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Abstract

Let Ω ⊂ Rd be bounded with C1 boundary. In this paper we consider
Schrödinger operators−∆+W onΩwith W(x) ≈ dist(x, ∂Ω)−2 as dist(x, ∂Ω) → 0.
Under weak assumptions on W we derive a two-term asymptotic formula for the
sum of the eigenvalues of such operators.
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1 Introduction

In this paper we consider semiclassical asymptotics for a class of Schrödinger operators
on bounded setsΩ ⊂ Rd with potentials that are singular at the boundary. Specifically,
for a bounded open set Ω ⊂ Rd with C1 boundary we consider Schrödinger operators

− ∆ +W(x) with W(x) ≈ dist(x,Ω)−2 as dist(x, ∂Ω) → 0 (1.1)

subject to Dirichlet boundary conditions. These operators have purely discrete spectrum
and our main interest is towards the asymptotic behavior of their eigenvalues. Our main
result is a two-term asymptotic formula for the sum of the eigenvalues.

Before we formulate our main result it is necessary to explain more precisely
how (1.1) is to be interpreted. We shall assume that our potential decomposes as one
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part that is in L∞
loc
(Ω) and has the prescribed singular behavior at the boundary and a

part that, in comparison, is well-behaved. To simplify the exposition we write

HΩ,b,V (h) = −h2∆ + h2
(

b2(x) − 1

4

) 1

dist(x, ∂Ω)2
+ h2V(x) − 1 for h > 0 .

Technically, the operator HΩ,b,V (h) is defined through the quadratic form

u 7→
∫

Ω

(

h2 |∇u(x)|2+ h2
(

b2(x)− 1

4

) |u(x)|2
dist(x, ∂Ω)2

+ h2V(x)|u(x)|2 − |u(x)|2
)

dx (1.2)

with form domain {u ∈ H1
0
(Ω) : V+u2 ∈ L1(Ω)}. Throughout, we shall assume that

V ∈ L1(Ω), V− ∈ L1+d/2(Ω), and that b ∈ L∞(Ω) is positive and satisfies

lim
r→0+

∫

∂Ω

[

sup
y∈Br (x)∩Ω

b(y) − inf
y∈Br (x)∩Ω

b(y)
]

dH d−1(x) = 0 . (1.3)

Here and in what follows, we define x± =
|x |±x

2
and note that with this convention both

x+ and x− are non-negative. As a consequence of Hardy’s inequality, the assumptions
on V and b ensure that the quadratic form (1.2) is bounded from below and closed.
Therefore, it generates a selfadjoint, bounded from below operator HΩ,b,V (h) in L2(Ω).

We emphasize that by positivity of b, we mean infΩ b > 0. This assumption can
naturally be relaxed to require positivity only in a neighborhood of the boundary by
adjusting V correspondingly. The regularity assumption (1.3) implies that b|∂Ω can be
made sense of as an element of L∞(∂Ω); indeed, by (1.3), b has a well-defined limit
H d−1-almost everywhere on ∂Ω, which is finite since b ∈ L∞(Ω). Our main result can
now be stated as follows:

Theorem 1.1. Let Ω ⊂ Rd be open and bounded with C1 boundary, V ∈ L1(Ω) with

V− ∈ L1+d/2(Ω), and let b ∈ L∞(Ω) be positive and satisfy (1.3). Then, as h → 0+,

Tr(HΩ,b,V (h))− = Ldh−d |Ω| − Ld−1

2
h−d+1

∫

∂Ω

b(x) dH d−1(x) + o(h−d+1) ,

where Ld = (4π)−d/2Γ(2 + d/2)−1.

As a corollary of Theorem 1.1 we deduce:

Corollary 1.2. Let Ω ⊂ Rd be open and bounded with C1 boundary. Then, with ∆Ω
denoting the Dirichlet Laplace operator in Ω, as h → 0+ and in the sense of measures

hd+11(−h2∆Ω ≤ 1)(x, x)
dist(x, ∂Ω)2

dx → Ld−1

2
H d−1 |∂Ω .

Proof. The corollary follows from a standard Feynman–Hellmann argument (cf. [10])
and Theorem 1.1 applied with the potential W(x) = t f (x)/dist(x, ∂Ω)2 for f ∈ C(Ω)
and sending first h then t to zero. �
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Spectral asymptotics for differential operators that degenerate at the boundary of
the domain are not new. However, the results in the literature mainly concern cases
where the operator degenerates at leading order and how this affects the first term in the
asymptotics, see [1, 2] and references therein. While the class of operators considered
here is significantly less singular, our interest is towards the effect of the degeneracy
on the second term in the asymptotics.

In the special case of the Dirichlet Laplacian, i.e. V ≡ 0 and b ≡ 1/2, Theorem 1.1
was proved in [5, 6]. The strategy of our proof follows closely that developed there, but
several new obstacles need to be circumvented in the presence of the potential that is
singular at the boundary. The idea is to localize the operator in balls whose size varies
depending on the distance to the boundary and h. In a ball far from the boundary the
influence of the boundary conditions and the potential both have a negligible effect
and precise asymptotics can be obtained through standard methods. In a ball close to
the boundary the regularity of the boundary allows to map the problem to a half-space
where asymptotics are obtained by explicitly diagonalizing an effective operator. The
main new ingredients needed here is to control how the straightening of the boundary
affects the singular part of the potential and to understand how the potential enters in
the resulting half-space problem.

The works [5, 6] for domains with C1 boundaries were extended to the case of
Lipschitz boundaries in [7], see also [8]. Since the (weak) Hardy constant can be
smaller than 1/4 for Lipschitz domains, it is not clear how to generalize the results of
the present paper to this setting.

The plan for the paper is as follows. In Section 2 we recall a number of results
concerning changes of variables mapping ∂Ω locally to a hyperplane. In particular,
Lemma 2.2 describes how such a mapping affects the singular part of our potential. We
also prove a local Hardy–Lieb–Thirring inequality, which will be crucial in controlling
error terms appearing in our analysis, and which replaces the Lieb–Thirring inequality
in [5] in the absence of a singular potential. In Section 3 we provide local asymptotics,
both in the bulk of our domain and close to the boundary. Finally, in Section 4 we
adapt the localization procedure developed in [5, 6, 7] to our current setting and use it
to piece together the local asymptotics of Section 3, thus proving Theorem 1.1.

The letter C will denote a constant whose value can change at each occurence.

We are deeply grateful to Ari Laptev for sharing his fascination for spectral estimates
and Hardy’s inequality with us and we would like to dedicate this paper to him on the
occasion of his 70th birthday.

