Math. Res. Lett.
Volume 27, Number 3, 887-901, 2020

On completion of graded D-modules

NICHOLAS SWITALA AND WENLIANG ZHANG

Let R = k[z1,. .. ,Axn] be a polynomial ring over a field k of charac-
teristic zero and R be the formal power series ring k[[z1,...,zy]].
If M is a D-module over R, then R ®g M is naturally a D-module
over R. Hartshorne and Polini asked whether the natural maps
Hip (M) — Hig(R®g M) (induced by M — R®@p M) are iso-
morphisms whenever M is graded and holonomic. We give a posi-
tive answer to their question, as a corollary of the following stronger
result. Let M be a finitely generated graded D-module: for each in-
teger ¢ such that dimy Hig (M) < oo, the natural map Hiz (M) —
HQR(E ®gr M) (induced by M — R ®p M) is an isomorphism.

1. Introduction

Let k£ be a field of characteristic zero. Let R be the polynomial ring in n
variables over k, and let R be the formal power series ring in n variables
over k. Consider the rings D = D(R, k) (resp. D = D(R, k)) of k-linear dif-
ferential operators on R (resp. ﬁ) In this paper we investigate the behaviors
of de Rham cohomology of graded D-modules under completion, which is
motivated by a question posed in [3, p. 18] by Hartshorne and Polini. In [3],
Hartshorne and Polini investigate the D-module structure of local cohomol-
ogy modules of R supported in homogeneous ideals: in particular, their de
Rham cohomology spaces. They use some technical results on D-modules,
due to van den Essen, that have no analogues over the polynomial ring.
Since their motivation lies with the polynomial ring, they investigate the
preservation of de Rham cohomology under the operation of completion.

If M is a left D-module, there is a natural left D-module structure on
the R-module R ®g M (see Section 3 below). We can therefore compare the
de Rham cohomology of M with that of R ®r M. In fact, there are natural
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maps

Hig(M) — Hip(R®g M)
of k-spaces, induced by the obvious natural map M — R® r M, for all i >
0. Hartshorne and Polini prove that these maps are isomorphisms in the

case when M = H}(R) with I a homogeneous ideal of R, but need not be
isomorphisms in general (even for holonomic M):

Theorem 1.1 (Hartshorne-Polini). Let R, ﬁ, D, and D be as above.
(a) [3, Theorem 6.2] If I C R is a homogeneous ideal, then for all i,5 >0,
the completion map

Hijp(H}(R)) — Hir(R ®r H}(R))

s an isomorphism of k-spaces.

(b) [3, Example 6.1] Let n = 1. There exists a holonomic left D-module M
such that the completion map

Hig(M) — Hig(R @p M)

is not an isomorphism of k-spaces for i =0 or i = 1. (In fact, the map
for i =0 is not surjective and the map for i = 1 is not injective.)

In the situation of Theorem 1.1(a), since the ideal I is homogeneous, the
D-modules HJ(R) are graded (which means here that the partial derivatives
0; act as k-linear maps of degree —1). On the other hand, the example
of Theorem 1.1(b) is not a graded D-module (0 acts as a k-linear map
of degree 2). Hartshorne and Polini ask [3, p. 18] whether the completion
maps on de Rham cohomology are isomorphisms if M is a graded holonomic
D-module.

The main result of this paper is the following:

Theorem A (Theorem 4.1). Let M be a finitely generated graded left
D-module.

(a) The natural map
Hip(M) — Hi(R©g M)

(induced by M — R®p M ) is injective for all i > 0.
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(b) For each integer i > 0 such that dimy Hig (M) < oo, the natural map
Hig(M) — Hig(R©g M)
18 an isomorphism of k-spaces.

As Theorem 1.1(b) shows, even Theorem A(a) may fail if M is not
graded. The hypothesis of finite-dimensionality in Theorem A(b) is also
necessary: see Remark 4.2 below.

Note that in the statement of Theorem A the graded D-module M is not
assume to be holonomic. However, if M is a graded holonomic D-module,
then all of its de Rham cohomology spaces are finite-dimensional, so we
immediately obtain a positive answer to Hartshorne and Polini’s question:

Corollary 1.2. Let M be a graded holonomic left D-module. For all i > 0,
the completion map

Hig(M) — Hig(R®r M)

s an isomorphism of k-spaces.

