Estimating Biological Hip Torque During Overground Ambulation: A Machine Learning Approach
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Introduction

As gait biomechanics research continues to progress, it is
important to quantify biological hip torque in unstructured
environments, such as those outside of the lab. Wearable sensors
provide an opportunity to compute joint dynamics without the
need for external sensing. Linked-segment model-based
approaches require sensors distal to the joint of interest, such as
pressure insoles, which are subject to low resolution GRF
measurements and often result in cumbersome, multi-joint sensor
suites"2. Machine learning (ML) methods can compute biological
joint torque without direct measurement of GRFs by leveraging
the limited domain of joint torques during ambulation®*;
however, generalizability of these methods to changing
ambulation modes remains unknown. Thus, we conducted our
study, hypothesizing that hip torque RMSE and peak magnitude
and timing error estimated by a neural network (NN) are less than
those resulting from an average curve of each ambulation mode.

Methods

Five able-bodied male subjects completed the IRB approved
experimental protocol by ambulating over 0°, £7.8°, £9.2°, and
+12.4° slopes while wearing a bilateral robotic hip exoskeleton.
The hip exoskeleton was used to collect hip encoder and 6-axis
thigh-mounted intertial measurement unit (IMU) data during
ambulation. Data was transformed into the ML model feature
space by computing the mean, standard deviation, and most
recent value over a 350 ms sliding time window for each
exoskeleton sensor channel. Biological hip torque was computed
using the Inverse Dynamics Tool in OpenSim with motion
capture and force plate data collected during each trial®. A 4 layer
NN with 30 nodes per hidden layer was trained using the
exoskeleton feature data, labelled by the corresponding hip
torque values (Fig. 1A). Additionally, the baseline method was
fit as the average hip torque curves for the level ground (LG),
ramp ascent (RA), and ramp descent (RD) conditions. The two
methods were evaluated using three criteria compared to the
ground truth hip torque values: 1) estimation RMSE; 2) peak
magnitude error, computed as the absolute difference between the
peak estimated and ground truth values; and 3) peak timing error,
computed as the absolute difference in gait phase during peak

estimated and ground truth values. A paired t-test (¢ = 0.05) was
used to compare the NN and baseline methods for each criteria.

Results and Discussion

The estimated hip torque of the NN and baseline methods are
shown for an example step during RA in Fig. 1C. On average, the
NN model reduced hip torque RMSE, peak magnitude error, and
peak timing error by 29.7+12.2%, 32.6+17.4%, and 12.8+13.9%
compared to the baseline method, respectively (p=0.015,
p=0.057, p=0.117) (Fig. 1B). Thus, the NN model more
accurately estimated the shape and magnitude of varying
ambulation modes compared to the baseline method as expected;
however, both the NN and baseline methods accurately estimated
peak torque timing to within 2% of the gait cycle due to the low
variability in this metric among ambulation modes. Thus, the NN
model is a useful approach for estimating biological joint torques
when the estimate must be sensitive to shape and magnitude of
the curve, such as in gait analysis and exoskeleton control.

Significance

This study validated an ML algorithm for estimating biological
hip torque using only mechanical sensors during various
ambulation modes. We demonstrated the benefit of using this
model compared to the baseline method of average values due to
its improved accuracy and reduced requirement of user state
information, such as ambulation mode. Thus, our study provides
a promising method for estimating biological joint torque for
applications including out-of-lab experiments and exoskeleton
control while varying ambulation modes.
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Figure 1: A) A diagram of the neural network based torque estimater is shown. Mechanical sensor data is input to a neural network after windowing
and feature extraction. B) Average estimated torque RMSE, peak magnitude error, and peak timing error among ambulation modes is shown for
the NN and baseline method. C) Estimated and ground truth hip torque is shown for a single step during the 12.4° incline (RMSE in parentheses).



