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Abstract—For real-time embedded systems, QoS (Quality of
Service), fault tolerance, and energy budget constraint are among
the primary design concerns. In this research, we investigate the
problem of energy constrained standby-sparing for weakly hard
real-time systems. The standby-sparing systems adopt a primary
processor and a spare processor to provide fault tolerance
for both permanent and transient faults. With the purpose of
ensuring the feasibility of such kind of systems, we firstly present
two novel scheduling schemes for the standby-sparing systems
with tighter energy budget constraint than the traditional ones.
Then based on them a hybrid approach is proposed to achieve
better performance. The evaluation results demonstrated that
the proposed techniques significantly outperformed the existing
state of the art approaches in terms of feasibility and system
performance while ensuring QoS and fault tolerance under given
energy budget constraint.

Index Terms—energy constraint, fault tolerance, QoS

I. INTRODUCTION

With the advance of IC technology, energy constraint has

been an increasingly important factor for the design of real-

time embedded systems. In some real-time applications, the

systems are driven by power supplies with limited energy bud-

get constraint, which has to remain operational during a well-

defined mission cycle. Examples include Heart Pacemakers

[1] or other portable embedded devices whose power supply

can only be charged to full capacity right before the beginning

of certain mission/operation cycle/period(s). For such kind

of applications, efforts must be made by all means to avoid

exhausting the energy budget before the end of the mission

cycle. On the other hand, fault tolerance has also been a

major concern for pervasive computing systems as system

fault(s) could occur anytime [2]. Generally, computing system

faults can be classified into permanent faults and transient

faults [3]. Permanent faults could be caused by hardware

failure or permanent damage in processing unit(s) whereas

transient faults are mainly due to transient factors such as

electromagnetic interference and/or cosmic ray radiations.

Recently a lot of researches (e.g. [4], [5]) have been con-

ducted on dealing with energy consumption for fault-tolerant

real-time systems. Many of them have focused on dealing with

transient faults. A widely adopted strategy is to use software

redundancy, i.e., to reserve recovery jobs, whenever possible,

for the jobs subject to transient faults. For mission critical

applications such as nuclear plant control systems, permanent

faults need to be dealt with by all means to avoid system fail-

ure. Otherwise catastrophical consequences could occur. More

recently, solutions adopting hardware redundancy are pro-

posed to address this issue. Among them the standby-sparing

technique has gained much attention [6]–[9]. Generally, the

standby-sparing makes use of the redundancy of processing

units in multicore/multiprocessor systems. More specifically,

a standby-sparing system consists of two processors, a primary

one and a spare one, executing in parallel. For each real-time

job executed in the primary processor, there is a corresponding

backup job reserved for it in the spare processor [8]. As such,

whenever a permanent fault occurs to the primary or the spare

processor, the other one can still continue without causing

system failure. Moreover, it is not hard to see that the backup

tasks/jobs in the spare processor can also help tolerate transient

faults for their corresponding main tasks/jobs in the primary

processor.

In a standby-sparing system, due to the deadline constraint,

the execution of the main jobs in the primary processor and

their corresponding backup jobs in the spare processor might

need to be overlapped with each other in time. Thus the total

energy consumption could be quite considerable. Regarding

that, some recent works (e.g. [6]–[9]) have been reported to

reduce energy by letting the executions of the main jobs and

their backup jobs be shifted away such that, once the main

jobs are completed successfully, their corresponding backup

jobs could be canceled early. For standby-sparing systems with

mixed criticality, advanced energy management schemes were

proposed in [10]. When considering the chip thermal effect,

peak-power-aware standby-sparing techniques utilizing energy

management schemes were presented in [11].

All of the above works are mainly focused on hard real-

time systems, i.e., the systems which require all real-time

tasks/jobs meet their deadlines. However, in practical time-

sensitive applications, such as multimedia or time-critical com-

munication systems, occasional deadline misses are acceptable

so long as the user perceived quality of service (QoS) can be

ensured at certain levels. For such kind of systems, the existing

techniques solely based on hard real-time constraints are

insufficient in dealing with energy reduction under standby-

sparing and more advanced techniques incorporating the QoS

systematically are desired. To achieve this goal, the QoS

requirements need to be quantified in certain ways. One



popular existing approach is to use some statistic information

such as the average deadline miss rate as the QoS metric.

Although such kind of metric can ensure the quality of service

in a probabilistic manner, it can still be problematic for

some real-time applications. For example, for certain real-time

systems, when the deadline misses happened to some tasks,

the information carried by those tasks can be estimated in a

reasonable accuracy using techniques such as interpolation.

However, even a very low overall miss rate tolerance cannot

prevent a large number of deadline misses from occurring

consecutively in such a short period of time that the critical

data could be lost.

The weakly hard QoS model is more appropriate to model

such kind of systems. Under the weakly hard QoS model, tasks

have both firm deadlines (i.e., task(s) with deadline(s) missed

generate(s) no useful values) and a throughput requirement

(i.e., sufficient task instances must finish before their deadlines

to provide acceptable QoS levels) [12]. Two well known

weakly hard QoS models are the (m,k)-model [13] and the

window-constrained model [14]. The (m,k)-model requires

that m jobs out of any sliding window of k consecutive

jobs of the task meet their deadlines, whereas the window-

constrained model requires that m jobs out of each fixed

and nonoverlapped window of k consecutive jobs meet their

deadlines. It is not hard to see that the window-constrained

model is weaker than the (m,k)-model as the latter one is more

restrictive. To ensure the (m,k)-constraints, Ramanathan et

al. [15] adopted a partitioning strategy which divides the jobs

into mandatory and optional ones. The mandatory ones are

the jobs that must meet their deadlines in order to satisfy the

(m,k)-constraints. In other words, so long as all the mandatory

jobs can meet their deadlines, the (m,k)-constraints can be

satisfied.

With energy budget constraint in mind, in [16], Zhao et al.

proposed an approach to maximize the overall reliability of

the systems under given time and energy constraints. Their

approach only considered the transient faults. When both

permanent and transient faults are taken into consideration in

the context of standby-sparing, the energy-constrained issue is

especially critical as the backup jobs in the spare processor

could also incur significant energy consumption which could

make the total energy consumption beyond the given energy

budget constraint. In this paper, we study the problem of

energy constrained standby-sparing for weakly hard real-time

systems under the requirement of tolerating both permanent

and transient faults. To the best of our knowledge, this is the

first work to explore improving feasibility and performance of

standby-sparing systems under given energy budget constraint.

The rest of the paper is organized as follows. Section II

presents the preliminaries. Section III presents our approach

based on the floating redundant job scheme. Section IV

presents our approach based on the window transferring

scheme. Section V presents our hybrid approach. In Section VI

and Section VII, we present our evaluation results and con-

clusions.

II. PRELIMINARIES

A. System model

The real-time system considered in this paper contains N

independent periodic tasks, T = {τ1,τ2, · · · ,τN}, scheduled

according to the earliest deadline first (EDF) scheduling

scheme. Each task contains an infinite sequence of periodically

arriving instances called jobs. Task τi is characterized using

five parameters, i.e., (Di, Pi, Ci, mi, ki). Di (≤ Pi), Pi, and Ci

represent the deadline, period, and worst case execution time

(WCET) for τi respectively. A pair of integers, i.e., (mi,ki)
(0 < mi ≤ ki), are used to denote the (m,k)-constraint for task

τi which requires that, among any ki consecutive jobs, at least

mi jobs must be executed successfully. The jth job of task τi

is represented with Ji j and we use ri j, ci j(= Ci), and di j to

denote its release time, execution time, and absolute deadline,

respectively.