After briefly recalling some preliminary materials and fixing notation in
Section 2, we study the completion operation on D-modules in Section 3.
Hartshorne and Polini observe that if M is a local cohomology module of
R (and therefore holonomic), R® r M is again holonomic; we prove this
statement for arbitrary holonomic M in this section. Finally, in Section 4,
we give a proof of Theorem A. We conclude by outlining a shorter proof that,
if M is a graded holonomic left D-module, then Hy (M) and HQR(E ®r M)
have the same dimension (this shorter proof has the deficiency that it says
nothing about whether the natural completion maps are isomorphisms).

2. Preliminaries

In this section, we collect some preliminary materials on (graded) D-modules
and de Rham cohomology. Much of the basic material is recalled already in
Hartshorne and Polini’s [3] as well as the authors’ earlier [6]; we will assume
the reader is familiar either with the introductory sections of those papers
or with the basic reference [1]. In particular, we will assume the reader is
familiar with the notion of a holonomic D-module.
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1. Notation

Throughout this paper, k is a field of characteristic zero. We denote by
R = k[x1,...,xy,] the polynomial ring over k in the variables 1, ..., x, for
some n > 1, and by R = El[x1,...,zy]] the formal power series ring over k
in the same variables. Observe that R is the m-adic completion of R, where
m C R is the maximal ideal generated by x1,...,x,.

Objects without “hats” will be associated with the ring R, and the cor-
responding objects with “hats” will be associated with R. Therefore, we will
write D for the ring D(R, k) of k-linear differential operators on R and D
for the ring D(R, k) of k-linear differential | operators on R. Recall that D
(resp. @) is generated over R (resp. over R) by the partial differentiation
operators Ji,...,0,. A “D-module” M will always be assumed to be a left
module, unless stated otherwise, and similarly for D-modules.

If M is a D-module, we denote by M its completion R ®pr M (see Sec-
tion 3). Observe that if M is not finitely generated as an R-module, this
object need not be isomorphic to the m-adic completion of M; the notation
M and term “completion” are therefore somewhat abusive. Likewise, D is
not being regarded as an adic completion of the non-commutative ring D.

2.2. The de Rham complex

Given any D-module M, we can define its de Rham complex Q®(M ), whose
objects are D-modules but whose differentials are merely k-linear. It is de-
fined as follows [1, §1.6]: for 0 < i < n, Q(M) is a direct sum of ('}) copies
of M, indexed by i-tuples 1 < j; < -+ < j; < n. The summand correspond-
ing to such an i-tuple will be written as M dxj, A--- Adzj;,. The k-linear
differentials d* : Q¢(M) — Q1(M) are defined by

d'(mdzj, A Adzj,) Za m)dxs Ndxj A--- Adxj,,

with the usual exterior algebra conventions for rearranging the wedge terms,
and extended by linearity to the direct sum. The cohomology objects
Rt (Q*(M)), which are k-spaces, are called the de Rham cohomology spaces
of the D-module M, and are denoted Hg(M). If N is a D-module, its de
Rham complex Q°*(N), with cohomology spaces Hig(N), has exactly the
same definition. The objects of this complex are @—modules, but its differ-
entials are again merely k-linear.
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Part (a) of the following theorem is standard (see [1, Theorem 1.6.1));
part (b) is due to van den Essen [7, Proposition 2.2]:

Theorem 2.1. (a) Let M be a holonomic D-module. The de Rham coho-
mology spaces HéR(M) are finite-dimensional over k for all i > 0.

(b) Let N be a holonomic D-module. The de Rham cohomology spaces
H': (N) are finite-dimensional over k for all i > 0.

2.3. Graded D-modules

We give the polynomial ring R = k[z1,...,z,] its standard grading, i.e.,
deg(z;) =1 for 1 <i<n and deg(c) =0 for c € k. Let M be a (left) D-
module whose underlying R-module is given a grading M = @;czM; (mean-
ing that R; - M; C M;,; for all 7, j, where R; is the degree-i component of
R). We say that M is a graded D-module if for all [ € Z and 1 <i < n,
we have 0;(M;) C M;_;. There is an entirely analogous notion of graded
right D-module. If M is a finitely generated graded D-module, M admits a
resolution by finite free graded D-modules.

2.4. Transposition

There is a natural transposition operation that converts left D-modules to
right D-modules and vice versa. (This is not described in the reference [1];
see [2, §16] instead.) The standard transposition T : D — D is defined by

T(O] -+ Oip) = (1) o f

for all f € R, extended to all of D by k-linearity (observe that the same
operation makes sense for formal power series). If M is a right D-module,
the transpose M™ of M is the left D-module defined as follows: we have
MT™ = M as Abelian groups, and the left D-action * on M" is given by
dxm=m-7(0) forall § € D and m € M (= MT). The transpose of a graded
left D-module is a graded right D-module, and conversely.

