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Abstract

Learning-to-learn – using optimization algorithms to learn a new optimizer – has successfully trained efficient

optimizers in practice. This approach relies on meta-gradient descent on a meta-objective based on the trajectory

that the optimizer generates. However, there were few theoretical guarantees on how to avoid meta-gradient ex-

plosion/vanishing problems, or how to train an optimizer with good generalization performance. In this paper we

study the learning-to-learn approach on a simple problem of tuning the step size for quadratic loss. Our results show

that although there is a way to design the meta-objective so that the meta-gradient remain polynomially bounded,

computing the meta-gradient directly using backpropagation leads to numerical issues that look similar to gradient

explosion/vanishing problems. We also characterize when it is necessary to compute the meta-objective on a separate

validation set instead of the original training set. Finally, we verify our results empirically and show that a similar

phenomenon appears even for more complicated learned optimizers parametrized by neural networks.

1 Introduction

Choosing the right optimization algorithm and related hyper-parameters is important for training a deep neural net-

work. Recently, a series of works (e.g., Andrychowicz et al. (2016); Wichrowska et al. (2017)) proposed to use learn-

ing algorithms to find a better optimizer. These papers use a learning-to-learn approach: they design a class of possible

optimizers (often parametrized by a neural network), and then optimize the parameters of the optimizer (later referred

to as meta-parameters) to achieve better performance. We refer to the optimization of the optimizer as the meta

optimization problem, and the application of the learned optimizer as the inner optimization problem. The learning-

to-learn approach solves the meta optimization problem by defining a meta-objective function based on the trajectory

that the inner-optimizer generates, and then using back-propagation to compute the meta-gradient.

Although the learning-to-learn approach has shown empirical success, there are very few theoretical guarantees

for learned optimizers. In particular, since the optimization for meta-parameters is usually a nonconvex problem, does

it have bad local optimal solutions? Current ways of optimizing meta-parameters rely on unrolling the trajectory of

the inner-optimizer, which is very expensive and often lead to exploding/vanishing gradient problems, is there a way

to alleviate these problems? Can we have a provable way of designing meta-objective to make sure that the inner

optimizers can achieve good generalization performance?

In this paper we answer some of these problems in a simple setting, where we use the learning-to-learn approach

to tune the step size of the standard gradient descent/stochastic gradient descent algorithm. We will see that even in

this simple setting, many of the challenges still remain and we can get better learned optimizers by choosing the right

meta-objective function. Though our results are proved only in the simple setting, we empirically verify the results

using complicated learned optimizers with neural network parametrizations.
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1.1 Challenges of learning-to-learn approach and our results

Metz et al. (2019) highlighted several challenges in the meta-optimization for learning-to-learn approach. First, they

observed that the optimal parameters for the learned optimizer (or even just the step size for gradient descent) can

depend on the number of training steps t of the inner-optimization problem. This was also separately proved theoreti-

cally in a least-squares setting in Ge et al. (2019). Because of this, one needs to do the meta-training for an optimizer

that runs for enough number of steps (similar to the number of steps that it would take when we apply the learned

optimizer). However, when the number of steps is large, the meta-gradient can often explode or vanish, which makes

it difficult to solve the meta-optimization problem.

Our first result shows that this is still true in the case of tuning step size for gradient descent on a simple quadratic

objective. In this setting, we show that there is a unique local and global minimizer for the step size, and we also give

a simple way to get rid of the gradient explosion/vanishing problem.

Theorem 1 (Informal). For tuning the step size of gradient descent on a quadratic objective, if the meta-objective is

the loss of the last iteration, then the meta-gradient can explode/vanish. If the meta-objective is the log of the loss of

the last iteration, then the meta-gradient is polynomially bounded. Further, doing meta-gradient descent with a step

size of 1/
√
k (where k is the number of meta-gradient steps) provably converges to the optimal step size.

Surprisingly, even though taking the log of the objective solves the gradient explosion/vanishing problem, one can-

not simply implement such an algorithm using auto-differentiation tools such as those used in TensorFlow (Abadi et al.,

2016). The reason is that even though the meta-gradient is polynomially bounded, if we compute the meta-gradient

using the standard back-propagation algorithm, the meta-gradient will be the ratio of two exponentially large/small

numbers, which causes numerical issues. Detailed discussion for the first result appears in Section 3.

