
Graph Exploration by Energy-Sharing Mobile
Agents?

J. Czyzowicz1, S. Dobrev2, R. Killick3, E. Kranakis3, D. Krizanc4, L.
Narayanan5, J. Opatrny5, D. Pankratov5, and S. Shende6

1 Département d’Informatique, Université du Québec en Outaouais, Canada
2 Slovak Academy of Sciences, Bratislava, Slovakia

3 School of Computer Science, Carleton University, Ottawa, Canada
4 Dept.of Mathematics & Computer Science, Wesleyan University, Middletown CT,

USA
5 Department of Computer Science and Software Engineering, Concordia University,

Canada
6 Department of Computer Science, Rutgers University, USA

Abstract We consider the problem of collective exploration of a known n-
node edge-weighted graph by k mobile agents that have limited energy but are
capable of energy transfers. The agents are initially placed at an arbitrary subset
of nodes in the graph, and each agent has an initial, possibly different, amount
of energy. The goal of the exploration problem is for every edge in the graph to
be traversed by at least one agent. The amount of energy used by an agent to
travel distance x is proportional to x. In our model, the agents can share energy
when co-located: when two agents meet, one can transfer part of its energy to
the other.

For an n-node path, we give an O(n+ k) time algorithm that either finds an
exploration strategy, or reports that one does not exist. For an n-node tree with
` leaves, we give an O(n+`k2) algorithm that finds an exploration strategy if one
exists. Finally, for the general graph case, we show that the problem of deciding
if exploration is possible by energy-sharing agents is NP-hard, even for 3-regular
graphs. In addition, we show that it is always possible to find an exploration
strategy if the total energy of the agents is at least twice the total weight of the
edges; moreover, this is asymptotically optimal.

Key words and phrases. Energy, Exploration, Graph, Mobile Agent, Path,
Sharing, Tree.

1 Introduction

The emergence of swarm robotics has inspired a number of investigations into the
capabilities of a collection of autonomous mobile robots (or agents), each with
limited capabilities. Such agents cooperate and work collaboratively to achieve
complex tasks such as pattern formation, object clustering and assembly, search,

? Research supported in part by NSERC grants and NSF grant AF-1813940.

and exploration. Collaboration on such tasks is achieved by, for example, decom-
posing the task at hand into smaller tasks which can be performed by individual
agents. The benefits of the collaborative paradigm are manifold: smaller task
completion time, fault tolerance, and the lower build cost and energy-efficiency
of a collection of smaller agents as compared to larger more complex agents.
Somewhat surprisingly, for example, a recent paper [16] shows that two agents
can search for a target at an unknown location on the line with lower total energy
costs than a single agent.

In this paper, we study the problem of collective exploration of a known
edge-weighted graph by n mobile agents initially placed at arbitrary nodes of
the graph. Many variants of the graph exploration problem have been studied
previously; see Section 1.2 for a description of some of the related work. For our
work, the goal of exploration is that every edge of the graph must be traversed
by at least one agent. The weight of an edge is called its length. Every agent is
equipped with a battery/energy container that has an initial amount of energy;
the initial energies of different agents can be different. We assume that moving
length x depletes the battery of an agent by exactly x.

Clearly then, for exploration to be possible, the sum of the initial energies
of all agents has to be at least E , the sum of all edge weights. However total
energy E may not be sufficient; the initial placement of the agents plays a role in
deciding if exploration is possible with the given energies. To see this, consider
exploration by 2 agents of a path with 4 nodes, where each of the 3 edges has
length 1. If the agents are initially placed at the two endpoints of the path, then
total energy 3 suffices to explore the path. However if the two agents are initially
placed at the middle two nodes of the path, it is not difficult to see that total
energy 4 is necessary to complete the exploration.

In addition to initial placement of agents, and the total amount of energy, the
initial energy distribution also affects the existence of an exploration strategy. To
see this, suppose the 2 agents are placed at the middle nodes of the 4-node path.
Consider first an energy distribution in which both agents have initial energy 2.
Then one exploration strategy would be for both agents to explore half of the
center edge, and turn around to travel to the endpoint. Next consider an energy
distribution in which agent 1 has energy 3 + ε for some 0 < ε ≤ 1 and the agent
2 has energy 1− ε. It is easy to see that exploration is impossible, even though
the total energy of both agents is the same as in the first distribution.

Recently, several researchers have proposed a new mechanism to aid collabo-
ration: the capability to share energy. In other words, when two agents meet, one
can transfer a portion of its energy to the other. It is interesting to investigate
what tasks might be made possible with this new capability, given the same ini-
tial amounts of energies. In [6, 12–14, 26], researchers have studied the problems
of data delivery, broadcast, and convergecast by energy-sharing mobile agents.

In the example described above, where agent 1 has energy 3 + ε for some
0 < ε ≤ 1 and the agent 2 has energy 1− ε, if energy transfer is allowed, agent 1
(with the higher energy) can first go to the endpoint closer to its initial position,
then turn around, reach agent 2, and transfer its remaining energy ε to agent

2

2. This enables agent 2 to reach the other endpoint, thereby completing the
exploration.

This simple example shows that energy-sharing capabilities make graph ex-
ploration possible in situations where it would have been impossible otherwise.
Note that an algorithm for exploration with energy sharing requires not only an
assignment of trajectories to agents that collectively explore the entire graph,
but also an achievable schedule of energy transfers. In this paper, we are in-
terested in exploration strategies for edge-weighted graphs by energy-sharing
mobile agents. We give a precise definition of our model and the collaborative
exploration problem below.