2 Preliminaries

2.1 Straightening the boundary

Let Rd
+
= {y ∈ Rd : yd > 0}. Let B ⊂ Rd be an open ball of radius ` centered at

a point x0 ∈ ∂Ω. By rotating and translating we may assume that x0 = 0 and that
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ν0 = (0, . . . ,0,1) is the inward pointing unit normal to ∂Ω at x0. Since Ω is bounded
with C1 boundary, there is a non-decreasing modulus of continuityω : R+ → [0,1] such
that, if ` is small enough, there is a function f : Rd−1 → R satisfying |∇ f (x ′)| ≤ ω(|x ′ |)
such that

∂Ω ∩ B2`(0) = {(x ′, xd) ∈ Rd−1 × R : xd = f (x ′)} ∩ B2`(0) .

Note that, by the choice of coordinates, f (0) = 0 and ∇ f (0) = 0.
Set X = {(x ′, xd) ∈ Rd−1 × R : |x ′ | < 2`}. We define a diffeomorphism Φ : X →

R
d by Φj(x) = xj for j = 1, . . . , d − 1 and Φd(x) = xd − f (x ′). Note that the Jacobian

determinant of Φ equals 1 and that the inverse of Φ is well-defined on Φ(X) = X. The
inverse is given by Φ−1

j
(y) = yj for j = 1, . . . , d − 1 and Φ−1

d
(y) = yd + f (y′).

In the following lemma we gather some results whose proofs are standard and can
be found, for instance, in [6, Section 4].

Lemma 2.1 (Straightening of the boundary). Let B,Φ be as above and for u : B → R
set ũ = u ◦ Φ−1. For 0 < ` ≤ c(ω) and with C depending only on d, we have:

1. if u ∈ L1(B) then
∫

B

u(x) dx =

∫

Φ(B)
ũ(y) dy .

2. if u ∈ L∞(∂Ω ∩ B) then

�

�

�

�

∫

∂Ω∩B
u(x) dH d−1(x) −

∫

∂Rd
+
∩Φ(B)

ũ(y) dH d−1(y)
�

�

�

�

≤ C`d−1ω(`)2‖u‖L∞ .

3. if u ∈ H1
0
(Ω ∩ B) then ũ ∈ H1

0
(Rd
+
∩ Φ(B)) and

�

�

�

�

∫

Ω∩B
|∇u(x)|2 dx −

∫

R
d
+
∩Φ(B)

|∇ũ(y)|2 dy

�

�

�

�

≤ Cω(`)
∫

R
d
+
∩Φ(B)

|∇ũ(y)|2 dy .

4. if u ∈ C1
0
(Rd) is supported in B then, after extension by zero, ũ ∈ C1

0
(Rd) with

supp ũ ⊆ B2`(0) and ‖∇ũ‖L∞ ≤ C‖∇u‖L∞ .

In addition to the properties in Lemma 2.1, we will need the following result, which
enables us to control the change under Φ of the singular part of our potentials:

Lemma 2.2. Let B,Φ be as above. There is a constant C depending only on d such

that for any x ∈ B ∩Ω,

0 ≤ 1

dist(x, ∂Ω)2
− 1

dist(Φ(x), ∂Rd
+
)2

≤ C
ω(2`)2

dist(Φ(x), ∂Rd
+
)2
. (2.1)
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Proof. By definition of f , (x ′, f (x ′)) ∈ ∂Ω, thus dist(x, ∂Ω) ≤ |x − (x ′, f (x ′))| =
|xd − f (x ′)| = dist(Φ(x), ∂Rd

+
), which implies the lower bound in (2.1).

To prove the upper bound, let z = (z′, f (z′)) ∈ ∂Ω be such that dist(x, ∂Ω) = |x− z |.
Since ∂Ω is parametrized by f in the larger ball B2`(x0), it is clear that such a point
exists and that z ∈ B2`(x0). The point z might not be uniquely determined but that will
not play any role in what follows.

We begin by rewriting the expression we want to bound in terms of z:

1

dist(x, ∂Ω)2
− 1

dist(Φ(x), ∂Rd
+
)2
=

1

|x − z |2
− 1

|xd − f (x ′)|2

=

( f (x ′) − f (z′))( f (x ′) + f (z′) − 2xd) − |x ′ − z′ |2
|x − z |2 |xd − f (x ′)|2

.

Since f is C1 and by the definition of z it holds that

x = z + |x − z | (−∇ f (z′),1)
√

1 + |∇ f (z′)|2
.

Consequently,

|x ′ − z′ |2 = |x − z |2 |∇ f (z′)|2
1 + |∇ f (z′)|2

and |xd − f (z′)|2 = |x − z |2
1 + |∇ f (z′)|2

. (2.2)

Note also that f (x ′) ≤ f (z′) ≤ xd. From the above identities one finds

1

dist(x, ∂Ω)2
− 1

dist(Φ(x), ∂Rd
+
)2
=

1

|xd − f (x ′)|2

[

| f (x ′) − f (z′)|2
|x − z |2

+ 2
| f (x ′) − f (z′)|

|x − z |
√

1 + |∇ f (z′)|2
− |∇ f (z′)|2

1 + |∇ f (z′)|2

]

.

(2.3)
By the fundamental theorem of calculus and (2.2),

| f (x ′) − f (z′)| =
�

�

�

�

(x ′ − z′)
∫ 1

0

∇ f (t x ′
+ (1 − t)z′) dt

�

�

�

�

≤ ω(2`)2 |x − z | .

Therefore,

| f (x ′) − f (z′)|2
|x − z |2

+ 2
| f (x ′) − f (z′)|

|x − z |
√

1 + |∇ f (z′)|2
− |∇ f (z′)|2

1 + |∇ f (z′)|2
≤ Cω(2`)2 .

Combined with (2.3) this completes the proof of Lemma 2.2. �
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2.2 A local Hardy–Lieb–Thirring inequality

The aim of this subsection is to prove a bound for localized traces of our operator.
Before stating the result we recall the following Hardy inequality due to Davies [3]
(obtained by combining his Theorems 2.3 and 2.4).

Lemma 2.3. LetΩ ⊂ Rd be open and bounded with C1-boundary. Then for any ε > 0

there is a cH (ε,Ω) ≥ 0 such that for all u ∈ H1
0
(Ω),

∫

Ω

|∇u(x)|2 dx +
(

ε − 1

4

)

∫

Ω

|u(x)|2
dist(x, ∂Ω)2

dx ≥ −cH (ε,Ω)
∫

Ω

|u(x)|2 dx .