Another challenge is about the generalization performance of the learned optimizer. If one just tries to optimize

the performance of the learned optimizer on the training set (we refer to this as the train-by-train approach), then the

learned optimizer might overfit. Metz et al. (2019) proposed to use a train-by-validation approach instead, where the

meta-objective is defined to be the performance of the learned optimizer on a separate validation set.

Our second result considers a simple least squares setting where y = 〈w∗, x〉+ ξ and ξ ∼ N (0, σ2). We show that

when the number of samples is small and the noise is large, it is important to use train-by-validation; while when the

number of samples is much larger train-by-train can also learn a good optimizer.

Theorem 2 (Informal). For a simple least squares problem in d dimensions, if the number of samples n is a constant

fraction of d (e.g., d/2), and the samples have large noise, then the train-by-train approach performs much worse

than train-by-validation. On the other hand, when number of samples n is large, train-by-train can get close to error

dσ2/n, which is optimal.

We discuss the details in Section 4. In Section 5 we show that such observations also hold empirically for more

complicated learned optimizers – for an optimizer parametrized by neural network, the generalization performance of

train-by-validation is better when there is more noise or when there are fewer training data.

1.2 Related work

Learning-to-learn for supervised learning The idea of using a neural network to parametrize an optimizer started

in Andrychowicz et al. (2016), which used an LSTM to directly learn the update rule. Before that, the idea of using

optimization to tune parameters for optimzers also appeared in Maclaurin et al. (2015). Later, Li and Malik (2016);

Bello et al. (2017) applied techniques from reinforcement learning to learn an optimizer. Wichrowska et al. (2017)

used a hierarchical RNN as the optimizer. Metz et al. (2019) adopted a small MLP as the optimizer and used dynamic

weighting of two gradient estimators to stabilize and speedup the meta-training process.

Learning-to-learn in other settings Ravi and Larochelle (2016) used LSTM as a meta-learner to learn the update

rule for training neural networks in the few-shot learning setting, Wang et al. (2016) learned an RL algorithm by

another meta-learning RL algorithm, and Duan et al. (2016) learned a general-purpose RNN that can adapt to different

RL tasks.
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Gradient-based meta-learning Finn et al. (2017) proposed Model-Agnostic Meta-Learning (MAML) where they

parameterize the update rule (optimizer) for network parameters and learn a shared initialization for the optimizer using

the tasks sampled from some distribution. Subsequent works generalized or improved MAML, e.g., Rusu et al. (2018)

learned a low-dimensional latent representation for gradient-based meta-learning, and Li et al. (2017) generalized

MAML and enabled the concurrent learning of learning rate and update direction.

Learning assisted algorithms design Similar ideas can also be extended to applications of learning in algorithms

design, where one tries to develop a meta-algorithm selecting an algorithm from a family of parametrized algorithms.

For theoretical guarantees on these meta-algorithms, Gupta and Roughgarden (2017) first established this framework

which models the algorithm-selection process as a statistical learning problem. In particular, their framework can

bound the number of tasks it takes to tune a step size for gradient descent. However, they didn’t consider the meta-

optimization problem. Based on Gupta and Roughgarden (2017), people have developed and analyzed the meta-

algorithms for partitioning and clustering (Balcan et al., 2016), tree search (Balcan et al., 2018a), pruning (Alabi et al.,

2019), machanism design (Balcan et al., 2018c), ridge regression (Denevi et al., 2018), stochastic gradient descent

(Denevi et al., 2019), and private optimization (Balcan et al., 2018b).

Tuning step size/step size schedule for SGD Shamir and Zhang (2013) showed that SGD with polynomial step

size scheduling can almost match the minimax rate in convex non-smooth settings, which was later tightened by

Harvey et al. (2018) for standard step size scheduling. Assuming that the horizon T is known to the algorithm, the

information-theoretically optimal bound in convex non-smooth setting was later achieved by Jain et al. (2019) which

used another step size schedule, and Ge et al. (2019) showed that exponentially decaying step size scheduling can

achieve near optimal rate for least squares regression.

2 Preliminaries

In this section, we first introduce some notations, then formulate the learning-to-learn framework.

2.1 Notations

For any integer n, we use [n] to denote {1, 2, · · · , n}. We use ‖·‖ to denote the ℓ2 norm for a vector and the spectral

norm for a matrix. We use 〈·, ·〉 to denote the inner product of two vectors. For a symmetric matrix A ∈ R
d×d, we

denote its eigenvalues as λ1(A) ≥ · · · ≥ λd(A). We denote the d-dimensional identity matrix as Id. We also denote

the identity matrix simply as I when the dimension is clear from the context. We use O(·),Ω(·),Θ(·) to hide constant

factor dependencies. We use poly(·) to represent a polynomial on the relevant parameters with constant degree.

