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Abstract

Is analogical reasoning a task that must be learned to solve
from scratch by applying deep learning models to massive
numbers of reasoning problems? Or are analogies solved by
computing similarities between structured representations of
analogs? We address this question by comparing human
performance on visual analogies created using images of
familiar three-dimensional objects (cars and their subregions)
with the performance of alternative computational models.
Human reasoners achieved above-chance accuracy for all
problem types, but made more errors in several conditions
(e.g., when relevant subregions were occluded). We compared
human performance to that of two recent deep learning models
(Siamese Network and Relation Network) directly trained to
solve these analogy problems, as well as to that of a
compositional model that assesses relational similarity
between part-based representations. The compositional model
based on part representations, but not the deep learning models,
generated qualitative performance similar to that of human
reasoners.
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computational modeling, deep learning

Introduction

Two Computational Approaches to Analogy Analogical
reasoning—the ability to recognize and exploit similarity
based on the extrinsic relations that are shared between sets
of entities, rather than the intrinsic features shared between
individual entities—is widely viewed as a hallmark of human
intelligence (Holyoak, 2012). To take a simple example, an
arm and a body are analogous to a branch and a tree because
an arm is an extended part of a body, just as a branch is an
extended part of a tree. Computational models of analogy
developed in cognitive science and artificial intelligence (AI)
fall into two broad classes. One approach, popular in recent
Al work, builds on deep neural networks that support training
from raw input stimuli (e.g., image pixels, or words in a text)
to a final task in an end-to-end manner. Learning in these
networks is typically guided by minimizing errors in solving
a particular task. This approach is now moving beyond tasks
involving pattern recognition (such as object classification),
for which deep learning has achieved great success, to
reasoning tasks. The deep learning approach to analogy is to

view it as a task for which a deep neural network can be
trained end-to-end by providing massive datasets consisting
of reasoning problems. This approach has been applied with
some success to solving visual analogy problems, notably
problems inspired by Raven’s Progressive Matrices (RPM,;
Raven, 1938). After extensive training with RPM-like
problems, deep neural networks have achieved human-level
performance on test problems with similar basic structure
(Santoro et al., 2017; Zhang et al., 2019; Hill et al., 2019).
However, the success of these deep learning models depends
on high similarity between training problems and test
problems, and on datasets of massive numbers of RPM-like
problems (e.g., 1.42 million problems in the PGM dataset,
Barrett et al., 2018; and 70,000 problems in the RAVEN
dataset, Zhang et al., 2019). For example, Zhang et al. (2019)
used 21,000 training problems from the RAVEN dataset, and
300,000 from the PGM dataset.

This dependency on direct training in a reasoning task
using big data makes the deep-learning approach
fundamentally different from human analogical reasoning.
When the RPM task is administered to a person, “training” is
limited to general task instructions. Because the task is of
interest as a measure of fluid intelligence—the ability to
manipulate novel information in working memory—
extensive pretraining on RPM problems is neither necessary
nor desirable (Snow, Kyllonen, & Marshalek, 1984). Human
analogical reasoning, more generally, is a prime example of
zero-shot or few-shot learning—the ability to make
inferences with minimal prior exposure to structurally similar
problems.

An alternative approach to analogical reasoning is to view
it not as a task on which to be trained directly, but rather as
an inference problem based on computation of relational
similarity. In this approach, the core of analogical reasoning
is built upon compositional structures consisting of entities,
their attributes, and relations between entities (e.g., Lovett &
Forbus, 2017; Hummel & Holyoak, 1997). Analogy involves
comparing structural representations of source and target
analogs to assess their similarity. Although theoretically
appealing, most models based on compositional structure are
unable to extract relational representations directly from
input images or texts, making it difficult to compare their



performance to that of deep neural networks using the same
training and test data.