We assume the task set is to be executed in a standby-

sparing system with a limited energy budget/supply of Ēc units

during its mission cycle. Moreover, we assume this energy

budget is a hard constraint in a sense that it cannot be exceeded

at any time during its mission cycle. Without loss of generality,

we let the mission cycle be the hyper period of the task set,

i.e., H = LCM(kiPi) and assume that the energy supply can

only be charged to full capacity right before the beginning of

each mission cycle.

The standby-sparing system consists of two identical pro-

cessors which are denoted as primary processor and spare

processor, respectively. For the purpose of tolerating perma-

nent/transient faults, each mandatory job of a task τi has two

duplicate copies running in the primary and the spare proces-

sors separately. Whenever a permanent fault is encountered in

either processor, the other one will take over the whole system

(to continue as normal). For convenience, we call each task

τi main task and its corresponding copy running in the other

processor backup task, denoted as τ
′

i. The jth job of task τ
′

i

is denoted as J
′

i j Moreover, we call each mandatory job Ji j

of task τi main job and its corresponding job running in the

other processor (to compensate its failure, if happened) backup

job, denoted as J̃i j. Note that in this paper Ji j’s backup job,

i.e., J̃i j might be different from J
′

i j, i.e., the job of τ
′

i in the

same time frame as Ji j because, as will be shown in later

part of this paper, Ji j and J̃i j can be shifted away from each

other completely such that they might belong to different time

frames.

B. Energy Model

The processor can be in one of the three states: busy, idle

and sleeping states. When the processor is busy executing a

job, it consumes the busy power (denoted as Pbusy) which

includes dynamic and static components during its active

operation. The dynamic power (Pdyn) consists of the switching

power for charging and discharging the load capacitance, and

the short circuit power due to the non-zero rising and falling



time of the input and output signals. The dynamic power can

be represented [17] as

Pdyn = αCLV 2 f , (1)

where α is the switching activity, CL is the load capacitance,

V is the supply voltage, and f is the system clock frequency.

The static power (Pst ) can be expressed as

Pst = IstV, (2)

where Ist is mainly due to the leakage current which consists

of both the subthreshold leakage current and the reverse bias

junction current in the CMOS circuit. The power consumption

when the processor is busy, i.e, Pbusy, is thus

Pbusy = Pdyn +Pst , (3)

When the processor is idle, it consumes the idle power

(denoted as Pidle) whose major portion comes from the static

power. When the processor is in the sleeping state, it consumes

the sleeping power (denoted as Psleep) which is assumed to be

negligible. Note that although dynamic power can be reduced

effectively by dynamic voltage scaling (DVS) techniques, the

efficiency of DVS in reducing the overall energy is becoming

seriously degraded with the dramatic increase in static power

(mainly due to leakage) with the shrinking of IC technology

size. Dynamic power down (DPD), i.e., put the processor into

its sleeping state, on the other hand, can greatly reduce the

leakage energy when the processor is not in use. With that in

mind, in this paper we assume that, when the processors is

busy, it always consumes Pbusy at the maximal supply voltage

Vmax. Without loss of generality, we normalize Pbusy and the

processor speed under Vmax (denoted as smax) to 1 and assume

that one unit of energy will be consumed for a processor to

execute a job for one time unit. When no job is pending

for execution, the processors can be put into sleeping state

with DPD. Assume that the energy overhead and the timing

overhead of shutting-down/waking-up the processor are Eo and

to, respectively. Then the processor can be shut down with

positive energy gains only when the length of the idle interval

is larger than tsd = max( Eo
Pidle−Psleep

, to). We therefore call tsd

the minimal shut-down interval.

C. Fault Model

Similar to the standby-sparing systems in [7], [8], the system

we considered can tolerate both permanent and transient faults.

With the redundancy of the processing units, our system can

tolerate at least one permanent fault in the primary or the spare

processor. For transient faults which can occur anytime during

the task execution, we assume they can be detected at the end

of a job’s execution using sanity (or consistency) checks [18]

and the overhead for detection can be integrated into the job’s

execution time. Whenever a main job encounters transient

fault(s), its backup job needs to be executed to completion.

D. Problem Formulation

Based on the above system models, the problem to be solved

in this paper can be formulated as followed:

Problem 1: Given system T = {τ1,τ2, · · · ,τN}, schedule T

with EDF scheme in a standby-sparing system such that the

total energy consumption does not exceed the given energy

budget constraint Ēc while satisfying the (m,k)-constraints for

all tasks under the fault tolerant requirement.

III. ENERGY-CONSTRAINED STANDBY-SPARING BASED ON

FLOATING REDUNDANT JOB SCHEME

To solve Problem 1, one essential part is to determine

the mandatory jobs to be scheduled under standby-sparing.

A widely known strategy to do so is to adopt the evenly

distributed pattern (or E-pattern) [15] to partition the jobs into

mandatory jobs and optional jobs. According to E-pattern, the

pattern πi j for job Ji j, i.e., the jth job of a task τi, is defined

by:

πi j =

{

“1” if j = ⌊⌈ ( j−1)×mi

ki
⌉× ki

mi
⌋+1

“0” otherwise j = 1,2, · · ·
(4)

where “1” represents the mandatory job and “0” represents the

optional job.

Note that the job patterns defined with E-pattern have the

property that they define a minimal set of mandatory jobs

that “just” satisfies the given (m,k)-constraint in each sliding

window. Due to this property, in order to ensure the system

reliability under standby-sparing, a popular approach is to

reserve a backup job in the same time frame of the backup

task running in the other processor for each mandatory job

of the main task. Consequently, the total energy consumption

will be two times of that consumed by one processor, i.e.

E = 2(∑
i

Hmi

ki

Ci +PidleH(1−∑
i

miCi

kiPi

)) (5)

where H is the hyper period.

From Equation (5), the energy consumed in a standby-

sparing system could be quite considerable. In order to reduce

energy consumption, in [7], Haque et. al proposed to run

the main tasks/jobs in the primary processor according to

the earliest deadline as soon as possible (EDS) scheme while

the backup tasks/jobs in the spare processor according to the

earliest deadline as late as possible (EDL) scheme [19] such

that, once the main tasks/jobs are completed successfully, their

corresponding backup tasks/jobs could be (partially) canceled.

In [8], a more advanced technique named preference oriented

scheme was adopted which, in both the primary and backup

processors, lets some tasks be scheduled under EDS scheme

while the other tasks be scheduled under EDL scheme. In [20],

an energy-aware approach based on the execution of optional

jobs was proposed for task sets partitioned under deeply-red

pattern [21] which is weaker than E-pattern in ensuring the

schedulability of the task sets [22]. Although the approaches in

[7], [8], [20] are able to reduce the actual energy consumption

of the standby-sparing system to some extent, since none of
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Fig. 1. The schedule for the mandatory main/bakcup jobs under the preference
oriented scheme in [8]: (a) in the primary processor; (b) in the spare processor.

them could predict the quantifiable amount of energy that can

be saved in advance, the total energy budget still has to be at

least the energy computed in Equation (5) in order to ensure

the systems feasibility for the worst case. Otherwise if the

given energy budget constraint Ēc during the hyper period is

less than the energy consumption computed with Equation (5),

the task set can not be guaranteed to be feasible in advance.

Regrading that, some more advanced technique needs to be

explored in order to ensure the feasibility of the task set

under tighter given energy budget constraint Ēc. This could

be illustrated using the following example.

Consider a task set of two tasks, i.e., τ1 = (4,4,3,4,6), and

τ2 = (8,8,2,2,3), to be executed in a standby-sparing system

with given energy budget constraint Ēc = 28 units within its

hyper period 24.

