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Abstract

In this paper, we consider domain-invariant deep learning by explicitly modeling
domain shifts with only a small amount of domain-specific parameters in a Convo-
lutional Neural Network (CNN). By exploiting the observation that a convolutional
filter can be well approximated as a linear combination of a small set of dictio-
nary atoms, we show for the first time, both empirically and theoretically, that
domain shifts can be effectively handled by decomposing a convolutional layer
into a domain-specific atom layer and a domain-shared coefficient layer, while both
remain convolutional. An input channel will now first convolve spatially only with
each respective domain-specific dictionary atom to “absorb" domain variations,
and then output channels are linearly combined using common decomposition coef-
ficients trained to promote shared semantics across domains. We use toy examples,
rigorous analysis, and real-world examples with diverse datasets and architectures,
to show the proposed plug-in framework’s effectiveness in cross and joint domain
performance and domain adaptation. With the proposed architecture, we need only
a small set of dictionary atoms to model each additional domain, which brings a
negligible amount of additional parameters, typically a few hundred.

1 Introduction

Training supervised deep networks requires large amount of labeled training data; however, well-
trained deep networks often degrade dramatically on testing data from a significantly different
domain. In real-world scenarios, such domain shifts are introduced by many factors, such as different
illumination, viewing angles, and resolutions. Research topics such as transfer learning and domain
adaptation are studied to promote invariant representations across domains with different levels of
availabilities of annotated data.

Recent efforts on learning cross-domain invariant representations using deep networks generally
fall into two categories. The first one is to learn a common network with constraints encouraging
invariant feature representations across different domains [17, 19, 34]. The feature invariance is
usually measured by feature statistics like maximum mean discrepancy, or feature discriminators
using adversarial training [6]. While these methods introduce no additional model parameters, the
effectiveness largely depends on the degree of domain shifts. The other direction is to explicitly
model domain specific characteristics with a multi-stream network structure where different domains
are modeled by corresponding sub-networks at the cost of extra parameters and computations [26].

In this paper, we model domain shifts through domain-adaptive filter decomposition (DAFD) with
layer branching. At a branched layer, we decompose each filter over a small set of domain-specific
dictionary atoms to model intrinsic domain characteristics, while enforcing shared cross-domain
decomposition coefficients to align invariant semantics. A regular convolution is now decomposed
into two steps. First, a domain-specific dictionary atom convolves spatially only each individual input
channel for shift “correction.” Second, the “corrected” output channels are weighted summed using
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domain-shared decomposition coefficients (1x 1 convolution) to promote common semantics. When
domain shifts happen in space, we rigorously prove that such layer-wise “correction” by the same
spatial transform applied to atoms suffices to align the learned features, contributing to the needed
theoretical foundations in the field.

Comparing to the existing subnetwork-based methods, the proposed method has several appealing
properties: First, only a very small amount of additional trainable parameters are introduced to
explicitly model each domain, i.e., domain-specific atoms. The majority of the parameters in the
network remain shared across domains, and learned from abundant training data to effectively
avoid overfitting. Furthermore, the decomposed filters reduce the overall computations significantly
compared to previous works, where computation typically grows linearly with the number of domains.

We conduct extensive real-world face recognition (with domain shifts and simultaneous multi-domains
inputs), image classification, and segmentation experiments, and observe that, with the proposed
method, invariant representations and performance across domains are consistently achieved without
compromising the performance of individual domain.

Our main contributions are summarized as follows:

* We propose plug-in domain-invariant representation learning through filter decomposition
with layer branching, where domain-specific atoms are learned to counter domain shifts, and
semantic alignments are enforced with cross-domain common decomposition coefficients.

* We both theoretically prove, contributing the much needed foundations in CNN-based
invariant learning, and empirically demonstrate that by stacking the atom-decomposed
branched layer, invariant representations across domains are achieved progressively.

* The majority of network parameters remain shared across domains, which alleviates the
demand for massive annotated data from every domain, and introduces only a small amount
of additional computation and parameter overhead. Thus the proposed approach serves
as an efficient way for domain invariant learning and its applications to domain shifts and
simultaneous multi-domain tasks.
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Figure 1: Three candidate architectures considered for domain-invariant representation learning. In
(a), a set of common network parameters are trained to model both source and target domains. In
(b), the domain characteristics are explicitly modeled by two sets of convolutional filters in each
convolutional layer. Our approach is illustrated in (c) where domain-adaptive atoms are learned to
“absorb" domain shifts, while the decomposition coefficients are shared across domains to promote
and exploit common semantics.