1.1 Model

We are given a weighted graph G = (V,E) where V is a set of n vertices (or
nodes), E a set of m edges, and each edge ai ∈ E is assigned a real number wi,
denoting its length. We have k mobile agents (or robots) r1, r2, . . . , rk placed at
some of the vertices of the graph. We allow more than one agent to be located in
the same place. Each mobile agent (or agent for short) ri can move with speed
1, and initially possesses a specific amount of energy equal to ei for its moves.
An agent can move in any direction along the edges of the graph G, it can stop
if needed, and it can reverse its direction of moving either at a vertex, or after
traversing a part of an edge. The energy consumed by a moving agent is linearly
proportional to the distance x traveled; to simplify notation it is assumed to be
equal to x. An agent can move only if its energy is greater than zero.

An important feature of our model is the possibility of energy sharing between
agents: when two agents, say ri and rj , i 6= j, meet at some time at some location
in the graph, agent ri can transfer a portion of its energy to rj . More specifically,
if e′i and e′j are the energy levels of ri and rj at the time they meet then ri can
transfer to rj energy 0 < e ≤ e′i and thus their energies will become e′i − e and
e′j + e, respectively.

In our model, each agent is assigned a trajectory to follow. We define a tra-
jectory of an agent to be a sequence of edges or parts of edges that starts at the
agent’s initial position and forms a continuous walk in the graph. In addition,
a trajectory specifies a schedule of energy transfers, i.e., all points on this walk
(could be points different from vertices) where the agent is to receive/transfer
energy from/to other agents, and for each such point the amounts of energy
involved. We call a set of trajectories valid if the schedules of energy transfers
among trajectories match, and energy levels are sufficient for the movement of
agents. More specifically, for every transfer point on a trajectory of agent ri where
energy is to be received/transferred, there is exactly one agent rj , j 6= i, whose
trajectory contains the same transfer point transferring/receiving that amount of
energy to/from ri, and the transfers can scheduled on a time line. Furthermore,
the energy of an agent, initially and after any energy transfer, must be always

3

sufficient to continue to move along its assigned trajectory. We are interested in
solving the following general problem of collaborative exploration:

Graph Exploration Problem: Given a weighted graph G = (V,E) and k mo-
bile agents r1, r2, . . . , rk together with their respective initial energies e1, e2, . . . , ek
and positions s1, s2, . . . , sk in the graph, find a valid set of trajectories that ex-
plore (or cover) all edges of the graph.

1.2 Related work

The problems of exploration and searching have been investigated for over fifty
years. The studied environments were usually graphs (e.g.[1, 18, 23, 27]) and ge-
ometric two-dimensional terrains (e.g.[2, 4, 17]). The goal of such research was
most often the minimization of the time of the search/exploration that was pro-
portional to the distance travelled by the searcher. The task of searching consists
of finding the target placed at an unknown position of the environment. The en-
vironment itself was sometimes known in advance (cf. [4, 8, 14, 23]) but most
research assumed only its partial knowledge, e.g. the type of graph, the upper
bound on its size or its node degree, etc. Remarkably, there exist hundreds of
papers for search in an environment as simple as a line (cf. [3]). The task of
exploration consisted of constructing a traversal of the entire environment, e.g.
in order to construct its map (see [22, 27]). It is worth noting that performing a
complete graph traversal does not result in acquiring the knowledge of the map
(see [10]).

Most of the early research on search and exploration has been done for the
case of a single searcher. When a team of collaborating searchers (also called
agents or robots) is available, the main challenge is usually to partition the task
among the team members and synchronize their efforts using available means
of communication, cf. [5, 9, 19, 21]. Unfortunately, for the centralized setting,
already in the case of two robots in the tree environment known in advance,
minimizing its exploration time is NP-hard, e.g., see [21].

The case of robots that can share energy has been recently studied for the
tasks of data communication, [6, 12–14, 26]. In this research the robots are dis-
tributed in different places of the network, each robot initially possessing some
amount of energy, possibly distinct for different robots. The energy is used pro-
portionally to the distance travelled by the robot. The simplest communication
task is data delivery (see [6, 7, 11, 12]), where the data packet originally placed in
some initial position in the environment has to be carried by the collaborating
robots into the target place. Remarkably, when the robots cannot share energy,
data delivery is an NP-hard problem even for the line network, (see [11]). When
the robots are allowed to exchange a portion of energy while they meet in the
tree of n nodes, [12] gives the O(n)-time solution for the data delivery. For en-
ergy sharing robots, the authors of [13] study the broadcast problem, where a
single packet of data has to be carried to all nodes of the tree network, while [12]
investigates also the convergecast problem, where the data from all tree nodes
need to be accumulated in the memory of the same robot. In both cases efficient

4

communication algorithms are proposed. A byproduct of [14] is an optimal ex-
ploration algorithm in the special case when all robots are initially positioned at
the same node of the tree. When the energy sharing robots have small limited
memory, able to carry only one or two data packets at a time, the simplest case of
the data delivery problem is shown to be NP-hard in [6]. Further, in [20] bounds
are proved in an energy model where robots can communicate when they are in
the same node and the goal of robot team is to jointly explore an unknown tree.

1.3 Results of the paper

We start in Section 2 with exploration of a path. Given an initial placement and
energy distribution for k energy-sharing agents on an n-node path, we give an
O(n+k) algorithm to generate a set of valid trajectories whenever the exploration
of the path is possible. We also show that a path can always be explored if the
total energy of energy-sharing agents is 3

2 times the total weight of edges in
the path. In contrast, we show that there are energy configurations for which
any total amount of energy is insufficient for path exploration without energy
sharing.

In Section 3 we study exploration of trees. We first observe that without
energy sharing the exploration of trees is NP-complete. Then, for an n-node
tree, we give an O(n + `k2) algorithm that finds an exploration strategy if one
exists, where ` is the number of leaves in the tree.

In Section 4, we consider exploration of general graphs. We show that the
problem is NP-hard even for 3-regular graphs. In addition, we show that it is
always possible to find an exploration strategy if the total energy of the agents
is at least twice the total weight of the edges; moreover, this is asymptotically
optimal, even for trees.