If we assume no fault occurred during the hyper period,

Figure 1 shows the schedule for the mandatory jobs based

on E-pattern for the original given (m,k)-constraints based on

the preference oriented scheme in [8] (the empty rectangles

represent the canceled part of the jobs). Note that although

in the result schedule the total energy consumption could be

reduced by 7 units, this amount of energy reduction cannot

be accurately estimated in advance, especially considering the

possible transient/permanent faults that could happen anytime

during the job execution. Therefore, in order to prepare for

the worst case, we still need to assume the total busy energy

consumption to be twice of that for executing the mandatory

jobs in one processor, which is 32 units and has already

exceeded the given energy budget constraint. As a result, the

feasibility of the task set cannot be ensured.

However, if we adopt a different way of scheduling the task

set, it is still possible to ensure the feasibility of the system.

The main idea is: we firstly temporarily increase the mi values

of each task τi by 1 such that the (m,k)-constraints of tasks τ1

and τ2 become (5,6) and (3,3), respectively; after that for each

task we use one of its mandatory jobs under the new (m,k)-
constraint as the “temporary extra mandatory job” to help us

reduce the energy budget required. The detailed schedule are

shown in Figure 2. As shown Figure 2(a), for task τ1, since

its new job pattern under the new temporary (m,k)-constraint

is “111110” which contains an extra mandatory job in it, this

extra mandatory job does not need to have a backup job for

it (because even if it had failed, the remaining ones can still

satisfy the original (m,k)-constraint). As shown Figure 2, in
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Fig. 2. The schedule for the mandatory main/bakcup jobs under the floating
redundant job scheme: (a) in primary processor; (b) in spare processor.

the beginning we designated the first mandatory job of τ1, i.e.,

J11 in the primary processor as the temporary extra mandatory

job and executed it without backup job at all (its backup job J
′

11

was canceled as soon as J11 was designated as the temporary

extra mandatory job). Once J11 was completed successfully

at time 3, we switched the temporary extra mandatory job

to J
′

12 in the spare processor while canceling J12. After J
′

12

was completed at time 8, we switched the temporary extra

mandatory job to J13 in the primary processor while canceling

J
′

13 . . . This procedure could be repeated until all mandatory

jobs of τ1 under its new temporary (m,k)-constraint had been

executed. The procedure for task τ2 could also be conducted

in a similar way. From Figure 2 it is not hard to see that,

if no fault occurred during the hyper period, each task τi

will have totally (mi + 1) mandatory jobs executed in either

the primary or the spare processor within each window of ki

jobs. Therefore the total busy energy consumption within the

hyper period will be 21 units. Even when we have the energy

consumption during the idle period included, assuming the

idle power of the processor Pidle to be 0.05, the estimated total

energy consumption of the system within the hyper period will

be (21 + Pidle × 27=) 22.35 units, which is less than Ēc and

therefore feasible.

The above calculation is based on the assumption that

no fault ever occurred. If during runtime a permanent fault

occurred to one processor, only the mandatory jobs in the other

processor will be executed to resume the system, which will

not increase the total energy consumption computed above.

On the other hand, if during runtime some transient fault(s)

occurred, some temporary extra mandatory job might be failed

due to it. In this case all the other mandatory jobs within the

same window of ki jobs become required ones whose backup

jobs also need to be executed. Under this scenario the esti-

mation of the total energy consumption also needs to take the

energy consumption of those backup jobs into consideration

based on probability. For example, in the above task set, if we

assume the probability of transient fault to be 10−5, then the

expected energy consumption of all backup jobs within one

window of ki jobs will be (3× 4 + 2× 2)× 10−5 = 0.00016

units. After adding it to the above result, the total estimated

energy consumption of the system subject to fault(s) will be

22.35016 units, which is still less than the given energy budget

constraint and therefore feasible.

Note that in the above approach the mandatory main/backup



Algorithm 1 The algorithm based on floating redundant job

1: Preparations: For each task τi ∈ T , re-partition it based on its
new temporary (m,k)-constraint of (mi + 1,ki) and determine
its mandatory main/backup jobs in both primary and spare
processors correspondingly. In primary processor, mark Ji1, i.e.,
the first job of each task τi as its initial floating redundant job;

2:

3: For either the primary processor or the spare processor:
4:

5: Upon the execution of a mandatory job Ji j at time tcur:
6: if Ji j is the floating redundant job then
7: Cancel Ji j’s corresponding job in the other processor and add

its time budget to the slack queue ST Q ;
8: Execute Ji j following the EDF scheme;
9: if any slack time ST Qi(t) with higher priority than Ji j is

available then
10: Reclaim the slack time to execute Ji j as soon as possible;
11: end if
12: else if Ji j is within the same window of ki jobs as the most

recent failed floating redundant job then
13: if Ji j is a mandatory main job then
14: repeat lines 8-11;
15: else
16: Revise ri j to max{(ri j +ϕi),(tcur +ST Qi(tcur))};
17: Execute Ji j following the EDF scheme;
18: end if
19: else
20: mark Ji j as the current floating redundant job;
21: end if
22:

23: Upon the completion of a job Ji j at current time tcur:
24: if the execution of job Ji j is successful then
25: if Ji j is the floating redundant job then
26: Let Ja be the next mandatory job after Ji j in the other

processor;
27: Mark Ja as the floating redundant job;
28: Cancel Ja’s corresponding job in the other processor and

add its time budget to the slack queue S ;
29: else
30: Cancel Ji j’s corresponding job in the other processor and

add its residue time budget to the slack queue S ;
31: end if
32: if Ji j was the only job in the mandatory job queue at time

t−cur then
33: Let NTA be the earliest arrival time of the next upcoming

mandatory job in the same processor;
34: if (NTA− tcur) > tsd then
35: Shut down the processor and set wake-up timer as

(NTA− tcur);
36: end if
37: end if
38: end if

jobs of each task under the new temporary (m,k)-constraint

was used as the temporary extra mandatory job alternatively.

It appears in effect as if the temporary extra mandatory job

was “floating” through the mandatory main/backup jobs one

by one within each window of ki jobs and jumping back

and forth between the primary and the spare processors.

Since this temporary extra mandatory job is not required for

satisfying the original (m,k)-constraint, for convenience, we

call it floating redundant job. As shown, this floating redundant

job is very useful in helping us to reduce the estimation of

the total energy consumption and meeting the overall energy

budget constraint. Correspondingly the above approach is also

called the floating redundant job scheme. The details of it are

presented in Algorithm 1.

As shown in Algorithm 1, in the beginning, for each task

τi ∈ T , we firstly re-partition it with its new temporary (m,k)-
constraint of (mi +1,ki) based on E-pattern and mark its first

job (represented as Ji1) as its initial floating redundant job

(note that each task has a floating redundant job of its own).

During runtime, in both the primary and the spare processors, a

mandatory job ready queue (MQ) is maintained. Upon arrival,

a job of task τi is inserted into the MQ if its job pattern

is “1”. All jobs in MQ will be executed following the EDF

scheme. A slack time queue ST Q is also maintained for each

processor to keep track of the slack time(s) from (partially)

canceled job(s) in it. Whenever the current job Ji j of task τi

got chance to be executed, if it has been designated as the

current floating redundant job of τi, its corresponding job in

the other processor should be canceled immediately (because

the floating redundant job does not need backup job) whose

time budget should be inserted into the slack time queue

ST Q based on its deadline (line 28). Once the current floating

redundant job Ji j is completed successfully, it is counted as

an effective job and the next mandatory main/backup job after

Ji j in the other processor should be designated as the new

floating redundant job (lines 26-27). Otherwise in order to

maintain the original (m,k)-constraint under fault tolerance

all jobs following Ji j in the same window of ki jobs should

not be designated as floating redundant job and therefore

should be executed in parallel with their corresponding jobs

in the other processor (lines 12-18). For jobs more than ki job

patterns/positions after Ji j, since they are not within the range

of the same window which Ji j belongs to, they will not be

affected by the failure of Ji j at all and can be designated as

the floating redundant job in turn again, similar to the case of

the initial floating redundant job in the beginning (line 20).