3. The completion functor for D-modules

Let M be a D-module. As observed by Hartshorne and Polini in [3, §6], the
R-module R ®z M can be given a natural structure of D- module. (Recall
from Section 2 that we will abuse notation by writing M for this R—module.)
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In this section, we study the basic properties of the functor M M from
D-modules to D-modules.

As a special case of [4, Lemma 1.2.1], we have the following recipe for
prescribing D-module (resp. D-module) structures on R-modules (resp. R-
modules):

Lemma 3.1. Let M be an R-module. To give M a structure of D-module
extending the given R-module structure is the same as to give pairwise com-
muting k-linear maps 0; : M — M such that, for all 1 <i<mn, all ™ € R,
and all m € M, we have 9;(rm) = rd;(m) + 0;(r)m. (The analogous state-
ment for R-modules M also holds.)

We will, however, write 9;m or J; - m instead of &im), reserving the
notation 0;(—) for application of J; to elements of R or R.

Proposition 3.2. Let M be a D-module, and let M be the R-module R QR
M. For all i and all pure tensors s®@ m € M, define

Ji- (s@m) =0;(s) ®m +35® 0; - m.

Then (extending by ]/%—lineam'ty) we obtain a structure of D-module on M.
Furthermore, using this D-module structure, the operation M w— M is a
functor from D-modules to D-modules.

Proof. By Lemma 3.1, it suffices to check that for all 7 € Rand1<i< n,
the actions of 9,7 — 79; and 0;(7) on the pure tensor 5 ® m coincide. Indeed,
we have

(07 — 70;) - (F@m) = 0,7 - (F@m) — 70, - (S m)
=0;-(Ts@m) —7-(0;(3) ®m+3® 9; - m)
=0;(T5) @m+75®0; - m —710;(5) @M —Trs®0; - m
= (0;(7s) —70;(5)) @m
= 0;(r)s®@m,

since 0; is a derivation. It follows that M is a D-module. For the functoriality,
suppose that § : M — N is a map of D-modules. We claim that

g:id§®5:]\7—>]/\\7
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is a map of D-modules. Since § is clearly ]%—linear, it is enough to show that

o~

5(0i- 5®m)) =9;-5(5®@m)

for all 7 and all pure tensors s® m € M , for which we simply calculate:

5(0;- 5®m)) =06(0i(3) @m) +6(5® 0; - m)
=0;(5)®d(m) +5®0(0; - m)
=9;(5) ®d(m) +5®9; - 5(m)
=0;-0(5@m),
using the D-linearity of §. This completes the proof. O

The definition of the D-structure on M just given depends a priori on
the choice of coordinates {z;,0;}. There is an alternative, coordinate-free
definition which we will also find useful below.

Proposition 3.3. Let M be a D-module. Form the tensor product D Qp M
using the right D-module structure on D defined via right multiplication by
the subring D C D, and regard this tensor product as a left D-module via
left multiplication on the first tensor factor. R

There is an isomorphism D ®@p M = R®@g M of (left) D-modules, where
the D-module structure on the left-hand side is the one just described, and
the D-module structure on the right-hand side is the one given in Proposi-
tion 3.2.

Proof. Since D is free as an ﬁ—module/\ on the monomials in 01,...,0n, there
is a natural isomorphism R ®pr D = D as R-modules, given by 7® § — 79.
This is also an isomorphism of right D-modules, where the right D-module
structure on R ®p D is given by right multiplication on the second tensor
factor. It follows that we have isomorphisms

RORM2Rep (Dop M)~ (RorD)@p M 2Dy M

of k-spaces, where the ﬁrstA two are the obvious canonical isomorphisms. It
is clear that elements of R act in the same way on both sides, and that
the composite isomorphism (reading left to right) carries 7 @ g m to ¥ @p m
(and therefore 7 ®@p (6 - m) to 70 ®p m). Therefore, we need only check that
the action of 9; is respected. Given a pure tensor 7@z m € R Qr M, we
have 0; - (F®@rm) = 0;(T) ®g m + ¥ ®p 0; - m by Proposition 3.2, which is
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carried by the composite isomorphism to 0;(7) ®p m + 7 @p 0; - m. On the
other hand, we have (using the D-module structure on D @5 M defined in
the present proposition)

0;i - (T®p m) = 0ir ®p
= 0;(7) ®@m+7‘8 ®p m
= 0;(F) @p m +7 ®p 0; - m,
since 0; is a derivation. The proof is complete. O

We next record some basic properties of the functor M M. Note that
by Proposition 3.3, we may view M either as R®RM or as D®D M,
whichever is more convenient. A priori, the notation D is ambiguous, re-
ferring on the one hand to the ring @(R k) and on the other hand to the
R-module R®p D endowed with a D(R, k)-module structure. Part (b) of
the following proposition removes this ambiguity.