Therefore our results show that allowing energy to be shared between agents
makes exploration possible in many situations when it would not be possible
without sharing energy. Furthermore, the total energy needed for exploration is
at most twice (at most 3/2) the total weight of the edges in the graph (path
respectively), while there is no upper bound on the total energy needed for
exploration if agents cannot share energy, even when the graph to be explored
is a path. Due to space limitations, all missing proofs can be found in [15].

2 Exploring a Path

In this section we consider the case when the graph is a simple path on n nodes;
without loss of generality, we assume that the path is embedded in the horizontal
line segment [0, 1], and we will refer to the movements of agents in their trajec-
tories as being left/right movements on the segment. Clearly, in case the graph
is given in the usual graph representation, this embedding can be obtained in
O(n+k) time. The path exploration problem can therefore be restated as follows:

Problem 1 (Segment Exploration). Given mobile agents r1, r2, . . . , rk with ener-
gies e1, e2, . . . , ek, located initially in positions 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ 1 of

5

a line segment [0, 1], respectively, find a set of valid trajectories of these agents
that explore the segment, if possible.

A trajectory ti of agent ri explores a closed sub-segment ai of [0, 1] containing
si. Let b`i , b

r
i be the left, right end point of this sub-segment. We want to find a

valid set of trajectories, i.e., a set that explores the line segment [0, 1], and there
exists a schedule for energy transfers such that every agent has enough energy
to follow its trajectory.

We first observe that in the case of exploring a line segment with the possi-
bility of energy sharing some assumptions on the shape of valid trajectories can
be made without loss of generality.

1. The segments a1, a2, . . . , ak explore (or cover) [0, 1] and they don’t overlap,
i.e., b`1 = 0, brn = 1, and bri = b`i+1 for 1 ≤ i ≤ k − 1.

2. Trajectory ti starts at si, goes straight to one of the endpoints of ai. When
both endpoints are different from si, it turns around and goes straight the
other endpoint of ai. Thus, in this case the trajectory covers doubly a sub-
segment between si and the endpoint where it turns around, and the trajec-
tory has a doubly covered part and a singly covered part.

3. A transfer of energy between two agents ri and ri+1 may occur only at their
meeting point bri . Thus at bri exactly one of the following occurs:

(a) There is no energy transfer.
(b) There is energy transfer from ri to ri+1. In that case ti+1 does not end

at that point, it ends at bri+1, and either b`i+1 = si+1 or b`i+1 is a point
where the trajectory ti+1 turns around to the right.

(c) There is energy transfer from ri+1 to ri. In that case ti does not end at
that point, it ends at b`i and either bri = si or bri is a point where the
trajectory ti turns around to the left.

The next lemma, stated without proof, specifies two additional restrictions
that can be imposed on the nature of valid trajectories that will be applied by
our algorithm.

Lemma 1. Assume that the segment [0, 1] can be explored by a set of valid
trajectories T = {t1, t2, . . . , tk} of the agents. Then there is a canonical set of
valid trajectories T ′ = {t′1, t′2, . . . , t′k} that explore the segment such that

(i) If agent ri receives energy from a right (left) neighbour then it receives it at
its initial position si, and its trajectory may only go in straight line segment
from si to the left (right).

(ii) For each trajectory, its singly covered part is at least as long as its doubly
covered part.

We now describe a recursive, linear time algorithm for Problem 1 to find
canonical trajectories as described in Lemma 1 above. The trajectories are as-
signed to agents from left to right, determining whether more energy needs to
be transferred to complete the coverage on the left, or some surplus energy is to
be transfused to agents on the right. If i is the index of the leftmost agent not

6

used in the exploration of initial sub-segment [0, `i] and if tri is the energy deficit
(negative) or surplus (positive) left after exploring this sub-segment using only
agents 1 through (i−1), then the procedure call Path(i, `i, tri) decides whether
a solution to the exploration problem for the remaining sub-segment [`i, 1] is
possible via canonical trajectories. It does so by greedily deploying agent i to
use the least amount of energy to cover at least the segment [`i, si]: if this does
not lead to energy deficit, then the trajectory of agent ri is allowed to cover as
much of the segment [si, si+1] as it can, which determines the position `i+1.

Procedure Path(i, `i, tri)

1: if tri ≤ 0 then
2: if ei < si − `i + tri then . Case 1.1 (deficit increases)
3: # ri waits to receive energy |tri+1| from ri+1. Trajectory ti is

from si to `i. Transfer |tri| of energy to ri−1
4: `i+1 ← si
5: tri+1 ← ei + tri − (si − `i)
6: else if ei ≥ si − `i + tri then . Case 1.2 (deficit eliminated)
7: # Using the values of `i, si and ei − |tri|, select a canonical

trajectory ti originating in si, located between `i and si+1 as
in Cases 1.2.1 to 1.2.3. Transfer |tri| of energy to ri−1

8: tri+1 ← ei + tri − length(ti)
9: `i+1 ← right endpoint(ti)

10: else . Case 2: (Energy surplus)
11: # A surplus of energy at `i implies that `i = si. The trajectory

ti of ri is “from si to the right, but at most to si−1”.
12: `i+1 ← si + min{si+1 − si, si + ei + tri}
13: tri+1 ← tri + ei − (min{si+1 − si, si + ei + tri} − si))
14: if (i < k) then return Path(i+ 1, `i+1, tri+1)
15: else if (`k+1 < 1) or (trk+1 < 0) then . Insufficient energy
16: return with solvable ← false
17: else
18: return with solvable ← true

Then, a recursive call to Path is made with arguments i + 1, `i+1 and
the resulting energy deficit or surplus tri+1. For an easier understanding of the
algorithm, the description below is annotated in detail and Figure 1 provides an
example for each case encountered in the algorithm.

We use the following lemma to simplify the proof of the main theorem of this
section.