Note that in the case when the current floating redundant

job Ji j is found to have failed due to transient fault, since

all mandatory jobs following Ji j in all windows containing

Ji j cannot be designated as floating redundant job, totally mi

mandatory jobs after Ji j need to be executed concurrently

with their corresponding jobs in the other processor. In this

scenario in order to reduce the energy consumption further,

the execution of the corresponding jobs in the other processor

should be procrastinated as late as possible such that the

overlapped executions of the jobs in the primary and the

spare processors could be reduced (lines 16-17). Regarding

that, the corresponding jobs in the other processor could be

procrastinated by a time interval ϕi calculated based on the

following theorem. For easy of presentation, we adopt the

following notation, i.e., ⌈x⌉+ to represent (1+⌊x⌋) throughout

this paper.

Theorem 1: Given task set T = {τ1,τ2, ...,τN} to be sched-

uled with Algorithm 1. Let all tasks be ordered by increasing

value of Di, all mandatory job deadlines can be guaranteed if

any mandatory job Ji j of task τi is delayed by no more than



ϕi time units (called the delay period of task τi) if for any

instant of time t:

∀i 1 ≤ i ≤ n t ≥ ϕi + ∑
Dq≤t

⌈
mq +1

kq

⌈
t −Dq

Tq

⌉+⌉Cq (6)

and

∀ j < i ϕ j ≤ ϕi (7)

Proof: Use contradiction. Assuming at certain time point t ′,

some mandatory job missed its deadline. Then we can always

find another time point t0 < t ′ such that during the time interval

[t0, t
′] the processor is kept busy executing only mandatory jobs

with arrival times or delayed starting times no earlier than t0
and with deadlines less than or equal to t ′. Since no job has

arrival time or delayed starting time earlier than time 0, t0 is

well defined. We consider two cases:

• 1) At time t0, there is no pending workload from manda-

tory jobs with delayed starting time and with dead-

lines less than or equal to t ′. Then according to [15],

the total mandatory work demand within the interval

[t0, t
′] is bounded by ∑Dq≤(t ′−t0)⌈

mq+1

kq
⌈

t ′−t0−Dq

Tq
⌉+⌉Cq.

Since some job missed the deadline at t ′, we

have ∑Dq≤(t ′−t0)⌈
mq+1

kq
⌈

t ′−t0−Dq

Tq
⌉+⌉Cq > (t ′ − t0). On

the other hand, considering the first busy inter-

val, let t = (t ′ − t0), from Equation (6), we have

∑Dq≤(t ′−t0)⌈
mq+1

kq
⌈

t ′−t0−Dq

Tq
⌉+⌉Cq ≤ (t ′ − t0). Contradic-

tion!

• 2) At time t0, there is pending workload from mandatory

jobs with delayed starting time and with deadlines less

than or equal to t ′. In this case the processor is idle at

t−0 . Let t1(< t0) be the latest time before t ′ when there

are no pending mandatory jobs prior to t1 with deadlines

less than or equal to t ′. The the mandatory work de-

mand consumed in the interval [t0, t
′] is generated by the

mandatory jobs arriving in the interval [t1, t
′]. Obviously

the mandatory work demand within the interval [t1, t
′] is

bounded by ∑Dq≤(t ′−t1)⌈
mq+1

kq
⌈

t ′−t1−Dq

Tq
⌉+⌉Cq. Let k be the

maximal index among the tasks with deadlines no larger

than (t ′ − t1). Since there is deadline missing at t ′, we

have

∑
Dq≤(t ′−t1)

⌈
mq +1

kq

⌈
t ′− t1 −Dq

Tq

⌉+⌉Cq > (t ′− t0) (8)

Note that the idle interval [t1, t0] can only caused by

the delay of certain task arriving at t1, say τx, whose

delay time is bounded by ϕx. Since τx also contribute

to the work demand within [t1, t
′], from Equation (7),

ϕx ≤ ϕk. So the idle interval length (t0 − t1) is bounded

by ϕk. Together with the result from Equation (8) we

have (t ′− t1) = (t0 − t1)+(t ′− t0) ≤ ϕk +(t ′− t0) ≤ ϕk +

∑Dq≤(t ′−t1)⌈
mq+1

kq
⌈

t ′−t1−Dq

Tq
⌉+⌉Cq. In Equation (6), letting

t = (t ′− t1), contradiction reached!

�

The rationale of Equation (6) is to find the maximal time

ϕi before any absolute deadline of the mandatory jobs from

τi that the work-demand of the mandatory jobs from τi and

other mandatory job(s) with deadline(s) no later than it can be

delayed such that no mandatory job deadline will be missed.

Based on it, ϕi can be computed as

ϕi = min{di − ( ∑
Dq≤di

(⌈
mq +1

kq

⌈
di −Dq

Tq

⌉+⌉)Cq)} (9)

for all di ≤ L, where L is the ending point of the first busy

period when executing the mandatory jobs only and di is the

absolute deadline of any mandatory job of task τi belonging

to L. Note that, when calculating ϕi, if ϕi < ϕ j for any task τ j

with index less than τi, i.e., j < i, the value of ϕ j should be

reset to be the same as ϕi due to condition (7) in Theorem 1.

Based on Algorithm 1, the estimation of the total energy

consumption of task set T could be calculated as:

E = ∑
i

H(mi +1)

ki

Ci +∑
i

Hmi

ki

λ(smax)Ci

+ 2PidleH(1−
1

2
∑

i

(mi +1)Ci

kiPi

) (10)

where λ(smax) is the average fault rate at the maximal proces-

sor speed smax.

Note that the energy calculated above is indeed an upper

bound of the energy consumption by Algorithm 1 because

during execution, if some idle intervals are longer than tsd ,

those idle intervals can be shutdown/wake-up dynamically to

reduce actual energy consumption further (lines 32-37).

Moreover, during the runtime of Algorithm 1, at any time

there are at most n mandatory main/backup jobs in its read

queue. So the online complexity of Algorithm 1 is O(n).

IV. ENERGY-CONSTRAINED STANDBY-SPARING BASED ON

WINDOW TRANSFERRING SCHEME

Although the floating redundant job scheme in Section III is

quite helpful in estimating the required total energy consump-

tion of the standby-sparing system and checking its feasibility

under the given energy budget constraint, it needs to increase

the mi value of each task by 1 (to accommodate the extra

mandatory job used as the floating redundant job), which

might sometime affect the schedulability of the task set. This

could be illustrated using the following example.

Consider another task set of two tasks, i.e., τ1 =
(4,4,3,2,4), and τ2 = (10,10,4,1,3), to be executed in a

standby-sparing system with given energy budget constraint

within its hyper period 240 to be 120 units. In order to

apply algorithm 1, the task set needs to firstly increase the

(m,k)-constraints of tasks τ1 and τ2 to be (3,4) and (2,3),
respectively. However, it is easy to verify that the task set

will not be schedulable under such new temporary (m,k)-
constraints. On the other hand, to preserve the scheduability of

the task set, if we apply the approach in [8] to execute the task

set under the original (m,k)-constraints, although the task set is

schedulable, the estimated total busy energy consumption will

be 136 units, which has exceeded the given energy budget



constraint and therefore cannot ensure the feasibility of the

task set.