To compare the two computational approaches, the present

paper describes a new database of visual analogies based on
pixel-level images of realistic 3D objects. This database
allows generation of controlled analogy problems for human
experiments, and also enables generation of a large amount
of data for training deep neural networks. After obtaining
benchmark data from a human experiment, analogy models
based on deep learning are compared with a compositional
model based on the extraction and comparison of whole-part
relations.
Visual Analogy with Objects and Object Parts In previous
studies of visual analogy, researchers have often employed
simplified visual stimuli, such as combinations of geometric
shapes in RPM-like problems (Carpenter, Just, Shell, 1990;
Lovett & Forbus, 2017) and other meaningless two-
dimensional forms (Bongard, 1970). The present study uses
visual stimuli closer to realistic images of familiar three-
dimensional objects—cars (see examples in Figure 1). These
stimuli allow systematic manipulations of 3D object images,
varying texture, shading, and viewpoint, while also enabling
tight experimental control over the images used to construct
analogy problems. At the same time, the stimulus set is
extensive enough to provide a massive amount of data for
training both deep learning models of analogy and a model
based on comparison of compositional structures. All the
computational models examined in the present paper avoid
hand coding of representations, taking raw pixel-level images
as inputs to solve analogy problems.

The analogy problems in this dataset focus on part-whole
relations. In general, human perception and thinking show
sensitivity to part-whole relations across both visual and
semantic domains. Structural description theories of object
recognition, which include part relations, provide a
parsimonious  explanation  for  viewpoint-invariant
recognition in human vision (Biederman, 1987; Marr &
Nishihara, 1973). Instances of basic level categories are
unified by having a large number of shared parts. For
example, Tversky and Hemenway (1984) found that people
showed high agreement in rating the part goodness of
meaningful car components, such as headlights and doors.
Critically, part-whole relations also permit analogical
reasoning. For example, children as young as four years old
can map parts of a human body to their corresponding
locations on trees and mountains (Gentner, 1977).

Human Performance on Visual Analogy Task

Methods

Participants 79 participants were recruited from Amazon
Mechanical Turk (Mage= 42, SDage = 11, age range = [24, 73],
41 female, 38 male). Participants provided online consent in
accordance with the Institutional Review Board of the
University of California, Los Angeles, and were
compensated with a monetary reward.
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Figure 1. Experimental stimuli. Panel A: 3D car types including a
sedan, truck, SUV, and station wagon. Panel B: subregions of the
sedan car body. These subregions can be entire parts (top row), or
pieces that do not correspond to entire parts (bottom row). Panel C:
an example analogy problem in 4:B::C:? format, constructed out of
some of the images shown in panels A and B. The row of answer
options includes the correct answer (leftmost), a wrong-subregion
distractor (second), a wrong-car distractor (third), and a both-wrong
distractor (rightmost).
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Materials and Procedure Each problem was a four-term
analogy in 4:B::C:? format. The source analog (4. B) was an
image of a car body paired with a subregion of it; the target
was a different-style car body, paired with a set of four
alternative images of subregions as options to complete the
analogy. The problems systematically varied (1) the spatial
alignment between images of source and target cars, (2) the
visibility of analogous subregions in the whole-car images,
and (3) whether or not images of analogous subregions
depicted unitary car components.

Car images in analogy problems were generated using 3D
car models taken from the ShapeNet 3D Core dataset (Chang
et al., 2015). Figure 1A shows the four car types used in the
experiment: sedan, SUV, truck, and station wagon. Figure 1B
shows the different car subregions used to construct the
analogy problems. Each subregion either fully (parts
condition; top row) or partially (pieces condition; bottom
row) depicted one of the following car components: door and
window, hood and windshield, trunk and bumper, headlight
and wheel.

Each analogy problem (Figure 1C) consisted of an
incomplete 2 x 2 image array with the source car body in the
top left corner, a subregion of that car body in the top right
corner, the target car body in the bottom left corner, and a
question mark in the bottom right corner. Each problem was
based on one of four pairs of car bodies: sedan (source) and
SUV (target; pictured in Figure 1C), SUV and wagon, wagon
and truck, or truck and sedan. Below the array was a set of
four answer options presented in a randomized order, and
participants were asked to select the option that best fit the
bottom right cell of the 2 x 2 array. In addition to the correct
option, one option depicted a disanalogous subregion of the
target car (wrong subregion), one option depicted an



analogous subregion of the source car (wrong car), and a
fourth option depicted a disanalogous subregion of the source
car (both wrong). All options matched the target car in color.
When the correct answer was a part subregion (e.g., top left
image depicting a door and window in Figure 1B), the wrong-
subregion distractor depicted the corresponding piece
subregion (e.g., bottom left image depicting a partial view of
a door and window in Figure 1B). These assignments were
reversed when the correct answer was a piece subregion.