2.2 Learning-to-learn framework

We consider the learning-to-learn approach applied to training a distribution of learning tasks. Each task is specified

by a tuple (D, Strain, Svalid, ℓ). Here D is a distribution of samples in X × Y , where X is the domain for the sample

and Y is the domain for the label/value. The sets Strain and Svalid are samples generated independently from D, which

serve as the training and validation set (the validation set is optional). The learning task looks to find a parameter

w ∈ W that minimizes the loss function ℓ(w, x, y) : W × X × Y → R, which gives the loss of the parameter w

for sample (x, y). The training loss for this task is f̂(w) := 1
|Strain|

∑

(x,y)∈Strain
ℓ(w, x, y), while the population loss is

f(w) := E(x,y)∼D[ℓ(w, x, y)].
The goal of inner-optimization is to minimize the population loss f(w). For the learned optimizer, we consider it

as an update rule u(·) on weight w. The update rule is a parameterized function that maps the weight at step τ and

its history to the step τ + 1 : wτ+1 = u(wτ ,∇f̂(wτ ),∇f̂(wτ−1), · · · ; θ). In most parts of this paper, we consider

the update rule u as gradient descent mapping with step size as the trainable parameter (here θ = η which is the step

size for gradient descent). That is, uη(w) = w − η∇f̂(w) for gradient descent and uη(w) = w − η∇wℓ(w, x, y) for

stochastic gradient descent where (x, y) is a sample randomly chosen from the training set Strain.
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In the outer (meta) level, we consider a distribution T of tasks. For each task P ∼ T , we can define a meta-

loss function ∆(θ, P ). The meta-loss function measures the performance of the optimizer on this learning task. The

meta objective, for example, can be chosen as the target training loss f̂ at the last iteration (this is the train-by-train

approach), or the loss on the validation set (train-by-validation).

The training loss for the meta-level is the average of the meta-loss across m different specific tasks P1, P2, ..., Pm,

that is, F̂ (θ) = 1
m

∑m
i=1 ∆(θ, Pk). The population loss for the meta-level is the expectation over all the possible

specific tasks F (θ) = EP∼T [∆(θ, P )].
In order to train an optimizer by gradient descent, we need to compute the gradient of meta-objective F̂ in terms

of meta parameters θ. The meta parameter is updated once after applying the optimizer on the inner objective t times

to generate the trajectory w0, w1, ..., wt. The meta-gradient is then computed by unrolling the optimization process

and back-propagating through the t applications of the optimizer. As we will see later, this unroll procedure is costly

and can introduce meta-gradient explosion/vanishing problems.

3 Alleviating gradient explosion/vanishing problem for quadratic objective

First we consider the meta-gradient explosion/vanishing problem. More precisely, we say the meta-gradient ex-

plodes/vanishes if it is exponentially large/small with respect to the number of steps t of the inner-optimizer.

In this section, we consider a very simple instance of the learning-to-learn approach, where the distribution T
only contains a single task P , and the task also just defines a single loss function f 1. Therefore, in this section

F̂ (η) = F (η) = ∆(η, P ). We will simplify notation and only use F̂ (η).
The inner task P is a simple quadratic problem, where the starting point is fixed at w0, and the loss function is

f(w) = 1
2w

⊤Hw for some fixed positive definite matrix H . Without loss of generality, assume w0 has unit ℓ2 norm.

Suppose the eigenvalue decomposition of H is
∑d

i=1 λiuiu
⊤
i . Throughout this section we assume L = λ1(H) and

α = λd(H) are the largest and smallest eigenvalues of H with L > α. For each i ∈ [d], let ci be 〈w0, ui〉 and

let cmin = min(|c1|, |cd|). We assume cmin > 0 for simplicity. If w0 is randomly and uniformly sampled from the

unit sphere, with 0.99 probability cmin is Θ(1/
√
d). Let {wτ,η} be the GD sequence running on f(w) starting from

w0 with step size η. We consider several ways of defining meta-objective, including using the loss of the last point

directly, or using the log of this value. We first show that although choosing F̂ (η) = f(wt,η) does not have any bad

local optimal solution, it has the gradient explosion/vanishing problem.