Remark. Lemma 2.3 can be proved in a direct manner by using a partition of unity
and appealing to Lemmas 2.1 and 2.2. In particular, this allows one to quantify the best
constant cH in terms of the C1-regularity of ∂Ω. Indeed, such a proof yields the bound
cH (ε,Ω) ≤ C

ω−1(ε)2 for a constant C depending only on the dimension and ω−1 is the

inverse of the C1-modulus of continuity of ∂Ω.

With Lemma 2.3 in hand we move on to the main result of this subsection. Specif-
ically, the following local Hardy–Lieb–Thirring type inequality for HΩ,b,V (cf. [9]):

Lemma 2.4. Let Ω, b,V be as in Theorem 1.1. Let φ ∈ C1
0
(Rd) be supported in a ball

B of radius ` and set b = infΩ∩B b. If 0 < h ≤ K min{`, cH (b2/2,Ω)−1/2}, then

Tr(φHΩ,b,V (h)φ)− ≤ C min{b,1}−d`dh−d
(

1 + h2‖V−‖1+d/2
L1+d/2(Ω∩B)

)

,

where the constant C depends only on d,K, and ‖φ‖L∞ .

Proof. By assumption, b > 0. By the variational principle and for any δ ∈ (0,1/2], we
find

φHΩ,b,V (h)φ ≥ φ
(

−h2δ∆ − h2V−(x) − 1

+ h2(1 − δ)
(

−∆ + (1 − δ)−1
(

b2 − 1

4

) 1

dist(x, ∂Ω)2
))

φ .

Since δ ∈ (0,1/2] we have

(1 − δ)−1
(

b2 − 1

4

)

≥ (1 + 2δ)
(

b2 − 1

4

)

> b2 − δ

2
− 1

4
.

Thus, setting δ = min{b2,1/2} ≤ 1/2, Lemma 2.3 implies with c0 = cH (b2/2,Ω) that

φHΩ,b,V (h)φ ≥ φ(−h2δ∆ − c0h2 − h2V−(x) − 1)φ . (2.4)

Consequently, for any 0 < ρ < 1, the variational principle and (2.4) yields

Tr(φHΩ,b,V (h)φ)− ≤ Tr(φ(−h2δ(1 − ρ)∆ − c0h2 − 1)φ)−
+ Tr(φ(−h2δρ∆ − h2V−)φ)− .
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Using the Berezin–Li–Yau inequality

Tr(φ(−h2δ(1 − ρ)∆ − c0h2 − 1)φ)−
≤ C(1 + c0h2)1+d/2(1 − ρ)−d/2δ−d/2h−d`d ,

with C > 0 depending on d and ‖φ‖L∞ . For the remaining term the Lieb–Thirring
inequality implies

Tr(φ(−h2δρ∆ − h2V−)φ)− ≤ Ch2δ−d/2ρ−d/2‖V−‖1+d/2
L1+d/2(Ω∩B` )

,

for some C > 0 depending only on d. Gathering the estimates and setting ρ =

h2/(2K2`2) < 1 completes the proof. �

3 Local asymptotics

3.1 Local asymptotics in the bulk

Lemma 3.1. Let φ ∈ C1
0
(Rd) be supported in a ball B of radius ` > 0 and satisfy

‖∇φ‖L∞(Rd ) ≤ M`−1 . (3.1)

If V ∈ L1(B) is such that V− = V0 + V1 with 0 ≤ V0 ∈ L∞(B) and V1 ∈ L1+d/2(B) then,

for 0 < h ≤ K min{`, ‖V0‖−1/2
∞ },

�

�

�Tr(φ(−h2∆ + h2V − 1)φ)− − Ldh−d
∫

B

φ2(x) dx

�

�

�

≤ Ch−d+2
[

`d−2
+ `d ‖V0‖L∞(B) + `

d ‖V1‖1+d/2
L1+d/2(B) + ‖V+‖L1(B)

]

,

where the constant C depends only on d,M,K .

Proof. Throughout the proof, we set HV = HRd ,0,V = −h2∆ + h2V − 1 in L2(Rd).
To prove the lower bound, consider the operator γ with integral kernel

γ(x, y) = 1

(2π)d
χ(x)

∫

|ξ |<h−1

eiξ(x−y) dξ χ(y) ,

where χ ∈ C∞
0
(Rd) with 0 ≤ χ ≤ 1 and χ ≡ 1 on B. The operator γ is trace class and

satisfies 0 ≤ γ ≤ 1. Therefore, the variational principle implies that

Tr(φHVφ)− ≥ Tr(φHV+φ)−
≥ −Tr(γφHV+φ)

= − 1

(2π)d

∫

|ξ |<h−1

(

h2‖∇eiξ · φ‖2
L2(Rd ) + h2‖V+φ2‖L1(Rd ) − ‖φ‖2

L2(Rd )

)

dξ

= Ldh−d
∫

B

φ2(x) dx − Ch−d+2
(

‖∇φ‖2
L2(Rd ) + ‖V+φ2‖L1(Rd )

)

.
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Since, by (3.1), ‖φ‖L∞ ≤ M and ‖∇φ‖2
L2(Rd ) ≤ C`d−2 this proves the lower bound.

It remains to prove the upper bound. For any 0 < ρ ≤ 1/2

Tr(φHVφ)− ≤ Tr(φHV−φ)−
≤ Tr(φ(−h2(1 − ρ)∆ − h2V0 − 1)φ)− + h2Tr(φ(−ρ∆ − V1)φ)− .

To bound the second term we apply the Lieb–Thirring inequality to conclude that

h2Tr(φ(−ρ∆ − V1)φ)− ≤ h2Tr(φ(−ρ∆ − V11B)−φ) ≤ Ch2ρ−d/2
∫

B

|V1(x)|1+d/2 dx ,

where we again used ‖φ‖L∞ ≤ M . Since V0 ∈ L∞(B), we can bound

Tr(φ(−h2(1 − ρ)∆ − h2V0 − 1)φ)− ≤ Tr(φ(−h2(1 − ρ)∆ − h2 sup
B

V0 − 1)φ)−

= (1 + h2 sup
B

V0)Tr(φ(−h̃2∆ − 1)φ)−

with h̃ = h(1 − ρ)1/2(1 + h2 supB V0)−1/2. By the Berezin–Li–Yau inequality,

Tr(φ(−h̃2∆ − 1)φ)− ≤ Ld h̃−d
∫

B

φ2(x) dx .