2 Domain-adaptive Filter Decomposition for Invariant Learning

A straightforward way to address domain shifts is to learn from multi-domain training data a single
network as in Figure 1(a). However, the lack of explicitly modelling of individual domains often
results in unnecessary information loss and performance degradation as discussed in [26]. Thus, we
often simultaneously observe underfitting for domains with abundant training data, and overfitting for
domains with limited training. In this section, we start with a simplistic pedagogical formulation,
domain-adaptive layer branching as in Figure 1(b), where domain shifts are modeled by a respective



branch of filters in a layer, one branch per domain. Each branch is learned only from domain-specific
data, while non-branched layers are learned from data from all domains. We then propose to extend
basic branching to atom-decomposed branching as in Figure 1(c), where domain characteristics are
modeled by domain-specific dictionary atoms, and shared decomposition coefficients are enforced to
align cross-domain semantics.

2.1 Pedagogical Branching Formulation

We start with the simple-minded branching formulation in Figure 1(b). To model the domain-specific
characteristics, at the first several convolutional layers, we dedicate a separate branch to each domain.
Domain shifts are modeled by an independent set of convolutional filters in the branch, trained
respectively with errors propagated back from the loss functions of source and target domains. For
supervised learning, the loss function is the cross-entropy for each domain. For unsupervised learning,
the loss function for the target domain can be either the feature statistics loss or the adversarial loss.
The remaining layers are shared across domains. We assume one target domain and one source
domain in our discussion, while multiple domains are supported. Note that, though we adopt the
source vs. target naming convention in the domain adaptation literature, we address here a general
domain-invariant learning problem.

Domain-adaptive branching is simple and straightforward, however, it has the following drawbacks:
First, both the number of model parameters and computation are multiplied with the number of
domains. Second, with limited target domain training data, we can experience overfitting in deter-
mining a large amount of parameters dedicated to that domain. Third, no constraints are enforced to
encourage cross-domain shared semantics. We address these issues through layer branching with the
proposed domain-adaptive filter decomposition.

2.2 Atom-decomposed Branching

To simultaneously counter domain shifts and enforce cross-domain shared semantics, we decompose
each convolutional filter in a branched layer into domain-specific dictionary atoms, and cross-domain
shared coefficients, as illustrated in Figure 2.
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across domains. Contrary to single domain works such as [23, 30, 35, 36] that incorporate dictionaries
into CNNs, the domain-adaptive dictionary atoms are independently learned from the corresponding
domain data to model domain shifts, and the shared decomposed coefficients are learned from the
massive data from multiple domains. Note that thanks to this proposed structure, only a small amount
of additional parameters is required here to model each additional domain, typically a few hundred.

With the above domain-adaptive filter decomposition, at each branched layer, a regular convolution is
now decomposed into two: First, a domain-specific atom convolves each individual input channel
for domain shift “correction.” Second, the “corrected" output channels are weighted summed using
domain-shared decomposition coefficients (1x 1 convolution) to promote common semantics. A
toy example is presented in supplementary material Figure A.1 for illustrating the intuition behind
the reason why manipulating dictionary atoms alone can address domain shifts. We generate target
domain data by applying two trivial operations to source domain images: First, every 3 X 3 non-
overlapping patch in each image is locally rotated by 90°. Then, images are negated by multiplying
with —1. Domain-invariant features are observed by manipulating dictionary atoms alone. We will



rigorously prove in Section 3 why such layer-wise “correction” aligns features across domains, and
present real-world examples in the experiments.