Our entire test set consisted of 128 analogy problems that
varied three factors: orientation of source and target cars
(same vs. different), subregion visibility in the corresponding
whole car images (visible vs. invisible), and subregion type
(part vs. piece). For visible problems, the source and target
subregions were visible from the images respectively
depicting the source and target car bodies, whereas for
invisible problems these subregions were occluded in the
corresponding images. For part problems, the source and
target subregions fully depicted corresponding car
components. Crossing each of these factors yielded 8
problem types (see examples in Figure 2). In order to avoid
excessive fatigue, each participant was asked to complete 32
problems out of the possible 128. To that end, we created 4
32-problem subsets, each consisting of 4 problems falling
into one of the 8 problem types. The 4 problem subsets were
distributed evenly across participants and varied which of the
4 car body pairs were combined with which of the 4 car
subregions on each of the 8 problem types.

Before starting the task, participants were given a practice
analogy problem with line drawings of a gas pump and a
lawnmower and a battery and a flashlight (instantiating the
common relation x powers y). No training or practice on
solving the car analogies was provided. No feedback was
provided in the experiment, and we did not impose any time
pressure on participants.
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Figure 2. Human response selections for each problem type.
Examples in each quadrant depict experimental condition. Error
bars reflect + 1 standard error of the mean.

Results

Participants achieved overall mean proportion correct of .61
(SD = .21, range = [.09, .97], greatly exceeding the chance
level of .25 correct. Figure 2 provides a breakdown of
response selections for 8 experimental conditions. When
participants did not select the correct answer, they more often
selected one of the two distractors that included an element
of the correct answer (correct subregion or else correct car
body). They very seldom selected the option that was
completely incorrect (wrong subregion of wrong car body).
A three-way repeated measures ANOVA revealed three
significant main effects, that accuracy was higher on same-
orientation problems than on different-orientation problems,
F(1,75) = 34.20, p < .001, on visible-component problems
than on invisible-component problems, F(1,75) = 7.95, p =
.006, and on part problems than on piece problems, F(1,75)
=14.37, p <.001. No interaction effects were significant.

Model Performance on Visual Analogy Task

We implemented two deep learning models, a Siamese
Network (Bromley et al., 1993) and a Relation Network
(Santoro et al., 2017), which each instantiate an end-to-end
approach to analogical reasoning based on extensive training
with highly similar reasoning problems. We next
implemented a Part-based Comparison Model (PCM), which
is trained to segment objects into component parts, and then
solves analogy problems by computing relational similarity
between part-based feature vectors.

Dataset for Training Deep Networks We used the
3DComputerGraphicsPart dataset (Liu et al., 2021) to train
the two deep learning networks. This dataset provides
detailed part annotations for 3D CAD models of vehicles.
Five subtypes of cars were selected from ShapeNetCore
(Chang et al., 2015): sedan, SUV, wagon, truck, and minivan,
each represented by a single car model. Each surface mesh on
the CAD models was assigned a label from a set of 31 part
segments (e.g., back left door, front right door, front left
windows, right mirror, bumper). The images were rendered
using Blender software using randomly selected textures. The
virtual camera had a resolution of 1024x2048 and field of
view of 90 degrees. The virtual environment showed one car
at a time, with random background, lighting, camera position,
and object texture/color.

To train the deep learning models, 30,000 analogy
questions were created using part labels to generate images
of subregions. We divided the set of 30,000 analogy
questions into 27,000 for training and 3,000 for test. For each
analogy question, we sampled two whole car images from
different car types of the 3D CAD models (denoted as 4, C).
Then we randomly selected part or piece subregions of
the car in the 4 image to generate the B image. The correct
option for the D image was the unique image that yielded the
same whole-part relation for the C:D image pair as for the
A:B pair. For each analogy question, the other three
alternative D images were randomly selected from 7 possible
D images, including other part/piece images from the car in
the C image, two subregion images from the car in the 4



image, and four subregion images from other car types
(different from those in 4 and C images). None of the images
used to train the networks were included in the visual analogy
task to compare model and human performance.