Lemma 2. Let t1, t2, . . . , ti−1 be the trajectories and `i, tri be the values es-
tablished by Procedure Path after i − 1 recursive calls, 0 ≤ i ≤ k + 1. These
trajectories explore the segment [0, `i] using in total energy (

∑i−1
j=1 ej)− tri and

this is the minimum energy required by the agents to explore the segment [0, `i].

7

si

si+1

si

si

si

si

si

si

ei = 11

si

3

3

3

3

3

3

3

3

5 4

2

2
2

si+1

si+1

si+1

si+1

si+1

si+1

5

5

tri+1 = 0tri = −1

tri+1 = 0

tri+1 = 3

tri+1 = 2

tri = −1

tri = −1

tri = 1

li

tri+1 = −2

li

li

li

tri = −1

li+1

lililili

li+1

li+1li+1

li+1

ei = 11

si

ei = 6

ei = 6

ei = 2

li+1

si si+1

1Case 1.2.1

Case 1.2.2

Case 1.2.3

Case 2

Case 1.1

Fig. 1. Assignment of a trajectory to agent ri by Procedure Path. The trajectory
established in each case is in red on the right part of the figure. Cases 1.1 to 1.2.3 deal
with an energy deficit prior to an assignment of a trajectory to ri, and Case 2 deals
with a surplus of energy. In Cases 1.2.1 to 1.2.3 the deficit is eliminated.

Furthermore, if tri < 0 (deficit) then `i = si−1, if tri > 0 (surplus) then `i = si,
and if tri = 0 then si−1 ≤ `i ≤ si.

Proof. The proof is done by induction on i and omitted for lack of space. ut

Theorem 1. Assume we are given mobile agents r1, r2, . . . , rk with energies
e1, e2, . . . , ek, located initially in positions s1 ≤ s2 ≤ · · · ≤ sk of a line segment
[0, 1] respectively. Let rk+1 be an additional “dummy agent” at position 1 with
zero energy. Then the procedure call Path(1, 0, 0) on this instance runs in O(k)
time and terminates with solvable being true if and only if there are trajectories
of agents that explore the line segment [0, 1].

Proof. It is clear from the description of the algorithm that it is linear in k.
When the algorithm terminates with solvable being true, it is straightforward
to see that a schedule can be determined for the agents, that creates a valid
trajectory for each agent. To wit, in Round 1 all agents that receive no energy
follow their trajectory and do the energy transfers as calculated. Notice that
energy is received by agents when in their initial positions.
In Round i all agents that receive energy in Round i− 1 follow their trajectory
and do the energy transfers as calculated. Therefore, if the algorithm terminates
with solvable being true, the exploration of segment [0, 1] is possible, and our
algorithm returns valid trajectories for the agents to achieve this coverage. Thus
we only need to show that the exploration of the segment [0, 1] is not possible
when the algorithm terminates with solvable being false. In fact, solvable is

8

set to false in the algorithm only if either trk+1 < 0 or `k+1 < 1. By Lemma 2, if
trk+1 < 0 then we can cover the segment up to lk+1 = sk ≤ 1 but we need more

than the given (
∑k

j=1 ej) in energy. If trk+1 = 0 and `k+1 < 1 then [0, `k+1]

is the maximum segment that can be explored by the agents using (
∑k

j=1 ej)
energy. In both cases, the exploration of the entire segment [0, 1] is impossible
with the given initial positions and energies. ut

Consider the case when we apply our algorithm to an input instance with
the sum of energies

∑k
1 ei ≥

3
2 . Since in each trajectory the part covered doubly

is less or equal the part covered singly, the energy deficit/surplus trk+1 obtained

after assigning a trajectory to agent rk is at most
∑k

1 ei −
3
2 , and it cannot

be negative. Also `k+1 cannot be less than 1 since there would be an unused

surplus of energy of at least
∑k

1 ei −
3`k+1

2 > 0. Thus with
∑k

1 ei ≥
3
2 the

algorithm terminates with valid exploration trajectories for the segment.
On the other hand when the input instance consists of a single agent r1

located at point 0.5, the energy needed by r1 to cover the segment [0, 1] is equal
to 3

2 .

Corollary 1. The segment [0, 1] can always be explored by k agents with canon-
ical trajectories if the sum of their initial energies is at least 3

2 , but exploration
may be impossible in some instances if the sum is less than 3

2 .

Remark 1. If agents cannot share energy, regardless of k, exploration is impossi-
ble in an input instance where all k agents are co-located at 0, each with energy
equal to 1−ε, which gives total energy greater than k−1. Thus, without energy-
sharing, there is no upper bound on the total energy of agents that guarantees
exploration of a path. We have also constructed a linear algorithm for the explo-
ration of a path by agents that cannot share energy, however we cannot include
it in this paper due to the limit on the number of pages.

3 Exploring a Tree

In this section we consider a restricted case of the graph exploration problem,
specifically when the graph is a tree. First we observe that, without energy ex-
change, there is a straightforward reduction from the partition problem showing
that the exploration is NP-hard even on a star graphs: Given an instance of
the partition problem S = {a1, a2, . . . , an}, let T =

∑n
i=1 ai/2. We construct

a star graph, with n + 2 edges incident on the central node. Of these, n edges
have weight a1/2, a2/2, . . . , an/2 respectively, and two additional edges each have
cost T . Assume two agents are at the central node of the star graph with energy
3T/2 each. Then there is a partition of the set S if and only if the there is an
exploration strategy (without energy sharing) for the two agents on the star
graph. However, for energy-sharing agents located on a tree we derive below a
polynomial exploration algorithm (see also [21]).