However, if we follow a different way of scheduling the

task set, it is still possible to ensure the feasibility of the task

set. Before presenting our new approach, we need to define a

variation of the E-pattern as followed. Based on it, the pattern

πi j for job Ji j, is defined as [23]:

πi j =

{

“1” if j = ⌊⌈ ( j−1+ri)×mi

ki
⌉× ki

mi
⌋+1

“0” otherwise j = 1,2, · · ·
(11)

Note that the above definition is actually a rotated version

of the original E-pattern which can be regarded as rotating the

E-pattern defined in Equation (4) to the right by ri bits. For

example, for a given (m,k)-constraint of (3,6), its original E-

patten is “101010”. If we rotate it to the right by ri = 1 bit,

the resulting patterns will be “010101” which are the same as

defined according to Equation (11). For convenience, we call

the pattern defined by (11) a rotation of the original E-pattern

and represent it as Eri -pattern.

With the above definition, we have the following lemma.

Lemma 1: For any task τi with (m,k)-constraint of (mi,ki),
let yi = mi

ki+1
mi+1

if ki+1
mi+1

is an integer and mi < ki; or let yi =

ki − 1 if ki−1
2

≤ mi < ki − 1. Let ri = ⌈ yi−mi

mi
⌉. Let the jobs

of τi within each separate window of yi jobs be partitioned

with either E-pattern or Eri -pattern based on the new (m,k)-
constraint of (mi,yi), its original (m,k)-constraint is satisfied.

Proof: According to Lemma 1, there are two possibilities for

the value of yi: if ki+1
mi+1

is an integer, then yi = mi
ki+1
mi+1

; or

if ki−1
2

≤ mi < ki − 1, yi = ki − 1. Under both possibilities yi

is an integer. When we inspect any two consecutive separate

windows of yi jobs in the resulting job patterns from Lemma 1,

obviously there are two cases in general, (i) both windows

are determined with same type of patterns; or (ii) they are

determined with different type of patterns.

For case (i), without lose of generality, let’s assume the case

when the two consecutive windows of yi jobs, namely window

1 and window 2, are partitioned with E-pattern and Eri-

pattern, respectively, as shown in Figure 3. Then in Window 1,

according to [24], the maximal number of consecutive “0”s is

equal to ri defined in Lemma 1, which happened at rightmost

side of Window 1. Meanwhile, in window 2, since according

to Definition (11) Eri -pattern is achieved by rotating E-pattern

to the right by ri bits, then in the leftmost side of Window

2 there are exactly ri “0”s. Considering any sliding window

of (yi + ri) jobs starting from the current position of Window

x (obviously in the beginning there are mi “1”s in it), each

time when we move window x to the right by one position,

the number of “1”s in it will not change because the patterns

for the leftmost (yi − ri) jobs in Window 1 are the same as

the rightmost (yi − ri) jobs in Window 2, according to the

definition of Eri -pattern. As such, until Window x reached

the position of Window y, the number of “1”s in the sliding

Window x is always mi.

For case (ii), let’s assume after Window 2, the next window,

namely Window 3, has the same patterns as Window 2, i.e.,

1 000 10 1... ...1 ... ... ...

Window 1 Window 2

Window x
Window y

0 10 1... ...

Window 3

Window z

Fig. 3. The job patterns under consecutive windows.

Eri -pattern. Then obviously the patterns for the leftmost (yi −
ri) jobs in Window 3 are the same as the rightmost (yi − ri)
jobs in Window 1. So if we continue to move Window y to

the right, until Window y reached the position of Window z,

the number of “1”s in the sliding Window y will remain the

same, i.e., mi. After that, if we continue move Window z to

the right, obviously the number of “1”s in it will be no less

than mi, either. The case when both two consecutive windows

are partitioned based on E-pattern is similar.

Based on the above statements, the resulting pattern from

Lemma 1 can always satisfy the (m,k)-constraint of (mi,(yi +
ri)). Next we will show that (yi + ri) = ki. We also check it

under the two possibilities:

Possibility (i): ki+1
mi+1

is an integer. Since in this case yi =

mi
ki+1
mi+1

,
yi

mi
= ki+1

mi+1
is an integer. So

yi + ri = mi

ki +1

mi +1
+ ⌈

yi −mi

mi

⌉ = mi

ki +1

mi +1
+ ⌈

yi

mi

⌉−1

= mi

ki +1

mi +1
+ ⌈

ki +1

mi +1
⌉−1 = mi

ki +1

mi +1
+

ki +1

mi +1
−1

= (mi +1)
ki +1

mi +1
−1 = ki (12)

Possibility (ii): ki−1
2

≤ mi < ki − 1. Since in this case yi =
ki −1,

ki −1

2
≤ mi < ki −1 ⇔ 1 <

ki −1

mi

≤ 2 ⇔ 1 <
yi

mi

≤ 2 (13)

As such, in this case

ri = ⌈
yi −mi

mi

⌉ = ⌈
yi

mi

⌉−1 = 2−1 = 1 (14)

So,

yi + ri = (ki −1)+1 = ki (15)

From the above, for both possibilities, (yi + ri) = ki. �

To help understand Lemma 1, let us consider a task τi

with (m,k)-constraint of (3,7). According to Lemma 1, yi = 6

and ri = 1. Then based on Equation (11), E1 =“010101”.

From Lemma 1, one possible pattern for task τi is

“101010010101010101· · ·”. It is easy to verify that it can

satisfy the original (m,k)-constraint of (3,7).

Note that Lemma 1 effectively sets up a straightforward

way of converting a window-constraint of mi/yi (within each

separate window of yi jobs) to the original (m,k)-constraint of

(mi,ki). It is similar to, but tighter than, the result in [14] which

can convert a window constraint of mi/
(mi+ki)

2
to the original

(m,k)-constraint of (mi,ki). For example, for the above task τi

with (m,k)-constraint of (3,7), in order to satisfy its original



(m,k)-constraint, based on Lemma 1 it only needs to satisfy

the window-constraint of 3/6 in each separate window of 6 jobs

whereas according to the approach in [14], it needs to satisfy

the window-constraint of (3,5) in each separate window of 5

jobs. Obviously the former one is easier to be schedulable than

the latter one. In the following, we will formulate this result

into a lemma.

Lemma 2: For any task τi, if both the window constraints

of mi/(mi
ki+1
mi+1

) and mi/
(mi+ki)

2
can be used to define τi’s

job patterns successfully under E-pattern, the job patterns

determined based on the former one has better schedulability

than the job patterns determined based on the latter one.

Proof: Since mi value is the same, to prove mi/mi
ki+1
mi+1

has

better schedulability than mi/
(mi+ki)

2
, we only need to prove:

mi

ki +1

mi +1
≥

(mi + ki)

2
⇔ 2(ki +1)mi ≥ (mi + ki)(mi +1)

⇔ 2kimi +2mi ≥ m2
i +mi +miki + ki

⇔ (1−mi)(mi − ki) ≥ 0 (16)

Which is true because (mi ≥ 1) and (ki ≥ mi). �

Based Lemma 1, our new approach of scheduling the task

set with the given energy budget constraint can be described

as followed: for each task τi, if ki+1
mi+1

is an integer and mi < ki

or ki−1
2

≤ mi < ki−1, we let yi and ri be determined according

to Lemma 1. Then base on it we can determine the mandatory

main jobs of task τi in one processor with E-pattern and their

backup jobs in the other processor with Eri -pattern, both based

on the window constraint of mi/yi first. Since ri ≥ 1 if mi < ki

or ki−1
2

≤ mi < ki −1, in any separate window of yi jobs, each

mandatory main job and its backup job in the other processor

are not in the same time frame. In other words, they are totally

shifted way. As such, if any mandatory main job is completed

successfully, its backup job can be canceled entirely. Even

if the mandatory main job were found to have failed upon

completion, its backup job can still be executed timely. In the

worst case, if all mandatory main jobs in a separate window

of yi jobs have failed, their backup jobs in the other processor

will all need to be executed. In this scenario the resulting job

pattern will be equivalent to case (i) in the proof of Lemma 1.