Theorem 3. Let the meta objective be F̂ (η) = f(wt,η) =
1
2w

⊤
t,ηHwt,η. We know F̂ (η) is a strictly convex function in

η with an unique minimizer. However, for any step size η < 2/L, |F̂ ′(η)| ≤ t
∑d

i=1 c
2
iλ

2
i |1 − ηλi|2t−1; for any step

size η > 2/L, |F̂ ′(η)| ≥ c21L
2t(ηL − 1)2t−1 − L2t.

Note that in Theorem 3, when η < 2/L, |F̂ ′(η)| is exponentially small because |1− ηλi| < 1 for all i ∈ [d]; when

η > 2/L, |F̂ ′(η)| is exponentially large because ηL−1 > 1. Intuitively, gradient explosion/vanishing happens because

the meta-loss function becomes too small or too large. A natural idea to fix the problem is to take the log of the meta-

loss function to reduce its range. We show that this indeed works. More precisely, if we choose F̂ (η) = 1
t log f(wt,η),

then we have

Theorem 4. Let the meta objective be F̂ (η) = 1
t log f(wt,η). We know F̂ (η) has a unique minimizer η∗ and F̂ ′(η) =

O
(

L3

c2minα(L−α)

)

for all η ≥ 0. Let {ηk} be the GD sequence running on F̂ with meta step size µk = 1/
√
k. Suppose

the starting step size η0 ≤ M. Given any 1/L > ǫ > 0, there exists k′ = M6

ǫ2 poly( 1
cmin

, L, 1
α ,

1
L−α) such that for all

k ≥ k′, |ηk − η∗| ≤ ǫ.

For convenience, in the above algorithmic result, we reset η to zero once η goes negative. Note that although we

show the gradient is bounded and there is a unique optimizer, the problem of optimizing η is still not convex because

the meta-gradient is not monotone. We use ideas from quasi-convex optimization to show that meta-gradient descent

can find the unique optimal step size for this problem.

1In the notation of Section 2, one can think that D contains a single point (0, 0) and the loss function f(w) = ℓ(w, 0, 0).
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Surprisingly, even though we showed that the meta-gradient is bounded, it cannot be effectively computed by doing

back-propagation due to numerical issues. More precisely:

Corollary 1. If we choose the meta-objective as F̂ (η) = 1
t log f(wt,η), when computing the meta-gradient using

back-propagation, there are intermediate results that are exponentially large/small in number of inner-steps t.

Indeed, in Section 5 we empirically verify that standard auto-differentiation tools can still fail in this setting. This

suggests that one should be more careful about using standard back-propagation in the learning-to-learn approach.

The proofs of the results in this section are deferred into Appendix A.

4 Train-by-train vs. train-by-validation

Next we consider the generalization ability of simple optimizers. In this section we consider a simple family of

least squares problems. Let T be a distribution of tasks where every task (D(w∗), Strain, Svalid, ℓ) is determined by a

parameter w∗ ∈ R
d which is chosen uniformly at random on the unit sphere. For each individual task, (x, y) ∼ D(w∗)

is generated by first choosing x ∼ N (0, Id) and then computing y = 〈w∗, x〉 + ξ where ξ ∼ N (0, σ2) with σ ≥ 1.

The loss function ℓ(w, x, y) is just the squared loss ℓ(w, x, y) = 1
2 (y − 〈w, x〉)2. That is, the tasks are just standard

least-squares problems with ground-truth equal to w∗ and noise level σ2.

For the meta-loss function, we consider two different settings. In the train-by-train setting, the training set Strain

contains n independent samples, and the meta-loss function is chosen to be the training loss. That is, in each task P ,

we first choose w∗ uniformly at random, then generate (x1, y1), ..., (xn, yn) as the training set Strain. The meta-loss

function ∆TbT (n)(η, P ) is defined to be

∆TbT (n)(η, P ) =
1

2n

n
∑

i=1

(yi − 〈wt,η, xi〉)2.