Siamese Network A Siamese Network, which has been
successfully applied to visual detection tasks (Bromley et al.,
1993) and to visual and verbal analogy tasks (Sadeghi,
Zitnick, & Farhadi, 2015; Rossiello et al., 2019), contains two
or more identical subnetworks, emphasizing the role of
comparisons among multiple inputs in forming comparable
feature embeddings as visual representations. The
embeddings are compared to assess the similarity between
inputs. We adapted the model to learn to solve our car
analogy problems. Figure 3A shows the architecture of the
Siamese Network, which employs a VGG-16 network to
translate pixel-level images to features. Features of whole-car
images (4 and C images) are processed by spatial pooling to
form embeddings of size 4x4x512; subregion image features
(B and D1-8 images) are pooled to form 1x1x512
embeddings. The feature embedding for image B is then
expanded to the same size as that for image A, and then
concatenated with 4 in the channel dimension. Feature
embeddings for D images are similarly expanded and
concatenated with the feature embedding for the C image.
The concatenated features are passed through another
convolutional layer and three fully-connected layers to obtain
the final embedding of an image pair, which is a vector of
size 512. We use contrastive loss with margin 1 to minimize
the distance between concatenated feature embeddings from
A:B images and embeddings from C:D images to choose the
D image that best completes the analogy.
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Figure 3. Siamese Network (Panel A), and Relation Network (Panel
B) architectures for solving car analogy problems.
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Figure 4. DeepLabv3+ Network Architecture for identification and
segmentation of synthetic car images.
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For both the Siamese Network, and the Relation Network

described below, batch size was set to 4 analogy problems
and the models were trained for 100 epochs. An Adam
optimizer (Kingma & Ba, 2015) was used to learn network
parameters, with 3; = 0.9 and 3, = 0.999. The learning
rate started at 0.001 and reduced by a factor of 10 every 40
epochs. A color jitter augmentation was applied to all images
before feeding them into the networks. Finally, we trained
both networks end-to-end from scratch on the visual analogy
training dataset.
Relation Network A Relation Network has been
successfully applied to RPM-like analogy problems (Barrett
et al,, 2018) and query tasks (Santoro et al., 2017). We
adopted the implementation by Sung et al. (2018) to set up
the Relation Network to learn to solve the car analogy
problems. The input to the Relation Network is the
concatenation of features extracted from VGG-16 for the
whole images (4 and C images) and their corresponding
subregions (B and D images). To train the network to solve
analogy problems, we concatenated the whole-car image C
with each of the candidate D images, and passed them
through the network separately (see architecture shown in
Figure 3B). The encoder extracted features from all image
pairs, and then concatenated image features of the A:B image
pair with the features of the C:D image pairs in the channel
dimension. The concatenated features were then passed
through additional convolutional layers and fully connected
layers to estimate a relation score indicating the probability
that a candidate C: D pair instantiates the same relation as the
question pair of 4:B images. We used cross entropy loss to
train the Relation Network.

Part-based Comparison Model

To instantiate the structural comparison approach to analogy,
we developed a part-based comparison model (PCM). This
model employs image segmentation algorithms to extract
visual features representing part-based structures for 3D
objects, and then compares representations by computing a
generic measure of relational similarity. From the same
3DComputerGraphicsPart dataset used to train the deep
learning models, we rendered 40,000 synthetic images
(30,000 for training and 10,000 for test; none were used in
the analogy task) with automatically-generated part
segmentation ground-truth. PCM is a variant of the
DeepLabv3+ architecture, a deep neural network that is
widely used for semantic segmentation in computer vision



(Chen et al., 2018). It includes encoder layers, an atrous
spatial pyramid pooling (ASPP) module, and decoder layers
(see Figure 4). An input image first is processed through an
encoder module composed of a ResNet101 (He et al., 2016),
yielding a feature map with 2048 channels and size (height
and width) down-sampled by 16. Features extracted from
ResNet101 are commonly used for image segmentation. The
ASPP module then samples the input features at multiple
spatial rates to gather information at different spatial scales.
The outputs from different spatial scales are concatenated in
the channel dimension and passed through the decoder layers.
The output is a mask with the same height and width as the
input image. Each pixel of the mask is assigned a label to
indicate whether it belongs to the background or each of the
31 parts labeled in the dataset. We added a second output
branch after the encoder layers of DeepLabv3+ to predict the
car type label, which formed a regular object classifier.