Combining the above we have arrived at

Tr(φHVφ)− ≤ Ldh−d
∫

B

φ2(x) dx + Ch2ρ−d/2
∫

B

|V1(x)|1+d/2 dx

+ Ldh−d
[

(1 − ρ)−d/2(1 + h2 sup
B

V0)1+d/2 − 1
]

∫

B

φ2(x) dx

≤ Ldh−d
∫

B

φ2(x) dx + Ch2ρ−d/2
∫

B

|V1(x)|1+d/2 dx

+ Ch−d
[

ρ + h2 sup
B

V0

]

∫

B

φ2(x) dx ,

where C depend only on d,K,M . Setting ρ = h2/(2K2`2) ≤ 1/2 and using
∫

φ2 ≤ C`d

completes the proof. �

3.2 Local asymptotics near the boundary

In this section we prove the following local asymptotic expansion close to the boundary.

Theorem 3.2. Let Ω, b,V be as in Theorem 1.1. Let φ ∈ C1
0
(Rd) be supported in a ball

B of radius ` and satisfy

‖∇φ‖L∞(Rd ) ≤ M`−1 .
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Assume that dist(B, ∂Ω) ≤ 2`, and set b = infB∩Ω b. For 0 < ` ≤ c(Ω, b) and

0 < h ≤ K`,
�

�

�

�

Tr(φHΩ,b,V (h)φ)− − Ldh−d
∫

Ω

φ2(x) dx +
Ld−1

2
h−d+1

∫

∂Ω

φ2(x)b(x) dH d−1(x)
�

�

�

�

≤ `dh−do`→0+(1) +O(h−d+1)
∫

∂Ω

φ2(x)
[

sup
y∈B2` (x)

b(y) − inf
y∈B2` (x)

b(y)
]

dH d−1(x)

+O(h−d+2)
(

`d−2 log(`/h) + ‖V+‖L1(Ω∩B) + `
d ‖V−‖1+d/2

L1+d/2(Ω∩B)

)

Moreover, the error terms and the implicit constants can be quantified in terms of the

C1-regularity of ∂Ω and M,K, ‖b‖L∞(Ω∩B), b.

The proof of Theorem 3.2 will be split into several lemmas, the first of which
reduces our problem to the corresponding one in a half-space.

Lemma 3.3. Let Ω, b,V be as in Theorem 1.1. Let φ ∈ C1
0
(Rd) be supported in a ball

B of radius ` such that dist(B, ∂Ω) ≤ 2`, and infB∩Ω b = b > 0. For 0 < ` ≤ c(Ω, b)
and 0 < h ≤ K` with φ̃ = φ ◦ Φ−1, Ṽ = V ◦ Φ−1,

Tr(φ̃H
R
d
+
,b,Ṽ

(h)φ̃)− − `dh−do`→0+(1)
(

1 + h2‖V−‖1+d/2
L1+d/2(Ω∩B)

)

≤ Tr(φHΩ,b,V (h)φ)−
≤ Tr(φ̃H

R
d
+
,b,Ṽ (h)φ̃)− + `dh−do`→0+(1)

(

1 + h2‖V−‖1+d/2
L1+d/2(Ω∩B)

)

where b = supx∈B∩Ω b(x). Moreover, the error terms and the implicit constants can be

quantified in terms of the C1-regularity of ∂Ω and K, b, b, ‖φ‖L∞ .

Proof. Provided ` is small enough there is a ball B′ ⊃ B with center on ∂Ω and radius
4` that satisfies the assumptions in Section 2.1. LetΦ be the associated diffeomorphism.

We split the proof into two parts, in the first part we prove the upper bound and in
the second we prove the lower bound.

Part 1: (Proof of the upper bound) By the variational principle

Tr(φHΩ,b,V (h)φ)− ≤ Tr(φHΩ,b,V (h)φ)− .

Moreover, by Lemma 2.1 there is C0 > 0, depending only on d, such that

Tr(φHΩ,b,V (h)φ)− ≤ Tr
(

φ̃
(

−h2(1−C0ω(4`))∆Rd
+

+h2 b2 − 1/4
dist(Φ−1( · ), ∂Ω)2

+h2Ṽ−1
)

φ̃
)

−
.

We claim that

Tr
(

φ̃
(

−h2(1 − C0ω(4`))∆Rd
+

+ h2 b2 − 1/4
dist(Φ−1( · ), ∂Ω)2

+ h2Ṽ − 1
)

φ̃
)

−

≤ Tr
(

φ̃
(

−h2(1 − C0ω(4`))∆Rd
+

+ h2 b2 − 1/4 − Cω(8`)2

dist( · , ∂Rd
+
)2

+ h2Ṽ − 1
)

φ̃
)

−
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for a constant C depending only on d. Indeed, if b ≥ 1/2 Lemma 2.2 and the variational
principle implies

Tr
(

φ̃
(

−h2(1 − C0ω(4`))∆Rd
+

+ h2 b2 − 1/4
dist(Φ−1( · ), ∂Ω)2

+ h2Ṽ − 1
)

φ̃
)

−

≤ Tr
(

φ̃
(

−h2(1 − C0ω(4`))∆Rd
+

+ h2 b2 − 1/4
dist( · , ∂Rd

+
)2
+ h2Ṽ − 1

)

φ̃
)

−

≤ Tr
(

φ̃
(

−h2(1 − C0ω(4`))∆Rd
+

+ h2 b2 − 1/4 − Cω(8`)2

dist( · , ∂Rd
+
)2

+ h2Ṽ − 1
)

φ̃
)

−
.

Similarly, if 0 < b < 1/2 Lemma 2.2 and the variational principle implies

Tr
(

φ̃
(

−h2(1 − C0ω(4`))∆Rd
+

+ h2 b2 − 1/4
dist(Φ−1( · ), ∂Ω)2

+ h2Ṽ − 1
)

φ̃
)

−

≤ Tr
(

φ̃
(

−h2(1 − C0ω(4`))∆Rd
+

+ h2 (b
2 − 1/4)(1 + Cω(8`)2)

dist( · , ∂Rd
+
)2

+ h2Ṽ − 1
)

φ̃
)

−

≤ Tr
(

φ̃
(

−h2(1 − C0ω(4`))∆Rd
+

+ h2 b2 − 1/4 − Cω(8`)2

dist( · , ∂Rd
+
)2

+ h2Ṽ − 1
)

φ̃
)

−
.

For any 2C0ω(4`) < ρ ≤ 1/2 we estimate

Tr
(

φ̃
(

−h2(1 − C0ω(4`))∆Rd
+

+ h2 b2 − 1/4 − Cω(8`)2

dist( · , ∂Rd
+
)2

+ h2Ṽ − 1
)

φ̃
)

−

≤ Tr(φ̃H
R
d
+
,b,Ṽ (h)φ̃)−

+ Tr
(

φ̃
(

−h2(ρ − C0ω(4`))∆Rd
+

+ h2 ρ(b
2 − 1/4) − Cω(8`)2

dist( · , ∂Rd
+
)2

+ h2ρṼ − ρ
)

φ̃
)

−
.