Here wt,η is the result of running t iterations of gradient descent starting from point 0 with step size η. Note we

truncate a sequence and declare the meta loss is high once the wight norm exceeds certain threshold. Specifically, if

at the τ -th step, ‖wτ,η‖ ≥ 40σ, we freeze the training on this task and set w
(k)
τ ′,η = 40σu for all τ ≤ τ ′ ≤ t, for some

arbitrary vector u with unit norm. As before, the empirical meta objective in train-by-train setting is the average of the

meta-loss across m different specific tasks P1, P2, ..., Pm, that is,

F̂TbT (n)(η) =
1

m

m
∑

k=1

∆TbT (n)(η, Pk). (1)

In the train-by-validation setting, the specific tasks are generated by sampling n1 training samples and n2 vali-

dation samples for each task, and the meta-loss function is chosen to be the validation loss. That is, in each specific

task P , we first choose w∗ uniformly at random, then generate (x1, y1), ..., (xn1 , yn1) as the training set Strain and

(x′
1, y

′
1), ..., (x

′
n2
, y′n2

) as the validation set Svalid. The meta-loss function ∆TbV (n1,n2)(η, P ) is defined to be

∆TbV (n1,n2)(η, P ) =
1

2n2

n2
∑

i=1

(y′i − 〈wt,η, x
′
i〉)2.

Here again wt,η is the result of running t iterations of the gradient descent on the training set starting from point 0, and

we use the same truncation as before. The empirical meta objective is defined as

F̂TbV (n1,n2)(η) =
1

m

m
∑

k=1

∆TbV (n1,n2)(η, Pk), (2)

where each Pk is independently sampled according to the described procedure.

We first show that when the number of samples is small (in particular n < d) and the noise is a large enough

constant, train-by-train can be much worse than train-by-validation, even when n1 + n2 = n (the total number of

samples used in train-by-validation is the same as train-by-train)

5



Theorem 5. Let F̂TbT (n)(η) and F̂TbV (n1,n2)(η) be as defined in Equation (1) and Equation (2) respectively. Assume

n, n1, n2 ∈ [d/4, 3d/4]. Assume noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of training

tasks m ≥ c3 log(mt) and dimension d ≥ c4 log(mt) for certain constants c2, c3, c4. With probability at least 0.99 in

the sampling of training tasks, we have

η∗train = Θ(1) and E
∥

∥wt,η∗

train
− w∗∥

∥

2
= Ω(1)σ2,

for all η∗train ∈ argminη≥0 F̂TbT (n)(η);

η∗valid = Θ(1/t) and E
∥

∥wt,η∗

valid
− w∗∥

∥

2
= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ argminη≥0 F̂TbV (n1,n2)(η). In both equations the expectation is taken over new tasks.

In the lower bound of E
∥

∥wt,η∗

train
− w∗∥

∥

2
, Ω(1) hides no dependency on σ. Note that in this case, the number of

samples n is smaller than d, so the least square problem is under-determined and the optimal training loss would go

to 0 (there is always a way to simultaneously satisfy all n equations). This is exactly what train-by-train would do – it

will choose a large constant learning rate which guarantees the optimizer converges exponentially to the empirical risk

minimizer (ERM). However, when the noise is large making the training loss go to 0 will overfit to the noise and hurt

the generalization performance. Train-by-validation on the other hand will choose a smaller learning rate which allows

it to leverage the information in the training samples without overfitting to noise. Theorem 5 is proved in Appendix B.

We also prove similar results for SGD in Appendix D

We emphasize that neural networks are often over-parameterized, which corresponds to the case when d > n.

Indeed Liu and Belkin (2018) showed that variants of stochastic gradient descent can converge to the empirical risk

minimizer with exponential rate in this case. Therefore in order to train neural networks, it is better to use train-by-

validation. On the other hand, we show when the number of samples is large (n ≫ d), train-by-train can also perform

well.

Theorem 6. Let F̂TbT (n)(η) be as defined in Equation 1. Assume noise level is a constant c1. Given any 1 > ǫ > 0,

assume training set size n ≥ cd
ǫ2 log(nmǫd ), unroll length t ≥ c2 log(

n
ǫd), number of training tasks m ≥ c3n

2

ǫ4d2 log( tnmǫd )
and dimension d ≥ c4 for certain constants c, c2, c3, c4. With probability at least 0.99 in the sampling of training

tasks, we have

E
∥

∥wt,η∗

train
− w∗∥

∥

2 ≤ (1 + ǫ)
dσ2

n
,

for all η∗train ∈ argminη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

Therefore if the learning-to-learn approach is applied to a traditional optimization problem that is not over-

parameterized, it is OK to use train-by-train. In this case, the empirical risk minimizer (ERM) already has good

generalization performance, and train-by-train optimizes the convergence towards the ERM. We defer the proof of

Theorem 6 into Appendix C.

