, could have extra number
of jobs scheduled under the floating redundant job scheme or
the window transferring scheme. Therefore it could generally
accommodate more valid jobs in its schedule, generating better
QoS levels.

In the second set, we assumed the system could be subject
to permanent and/or transient faults with same fault rate as in
the previous group of test. The result is shown in Figure 7(b).

From Figure 7(b), the QoS improvement subject to faults by
our newly proposed approach, i.e., ECSSyyp over the previous
approaches is quite similar to that when no fault ever occurred,
for the same reasons as stated above.

VII. CONCLUSION

QoS, fault tolerance, and energy budget constraint are
among the primary concerns in the design of real-time em-
bedded systems. In this paper, we firstly presented two novel
scheduling algorithms which can ensure feasibility for the
standby-sparing systems under tighter energy budget constraint
than the traditional ones: one adopting floating redundant job
scheme and one adopting window transferring scheme. Then
based on the aforementioned constraints a hybrid approach
was proposed to achieve better performance. Through exten-
sive evaluations, our results demonstrated that the proposed
techniques significantly outperformed the existing state of the
art approaches in terms of feasibility, energy saving, and QoS
performance for weakly hard real-time systems while ensuring
fault tolerance under given energy budget constraint.
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