Parameters and Computation Reduction. Suppose that both input and output features have the
same spatial resolution of W x W, in each forward pass in a regular convolutional layer, there are
totally W2 x ¢’ x C' x (2L? + 1) flops for each domain. While in our model, each domain only
introduces W?2 x C’ x 2K (L?+C') flops, where K is the number of dictionary atoms. For parameters,
there are totally D x C’ x C' x L? parameters in a regular convolutional layer where D is the number
of domains which is typically 2 in our case. In our model, each layer has only K x (C’ x C'+ D x L?)
parameters. Taking VGG-16 [29] as an example with an input size of 224 x 224, a regular VGG-16
with branching, Fig 1(b) and [25, 26], requires adding 14.71M parameters and 15.38G flops in
convolutional layers to handle each additional domain. With the proposed method (Fig 1(c)), VGG-16
only requires adding 702 parameters and 10.75G flops to handle one additional domain (K=6).

3 Provable Invariance with Adaptive Atoms

In this section, we theoretically prove that the features produced by the source and target networks
from domain-transferred inputs can be aligned by the proposed framework of only adjusting multi-
layer atoms, assuming a generative model of the source and target domain images via CNN. Since
convolutional generative networks are a rich class of models for domain transfer [13, 22], our
analysis provides a theoretical justification of the proposed approach, providing a contribution to the
theoretical foundations of domain adaptation. Diverse examples in the experiment section show the
applicability of the proposed approach is potentially larger than what is proved here. All proofs are in
the supplementary material Section D.

Filter Transform via Atom Transform. Let w, and w; be the filters in the branched convolutional
layer for the source and target domains respectively, and similarly denote the source and target atoms
by 9, s and v, ;. In the proposed atom decomposition architecture, the source and target domain
filters are linear combinations of the domain-specific dictionary atoms with shared decomposition
coefficients, namely

we(u) = Zaklﬁk,s(u)v wy(u) = Zak¢k,t(u)~
% %

Certain transforms of the filter can be implemented by only transforming the dictionary atoms,
including

(1) A linear correspondence of filter values. Let A : R — R be a linear mapping, by linearity,
Vs () = P (u) = A(tr,s () applies ws(u) — wi(u) = Mws(u)).
E.g. the negation A(§) = —A(), as shown in supplementary material Figure A.1.

(2) The transformation induced by a displacement of spatial variable, i.e., “‘spatial transform”
of filters, defined as D,w(u) = w(u — 7(u)), where 7 : R? — R? is a differentiable
displacement field. Note that the dependence on spatial variable  in a filter is via the atoms,
thus ¥y, ¢ — Yr+ = D,y s applies ws — wy = Dywg.

If such filter adaptations are desired in the branching network, then it suffices to branch the dictionary
atoms while keeping the coefficients a; shared, as implemented in the proposed architecture shown
in Figure 1(c). A fundamental question is thus how large is the class of possible domain shifts that
can be corrected by these “allowable” filter transforms. In the rest of the section, we show that if
the domain shifts in the images are induced from a generative CNN where the filters for source and
target differ by a sequence of allowable transforms, then the domain shift can be provably eliminated
by another sequence of filter transforms which can be implemented by atom branching only.

Provable Invariance. Stacking the approximate commuting relation, Lemma I in supplementary
material Section D, in multiple layers allows to correct a sequence of filter transforms in previous
convolutional layers by another sequence of “symmetric” ones. This means that if we impose a
convolutional generative model on the source and target input images, and assume that the domain
transfer results from a sequence of spatial transforms of filters in the generative net, then by correcting



these filter transforms in the subsequent convolutional layers we can guarantee the recovery of the
same feature mapping. The key observation is that the filter transfers can be implemented by atoms
transfer only.

We summarize the standard theoretical assumptions as follows:

(A1) The nonlinear activation function o in any layer is non-expansive,

(A2) In the generative net (where layer is indexed by negative integers), wg_l) = Dlwg_l), where
D, = D,,, 7isodd and |V7i|oo < € < % forall [ = 1,---, L. The biases in the target
generative net are mildly adjusted accordingly due to technical reasons (to preserve the
“baseline output” from zero-input, c.f. detail in the proof).