We implemented PCM using Pytorch (Paszke et al., 2019)
on two TitanX GPUs. Training was conducted using two
standard cross-entropy losses: one for segmentation, and one
for classification of car types. Batch size was set to 12 and
the model was trained for 50 epochs. A stochastic gradient
descent (SGD) optimizer was used to learn the network
parameters, with momentum = 0.9 and weight decay =
0.0001. The learning rate started at 0.007 and decreased every
epoch using a polynomial scheduler, power = 0.9. Before
feeding the images into the network, standard data
augmentation was applied (e.g., translation, scaling,
cropping). We controlled the augmentation parameters to
ensure the network only trained with whole car images (i.e.,
no partial car images were used during training). Car images
used in the human experiment were excluded from the
training set. The model achieved high performance for both
part segmentation (mean intersect over union (mloU) = 0.57)
and subtype classification (accuracy = 0.99) on the test set.

We then applied the trained network to images used in the
analogy problems to obtain segmentation and classification
predictions. Example segmentation results are shown in
Figure 5. When applied to the whole car images (images 4
and (), the segmentations were reasonable, and the
classification accuracy was 100%. When applied to the
part/piece images (i.e., image B and the alternative D
images), which provide incomplete visual input, the
segmentations yielded small errors, and the classification
accuracy dropped to 71%.

Next, we created compositional descriptions of images
using the segmentation and classification results. We first
converted the pixel-level labels in the resulting segmentation
map to a low-dimensional feature vector. Specifically we
counted the number of pixels that were parsed into each of
the part segments, and computed the proportion for each part
(i.e., number of pixels in a part divided by the total number
of pixels in the resulting segmentation map). The dimensions
of feature vectors were defined using a taxonomy with 13
parts for cars, adapted from a more generalized segmentation
scheme used for parsing complex, real-world scenes in the
PASCAL-Part dataset (Chen et al., 2014). The PASCAL

segmentation aggregates over subsets of the 31 parts in the
3DComputerGraphicsPart dataset on which the part
segmentation model was trained. For example, the PASCAL
partonomy includes a door segment that aggregate over four
segments, including back left door, back right door, front left
door, and front right door. By concatenating the part-
proportion vector with the car-type classification result, we
obtained the 18-dimensional feature vector f =
cat(P(m), c¢), where m is the resulting segmentation map, ¢
is the car-type prediction, 2f;.13 = 1 and 2f;4.14 = 1. Thus,
for each analogy question, PCM represents images I, I, I -,

Ipy, Ip,, Ips, Ip, as feature vectors fyu, fg. fc, fpis Fp2s

fp3» fpa- respectively.
Finally, to solve the visual analogy problem, a decision is

derived by selecting the best D image € {D;,D,, D5, D,}
such that the relation that holds between image A to image B
is similar to the relation between the two images C to D. We
computed the difference between feature vectors f, and fp,
and between f and f,, and used cosine distance to measure
the dissimilarity of the two difference vectors. The same
approach has been used in the Word2vec model (Zhila et al.,
2013), and has proved effective in modeling visual analogical
reasoning (Lu et al., 2019). The preferred answer D is defined
as the D image that generates minimum cosine distance
between difference vectors:
~fafo—fc)

D= argmin 1-cos(fp
D€{D1,D2,D3,D4}
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Figure 5. PCM segmentation results for images used in analogy
problems. The model never saw these images during training.

Analogy Performance for Models and Humans

All models (Siamese Network, Relation network, PCM) were
tested on the same 128 visual analogy problems used in the
human experiment, which involves car images never used in
training for any of the models. Overall proportion correct was
.38 for the Siamese Network, .53 for the Relation Network,
and .61 for PCM. The latter model matched overall human
accuracy (.61). More importantly, only PCM captures the
qualitative differences in human accuracy among conditions.
PCM, like humans, shows higher accuracy on same-
orientation problems than on different-orientation problems,
on visible-component problems than on invisible-component
problems, and on part problems than on piece problems (see
Figure 6). In order to quantitatively assess model fit to human
data, we computed the root mean squared deviation (RMSD)
between model accuracy and mean human accuracy on each
of the 8 analogy problems types. This measure indicates how
much each model deviates from human performance, with a
lower RMSD indicating closer fit to human data. The



Siamese Network yielded an RMSD of .24 and the Relation
Network .17, whereas PCM had an RMSD of .07, achieving
by far the closest fit to human data.