Then according to Lemma 1, its original (m,k)-constraint will

be satisfied.

Particularly, for tasks τ1 and τ2 in the above example task

set, their corresponding window constraints will be 2/3 and

1/2, respectively. Then based on them the mandatory main

jobs of tasks τ1 and τ2 are determined under E-pattern and

they can be scheduled in different processors, as shown in

Figure 4. Meanwhile, the backup jobs for τ1 and τ2 will

be determined based on Eri-pattern and can be reserved in

different processors as well. As such, since each mandatory

main job and its backup job are totally shifted away, once a

mandatory main job (for example, J11) is completed success-

fully, its backup job (i.e., J
′

12) in the other processor could be

canceled entirely. If any mandatory main job of task τi had

failed, its corresponding backup job in the other processor

could still be invoked and executed timely (for example, if

the main job J17 in the primary processor had failed, its

backup job J
′

18 could still be executed timely in the spare

processor, as shown in Figure 4(b)). In this way, even in the

worst case that all mandatory main jobs in one window had

failed, as stated above, its original (m,k)-constraint can still

be ensured. Following the same rationale, if we assume the

probability of transient fault to be 10−5, then the expected

energy consumption of all backup jobs within one window of

yi jobs for all tasks will be (3× 2 + 4× 1)× 10−5 = 0.0001.

Therefore the estimated total busy energy consumption subject

to faults before the hyper period 240 will be 90+0.0001=

90.0001 units, which is much less than the given energy budget

constraint. If we assume the idle power Pidle = 0.05, the total

energy consumption should be calculated based on Equation

(17), which will be 105.6001 units, still below the given energy

budget constraint and therefore feasible.

From the above example we can see that there is great

potential for meeting the given energy budget constraint by

determining the mandatory main jobs and their backup jobs

based on E-pattern and Eri -pattern, respectively (which can

satisfy the original (m,k)-constraint according to Lemma 1).

Based on the above principles, our standby-sparing scheduling

scheme based on window transferring is presented in Algo-

rithm 2.

As shown in Algorithm 2, in the beginning, for each task

τi ∈ T , if ki+1
mi+1

is an integer and mi < ki or ki−1
2

≤ mi < ki −1

(how to handle the case when these conditions are not met will

be discussed in next section), we firstly determine the values

of yi and ri according to Lemma 1 and re-partition task τi and

its backup task τ
′

i with E-pattern and Eri -pattern (both based

on its new temporary QoS constraint of mi/yi), respectively.

Note that task τi or its backup task τ
′

i can be executed in

either the primary processor or the spare processor, without

affecting their schedulablility. As such, for any mandatory

main job Ji j, its backup job (denoted as J̃i j) will be the job

J
′

i( j+ri)
of its backup task τ

′

i (line 1). Similar to Algorithm 1,

during runtime, in both the primary and the spare processors,

a mandatory job ready queue (MQ) and a slack time queue

ST Q are maintained. Upon arrival, a job of task τi is inserted

into the MQ only when its job pattern is “1”. All jobs in

MQ will be executed according to the EDF scheme. When

the current job Ji j of task τi got chance to be executed, if

Ji j is a mandatory main job, it should be executed as soon as

possible and the slack time in the ST Q , if available, should be

reclaimed to facilitate its early completion (line 9); otherwise

it should be executed as late as possible (line 11).

Note that, when the current mandatory main job Ji j is

completed successfully, whether its backup job in the other

processor should be canceled or not needs to be handled

carefully. Specifically, if job Ji j is within the same time frame

of the backup job of some other job, its backup job cannot

be canceled. For example, in Figure 4, assuming J17 in the

primary processor had failed, then its backup job J
′

18 in the

spare processor needed to be executed. Meanwhile, in the

primary processor, the mandatory main job J18 was executed
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Fig. 4. The schedule for the mandatory main/bakcup jobs based on window transferring scheme (a) in the primary processor; (b) in the spare processor.

Algorithm 2 The algorithm based on window transferring

1: Preparations: For each task τi ∈ T , if ki+1
mi+1 is an integer and

mi < ki or ki−1
2 ≤ mi < ki −1, determine yi and ri according to

Lemma 1. Re-partition τi and its backup task τ
′

i with the new
temporary QoS constraint of mi/yi based on E-pattern and Eri -
pattern, respectively. For any mandatory main job Ji j , mark job

J
′

i( j+ri)
in the other processor as its backup job (denoted as J̃i j);

2:

3: For either the primary processor or the spare processor:
4:

5: Upon the execution of a mandatory job Ji j at time tcur:
6: Execute Ji j following the EDF scheme;
7: if any slack time ST Qi(t) with earlier deadline than Ji j is

available then
8: if Ji j is a mandatory main job then
9: Reclaim the slack time to execute Ji j as soon as possible;

10: else
11: Use the slack time to procrastinate Ji j as late as possible;
12: end if
13: end if
14:

15: Upon the completion of a job Ji j at current time tcur:
16: if the execution of job Ji j is successful then

17: Let J
′

i j be the job in the other processor within the same time

frame as Ji j;

18: if J
′

i j is not a mandatory main/backup job then

19: Cancel Ji j’s backup job J̃i j , i.e., J
′

i( j+ri)
in the other

processor entirely and add its time budget to the slack
queue ST Q ;

20: else
21: Cancel the remaining part of J

′

i j and add its residue time

budget to the slack queue ST Q ;
22: end if
23: Repeat lines 32-37 in Algorithm 1
24: end if

in the same time frame as J
′

18. Suppose J18 was completed

successfully. In this case, if we had canceled its backup job

J
′

19 in the spare processor, then in the time interval [24,36]

there would be only one valid job because J18 and J
′

18 were in

the same time frame and would effectively generate only one

valid job. Consequently the window constraint of 2/3 will be

violated in this interval and the original (m,k)-constraint of

(2,4) will be violated in the time interval of [20,36].

As mentioned, the main reason for the above problem is

that, in Algorithm 2, due to the pattern rotation, all mandatory

main jobs and their backup jobs are shifted away into different

time frames. As a result it is possible that within the current

time frame the execution of the current mandatory main job

could be overlapped with that of the backup job of some other

mandatory job (for example, J18 and J
′

18 in Figure 4). When

that happened, they effectively contributed only one valid job

to the window they belong to. As such, if the backup job

of the current mandatory main job is canceled, the number of

valid jobs in the same window will decrease by 1 which could

cause the QoS constraint in it to be violated and subsequently

cause the original (m,k)-constraint to be violated as well.

Therefore, in this case, even if the current mandatory main

job is completed successfully, its backup job should not be

canceled, as implied in line 18 of Algorithm 2.

Similar to the upper bound of the energy consumption calcu-

lated in Section III, based on Algorithm 2, if for each and every

task τi ∈T , ki+1
mi+1

is an integer and mi < ki or ki−1
2

≤mi < ki−1,

an upper bound of the total energy consumption of task set T

could be calculated as:

E = ∑
i

Hmi

yi

Ci +∑
i

Hmi

yi

Ciλ(smax)+2PidleH(1−
1

2
∑

i

miCi

yiPi

)

(17)

where yi is determined according to Lemma 1.

Note that the worst case in Algorithm 2 happens when at

certain point, all mandatory main jobs in one separate window

have failed consecutively and all their backup jobs in the other

processor need to be executed, which will be equivalent to one

of the scenarios in Lemma 1. Then according to Lemma 1, its

original (m,k)-constraint can be ensured.

Similar to Algorithm 1, the online complexity of Algo-

rithm 2 is also O(n). Moreover, we have the following

theorem.