(A3) In the generative net, ||wgfl)|\1 < 1 for all [, and so is w™ = Dlwgfl). Same for the

feed-forward convolutional net taking the generated images as input, called “feature net”:

The source net filters have ngl) it <1lforl=1,2---,and same with Dyw? which will
be set to be wt(l). Also, wg_l) and wgl) are both supported on 2/*B forl =1,--- , L.
One can show that ||D,w||; = ||w|/y when (I — p) is a rigid motion, and generally ||| D wl/; —

[lw]l1] < ¢|VT|oollw]]1 which is negligible when ¢ is small. Thus in (A3) the boundedness of the
1-norm of the source and target filters imply one another exactly or approximately. The boundedness
of 1-norm of the filters preserves the non-expansiveness of the mapping from input to output in a
convolutional layer, and in practice is qualitatively preserved by normalization layers. Also, as a
typical setting, (A3) assumes that the scales j; in the generative net (the (—I)-th layer) and the feature
net (the [-th layer) are matched, which simplifies the analysis and can be relaxed.

Theorem 1. Suppose that X and X, are source and target images generated by L-layer gener-
ative CNN nets with source and target filters w(_l), w!™Y respectively from the common repre-

sentation h. Under (Al)-(A3), the output at the L-th layer of the target feature CNN from X,

by setting wt(l) = Dlwgl) in all layers which can be implemented by atom branching, approxi-
mates that of the source feature CNN from X up to an error which is bounded in I-norm by

4e {(ZZL:1 291)||Vhl|1 + 2L]|A|| 1} , and the second term vanishes if (I, — 7,) are rigid motions, e.g.,
rotation.

4 Experiments

In this section, we perform extensive experiments to evaluate the performance of the proposed
domain-adaptive filter decomposition. We start with the comparisons among the 3 architectures
listed in Figure 1 on two supervised tasks. To demonstrate the proposed framework as one principled
way for domain-invariant learning, we then conduct a set of domain adaptation experiments. There
we show, by simply plugging the proposed domain filter decomposition into regular CNNs used in
existing domain adaptation methods, we consistently observe performance improvements, which
well-illustrate that our method is orthogonal to other domain adaptation methods.

4.1 Architecture Comparisons

We start with two supervised tasks performed on the three architectures listed in Figure 1, regular
CNN (Al), basic branching (A2), and branching with domain-adaptive filter decomposition (A3).
The networks with DAFD are trained end-to-end with a summed loss for domains, and the domain-
specific atoms are only updated by the error from the corresponding domain, while the decomposition
coefficients are updated by the joint error across domains.

Supervised domain adaptation on images. The first task is supervised domain adaptation, where
we adopt a challenging setting by using MNIST as the source domain, and SVHN as the target
domain. We perform a series of experiments by progressively reducing the annotated training data for
the target domain. We start the comparisons at 10% of the target domain labeled samples, and end at
0.5% where only 366 labeled samples are available for the target domain. The results on test set for
both domains are presented in Table 1. It is clearly shown that when training the target domain with
small amount of data, a network with basic branching suffers from overfitting to the target domain



Table 1: Accuracy (%) on MNIST->SVHN
for supervised domain adaptation. Al, A2,
and A3 correspond to regular CNN, basic
branching, and branching with DAFD shown
in Figure 1, respectively.

Table 2: Cross-domain simultaneous face
recognition on NIR-VIS-2.0. A1, A2, and A3
correspond to regular CNN, basic branching,
and branching with domain-adaptive filter de-
composition shown in Figure 1, respectively.

Scal Source domain Target domain
Al | 984 964 980 | 816 802 610 Sl gl o8 o
A2 99.2 986 97.6 | 814 784 49.6 A3 97.16 95.03 99.15
A3 994 988 988 | 856 822 644

because of the large amount of domain specific parameters. While regular CNN generates well on
target domain, the performance on source domain degrades when the number of target domain data
is comparable. A network with the proposed domain-adaptive filter decomposition significantly
balances the learning of both the source and the target domain, and achieves best accuracies on both
domains regardless of the amount of annotated training data for the target domain. The feature space
of the three candidate architectures are visualized in Figure 3.

(a) Feature space in (a) (b) Feature space in (b) (c) Feature space in (c)

Figure 3: The feature space of the three candidate architectures in Figure 1, MNIST — SVHN,
are visualized using t-SNE [21] in (a), (b), (c), respectively. The obtained superior cross-domain
invariance of the proposed framework can be clearly observed in (c).