To further evaluate the models as accounts of human
analogical reasoning, we considered a possible non-
analogical shortcut strategy for answering the problems.
Using the problem in Figure 1C as an example, the problem
could be answered correctly simply by selecting the D image
most visually similar to the B image but not identical to it.
We tested the possibility that any of the three models might
have exploited this shortcut by providing only the subregion
images (B image and D images) without showing the whole-
car images (4 and C images). The Siamese Network and
PCM performed at chance on this test, indicating they did not
exploit the shortcut. However, the performance of the
Relation Network maintained the same (.53 correct) when the
“analogy” problem was reduced to just two of the four terms.
Thus, the Relation Network did not actually learn how to
reason by analogy using relations at all.

Discussion

PCM, a model based on segmenting object parts and
identifying 3D objects from images, followed by comparison
of part-based difference vectors, can account for the
qualitative pattern of human accuracy on visual analogies
between images of cars and their subregions. In contrast, two
popular deep learning models that have been applied to visual
analogies—a Siamese Network and a Relation Network—
deviate seriously from human performance. Indeed, the
Relation Network did not learn to reason by analogy at all,
instead acquiring a non-analogical shortcut strategy. A
methodological implication of these findings is that simply
matching (or exceeding) human overall accuracy on some
benchmark task is not a sufficient criterion for inferring that
a computational model is simulating human cognitive
mechanisms. It is important to compare model and human
performance in greater detail at the level of controlled
manipulations of problem types.

In contrast to PCM’s approach to representation learning,
a related approach is to explicitly learn representations of
both object parts and the relations among them, using more
computationally intensive but also more efficient learning
processes such as analogical structure mapping (e.g., Chen,
Rabkina, McClure, Forbus, 2019). By comparison, PCM
relies on much simpler statistical learning processes to learn
representations of object parts, offering a more parsimonious
account of representation learning that does not depend on
analogical reasoning to get off the ground. Importantly, the
representations that PCM learned were expressive enough to
provide the basis for a correspondingly simple but ultimately
successful approach to analogy, in which we compared
relations derived from those representations.

In PCM we built in this comparison procedure,
implemented as a computation of cosine distance over
difference vectors between two analogs. Another approach to
solving analogies in zero-shot fashion, which requires less
direct intervention from the modeler, is to employ meta-
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Figure 6. Model and human performance on the visual analogy task
broken down by problem type. Dotted lines indicate chance
performance. Error bars reflect + 1 SEM for human data.
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learning in which a model is trained both to solve and
explicitly represent its solution to distinct but similar tasks,
and then transfer that knowledge in order to solve novel tasks
(e.g., Lampinen & McClelland, 2020).

At any rate, the failures of the deep learning models of
visual analogy examined here illustrate a general
shortcoming of an approach that treats analogy as end-to-end
learning of both perceptual stimuli representations and task
structure. Instead of learning perceptual representations that
might be generally useful in multiple tasks, these models
acquire representations tailored to idiosyncrasies of the
specific task used in training. The more promising approach,
illustrated by PCM, is to first learn componential structure
(here, part-whole relations for 3D objects) that are generally
useful in distinctively different tasks (e.g., object recognition
and segmentation). By training with varied tasks, the learned
representations will acquire multi-task consistency. Although
PCM does require extensive training to learn its
compositional representations for visual inputs, we
emphasize that it was not trained to solve analogies at all.
Instead, PCM achieved superior performance on our visual
analogy task simply by comparing its compositional
representations  using generic  similarity = measures.
Generalizable analogical reasoning is unlikely to be achieved
by deep learning with big data composed of a specific type of
analogy problem. Rather, humans do (and machines might)
achieve analogical reasoning by smart learning of
representations that encode relational structure, coupled with
efficient computation of relational similarity.
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