Theorem 2: Given task set T = {τ1,τ2, · · · ,τN} to be

scheduled with Algorithm 2 in a standby-sparing system with



total energy budget of Ēc within its hyper period, the system

is feasible if: (i) for each and every task τi ∈ T , ki+1
mi+1

is an

integer and mi < ki or ki−1
2

≤ mi < ki−1; (ii) T is schedulable

with the (m,k)-constraint of each task τi in it replaced by

(mi,yi), where yi is determined according to Lemma 1; and

(iii) the energy consumption E calculated based on Equation

(17) does not exceed Ēc.

Proof: If for any task τi ∈ T ki+1
mi+1

is an integer and mi < ki,

then ki+1
mi+1

≥ 2. So ri = ⌈ yi

mi
⌉−1 = ki+1

mi+1
−1 is also an integer

and ri ≥ 1. If ki−1
2

≤ mi < ki −1, from Lemma 1 ri = 1. Thus

in either case Algorithm 2 can be applied. The main issue

is to ensure the original (m,k)-constraint. The worst case in

Algorithm 2 happens when at certain point, all mandatory

main jobs in one separate window have failed consecutively,

then all their backup jobs in the other processor need to be

executed, which will be equivalent to one of the scenarios in

Lemma 1. Then according to Lemma 1, its original (m,k)-
constraint can be assured. �

V. INTEGRATED APPROACH BASED ON HYBRID SCHEMES

Although the above window transferring scheme in Algo-

rithm 2 could be more efficient than the floating redundant

job scheme in Section IV in meeting the given energy budget

constraint, the main issue for it is that, for tasks which do

not satisfy the conditions in line 1 of Algorithm 2, they will

not be able to be transferred in this way. On the other hand,

the floating redundant job scheme in Section IV also has the

issue that it might affect the schedulability of the task set

because it needs to have one more mandatory job reserved for

each task. Regarding that, in order to still meet the energy

budget constraint while respecting the schedulability of the

task set, the best way is to partition the original task set T into

three parts and schedule them with the schemes in Section IV,

Section III, and the regular job procrastination scheme similar

to lines 13-18 in algorithm 1, respectively, in an integrated

approach. Correspondingly, Problem 1 could be reformulated

as follows:

Problem 2: Given system T = {τ1,τ2, · · · ,τN}, partition the

original task set T into three subsets, i.e., X , Y , and Z to

be scheduled with the window transferring scheme in Algo-

rithm 2, floating redundant job scheme in Algorithm 1, and

the regular job procrastination scheme, respectively such that

the estimated total energy consumption does not exceed the

given energy budget constraint Ēc while satisfying the (m,k)-
constraints for all tasks under the fault tolerant requirement.

In order to solve Problem 2, in this paper we proposed a

heuristics based on “branch-and-bound”, which is presented

in Algorithm 3.

From Algorithm 3, our approach determines task by task

if each task τi ∈ T should be scheduled with the window

transferring scheme in Section IV, the floating redundant

job scheme in Section III, or the regular job procrastina-

tion scheme. When Algorithm 3 is finished, it is possible

to reach certain hybrid configuration in which the tasks in

subsets X , Y , Z are partitioned based on the QoS constraint

Algorithm 3 Task set partitioning using Branch-and-Bound.

1: Input: task set T with original (m,k)-constraints;

2: Output: task set T̃ = X∪Y ∪Z, where X , Y and Z are the sub-
sets to be scheduled with the schemes in Section IV, Section III,
and the regular job procrastination scheme, respectively;

3: X = /0;
4: Y = /0;
5: Z = all tasks in T ;
6: Sort the tasks in Z according to non-increasing order of miCi

kiPi
, i =

1, ..,n;
7: T̃ = X∪Y ∪Z;

8: Etotal = Ebound = 2(∑i{Ci
Hmi

ki
}+PidleH(1−∑i

miCi

kiPi
));

9: //The estimated total energy consumption using standby-sparing
for all mandatory main/bakcup jobs based on the original (m,k)-
constraints without energy management;

10: SS-Partition (X , Y , Z, T̃ , Ebound);
11: output (T̃ );
12:

13: FUNCTION SS-Partition(X , Y , Z, T̃ , Ebound)
14: for each task τi ∈ T̃ do

15: if ki+1
mi+1 is an integer and mi < ki or ki−1

2 ≤ mi < ki −1 then

16: Determine yi according to Lemma 1;
17: Set τi’s new temporary QoS constraint to be mi/yi;
18: X = X∪{τi};
19: else
20: Set τi’s new temporary QoS constraint to be (mi +1,ki);
21: Y = Y ∪{τi};
22: end if
23: Remove τi from Z;
24: if X∪Y ∪Z is schedulable then
25: Compute the energy consumption EX for all mandatory

jobs in X based on Equation (17);
26: Compute the energy consumption EY for all mandatory jobs

in Y based on Equation (10);
27: Compute the energy consumption EZ for all mandatory jobs

in Z based on Equation (5);
28: Etotal = EX +EY +EZ ;
29: if Etotal < Ebound then
30: Ebound = Etotal ;
31: T̃ = X∪Y ∪Z;
32: end if
33: SS-Partition (X , Y , Z, T̃ , Ebound);
34: else
35: Restore τi’s QoS constraint to its original (mi,ki)-constraint

and put it back to Z;
36: end if
37: end for

of mi/(mi
ki+1
mi+1

) or mi/(ki − 1), (mi + 1,ki), and (mi,ki) to

be scheduled with the window transferring scheme in Al-

gorithm 2, floating redundant job scheme in Algorithm 1,

and the job procrastination scheme following lines 13-18 in

Algorithm 1, respectively. And the resulting configuration

should be the one with the minimum estimated total energy

consumption Etotal computed in line 28. Once the final Etotal is

calculated, we will compare it with the given energy constraint

Ec. If Etotal ≤ Ec, the task set is guaranteed to be feasible.

Otherwise the feasibility of the task set cannot be guaranteed.

Note that after the original task set T was divided into three

subsets X , Y , Z, the calculation of the delay period of ϕi for

each task τi under the hybrid configuration should be updated
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Fig. 5. Feasibility comparison of the different approaches.

as followed.

ϕi = min{di −
τx∈X

∑
Dx≤di

(⌈
mx

yx

⌈
di −Dx

Tx

⌉+⌉)Cx

−
τy∈Y

∑
Dy≤di

(⌈
(my +1)

ky

⌈
di −Dy

Ty

⌉+⌉)Cy

−
τz∈Z

∑
Dz≤di

(⌈
mz

kz

⌈
di −Dz

Tz

⌉+⌉)Cz} (18)

for all di ≤ L, where di is the absolute deadline of a mandatory

job of task τi and L is the ending point of the first busy period

when executing the mandatory jobs, and ∀ j < i ϕ j ≤ ϕi.

VI. EVALUATION

In this section, we evaluate the performance of our ap-

proach by comparing with the existing approaches in literature.

Specifically, the performance of six different approaches were

studied:

• SSNEM The task sets were partitioned with E-pattern,

and the mandatory jobs in the primary and the spare

processors were executed concurrently without delay.

• SSPO The task sets were partitioned with E-pattern to

satisfy the given (m,k)-constraints. Then the mandatory

jobs were scheduled with the preference oriented scheme

in [8] but without applying DVS.

• MKSSSelective The task sets were scheduled with the

approach from [20] but based on EDF scheme. The task

set were partitioned with deeply-red pattern first to satisfy

the given (m,k)-constraints. Then the selective approach

in [20] was applied.

• ECSSFRJ This is our approach purely based on the

floating redundant job scheme proposed in Section III.

• ECSSWT This is our approach purely based on the win-

dow transferring scheme proposed in Section IV.

• ECSSHY B This is our hybrid approach proposed in Section

V.