Supervised simultaneous cross-domain face recognition. Besides standard domain adaptation,
the proposed domain-adaptive filter decomposition can be extended to general tasks that involves
more than one visual domain; domain adaptation is performed without loosing the power of the
original domain and multiple-domains can be simultaneously exploited. Here we demonstrate this
by performing experiments on supervised cross-domain face recognition. We adopt the NIR-VIS
2.0 [16], which consists of 17,580 NIR (near infrared) and VIS (visible light) face images of 725
subjects, and perform cross-domain face recognition. We adopt VGG16 as the base network structure,
branch all the convolutional layers with the proposed domain-adaptive filter decomposition, and
train the network from scratch. In each convolutional layer, two set of dictionary atoms are trained
for modeling the NIR and the VIS domain, respectively. Specifically, one VIS image and one NIR
image are fed simultaneously to the network, and the feature vectors of both domains are averaged to
produce the final cross-domain feature, which is further fed into a linear classifier for classifying the
identity. While the training is conducted using both domains simultaneously, we test the network
under three settings including feeding single domain inputs only (VIS Acc and NIR Acc in Table 2)
and both domain inputs (VIS+NIR Acc in Table 2). Quantitative comparisons demonstrate that
branching with the proposed DAFD performs superiorly even with a missing input domain. Note
that A2 requires additional 14.71M parameters over Al, while our method requires only 0.0007M as
shown in supplementary material Table A.1.

4.2 Experiments on Standard Domain Adaptations

In this section, we perform extensive experiments on unsupervised domain adaptation. Note that
the objective of the experiments in this section is not to validate the proposed domain-adaptive
filter decomposition as just another new method for domain adaptation. Instead, since most of the
state-of-the-art domain adaptation methods adopt the regular CNN (A1) with completely shared pa-
rameters for domains, we show the compatibility and the generality of the proposed domain-adapting



filter decomposition by plugging it into underlying domain adaptation methods, and evaluate the
effectiveness by retraining the networks using exactly the same setting and observing the performance
improvement over the underlying methods. Diverse real-world domain shifts including different
sensors, different image sources, and synthetic images, and applications on both classification and
segmentation are examined in these experiments. Together with the experiments in the previous
section, this further stresses the plug-and-play virtue of the proposed framework.

In practise, instead of learning independent o .
source and target domain atoms, we learn the Table 3: Accuracy (%) on Digits for unsupervised

residual between the source and the target do- domain adaptation.
main atoms. The residual is initialized by full

X X it Methods [ M=U U=M S—M Avg.
Zeros, and tralnf:d by loss for encouraging in- DANN : : 79 :
variant features in the underlying methods, e.g., DDA 4wl 760 sl
. . . + . B B 23
the adversarial loss 1n.ADDA .[33]. We CONSiS-  — D | 920 w52 SLIALIAT) 08
tently observe that this stabilizes the training ADDA +DAFD | 914 948 82.9 89.7 (5.5% 1)
07
and promotes faster convergence. CDAN+E+DAFD | 968 9838 96.6 97.4(3.2% 1)

Image classification. We perform experiments on three public digits datasets: MNIST, USPS, and
Street View House Numbers (SVHN), with three transfer tasks: USPS to MNIST (U — M), MNIST
to USPS (M — U), and SVHN to MNIST (S — M). Classification accuracy on the target domain test
set samples is adopted as the metric for measuring the performance. We perform domain-adaptive
domain decomposition on state-of-the-art methods DANN [6], ADDA [33], and CDAN+E [18].
Quantitative comparisons are presented in Table 3, demonstrating significant improvements over
underlying methods.

Office-31. Office-31 [27] is one of the most widely used datasets for visual domain adaptation,
which has 4,652 images and 31 categories collected from three distinct domains: Amazon (A),
Webcam (W), and DSLR (D). We evaluate all methods on six transfer tasks A — W, D —- W, W —
D,A —D,D — A, and W — A. Two feature extractors, AlexNet [14] and ResNet [9] are adopted for
fair comparisons with underlying methods. Specifically, ImageNet initialization are widely used for
ResNet in the experiments with Office-31, and we consistently observe that initialization is important
for the training on Office-31. Therefore, when training ResNet based networks with domain-adaptive
filter decomposition, we initialize the feature extractor using parameters decomposed from ImageNet
initialization. The quantitative comparisons are in Table 4.

Table 4: Accuracy (%) on Office-31 for unsupervised domain adaptation (AlexNet and ResNet).