Provided

ρ(b2 − 1/4) − Cω(8`)2
ρ − C0ω(4`)

=

(

b2 −1/4
) 1

1 − C0ω(4`)ρ−1
−C

ω(8`)2
ρ − C0ω(4`)

> −1

4
, (3.2)

we can apply the local Hardy–Lieb–Thirring inequality of Lemma 2.4 in Rd
+

to bound

Tr
(

φ̃
(

−h2(ρ − C0ω(4`))∆Rd
+

+ h2 ρ(b
2 − 1/4) − Cω(8`)2

dist( · , ∂Rd
+
)2

+ h2ρṼ − ρ
)

φ̃
)

−

≤ Cρ1+d/2`dh−d(ρ − C0ω(4`))−d/2
(

1 + h2ρd/2(ρ − C0ω(4`))−d/2‖V−‖1+d/2
L1+d/2(Ω∩B)

)

≤ Cρ`dh−d
(

1 + h2‖V−‖1+d/2
L1+d/2(Ω∩B)

)

.
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Set ρ =
√

ω(4`) + ω(8`). Then ρ > 2C0ω(4`) and (3.2) are valid provided ` is small
enough. Therefore, upon collecting the estimates above we arrive at the bound

Tr(φHΩ,b,V (h)φ)− ≤ Tr(φ̃H
R
d
+
,b,Ṽ (h)φ̃)−

+ C`dh−d
(

√

ω(4`) + ω(8`)
) (

1 + h2‖V−‖1+d/2
L1+d/2(Ω∩B)

)

,

thus completing the proof of the upper bound.

Part 2: (Proof of the lower bound) The proof of the lower bound proceeds as the upper
bound but with the roles of Ω and Rd

+
exchanged.

By Lemma 2.1,

Tr(φ̃H
R
d
+
,b,Ṽ

(h)φ̃)−≤ Tr
(

φ
(

−h2(1+C0ω(4`))−1∆Ω+h2 b
2 − 1/4

dist(Φ( · ), ∂Rd
+
)2
+h2V−1

)

φ
)

−
.

If ` is sufficiently small so that C0ω(4`) ≤ 1/2 then (1+C0ω(4`))−1 ≥ 1−C0ω(4`) > 0,
and hence

Tr(φ̃H
R
d
+
,b,Ṽ

(h)φ̃)− ≤ Tr
(

φ
(

−h2(1−C0ω(4`))∆Ω+h2 b
2 − 1/4

dist(Φ( · ), ∂Rd
+
)2
+h2V−1

)

φ
)

−
.

By splitting into cases depending on the sign of b
2 − 1/4 as in the proof of the upper

bound one finds

Tr
(

φ
(

−h2(1 − C0ω(4`))∆Ω + h2 b
2 − 1/4

dist(Φ( · ), ∂Rd
+
)2
+ h2V − 1

)

φ
)

−

≤ Tr
(

φ
(

−h2(1 − C0ω(4`))∆Ω + h2 b
2 − 1/4 − Cω(8`)2

dist( · , ∂Ω)2
+ h2V − 1

)

φ
)

−

for a constant C depending on d, b.
For any 2C0ω(4`) < ρ ≤ 1/2 we estimate

Tr
(

φ
(

−h2(1 − C0ω(4`))∆Ω + h2 b
2 − 1/4 − Cω(8`)2

dist( · , ∂Ω)2
+ h2V − 1

)

φ
)

−

≤ Tr(φH
Ω,b,V

(h)φ)−

+ Tr
(

φ
(

−h2(ρ − C0ω(4`))∆Ω + h2 ρ(b
2 − 1/4) − Cω(8`)2

dist( · , ∂Ω)2
+ h2ρV − ρ

)

φ
)

−

≤ Tr(φHΩ,b,V (h)φ)−

+ Tr
(

φ
(

−h2(ρ − C0ω(4`))∆Ω + h2 ρ(b
2 − 1/4) − Cω(8`)2

dist( · , ∂Ω)2
+ h2ρV − ρ

)

φ
)

−
.
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Provided the analogue of (3.2) with b instead of b holds we can apply the local
Hardy–Lieb–Thirring inequality of Lemma 2.4 to bound

Tr
(

φ
(

−h2(ρ − C0ω(4`))∆Ω + h2 ρ(b
2 − 1/4) − Cω(8`)2

dist( · , ∂Ω)2
+ h2ρV − ρ

)

φ
)

−

≤ Cρ`dh−d
(

1 + h2‖V−‖1+d/2
L1+d/2(Ω∩B)

)

.

Again we can set ρ =
√

ω(4`) + ω(8`) and combine the above estimates to arrive at

Tr(φ̃H
R
d
+
,b,Ṽ

(h)φ̃)− ≤ Tr(φHΩ,b,V (h)φ)−

+ C`dh−d
(

√

ω(4`) + ω(8`)
) (

1 + h2‖V−‖1+d/2
L1+d/2(Ω∩B)

)

.

This completes the proof of the lower bound and hence the proof of Lemma 3.3. �

The proof of Theorem 3.2 has been reduced to understanding the asymptotics of
Tr(φH

R
d
+
,b,V (h)φ)− with b(x) ≡ b > 0.

Lemma 3.4. Let Ω,V be as in Theorem 1.1. Let φ ∈ C1
0
(Rd) be supported in a ball B

of radius ` and satisfy

‖∇φ‖L∞ ≤ M`−1 . (3.3)

With b(x) ≡ b > 0 we have, for 0 < h ≤ K`,

�

�

�

�

Tr(φH
R
d
+
,b,V (h)φ)− − Ldh−d

∫

R
d
+

φ2(y) dy +
b Ld−1

2
h−d+1

∫

∂Rd
+

φ2(y) dH d−1(y)
�

�

�

�

≤ Ch−d+2
(

`d−2 |log(`/h)| + ‖V+‖L1(Rd
+
∩B) + `

d ‖V−‖1+d/2
L1+d/2(Rd

+
∩B)

)

,

where C depends only on d,M,K, b and can be uniformly bounded for b in compact

subsets of [0,∞).

Proof. Our proof proceeds by diagonalizing the operator H
R
d
+
,b,0(h). For the general

background on what follows, see [4, Chapter XIII].
For f ∈ C2(R+) define the differential expression

Lb f (x) = f ′′(x) −
(

b2 − 1

4

) f (x)
x2

.