Let T be an edge-weighted tree with k agents distributed across the n nodes
of T with possibly several agents per node each of them with some non-negative

9

energy. To simplify the design of our algorithm, we first preprocess the tree to
transform it to a rooted binary tree where all the agents are located only at the
leaves of the tree. We obtain such a tree from the initial tree T in four stages: (a)
by taking all the agents at every non-leaf vertex v and shifting them to a new
leaf node lv that is added to the tree and connected to v via a zero-weight edge,
(b) by repeatedly splitting vertices of degree more than 3 into trees of maximum
degree 3 using zero-weight edges, (c) by collapsing any path with internal vertices
of degree 2 into an edge whose weight equals the cumulative weight of the path,
and (d) by converting the resulting 3-regular unrooted tree into a rooted one
by splitting one of its edges and making its midpoint be the root of the tree.
Without loss of generality, we will denote this new, rooted tree as T . We note
these preprocessing steps have complexity O(n+ k). Our problem can be stated
as follows:

Problem 2 (Tree Exploration). Let T be a rooted, edge-weighted binary tree
obtained by preprocessing an unrooted edge-weighted tree with k agents at its
nodes, so that all the agents are now located at leaves in T and have their given
initial energies. For every node v, let av be the initial number of agents inside
subtree Tv and let ev be the sum of their initial energies. Let we ≥ 0 be the
weight of edge e. If possible, find a set of valid trajectories for the agents that
explore every edge of T using only the given initial energies.

Now, consider any feasible exploration for the tree witnessed by a set of tra-
jectories for the agents. The successful exploration of a subtree Tv may either
have necessitated additional energy brought into the subtree from outside, or
there may be a surplus of energy that could have gone out of the subtree to
explore other parts of the tree. Also, exploration may have needed a transfer of
agents into the subtree (over and above its av agents) or may have been accom-
plished with some agents made available to leave the subtree and contribute to
the exploration of the rest of the tree.

We formalize this idea as follows. Let B[v, i] denote the maximum possible
total surplus energy that can leave the subtree Tv after it is fully explored so
that i agents can leave the subtree with this total energy. Note that i counts
only the balance of agents that depart from the tree, not individual arrivals and
departures. Thus, we allow for i being negative (i.e., i agents enter the the tree
on balance), or B[v, i] being negative (i.e., −B[v, i] amount of energy is needed
to be brought in from outside Tv to explore it fully). We remark that:

(i) when i ≤ 0 and B[v, i] ≥ 0, it means that an agent carrying excess energy
must leave Tv but nevertheless, the overall balance of agents entering/leaving
Tv is non-positive.

(ii) the B[v, i] values do not take into consideration the energy expenditure that
would be required to explore the edge from v to its parent node in the tree.

(iii) for node v, the value of i can only be in the interval [−k + av, av], because,
on balance, at most av agents can leave Tv and at most k − av can enter it.

In order to simplify the calculation of B[], we extend the definition of B[]
to edges as well: Let e = (u, v) where u is the parent of v. As described above,

10

B[v, ∗] denotes the surplus energy leaving subtree Tv. B[e, i] will denote the
surplus energy available at u along edge e with a balance of i agents that could
transit through u from the direction of v. We observe that agents do spend
energy traversing e itself and can also stop in the middle of e, and hence the
values B[e, ∗] and B[v, ∗] are different. Since node u has exactly two child edges
below it, we can compute the B[u, ∗] values by suitably combining the B[] values
of these edges.

It remains to show how to calculate B[v, ∗] and B[e, ∗] for each v and e. In
principle, we can consider all the possibilities of what the agents can do, but in
reality it is enough to consider only the best possible activity with the desired
balance of agents. The calculation is performed by calling procedures HandleV-
ertex and HandleEdge(described below in pseudocode) respectively for each
vertex and for each edge of T . The computation proceeds in a bottom-up manner
starting from leaves, with the boolean arrays done[v] and done[e] being used to
ensure this flow. In order to simplify the presentation in HandleEdge, we as-
sume that the assignment B[e, i]← y is shorthand for B[e, i]← max(B[e, i], y)
(with the initial values B[e, ∗] being initialized to −∞).

Our main result in this section is the following:

Theorem 2. After transforming an unrooted tree with a specified distribution
of initial agent locations and energies, procedure HandleVertex, when applied
to the root of the resulting rooted binary tree, correctly solves the tree exploration
problem for the original tree in O(n+`k2) time. It does so by correctly computing
the optimal B[v, i] values for every vertex v and all relevant i values for that
vertex, in conjunction with procedure HandleEdge that correctly computes
the optimal B[e, i] for every edge e and all relevant i values for that edge.

Procedure HandleVertex(v)

1: if v is a leaf then
2: for i = −k + av to av do
3: B[v, i]← ev

4: else . v has two child edges e′ and e′′

5: wait until done[e′] and done[e′′]
6: for i = −k + av to av do
7: B[v, i]← maxi′+i′′=i(B[e′, i′] +B[e′′, i′′])

8: done[v]←true
9: if v is the root then

10: if there is B[v, i] ≥ 0 with i ≥ 0 then
11: return solvable
12: else
13: return not solvable

The proof of Theorem 2 hinges on an inductive argument that shows that the
B[] values are correctly computed in a bottom-up manner starting at the leaves

11

Procedure HandleEdge(e)

Require: e = (u, v) where v is a child of u
1: wait until done[v]
2: for i = −k + av to av do
3: if B[v, i] ≤ 0 then
4: if i < 0 then
5: B[e, i]← B[v, i]− |i|we . Case 1a
6: else
7: B[e, i]← B[v, i]− (i+ 2)we . Cases 2a, 3a and 4a

8: else if i ≤ 0 then . B[v, i] > 0
9: if B[v, i] > (2 + |i|)we then

10: B[e, i]← B[v, i]− (2 + |i|)we . Cases 1c and 2c
11: else if i < 0 then
12: B[e, i]← i(we −B[v, i]/(2 + |i|)) .