Proposition 3.4. (a) The functor M Mfrom D-modules to D-modules
1s ezact.

(b) The D-module R @r D is free of rank one.

(c) Let M be a D-module, and let Fg — M be a free resolution of M by
D-modules. Then

§®RF.%@®DF0

s a free resolution of]\/4\ by D-modules (of the same ranks).

Proof. Part (a) follows from the fact that Ris a flat R-module. By Proposi-
tion 3.3, we have R®pD = D®pD="D as D- modules, proving part (b).
Finally, part (c) follows immediately from parts (a) and (b) and the com-
mutativity of tensor product with direct sum. O

Less obviously, the completion functor preserves the property of holo-
nomicity. (Hartshorne and Polini observed this already in the case of local
cohomology modules of R.) To prove this, it is convenient to use the defini-
tion of the completion functor given in Proposition 3.2.

Proposition 3.5. If M is a holonomic D-module, then M s a holonomic
D-module.

Proposition 3.5 is a corollary of the following stronger statement:
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Proposition 3.6. Let M be a finitely generated D-module. We have
dp (M) = ds (M), where d denotes D- (resp. D-) module dimension.

Proof. We let {F}D};>o (resp. {Fl@}lzo) denote the order filtration on D
(resp. @), and grD (resp. gr @) the commutative associated graded ring
with respect to this filtration. We have grD = R[;,...,&,] (resp. gr@ &
Eﬁ[&, ..., &n]) where &; is the image of 9; in F1D/FyD (resp. F1@/F0A)
Choose a good filtration {G,M },>0 of M, and let gr M be the associ-
ated (ﬁmtely generated) graded gr D-module. For each p, write G M for
G M = R ®r G GpM, which we identify with an R-submodule of M. Clearly
Up>0Gp M = M. Moreover, for all i and p and all m € GpM, we have

0 -Fom)=0,(F)@m+7®;-m € GyM + Gpy M = Gy M,

using the definition of Proposition 3.2, so that the famﬂy {GpM }p>0 makes
M _into a filtered D- module. By the flatness of R over R, we see that
gr M~R® RrREr M as R-modules. Under this identification, if m is the class
of m in G,M/Gp—1M C grM, we see from the displayed equation that
& (rom)=ref -m; that is, the & act by multiplication on the sec-
ond tensor factor. It follows from this that gr M =~ gr D D @g o gr M as gr D-
modules. Since gr M is finitely generated over gr D, gr M is finitely generated
over grD, so this filtration is good. Finally, let J = Anng, p gr M. Since
grM is a finitely generated gr D-module and the inclusion grD C gr@ is
faithfully flat, the annihilator of gr M= gr D ®gro gr M in gr @ is the ideal
J-gr D. By the faithful flatness, we have htg, p J = ht 5d - gr D and these
respective heights are by definition the desired dlmensmns, completing the
proof. O

4. De Rham cohomology and completion
Let M be a D-module. If we regard the D-module M=R ®@pr M as a D-
module by restriction of scalars, then the R-linear map x: M — R®r M
defined by k(m) =1 ® m is in fact D-linear: we have
0i-k(m)=0;(1)@m+1®09;-m=1R0; -m = k(0; -m)

for 1 <i < n. The map x induces a morphism of complexes of k-spaces

Q°* (M) — Q*(M)
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by simply applying « to each summand of each object of the complex Q° (M),
and therefore induces maps

—

k' Hyp (M) — Hig(M)

of k-spaces for all ¢ > 0. The goal of this section is to prove the following
result, our main theorem:

Theorem 4.1. Let M be a finitely generated graded D-module.

(a) The natural map
k' Hig(M) = Hig (M)

is injective for all i > 0.

(b) For each integer i > 0 such that dimy Hiz (M) < oo, the natural map

—

k' Hyp (M) — Hig(M)
is an isomorphism of k-spaces.

Remark 4.2. The hypothesis of finite-dimensionality in Theorem 4.1(b)
is necessary. For example, D itself is a finitely generated graded D-module.
We have H!(D) = R and HJR(D) = R, and the natural map R — R is
injective but not surjective.