\ Method | A=W D—W W —D A—D D—A W — A Avg.
B AlexNet (no adaptation) 61.6+05 954403 99.00.2 638405  511£06  49.8+04 70.1
2 DANN [6] 73.04£05 964403 99.240.3 723403 534404 512405 74.3
5 ADDA [33] 735406 962404 98.8£0.4 71.6£04 546405  53.5+0.6 74.7
< DANN + DAFD 744403 97.1+0.4 99.140.4 742403 568405  53.140.7 75.8 (2.3% 1)
ADDA + DAFD 772405 97.94+0.4 98.54+0.2 732404 554406  57.84+0S5 76.7 (27% 1)
ResNet-50 (no adaptation) | 684402  96.7+0.1 99.340.1 689402 625403  60.7+0.3 76.1
DANN [6] 820404  96.940.2 99.140.1 797404 682404 674405 822
3 ADDA [33] 86.240.5 962403 98.440.3 778403 695404  68.940.5 82.9
% CDAN+E [18] 94.140.1  98.6£0.1 100.04.0 929402 710403  69.3+03 87.7
~ CAN [5] 945403  99.1402 99.8+£0.2 950403 780403  77.0+03 90.6
DANN + DAFD 864404  96.840.2 99.240.1 844404 705404 688404  843523% 1)
ADDA + DAFD 86.8+0.4  97.7£0.1 98.440.1 805403 71104  69.1£0.5 83.9 (1.2% 1)
CDAN+E + DAFD 95.640.1  98.8+0.1 100.0+£0.0 935402  76.6+0.5 713404 89.3 (1.8% 1)
CAN + Ours 952402 992402 99.940.1 96.1+0.2 789403 782403  91.27(0.7% 1)

Image segmentation. Beyond image classification tasks, we perform a challenging experiment
on image segmentation to demonstrate the generality of the proposed domain-adaptive filter decom-
position. We perform unsupervised adaptation from the GTA dataset [24] (images generated from
video games) to the Cityscapes dataset [4] (real-world images), which has a significant practical
value considering the expensive cost on collecting annotations for image segmentation in real-world
scenarios. Two underlying methods FCNs in the wild [12] and AdaptSegNet [31] are adopted for
comprehensive comparisons. Based on the underlying methods, all the convolutional layers are
decomposed using domain-adaptive filter decomposition, and all the transpose-convolutional layers
are kept sharing by both domains. For quantitative results in Table 5, we use intersection-over-union,



i.e., IoU = m, where TP, FP, and FN are the numbers of true positive, false positive, and
false negative pixels, respectively, as the evaluation metric. As with the previous examples, our
method improves all state-of-the-art architectures. Qualitative results are shown in Figure 4 and

supplementary material Figure A.2, and data samples are in Figure 5.

Table 5: Unsupervised DA for semantic segmentation: GTA — Cityscapes

Class-wide ToU

Methods ToU = ©

> o N & N o o¢

> A P Q & P Q> S & Y & . . P &
& & & S| Q°\a ¥ \"“& & @(& B S| & \&"& & «

No Adapt (VGG) 17.9 26.0 149 65.1 55 129 | 8.9 6.0 2.5 70.0 29 47.0 | 245 0.0 | 400 | 12.1 1.5 0.0 0.0 0.0

No Adapt (ResNet) 36.6 758 16.8 712 125 | 21.0 | 255 | 30.1 20.1 | 81.3 | 24.6 | 70.3 | 53.8 | 264 | 499 | 172 | 259 | 65 | 253 36.0
FCN WLD (VGG) 27.1 70.4 324 62.1 149 | 54 | 109 | 142 27 | 792 | 213 | 646 | 441 42 | 704 | 80 7.3 | 00 35 0.0
AdaptSegNet (VGG) 350 87.3 29.8 78.6 211 | 182 | 225 | 215 1.0 | 797 | 296 | 71.3 | 46.8 6.5 | 80.1 | 23.0 | 269 | 0.0 10.6 0.3
AdaptSegNet (ResNet) 42.4 86.5 36.0 79.9 234 | 233 | 239 | 352 14.8 | 834 | 333 | 756 | 58.5 | 27.6 | 73.7 | 32.5 | 354 | 3.9 30.1 28.1
FCN WLD + DAFD 32.7(20.7% 1) | 76.4 36.7 68.8 176 | 58 | 11.1 139 29 |80.0 | 244 | 69.1 | 475 43 | 744 | 141 | 63 | 0.0 2.1 0.0
AdaptSegNet (VGG) + DAFD 364 (4.0% 1) | 86.7 353 78.8 22.8 | 145 | 239 | 219 182 | 821 | 322 | 66.8 | 49.6 | 10.1 | 81.2 | 19.6 | 27.1 | 1.1 11.4 42
AdaptSegNet (ResNet) + DAFD | 45.0(6.1% 1) | 88.2 385 8.12 250 | 238 | 229 | 35.1 144 | 849 | 341 | 799 | 59.5 | 29.1 | 755 | 30.1 | 352 | 2.9 28.7 29.1