5 Experiments

Optimizing step size for quadratic objective We first validate the results in Section 3. We fixed a 20-dimensional

quadratic objective as the inner problem and vary the number of inner steps t and initial value η0. We compute the

meta-gradient directly using a formula which we derive in supplementary material. We use the algorithm suggested in

Theorem 4, except we choose the meta-step size to be 1/(100
√
k) as the constants in the Theorem were not optimized.

An example training curve of η for t = 80 and η0 = 0.1 is shown in Figure 1, and we can see that η converges

quickly within 300 steps. Similar convergence also holds for larger t or much larger initial η0. Figure 2 shows that as

observed in Metz et al. (2019), the optimal step size depends on the number of inner-training steps.

In contrast, we also implemented the meta-training with Tensorflow, where the code was adapted from the previous

work of Wichrowska et al. (2017). Experiments show that in many settings (especially with large t and large η0) the

implementation does not converge.
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Figure 1: Training η (t = 80, η0 = 0.1)
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Figure 2: Optimal η∗ for different t

Train-by-train vs. train-by-validation, synthetic data Here we validate our theoretical results in Section 4 using

the least-squares model defined there. In all experiments we fix the input dimension d to be 1000.

In the first experiment, we fix the size of the data (n = 500 for train-by-train, n1 = n2 = 250 for train-by-

validation). Under different noise levels, we find the optimal η∗ by a grid search on its meta-objective for train-by-train

and train-by-validation settings respectively. We then use the optimal η∗ found in each of these two settings to test on

10 new least-squares problem. The mean RMSE, as well as its range over the 10 test cases, are shown in Figure 3. We

can see that for all of these cases, the train-by-train model overfits easily, while the train-by-validation model performs

much better and does not overfit. Also, when the noise becomes larger, the difference between these two settings

becomes more significant.
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Figure 3: Training and testing RMSE for different σ values (500 samples)

In the next experiment, we fix σ = 1 and change the sample size. For train-by-validation, we always split the

samples evenly into training and validation set. The results are shown in Figure 4. We can see that the gap between

these two settings is decreasing as we use more data, as expected by Theorem 6.
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Figure 4: Training and testing RMSE for different samples sizes (σ = 1)

Train-by-train vs. train-by-validation, MLP optimizer on MNIST Finally we consider a more complicated multi-

layer perceptron (MLP) optimizer on MNIST data set. We use the same MLP optimizer as in Metz et al. (2019), details

of this optimizer is discussed in supplementary material.
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As the inner problem, we use a two-layer fully-connected network of 100 and 20 hidden units with ReLU activa-

tions. The inner objective is the classic 10-class cross entropy loss, and we use mini-batches of 32 samples at inner

training.

To see whether the comparison between train-by-train and train-by-validation behaves similarly to our theoretical

results, we consider different number of samples and different levels of label noise. First, consider optimizing the

MNIST dataset with small number samples. In this case, the train-by-train setting uses 1,000 samples (denoted as

“TbT1000”), and we use another 1,000 samples as the validation set for the train-by-validation case (denoted as

“TbV1000+1000”). To be fair to train-by-train we also consider TbT2000 where the train-by-train algorithm has

access to 2000 data points. Figure 5 shows the results – all the models have training accuracy close to 1, but both

TbT1000 and TbT2000 overfits the data significantly, whereas TbV1000+1000 performs well.
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Figure 5: Training and testing accuracy for different models (1000 samples, no noise)

To show that when the noise is higher, the advantage of train-by-validation increases, we keep the same sample

size and consider a “noisier” version of MNIST, where we randomly change the label of a sample with probability 0.2

(the new label is chosen uniformly at random, including the original label). The results are shown in Figure 6. We

can see that both train-by-train models, as well as SGD, overfit easily with training accuracy close to 1 and their test

performances are low. The train-by-validation model performs much better.
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Figure 6: Training and testing accuracy for different models (1000 samples, 20% noise)

Finally we run experiments on the complete MNIST data set (without label noise). For the train-by-validation

setting, we split the data set to 50,000 training samples and 10,000 validation samples. As shown in Figure 7, in this

case train-by-train and train-by-validation performs similarly (in fact both are slightly weaker than the tuned SGD

baseline). This shows that when the sample size is sufficiently large, train-by-train can get comparable results as

train-by-validation.
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