In order to prove Theorem 4.1, we will identify the de Rham cohomology
of M with certain Tor groups. In Proposition 4.3, we prove an analogue of
Theorem 4.1 for these Tor groups. Finally, in Proposition 4.4, we construct
a commutative diagram enabling us to deduce Theorem 4.1 from Proposi-
tion 4.3.

Proposition 4.3. Let M be a finitely generated graded D-module.

(a) There are natural maps

b+ Tor® (R, M) — Tor? (R, M)

induced by M — ]\//T, that are injective for all j > 0.
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(b) Furthermore, for each j > 0 such that dimy Tor (R™, M) < o0, the nat-
ural map

: Tor? (R, M) — Tor? (R, M)

s an isomorphzsm of k-spaces.

Proof. Choose a graded free resolution Fy of M as a D-module. Since M
is finitely generated over D, we may assume that each F} is finite free, but
possibly with shifts in the grading. That is, we have F; = @filD(’Yl,j) for
some (3; > 0 and some integers 7; ;. Then Tor (R™,M) = hj(R” ®p F,) by
definition. The maps F; — F;_1 in the complex F, are given by multiplica-
tion by B;_1) X B; matrices Bj whose entries are homogeneous elements of
D. The k-space R™ @9 D is simply R, under the identification r ® 1 — r,
and if 0 € D acts on D via left multiplication, then idg- ®p ¢ corresponds
under this identification to 7(d) : R — R. Passing to direct sums, we see that
the complex R™ ®p F, is isomorphic to

T 2 T Bl o
RO = (- — &2 R2)) 7225 o Riny) 2% & R(y0) — 0),

where 7(B;) denotes the matrix whose entries, still homogeneous elements
of D, are the transposes of the entries of Bj.

The completlon T, is a free resolution of M as a D-module (with F s
@51) and Tor (R™,M A) =h; (RT ®5 .), again by definition. The matrices
defining the d1fferent1als in the complex T, are the same as those in F (that
is, all entries are homogeneous elements in the subring D C D) so that the
complex R ®3 F. is isomorphic to

7(B2) 7(B1)

RP» = (.-- > R* R% RP —0),

which contains R as a subcomL)lex The natural map te : R — RP in-
duces maps Tor (R",M) — Tor (R™, M A) of k-spaces for all j > 0, which
we again denote Lj.

First we show that ¢; is injective on homology for all j > 0. Let z €
@lﬁ 1R(v1,5) be a cycle. Assume that the image of z under ¢; is a boundary,
i.e., that there is y € R%+! such that 7(Bj+1)(y) = 2. Write each component
of y as a formal sum of homogeneous components. Since every entry of
7(Bj+1) is homogeneous and every component of z is a polynomial, we can
write y = y1 + yo where each component of y; is a polynomial and the order
of each component of 7(B;1)(y2) is greater than the maximal degree of all
components of z. It is clear now that 7(Bj1)(y1) = z and 7(Bj11)(y2) = 0.
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Since each component of y; is a polynomial, z is a boundary in the complex
RP+. This implies the injectivity of ¢; on homology, proving part (a).

Now assume that dimy, Tor (R, M) < oo for some j > 0. We show that
tj is an isomorphism on homology Suppose that z = (21,...,23,) is a cy-
cle in R%. Since the homology h; i(RP+) is ﬁmte—dlmensmnal there is an
integer s; such that, when restrlcted to graded pieces of degree greater
than s;, the complex RP is exact at the jth spot. Write 2 as a formal
sum of homogeneous components in the following sense: decompose each
2 as a formal sum ) ;2% 4 of homogeneous elements in R(v;;) (the de-
gree of 2, 4, considered as a homogeneous element in R(v;;), is d) and then
write 2 = > 5 (21.4,- - -, 28,,a) where deg(21 4) = - - - = deg(Zg,,4) = d (again
each 2 4 is considered as a homogeneous element in R(y;;)). Since 7(B;) is
degree-preserving, it follows that z is a cycle (i.e. 7(B;)(Z) = 0) if and only
if 7(B;)(Z4) =0 where Zg = (21,4, ..., 28,,4). Therefore each homogeneous
component zy with d sufficiently large, considered 1 by itself, is a cycle in RP-
and hence is a boundary as well. The formal sum 2’ of all such components is
therefore a boundary in RBJ and all components of zZ — 2’ are polynomials.
That is, z — % belongs to @lﬁ ’ 1 R(v1,5)- Thus Z differs by a boundary from a
cycle in @l ' R(vi5); i-e., tj is surjective on homology. This completes the
proof of part (b) and the proposition. O

Proposition 4.4. Let M be a D-module. For all integers i > 0, there are
commutative diagrams

Hjg(M) —— Tor;;(R", M)

HéR(M) — Torr?fi(ﬁfa ]\//-7)

where the vertical maps are induced by M — M and the horizontal ones are
isomorphisms.