The operator H
R
d
+
,b,0(h) can then be decomposed as

H
R
d
+
,b,0(h) = −h2∆′ − h2Lb ,

where ∆′ =
∑d−1

j=1
∂2

∂y2
j

and Lb acts in the yd-coordinate.
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For b > 0, µ ≥ 0 the ODE

−Lbu(x) = µu(x)

has two linearly independent solutions

ψb,µ(x) = x1/2Jb(x
√
µ) and ηb,µ(x) = x1/2Yb(x

√
µ) .

If b ≥ 1/2 only ψ vanishes at x = 0 while for b ∈ (0,1/2) both solutions vanish,
indeed ψ ∼ x1/2+b and η ∼ x1/2−b as x → 0+. However, for any b , 1

2
only the first

solution ψb,ν is in H1 around zero. In particular, our effective operator H
R
d
+
,b,0(h) is

diagonalized through a Fourier transform with respect to y
′ and a Hankel transform Hb

with respect to yd. Recall that the Hankel transform Hα : L2(R+) → L2(R+) is initially
defined by

Hα(g)(s) =
∫ ∞

0

g(t)Jα(st)
√

st dt for g ∈ L1(R+)

and extended to L2(R+) in a similar manner as the Fourier transform. Moreover, Hα is
unitary, is its own inverse H2

α = 1. Moreover, for G ∈ L∞(R+) with compact support
and f ∈ H1

0
(R+) ∩ H2(R+)

〈 f ,G(−Lb) f 〉L2(R+) =

∫ ∞

0

G(s2)|Hb( f )(s)|2 ds .

By a similar argument as in the proof of Lemma 2.4 the upper bound can be reduced
to the case V ≡ 0. Indeed, for any 0 < ρ ≤ 1/2,

Tr(φH
R
d
+
,b,V (h)φ)−

≤ Tr(φH
R
d
+
,b,0(h(1 − ρ))φ)− + Tr

(

φ
(

h2ρ∆
R
d
+

+ h2ρ
b2 − 1/4

dist( · , ∂Rd
+
)2

− h2V
)

φ
)

−

≤ Tr(φH
R
d
+
,b,0(h(1 − ρ))φ)− + Ch2ρ−d/2‖V−‖1+d/2

L1+d/2(Rd
+
∩B) .

Set ρ = h2/(2K2`2) so that h2ρ−d/2 = O(`dh−d+2) and (h(1 − ρ))−β = h−β(1 +
O(`−2h2)). The claimed upper bound now follows from the case V ≡ 0.

Using the inequality Tr(φHφ)− ≤ Tr(φH−φ), applying the Fourier transform with
respect to y

′ and the Hankel transform in the yd-direction yields

Tr(φH
R
d
+
,b,0(h)φ)− ≤ Tr(φ(H

R
d
+
,b,0(h))−φ)

=

1

(2π)d−1

∬

R
d
+
×Rd
+

φ2(y)(h2 |ξ |2 − 1)−ξdydJb(ξdyd)2 dξdy .

(3.4)
For the lower bound define the operator γ with integral kernel

γ(x, y) = 1

(2π)d−1
χ(x)

∫

R
d
+
∩B

h−1 (0)
eiξ

′(x′−y′)√ξdxdJb(ξdxd)
√

ξdydJb(ξdyd) dξ χ(y) ,
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where χ ∈ C∞
0
(Rd) is such that 0 ≤ χ ≤ 1 and χ ≡ 1 on supp φ. The operator γ is

trace class, satisfies 0 ≤ γ ≤ 1, and its range is contained in the domain of H
R
d
+
,b,V .

Thus, by the variational principle,

−Tr(φH
R
d
+
,b,V (h)φ)−

≤ Tr(γφH
R
d
+
,b,V+

(h)φ)

=

1

(2π)d−1

∬

R
d
+
×Rd
+

(h2 |ξ |2 − 1)−φ2(x)ξdxdJb(ξdxd)2dξdx

+ h−d+2

∫

R
d
+

(V+(x)φ2(x) + |∇φ(x)|2)
∫ 1

0

(xdth−1)Jb(xdth−1)2 dtdx

≤ 1

(2π)d−1

∬

R
d
+
×Rd
+

(h2 |ξ |2 − 1)−φ2(x)ξdxdJb(ξdxd)2dξdx

+ Ch−d+2

∫

R
d
+

(V+(x)φ2(x) + |∇φ(x)|2) dx ,

(3.5)

with C uniformly bounded for b in compact subsets of [0,∞), since ‖√ · Jb ‖L∞(R+) < ∞
uniformly for b in compact subsets of [0,∞) (see [12, Chapter 7]). By (3.3) we can
estimate ‖φ‖L∞ ≤ M and

∫

R
d
+

|∇φ(x)|2 dx ≤ C`d−2.

What remains is to understand the common integral in (3.4) and (3.5). We begin
by extracting the desired leading term:

1

(2π)d−1

∬

R
d
+
×Rd
+

φ2(y)(h2 |ξ |2 − 1)−ξdydJb(ξdyd)2 dξdy

= Ldh−d
∫

R
d
+

φ2(y)dy (3.6)

− Ld−1h−d+1

∫ ∞

0

∫

Rd−1

φ2(y′, ht) dy′
∫ 1

0

(1 − ξ2
d)

(d+1)/2
( 1

π
− ξdt Jb(ξdt)2

)

dξddt .

Define, for b ≥ 0 and t ≥ 0,

Pb(t) =
∫ 1

0

(1 − ζ2)(d+1)/2
( 1

π
− ζ t Jb(ζ t)2

)

dζ .

In Lemmas A.1 and A.2 we shall prove that

∫ ∞

0

Pb(t) dt =
b

2
and Pb(t) = O(t−2) as t → ∞ , (3.7)

with the implicit constant uniformly bounded for b in compact subsets of [0,∞).
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Using (3.7) we can estimate

∫ ∞

0

∫

Rd−1

φ2(y′, ht) dy′Pb(t)dt

=

∫ 2`/h

0

∫

Rd−1

φ2(y′, ht) dy′Pb(t)dt

=

b

2

∫

Rd−1

φ2(y′,0) dy′ −
∫ ∞

2`/h

∫

Rd−1

φ2(y′,0) dy′Pb(t)dt

+ 2

∫ 2`/h

0

ht

∫

Rd−1

∫ 1

0

φ(y′, hts)∂ydφ(y′, hts) ds dy′Pb(t)dt

=

b

2

∫

Rd−1

φ2(y′,0) dy′ +O(h`d−2 |log(`/h)|) .