Case 1b
13: else . i = 0
14: B[e,−1]← (B[v, 0]− 2we)/2 . Case 2b
15: B[e, 0]← B[v, 0]− 2we . Case 2b’

16: else . i > 0 and B[v, i] > 0
17: if B[v, i] ≥ iwe then
18: B[e, i]← B[v, i]− iwe . Cases 3c and 4c
19: else . i > 0 and B[v, i] < iwe

20: B[e, i]← −(i+ 2)(we −B[v, i]/i) .

Cases 3b” and 4b
21: if i = 1 then
22: B[e,−1]← B[v, 1]− we . Case 3b
23: B[e, 0]← 2(B[v, 1]− we) . Case 3b’

24: done[e]←true

and working our way up the tree. The base case for the induction is for the leaf
nodes, and follows directly from the construction (line 3 of HandleVertex: all
the energy in a leaf node is surplus and can be utilized to explore the rest of the
tree).

Our induction hypothesis is established by proving two concomitant lemmas.

Lemma 3. Let e = (u, v) be an edge in T with u being the parent of v. If the val-
ues B[v, ∗] have been correctly computed, then procedure HandleEdge correctly
computes B[e, ∗], where ∗ stands for all relevant values of i.

Lemma 4. Let v be an internal vertex with two child edges e′ and e′′. If B[e′, ∗]
and B[e′′, ∗] have been correctly computed, then procedure HandleVertex cor-
rectly computes B[v, ∗] where ∗ stands for all relevant values of i.

It is easy to see after the O(n + k) time preprocessing step to convert the
original tree into a full binary tree, each leaf of the tree and subsequently, each

12

edge of the tree can be processed in O(k) time. To obtain the B[] values for
any internal node, we need to combine the k-vectors associated with the child
edges (in step 7 of HandleVertex). Observe that there are two classes of
internal nodes in the converted tree. The first class correspond to O(k) nodes
that contained a subset of agents in the original tree. Each such node, generated
in stage (a) of the conversion phase, has a child that is a leaf in the converted tree
(containing the same subset of agents). The second class contains the internal
nodes generated in stage (b) of the conversion phase, as well as the nodes that
were of degree at least 3 in the original tree, and the root obtained in stage (d).
Observe that there are at most ` nodes in the second class. Let v be an internal
node of the first class and let v′ be its child that was added in preprocessing
that has taken the v’s agents. By construction, all the B[v′, ∗] values are equal
to ev′ , and since the weight of e′ is 0, B[e′, ∗] = ev′ as well. Hence, for such a
node v we have B[v, ae′ + ae′′ − i] = ev′ + maxi

j=0B[e′′, ae′′ − i] which can be
for i = 0 to k computed in time O(k). Consequently, the overall complexity of
HandleVertex called for all O(k) internal nodes of class one is O(k2). On the
other hand, for each of O(`) internal nodes from class two, the max function
from step 7 of HandleVertex may be computed in O(k) time, which leads
to O(`k2) overall complexity of all the calls of the HandleVertex procedure
for nodes of the second class. Applying Lemma 4 to the root of the tree, it is
clear that the algorithm correctly decides whether or not the binary tree can be
explored fully, and the computation takes O(`k2) time after the preprocessing
step.

We further remark that if exploration is indeed feasible then in the same
time complexity, standard post-processing, top-down techniques can be used to
recover the trajectories (and the schedules) for the agents from the computed
B[] values by combining the schedules locally computed at each vertex and edge.
The choice of the root vertex is arbitrary (after preprocessing) and does not in-
fluence the decision outcome – however, it does influence the computed schedule
and the amount of energy left in the root, and there may be multiple feasible
solutions (one for each i ≥ 0 in the root’s B[] values). This completes the proof
of Theorem 2.

4 General Graphs

Unfortunately, while the exploration problem for segments and trees admits very
efficient solutions, for general graphs, exploration becomes intractable (unless
P=NP). Indeed, we show that the graph exploration problem is NP-hard even
in the case of 3-regular graphs by using a reduction from the Hamiltonian cycle
problem. We also give an approximation algorithm.

4.1 NP hardness for 3-regular graphs

Let G be a 3-regular graph on n nodes. We construct a graph M by replacing
each edge e = (u, v) of G by a meta-edge gadget m(u, v) from Figure 2 case a),

13

where a and b are chosen so that a > 5nb where n is the number of vertices of
G. In addition, each meta-vertex (i.e., an image m(v) of a vertex v of G) starts
with one agent and 3a+ 5b energy.

Note that the overall energy is (3a + 5b)n, while the overall weight of the
edges (3n/2 of them in a 3-regular graphs) is 3n(a+ b). Hence, a length at most
2bn can be crossed twice. As a > 5bn, this means no a-edge is crossed twice and
at most 2n of b-edges are crossed twice.

a a

b b

a a

b b

a a

b b

a a

b b

a)

c)

b)

d)
c

wm(u) m(v)

wm(u) m(v)

wm(u) m(v)

wm(u) m(v)

Fig. 2. a) the meta-edge gadget, b) covering gadget using one agent c) efficient covering
of the gadget using two agents d) covering gadget using two agents so that at least one
agent exits the gadget

Lemma 5. If only one agent x enters (w.l.o.g. from m(u)) a meta-edge e =
m(u, v), a total of 2a + 4b energy is spent ensuring e is fully explored. In such
case x ends up in m(v).

Lemma 6. Assume two agents x and y enter a meta-edge e = m(u, v) from
m(u) and m(v), respectively, and ensure e is fully explored. If no agent leaves e
then the total energy spent in e is at least 2a + 2b. If one or both agents leave
e then all the leaving agents leave to the same meta-vertex, and the total energy
spent in e is more than 2a+ 4b.

Note that the second case of Lemma 6 is worse than Lemma 5 in terms of
total energy expenditure, due to the extra cost of c (or 2c). Still, it might be
justified if the blue agent does not have enough energy for case b), or if the red
agent does not have enough energy for case c).