Proof. The horizontal maps are the same as in [1, Propositions 6.2.5.1,
6.2.5.2] which also assert that they are isomorphisms. It remains to show
the commutativity, i.e., that the maps in [1, Propositions 6.2.5.1, 6.2.5.2] are
compatible with completion. To this end, we will analyze these maps more
closely. Viewing D as a D-module, we can consider its de Rham complex
Q°(D), whose differentials are right D-linear and which can be regarded as
a right D-module resolution of R” (see the proof of [1, Proposition 6.2.5.1]).
Tensoring with the (left) D-module M, we obtain a complex Q°*(D) @p M
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of k-spaces whose ith cohomology space (if the complex is indexed cohomo-
logically) is both H (M) (since Q*(D) ®p M can be canonically identified
with the de Rham complex Q*(M) of M) and Tor? ,(R", M) (since we can
calculate this Tor group using the free resolution Q°*(D) — R™ of the first
variable). Repeating this reasoning over the formal power series ring, we see
that the ith cohomology space of the complex Q*(D) ®5 M is simultane-
ously HéR(]\/I\) and Tor> ,(R™, M).
Recall that the natural map of complexes

O*(M) = Q*(D) @ M — Q*(D) @5 M = Q*(M)

of k-spaces, which we have denoted by x°®, induces the maps &’ on cohomol-
ogy. Choose a free resolution F, of M as a D-module. As in Proposition 4.3,
we obtain a chain map

L.:RT®DF.—>§T®@I/:‘:

inducing the maps ¢; on homology. Now consider the totalized tensor product
complexes (2°(D) ®@p Fo)e and (Q2°(D) @5 Fo)e (observe that there is a
natural map of complexes of k-spaces from the former totalized complex to

the latter). We obtain a diagram

Q'(@) ®D M +—— (Q'(@) ®D Fc)o — RT ®D Fo

I | I

—

(D) ®5 M +—— (2°(D) @5 Fo)o — R™ @5 Fo

where all four horizontal arrows are quasi-isomorphisms (by the balancing
of Tor, [8, Theorem 2.7.2]) and both squares are commutative. From this,
by passing to (co)homology, it follows that we have commutative diagrams

Hig (M) —— Tor2 ,(R™, M)

Hiy (M) —— Tor® ,(R7, M)

of k-spaces for all i > 0. O

Proof of Theorem 4.1. It follows from Proposition 4.3 that for all ¢ > 0, ¢,,—;
is an isomorphism in the diagram in Proposition 4.4. Since the horizontal
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arrows in that diagram are also isomorphisms, so is x?, completing the proof.
O

Remark 4.5. As shown in [6], there are indeed non-holonomic graded D-
modules whose de Rham cohomology spaces are all finite dimensional (e.g.
graded Matlis dual of a graded holonomic D-module).

Remark 4.6. If one assumes that M is graded and holonomic, then there is
a short proof that the two k-spaces in Theorem 4.1 have the same dimension,
using recent results from [5] and [6]. To thi send, let M be a graded holonomic
D-module. Then by Proposition 3.5, M is also holonomic. Therefore, both
H!y (M) and H'y (M) are finite-dimensional k-spaces, so it suffices to check
that Hir (M) and HéR(]\//f ) have the same dimension by [1, Propositions
6.2.5.1, 6.2.5.2]. By [6, Theorem 5.3], Hjp (M) and Ext}, (M, E) have the
same dimension; by [5, Theorem 1.3], HéR(]\/I\ ) and Ext” (M, E) have the
same dimension. (Here E is the injective hull of k = R/% as an R-module;
E is also an R-module and R ®r F = E, so both Es are the same, and F is
also the injective hull of k = ﬁ/ﬁ 1 as an }Az-module.) Therefore we need only
show that Ext’, (M, E) = Ext%(M, E) as k-spaces for all j. This is easy to
see directly, by taking a graded free D-module resolution Fy — M and using
F, (resp. F,) to compute the Ext groups: the complexes Hom$, (F,, F') and
Hom%(ﬁ:, E) are the same, so their cohomology spaces coincide.
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