Combined with (3.6), (3.4), and (3.5) this completes the proof of Lemma 3.4. �

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. By combining Lemma 3.3 and Lemma 3.4 the claimed estimate
follows from

∫

∂Ω

φ2(x)
[

b(x) − inf
y∈Ω∩B

b(y)
]

dH d−1(x)

≤
∫

∂Ω

φ2(x)
[

sup
y∈Ω∩B

b(y) − inf
y∈Ω∩B

b(y)
]

dH d−1(x) ,

and the corresponding inequality for the sup and the fact that supp φ ⊆ B ⊂ B2`(x) for
any x ∈ supp φ. �

4 From local to global asymptotics

In this section we prove our main result by piecing together the local asymptotics ob-
tained above. The key ingredient is the following construction of a continuum partition
of unity due to Solovej and Spitzer [11].

Let

`(u) = 1

2
max{dist(u,Ωc),2`0}

with a small parameter 0 < `0 to be determined. Note that 0 < ` ≤ max{ rin(Ω)
2

, `0},
where rin(Ω) denotes the inradius, and, since |∇dist(u,Ωc)| = 1 a.e., ‖∇`‖L∞ ≤ 1

2
.

Note also that dist(B`(u),Ω
c)) ≤ 2`(u) if and only if dist(u, ∂Ω) ≤ 2`0, in which case

`(u) = `0. In particular, if dist(u,Ω) > `0, then B`(u)(u) ∩Ω = ∅.
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Fix a function φ ∈ C∞
0
(Rd) with supp φ ⊆ B1(0) and ‖φ‖L2 = 1. By [11, Theo-

rem 22] (see also [7, Lemma 2.5]) the functions

φu(x) = φ
(

x − u

`(u)

) √

1 + ∇`(u) · x − y

`(u) , x ∈ Rd , u ∈ Rd ,

belong to C∞
0
(Rd) with supp φu ⊆ B`(u)(u), satisfy

∫

Rd

φu(x)2`(u)−d du = 1 for all x ∈ Rd (4.1)

and, with a constant C depending only on d,

‖φu ‖L∞ ≤
√

2 ‖φ‖L∞ and ‖∇φu ‖L∞ ≤ C`(u)−1‖∇φ‖L∞ for all u ∈ Rd .

The application to our problem here is summarized in the following lemma.

Lemma 4.1. Let Ω, b,V be as in Theorem 1.1 and define `, {φu}u∈Rd as above. Then,

for 0 < `0 ≤ c(Ω, b) and 0 < h ≤ K`0,
�

�

�

�

�

Tr(HΩ,b,V (h))− −
∫

Rd

Tr(φuHΩ,b,V (h)φu)−`(u)−d du

�

�

�

�

�

≤ Ch−d+2

∫

dist(u,Ω)≤`0

(

1 + h2‖V−‖1+d/2
L1+d/2(Ω∩B`(u)(u))

)

`(u)−2 du ,

where the constant C depends only on Ω, b,K, ‖φ‖L∞ .

For the sake of brevity, we omit the proof of Lemma 4.1 and instead refer the reader
to the proof of [7, Lemma 2.8]. Lemma 4.1 can be proved in the same manner but
replacing the use of a local Berezin–Li–Yau inequality by an application of Lemma 2.4.

With the above results in hand we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Set `0 = h/ε0 with 0 < h ≤ ε0rin(Ω)/2 for a parameter ε0 ∈
(0,1], which will eventually tend to zero.

We divide the set of u ∈ Rd such that B`(u)(u) ∩Ω , ∅ into two disjoint parts:

Ω∗ = {u ∈ Rd : 2`0 < δΩ(u)} and Ω∗
= {u ∈ Rd : −`0 < δΩ(u) ≤ 2`0} , (4.2)

where δΩ denotes the signed distance function to the boundary, δΩ(y) = dist(u,Ωc) −
dist(u,Ω). Note that for all u ∈ Ω∗ we have `(u) = `0.

By Lemma 4.1 we need to understand the integral with respect to u of the local
traces Tr(φuHΩ,b,V (h)φu)−. Breaking the integral according to the partition (4.2) we
have

∫

Rd

Tr(φuHΩ,b,V (h)φu)−`(u)−d du =

∫

Ω∗

Tr(φuHΩ,b,V (h)φu)−`(u)−d du

+

∫

Ω∗
Tr(φuHΩ,b,V (h)φu)−`−d0 du .
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For the first term Lemma 3.1 with V0(x) = (b(x)2−1/4)−
dist(x,∂Ω)2 , V1 = V−(x) yields

∫

Ω∗

Tr(φuHΩ,b,V (h)φu)−`(u)−d du

= Ldh−d
∫

Ω∗

∫

Ω

φ2
u(x)`(u)−d dxdu

+O(h−d+2)
∫

Ω∗

[

`(u)−2
(

1 + ‖b‖2
L∞

)

+ ‖V−‖1+d/2
L1+d/2(B`(u)(u))

+ `(u)−d ‖V+‖L1(B`(u)(u))

]

du

where we used ‖V0‖L∞ ≤ C
(dist(u,∂Ω)−`(u))2 ≤ C`(u)−2 and (b(x)2−1/4)+

dist(x,∂Ω)2 ≤ C‖b‖2
L∞`(u)−2.

For the integral over the boundary region Ω∗ Theorem 3.2, for ε0, `0, h sufficiently
small, implies
∫

Ω∗
Tr(φuHΩ,b,V (h)φu)−`−d0 du

= Ldh−d
∫

Ω∗

∫

Ω

φ2
u(x)`−d0 dxdu − Ld−1

2
h−d+1

∫

Ω∗

∫

∂Ω

φ2
u(x)b(x)`−d0 dH d−1(x)du

+O(h−d)|Ω∗ |(o`0→0+(1) + ε2
0 |log(ε0)|) + h−d+1o`0→0+(1)

+O(h−d+2)
∫

Ω∗

[

‖V−‖1+d/2
L1+d/2(B`(u)(u))

+ `−d0 ‖V+‖L1(B`(u)(u))

]

du .

Here we used the fact that b satisfies (1.3).
Combining the estimates for the contribution from the bulk and boundary region,

using (4.1), and estimating the integrals of the norms of V−,V+, we find
∫

Rd

Tr(φuHΩ,b,V (h)φu)−`(u)−d du

= Ldh−d |Ω| − Ld−1

2
h−d+1

∫

∂Ω

b(x) dH d−1(x)

+O(h−d)|Ω∗ |(o`0→0+(1) + ε2
0 |log(ε0)|) + h−d+1o`0→0+(1)

+O(h−d+2)
(

1 + ‖b‖2
L∞

)

∫

Ω∗

`(u)−2 du +O(h−d+2)
[

‖V−‖1+d/2
L1+d/2(Ω) + ‖V+‖L1(Ω)

]

.