Lets call a meta-edge light if it is covered by the first part of Lemma 6
(Figure 2, case c)), otherwise it is heavy. Observe that each light meta-edge
consumes 2 agents, while each heavy meta-edge consumes an excess of 2b energy
compared to the weight of its edges. This yields:

Lemma 7. If there is an exploration strategy for the input graph, the number
of heavy edges is exactly n.

By Lemma 5 and the second part of Lemma 6, a heavy meta-edge is traversed
in one direction – lets call the halves outgoing and incoming.

14

Consider the directed graph H = (V,E′) formed by the heavy meta-edges,
i.e., e = (u, v) ∈ E′ iff e is a heavy meta-edge from m(u) to m(v).

Lemma 8. Each vertex of H has at least one incoming edge.

Proof. As both light and outgoing edges consume agents, if v had no incoming
edge, it would need 3 agents. Since each vertex starts with 1 agent, it is not
possible for v to have 3 agents without an agent coming via an incoming edge.

ut

Because the number of heavy edges is exactly n, the heavy edges form a
vertex-disjoint (vertex) cycle cover of H, i.e., each meta-vertex has one incoming,
one outgoing and one light edge.

The problem is that the disjoint cycle cover is solvable in polynomial time.
Hence, we need to modify the input so that there is a solution to the exploration
problem if and only if the heavy edges form a single cycle of length n.

This is done by modifying the input into I as follows:

– the three edges incident to the initial vertex have weights adjusted to a+ εn
for some small ε < b/3n,

– the energy at the initial vertex is 3a + 5b+ (2n)ε
– the energy at all other meta-vertices is 3a+ 5b+ ε

Lemma 9. If the graph G is Hamiltonian then there is an exploration solution
to the modified input I.

Proof. Select the direction of the Hamiltonian cycle, its edges will be the heavy
meta-edges. The explorer agent starting in the initial vertex takes all the energy
available there and follows the Hamiltonian cycle. It collects 2a + 4b+ ε energy
in each of the meta-vertices it crosses, while spending 2a + 4b on each heavy
meta-edge. The agents located at other meta-vertices wake-up when the explorer
arrives, take a+ b energy and explore half of the incident light meta-edge.

Note that when the explorer reaches i-th meta-vertex (not counting the ini-
tiator), it has a + b + εn + i − 1) energy remaining, except when it returns to
the initiator, when it has only a+ b+ εn energy as the last meta-edge it crossed
has an extra εn cost. This is just sufficient to cover half of the incident light
meta-edge, which is the last part not yet covered. ut

Theorem 3. The exploration problem is NP-hard for 3-regular graphs.

Proof. Suppose there is an exploration solution for I. We claim that then the
graph G is Hamiltonian. Note that since the sum of all ε is less than b, Lemma 7
and Lemma 8 still hold. Hence, the only way meta-edges incident to the starting
vertex can be covered is if the agent returning to the starting vertex carries
a+ b+ εn energy. As the agent can gain only ε energy in each vertex it crosses
(the remainder is used-up on crossing the heavy meta-edge and covering half of
the incident light meta-edge), it needs to visit all n meta-vertices in order to
collect sufficient energy, i.e., it has performed Hamiltonian cycle. The theorem
then follows since the Hamiltonian cycle problem for 3-regular graphs is known
to be NP-complete. ut

15

4.2 An Approximation Algorithm for General Graphs

Even though the graph exploration problem is NP-hard, it is still possible to
obtain an efficient approximation algorithm for exploring arbitrary graphs that
has an energy-competitive ratio at most 2. Specifically, the algorithm uses at
most twice as much energy as the cumulative sum of the edge weights of the
graph. First we state without proof a well-known result for agents on a cycle for
which the reader is referred to [25][Paragraph 3, Problem 21].

Lemma 10. For any cycle and any initial positions of the agents there is an
algorithm which explores the cycle if and only if the given sum of the energies of
the agents is not less than the length of the cycle.

Lemma 10 has some important consequences. Recall that a graph G is Eule-
rian if it is connected and all its vertices have even degrees.

Theorem 4. For any Eulerian graph and any initial positions of the agents
there is an algorithm which explores the graph provided that the sum of the
energies of the agents at the start is not less than the sum of the edges of the
given graph. Moreover, the algorithm has optimal energy consumption.

Proof. Assume we have agents in such a graph so that the sum of the energies
of the agents is at least equal to the sum of the length of the edges of the
graph. Since the graph is Eulerian we can construct a cycle which traverses all
the edges of the graph exactly once. By Lemma 10 there is an algorithm which
assigns trajectories to the given sequence of agents and covers the entire graph.
This proves Theorem 4. ut

Theorem 5. Any graph can be explored by energy-sharing agents if the sum of
their initial energies is at least twice the sum of edge weights. Moreover, this
constant 2 cannot be improved even for trees.

Proof. The original graph, say G = (V,E), is not necessarily Eulerian. However,
by doubling the edges of the graph we generate an Eulerian graph G′ = (V,E′).
The sum of the weights of the edges of G′ is equal to twice the sum of the weights
of the edges of G. Theorem 4 now proves that the graph G can be explored if
the sum of their initial energies is at least twice the sum of edge weights in the
graph.

Consider a star graph with 2k leaves, all edges are of weight 1, for a total
weight of 2k. Assume that we have k agents in the leaves of the star, and one
agent in the center of the star. Agents in the leaves have energy 0, and the
agent in the center 4k − 1. To explore the graph the center agent can traverse
2k − 1 edges of the star twice and one edge once. It is easy to see that no other
strategy can do it with less energy. Thus the energy of the middle agent cannot
be any lower, and asymptotically, total energy in this instance equal to 4k − 1
approaches the double of the cost of the edges. ut

16

Remark 2. An improvement of the competitive ratio 2 of Theorem 5 is possible
in specific cases by using a Chinese Postman Tour [24] (also known as Route
Inspection Problem). Namely, in polynomial time we can compute the minimum
sum of edges that have to be duplicated so as to make the graph Eulerian, and
this additional sum of energies is sufficient for the exploration.