(a) Target domain image. (b) Before adaptation. (c) After adaptation. (d) Ground truth.

Figure 4: Qualitative results for domain adaptation segmentation. The samples are randomly selected
from the validation subsets of Cityscapes.

- “’“ N —= o

(a) Source domain (GTA: video game images). (b) Target domain (Cityscapes: real-world images).

Figure 5: Dataset samples for segmentation experiments (video games — street views).

5 Related Work

Recent achievements on domain-invariant learning generally follow two directions. The first direction
is learning a single network,which is encouraged to produce domain-invariant features by minimizing
additional loss functions in the network training [6, 17, 20, 19, 34]. The Maximum Mean Discrepancy
(MMD) [7], and MK-MMD [8] in [17], are adopted as the discrepancy metric among domains.
Beyond the first order statistic, second-order statistics are utilized in [10]. Besides the hand-crafted
distribution distance metrics, [6, 32, 18] resort to adversarial training and achieve superior perfor-
mances. Various distribution alignment methods, e.g., [37, 15], are proposed to improve the invariant
feature learning. While effective in certain scenarios, the performance of learning invariant features
using a shared network is largely constrained by the degree of domain shift as discussed in [26].
Meanwhile, some recent works like [37, 39] suggest important insights on whether it is sufficient to
do domain adaptation by invariant representation and small empirical source risk, which shed light on
exploring more effective alignment methods that are robust to common issues like different marginal
label distributions. Another popular direction is modeling each domain explicitly using auxiliary
network structures. [1] proposes feature representation by two components where domain similarities
and shifts are modeled by a private component and a shared component separately. A completely
two-stream network structure is proposed in [26], where auxiliary residual networks are trained to
adapt the layer parameters of the source to the target domain. [3] proposes attacking domain shifts
by domain-specific batch normalization, which we believe is compatible with the proposed DAFD



for better performance. Another popular direction for domain adaptation is to remap the input data
between the source and the target domain for domain adaptation [22, 13, 11], which is not included
in the discussion since we are focusing on learning invariant feature space. Also, as discussed in [26],
while remarkable performances are witnessed by adopting pseudo-labels [17, 28, 38], we consider
adopting pseudo-labels as a plug-and-play improvement that can be equipped to our method, but does
not align with the main focus of our research. Finally, learning invariance is of relevance beyond
domain adaptation, e.g., in the field of causal inference [2].

6 Conclusion

We proposed to perform domain-invariant learning through domain-adaptive filter decomposition.
To model domain shifts, convolutional filters in a deep convolutional network are decomposed
over domain-adaptive dictionary atoms to counter domain shifts, and cross-domain decomposition
coefficients are constrained to unify common semantics. We present the intuitions of countering
domain shifts by adapting atoms through toy examples, and further provide theoretical analysis.
Extensive experiments on multiple tasks and network architectures with significant improvements
validate that, by stacking domain-adaptive branched layers with filter decomposition, complex domain
shifts in real-world scenarios can be bridged to produce domain-invariant representation, which are
reflected by both experimental results and feature space visualizations, all this at virtual no additional
memory or computational cost when adding domains.

7 Broader Impact

In this paper, we introduced a plug-in framework to explicitly model domain shifts in CNNs. With
the proposed architecture, we need only a small set of dictionary atoms to model each additional
domain, which brings a negligible amount of additional parameters, typically a few hundred. We
consider our plug-and-play method a general contribution to deep learning, assuming no particular
application.
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