The periodic task sets in our experiments consists of five

to ten tasks with the periods randomly chosen in the range

of [5, 50]ms. The mi and ki for the (m,k)-constraint were

also randomly generated such that ki was uniformly distributed

between 2 to 10, and 1 ≤ mi ≤ ki. The worst case execution

time (WCET) of a task was also uniformly distributed. We

assume the processor idle power Pidle = 0.05 and minimal

shut-down interval tsd = 2ms.
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Fig. 6. Actual energy subject to (a) No faults; (b) System faults.

Firstly, we inspected the feasibility of the different ap-

proaches under different density of mandatory jobs. The

density of mandatory jobs, defined as 1
N ∑i

mi
ki

, was divided into

intervals of length 0.1 each of which contained at least 5000

task sets generated. Based on it we checked the feasibility of

the task sets when scheduled by the different approaches. We

assumed the maximal energy budget constraint is randomly

picked from [1.5X, 2.5X], where X is the energy consumption

for executing the mandatory jobs of all tasks under their origi-

nal (m,k)-constraints within the hyper period in one processor

without energy management. The numbers of feasible task

sets were normalized to that by ECSSHY B. The results are

shown in Figure 5. From Figure 5, it is not hard to see that, in

all cases, ECSSHY B always has the best feasibility. Moreover,

for different density of mandatory jobs, the other approaches

presented different performance on feasibilities. As can be

seen, when the density of mandatory jobs is very small, i.e.,

close to 0.1, the total number of task sets feasible by the other

approaches were all very close to that by ECSSHY B. However,

with the increase of density of the mandatory jobs, the

feasibility of the different approaches became much different.

For ECSSFRJ and ECSSWT , their feasibilities were always

decreasing because ECSSFRJ needed to increase the value of

mi by 1 while ECSSWT needed to reduce the window size from

ki to yi = mi
ki+1
mi+1

, both can affect the schedulability of the task

sets. On the other hand, the feasibilities of SSNEM, SSPO,

and MKSSSelective decreased fast first but then became close

to ECSSHY B again when the density of mandatory jobs were

relatively high, for example, larger than 0.8. This is because,

when the density of mandatory jobs is high, the hybrid

approach in ECSSHY B might not be able to partition plenty

of tasks to be scheduled under Algorithm 1 or Algoirthm 2

due to schedulability constraint. Instead in this case most tasks

can only be scheduled under the regular job procrastination

scheme whose estimated total energy consumption is the same

as SSPO. However, as shown in Figure 5, when the density

of mandatory jobs is moderate, for example, between 0.3

and 0.7, the feasibility of ECSSHY B is much better than the

other approaches, with maximal improvement of nearly 60%,

mainly due to its capability of combining the advantages of the

different schemes under the hybrid configuration. On the other

hand, the feasibility of SSNEM and SSPO overlapped with

each other completely because both of them are based on E-

pattern. So their schedulabilities were the same (their estimated

total energy consumptions were also equal to each other,
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Fig. 7. The QoS subject to (a) No faults; (b) System faults.

as discussed earlier). It is also noted that the feasibility of

MKSSSelective is lower than that by SSNEM and SSPO mainly

because it is based on deeply-red pattern whose schedulability

is not as good as E-pattern [22].

Next, we inspected the actual energy consumption of the

different approaches. With system feasibility in mind, this time

we mainly compared our proposed approach with the most

typical one in the previous approaches, i.e., SSPO which is

the previous approach with the best feasibility. Moreover, since

according to the above results, the feasibilities of ECSSFRJ and

ECSSWT are much worse than the other approaches when the

density of the mandatory jobs were relatively high, we did not

include them in this part of test, either. Also considering the

impact of workloads on energy performance, we checked the

actual energy consumption of the different approaches based

on the system utilization, i.e., ∑i
miCi
kiPi

which was divided into

intervals of length 0.1 and each interval contains at least 20

task sets feasible or at least 1000 task sets generated. We

conducted two sets of tests.

In the first set, we checked the energy performance when

no fault occurred during the hyper period. The results were

normalized to that by SSNEM and shown in Figure 6(a).

From Figure 6(a), it is easy to see that even when all

approaches were feasible, both the approaches with energy

management, i.e., ECSSHY B and SSPO still consumed much

less actual energy than the approach without energy manage-

ment, i.e., SSNEM. Moreover, the actual energy consumption

of ECSSHY B is much lower than SSPO in most intervals. For

example, when the system workload is moderate, the actual

energy consumed by ECSSHY B can be around 22% less than

that by SSPO. The main reason is that, under this scenario, by

adopting the hybrid approach in Section V, ECSSHY B can help

minimize the overlapped execution between the mandatory

jobs and their backup jobs in two processors more efficiently.

Moreover, for those tasks that cannot be applied with the

window transferring scheme or the floating redundant job

scheme, letting them be applied with the job procrastination

scheme with delay intervals calculated in Equation (18) also

helped save energy consumption effectively.

In the second set, we assumed the system could be subject to

permanent and/or transient faults. The transient fault model is

similar to that in [2] by assuming Poisson distribution with an

average fault rate of 10−5. The result is shown in Figure 6(b).

As could be seen, under this scenario, the actual energy

consumption by our new approach, i.e., ECSSHY B is still much

less than the previous approaches. The actual energy reduction

by ECSSHY B over SSPO can be up to 20%. This is also because

of the capability of ECSSHY B in scheduling the tasks with

the hybrid configuration as mentioned above. Additionally,

when fault(s) occurred, procrastinating the backup jobs within

the same window of the failed job using the delay intervals

calculated in Equation (18) also contributed to part of the

energy savings due to its capability of shifting the executions

of the mandatory main job(s) and their backup job(s) when

necessary.

Finally, with the QoS in mind, we also inspected the QoS

levels that the different approaches could provide when all

approaches were feasible. The QoS level was defined as the

ratio of the number of effective jobs over the total number of

jobs within the hyperperiod. We also conducted two sets of

tests.

In the first set, we checked the QoS when no fault occurred

within the hyperperiod. The results were normalized to that by

SSNEM and shown in Figure 7(a). From Figure 7(a), we can

see that our newly proposed approach, i.e., ECSSHY B could

provide much better QoS levels than the previous approaches.

Compared with SSNEM and SSPO, the maximal QoS im-

provement could be around 25%. This is because, different

from SSNEM and SSPO which could only provide a minimum

set of jobs that “just” satisfied the (m,k)-constraints, ECSSHY B,

by adopting hybrid configurations, could have extra number

of jobs scheduled under the floating redundant job scheme or

the window transferring scheme. Therefore it could generally

accommodate more valid jobs in its schedule, generating better

QoS levels.

In the second set, we assumed the system could be subject

to permanent and/or transient faults with same fault rate as in

the previous group of test. The result is shown in Figure 7(b).

From Figure 7(b), the QoS improvement subject to faults by

our newly proposed approach, i.e., ECSSHY B over the previous

approaches is quite similar to that when no fault ever occurred,

for the same reasons as stated above.

VII. CONCLUSION

QoS, fault tolerance, and energy budget constraint are

among the primary concerns in the design of real-time em-

bedded systems. In this paper, we firstly presented two novel

scheduling algorithms which can ensure feasibility for the

standby-sparing systems under tighter energy budget constraint

than the traditional ones: one adopting floating redundant job

scheme and one adopting window transferring scheme. Then

based on the aforementioned constraints a hybrid approach

was proposed to achieve better performance. Through exten-

sive evaluations, our results demonstrated that the proposed

techniques significantly outperformed the existing state of the

art approaches in terms of feasibility, energy saving, and QoS

performance for weakly hard real-time systems while ensuring

fault tolerance under given energy budget constraint.
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