Assume we have a fixed configuration C of k agents r1, r2, . . . , rk in a given
graph G. We say that energy assignment E = e1, e2, . . . , ek to agents in configu-
ration C is minimal if exploration is possible with energies in E, but impossible
when the energy level of any one agent is decreased. Let |E| =

∑k
i=1 ei. We now

investigate how large the ratio |E1|/|E2| can be for two minimal assignments E1

and E2 of a given configuration C,

Claim. For any configuration of agent C and any two minimal energy assign-
ments E1 and E2 the ratio |E1|/|E2| ≤ 2, and this is asymptotically optimal.

5 Conclusion

We studied graph exploration by a group of mobile agents which can share en-
ergy resources when they are co-located. We focused on the problem of deciding
whether or not it is possible to find trajectories for a group of agents initially
placed in arbitrary positions with initial energies so as to explore the given
weighted graph. The problem was shown to be NP-hard for 3-regular graphs
while for general graphs it is possible to obtain an efficient approximation algo-
rithm that has an energy-competitive ratio at most 2 (and this is shown to be
asymptotically optimal). We also gave efficient algorithms for the decision prob-
lem for paths, trees, and Eulerian graphs. The problem considered is versatile
and our study holds promising directions for additional research and interesting
open problems remain by considering exploration with 1) optimal total energy
consumption, 2) agents with limited battery capacity, 3) energy optimal place-
ment of mobile agents, 4) time vs energy consumption tradeoffs for mobile agents
with given speeds, 5) additional topologies, as well as 6) combinations of these.

References

1. S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM J.
Computing, 29(4):1164–1188, 2000.

2. S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown environments with
obstacles. Algorithmica, 32(1):123–143, 2002.

3. S. Alpern and S. Gal. The theory of search games and rendezvous. Springer, 2003.
4. R. Baeza Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information

and Computation, 106(2):234–252, 1993.
5. R. Baeza-Yates and R. Schott. Parallel searching in the plane. Comp. Geom.,

5(3):143–154, 1995.
6. E. Bampas, S. Das, D. Dereniowski, and C. Karousatou. Collaborative delivery

by energy-sharing low-power mobile robots. In Proc. of ALGOSENSORS, pages
1–12, 2017.

17

7. A. Bärtschi. Efficient Delivery with Mobile Agents. PhD thesis, ETH Zurich, 2017.
8. A. Beck. On the linear search problem. Israel Journal of Mathematics, 2(4):221–

228, 1964.
9. W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider. Coordinated multi-robot

exploration. IEEE Transactions on Robotics, 21(3):376–386, 2005.
10. J. Chalopin, S. Das, and A. Kosowski. Constructing a map of an anonymous graph:

Applications of universal sequences. In Proc. of OPODIS, pages 119–134. Springer,
2010.

11. J. Chalopin, R. Jacob, M. Mihalák, and P. Widmayer. Data delivery by energy-
constrained mobile agents on a line. In Proc. of ICALP, pages 423–434. Springer,
2014.

12. J. Czyzowicz, K. Diks, J. Moussi, and W. Rytter. Communication problems for
mobile agents exchanging energy. In Proc. of SIROCCO, pages 275–288, 2016.

13. J. Czyzowicz, K. Diks, J. Moussi, and W. Rytter. Broadcast with energy-
exchanging mobile agents distributed on a tree. In Proc. of SIROCCO, pages
209–225, 2018.

14. J. Czyzowicz, K. Diks, J. Moussi, and W. Rytter. Energy-optimal broadcast and
exploration in a tree using mobile agents. Theoretical Computer Science, 795:362–
374, 2019.

15. J. Czyzowicz, S. Dobrev, R. Killick, E. Kranakis, L. Narayanan, J. Opatrny,
D. Pankratov, and S. Shende. Graph exploration by energy-sharing mobile agents.
arxiv.org/pdf/2102.13062, 2021.

16. J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, M. Lafond,
L. Narayanan, J. Opatrny, and S.M. Shende. Energy consumption of group search
on a line. In Proc. of ICALP, pages 137:1–137:15, 2019.

17. X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environ-
ment. In Proc. of FOCS, pages 298–303. IEEE Computer Society, 1991.

18. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. of Graph
Theory, 32(3):265–297, 1999.

19. D. Dereniowski, Y. Disser, A. Kosowski, D. Pajak, and P. Uznański. Fast collabo-
rative graph exploration. Information and Computation, 243:37–49, 2015.

20. Miroslaw Dynia, Jakub Lopuszański, and Christian Schindelhauer. Why robots
need maps. In International Colloquium on Structural Information and Commu-
nication Complexity, pages 41–50. Springer, 2007.

21. P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc. Collective tree explo-
ration. Networks: An International Journal, 48(3):166–177, 2006.

22. J. M. Kleinberg. On-line search in a simple polygon. In Proc. of SODA, pages
8–15, 1994.

23. E. Koutsoupias, C. Papadimitriou, and M. Yannakakis. Searching a fixed graph.
In Proc. of ICALP, pages 280–289. Springer, 1996.

24. M.-K. Kwan. Graphic programming using odd or even points. Acta Mathemat-
ica Sinica (MR 0162630. Translated in Chinese Mathematics 1: 273–277, 1962),
10:263–266, 1960.

25. L. Lovász. Combinatorial Problems and Exercises. Elsevier, 1979.
26. J. Moussi. Data communication problems using mobile agents exchanging energy.

PhD thesis, Université du Québec en Outaouais, 2018.
27. P. Panaite and A. Pelc. Exploring unknown undirected graphs. J. of Algorithms,

33(2):281–295, 1999.

18