(4.3)

By [7, eq.’s (4.6)–(4.8)],
∫

Ω∗
`(u)−2 du ≤ C`−1

0
and |Ω∗ | ≤ C`0 with C depending

only on Ω. Thus, by Lemma 4.1, (4.3), and since h2/`(u)2 ≤ ε2
0

we conclude that

hd−1

�

�

�

�

Tr(HΩ,b,V (h))− − Ldh−d |Ω| + Ld−1

2
h−d+1

∫

∂Ω

b(x) dH d−1(x)
�

�

�

�

≤ ε−1
0 oh/ε0→0+(1) +O(ε0 |log(ε0)|) + oh/ε0→0+(1)

+O(ε0)
(

1 + ‖b‖2
L∞

)

+O(h)
[

‖V−‖1+d/2
L1+d/2(Ω) + ‖V+‖L1(Ω)

]

.

Letting first h and then ε0 tend to 0 completes the proof of Theorem 1.1. �
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A Properties of Pν

Our aim is to prove the following two lemmas.

Lemma A.1. For ν ≥ 0 it holds that

Pν(t) =
∫ 1

0

(1 − ζ2)(d+1)/2
( 1

π
− ζ t Jν(ζ t)2

)

dζ = O(t−2) as t → ∞ .

Moreover, the implicit constant is uniformly bounded for ν in compact subsets of [0,∞).

Lemma A.2. For any ν ≥ 0 we have the identity

∫ ∞

0

Pν(t) dt =

∫ ∞

0

∫ 1

0

(1 − ζ2)(d+1)/2
( 1

π
− ζ t Jν(ζ t)2

)

dζdt =
ν

2
.

We shall need the following asymptotic expansion for the Bessel function

Jν(t) =
( 2

πt

)1/2
[

cos
(

t − νπ

2
− π

4

)

− 4ν2 − 1

8t
sin

(

t − νπ

2
− π

4

)

+O(t−2)
]

, (A.1)

where the implicit constant is uniformly bounded for ν in compact subsets of [0,∞)
(see [12, Chapter 7]). We shall also make use of the following identity

xJν(x)2 =
d

dx

[ x2

2
Jν(x)2 +

x2

2
Jν+1(x)2 − νxJν(x)Jν+1(x)

]

, (A.2)

which is easily deduced from J ′
ν(x) = 1

2
(Jν−1(x) − Jν+1(x)) and the recursion formula

Jν−1(x) + Jν+1(x) = 2ν
x

Jν(x).

Proof of Lemma A.1. By an integration by parts, (A.2), and since |Jν(x)| ≤ 1,

Pν(t) = (d + 1)
∫ 1

δ

(1 − ζ2)(d−1)/2
[

ζ2

π
− tζ3

2
Jν(ζ t)2 − tζ3

2
Jν+1(ζ t)2

+ νζ2Jν(ζ t)Jν+1(ζ t)
]

dζ +O(tδ4
+ δ3)

for any 0 ≤ δ < 1. Provided δt & 1, (A.1) implies

ζ2

π
− tζ3

2
Jν(ζ t)2 − tζ3

2
Jν+1(ζ t)2 + νζ2Jν(ζ t)Jν+1(ζ t) = ζ

2πt
cos(2ζ t − πν) +O(t−2) ,

with the implicit constant uniformly bounded for ν in compact subsets of [0,∞). Thus,
we have arrived at

Pν(t) =
d + 1

2πt

∫ 1

δ

(1 − ζ2)(d−1)/2ζ cos(2ζ t − πν) dζ +O(t−2
+ tδ4

+ δ3)

=

d + 1

2πt

∫ 1

0

(1 − ζ2)(d−1)/2ζ cos(2ζ t − πν) dζ +O(t−2) ,
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where we chose δ = O(t−1). An integration by parts yields

∫ 1

0

(1− ζ2)(d−1)/2ζ cos(2ζ t−πν) dζ =
1

2t

∫ 1

0

(1− ζ2)(d−3)/2(dζ2−1) sin(2ζ t−πν) dζ .

Since the integral on the right is bounded uniformly in ν, this completes the proof. �

Proof of Lemma A.2. For any T > 0, by (A.2), Fubini’s theorem, and a change of
variables

∫ T

0

Pν(t) dt =

∫ 1

0

(1 − ζ2)(d+1)/2
∫ T

0

( 1

π
− ζ t Jν(ζ t)2

)

dtdζ

=

T

2
(Pν(T) + Pν+1(T)) + ν

∫ T

0

(1 − s2/T2)(d+1)/2Jν(s)Jν+1(s) ds .

By Lemma A.1 only the remaining integral contributes as T → ∞. By [12, p. 406] and
for ν > −1, in the sense of an improper Riemann integral

∫ ∞

0

Jν(s)Jν+1(s) ds =
1

2
.

The proof is completed by appealing to a simple Abelian theorem in Lemma A.3. �

Lemma A.3. If f ∈ L∞(R+) and limT→∞
∫ T

0
f (t) dt = A, then for all α > 0

lim
T→∞

∫ T

0

(

1 − t2

T2

)α

f (t) dt = A .

Proof. By integration by parts and a change of variables,

∫ T

0

(

1 − t2

T2

)α

f (t) dt =

∫ T

0

(

− d

dt

(

1 − t2

T2

)α)
∫ t

0

f (s) dsdt

= 2α

∫ 1

0

(1 − σ2)α−1σ

∫ σT

0

f (s) dsdσ .

By our assumptions there is a S0 < ∞ so that for S ≥ S0

�

�

�

�

∫ S

0

f (s) ds

�

�

�

�

≤ |A| + 1 .

Since f is bounded,
�

�

�

�

∫ S

0

f (s) ds

�

�

�

�

≤ S‖ f ‖∞ .

Thus, for all σ,T ,
�

�

�

�

∫ σT

0

f (s) ds

�

�

�

�

≤ max{|A| + 1,S0‖ f ‖∞} .
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Since α > 0, the function σ 7→ (1 − σ2)α−1σ is integrable and by dominated conver-
gence,

lim
T→∞

2α

∫ 1

0

(1 − σ2)α−1σ

∫ σT

0

f (s) dsdσ = 2αA

∫ 1

0

(1 − σ2)α−1σ dσ = A .

This completes the proof of Lemma A.3. �
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