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Abstract

■ The ability to generate and process semantic relations is

central to many aspects of human cognition. Theorists have long

debated whether such relations are coarsely coded as links in a

semantic network or finely coded as distributed patterns over

some core set of abstract relations. The form and content of

the conceptual and neural representations of semantic relations

are yet to be empirically established. Using sequential presenta-

tion of verbal analogies, we compared neural activities in making

analogy judgments with predictions derived from alternative

computational models of relational dissimilarity to adjudicate

among rival accounts of how semantic relations are coded and

compared in the brain. We found that a frontoparietal network

encodes the three relation types included in the design. A

computational model based on semantic relations coded as

distributed representations over a pool of abstract relations pre-

dicted neural activities for individual relations within the left

superior parietal cortex and for second-order comparisons of

relations within a broader left-lateralized network. ■

INTRODUCTION

The poet Samuel Taylor Coleridge claimed that the crea-

tive mind needs to become “accustomed to contemplate

not things only,… but likewise and chiefly the relations of

things…” (Coleridge, 1810/1969, p. 451). Because rela-

tions provide basic building blocks for language and

thought, they are central for a range of cognitive tasks. A

prime example is the critical role of relation representa-

tions in analogical reasoning (Holyoak, 2012), a mental

process that impacts human activities as diverse as meta-

phor comprehension (Holyoak, 2019), mathematics edu-

cation (Richland, Zur, & Holyoak, 2007), scientific

discovery (Dunbar & Klahr, 2012), and engineering design

(Chan & Schunn, 2015). However, although the impor-

tance of relations is widely recognized, no consensus has

emerged regarding the form of relation representations in

the mind and brain.

For the past half century, cognitive scientists exploring

human semantic memory have sought to identify the na-

ture of the code for the first-order relations between two

concepts (for reviews, see Jones, Willits, & Dennis, 2015;

Holyoak, 2008). Two longstanding views, mainly based on

data from speeded verification of category–membership

relations (e.g., deciding as rapidly as possible whether a

rose is a flower), continue to be influential. One approach,

originating in computer science (Collins &Quillian, 1969),

treats relations as being coarsely coded, with labeled uni-

tary links between localist nodes representing concepts

(e.g., an “is a” link connecting rose to flower). Relation ver-

ification is viewed as an all-or-none process of retrieving

the relevant link. For example, the word pair rich–poor

might trigger retrieval of the relation type “opposite” to

form the symbolic representation opposite (rich, poor).

Current computational models of analogy based on tradi-

tional symbolic knowledge representations (Forbus,

Ferguson, Lovett, & Gentner, 2017) continue to assume

relations are coded as localist links.

In contrast, an alternative view hypothesizes that the

meanings of relations are more finely coded by means of

operations performed on featural representations of enti-

ties (Smith, Shoben, & Rips, 1974; Meyer, 1970). In sup-

port of the latter view, analyses of verification time based

on speed–accuracy decomposition have revealed that re-

lation information accrues continuously over time, rather

than being retrieved in an all-or-none fashion (Kounios,

Montgomery, & Smith, 1994). Moreover, much like object

categories (Rosch, 1975), examples of semantic relations

exhibit a typicality gradient (e.g., hot–cold is considered

a better example of “opposite” than is warm–cool;

Jurgens, Turney, Mohammad, & Holyoak, 2012). There

is continuing debate as to whether the relation between

a pair of concepts is coarsely coded as a general relation

type or whether the relation is more finely coded based

on the features of the concepts it links (Popov, Hristova,

& Anders, 2017).

Not only can word pairs instantiate a particular relation

to different degrees, as suggested by previous research on

relation typicality, but many word pairs seem to instantiate
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multiple relations to some degree. For example, the con-

cepts hill–mountain primarily instantiate the relation of

“similar” (both are types of high geological formations),

but they also, to some degree, instantiate “contrast” (dif-

fering in height). These systematic and graded variations

pose challenges for the second-order relation compari-

sons required to solve analogy problems, suggesting that

analogical validity may itself be a matter of degree, varying

with some measure of relation dissimilarity.

Previous work has identified regions within a left-

lateralized frontoparietal network that support compo-

nent processes involved in analogical reasoning. In particular,

subareas of parietal cortex appear to support the encoding

of individual relations (Wendelken, 2015), whereas

the rostrolateral pFC (RLPFC) appears critical in second-

order relational comparisons (Hobeika, Diard-Detoeuf,

Garcin, Levy, & Volle, 2016; Green, Kraemer, Fugelsang,

Gray, & Dunbar, 2010; Bunge, Helskog, & Wendelken,

2009; Wendelken, Bunge, & Carter, 2008; Bunge,

Wendelken, Badre, & Wagner, 2005; for a review, see

Holyoak & Monti, this issue). However, it remains unclear

what content of relation representations is encoded in the

brain and compared during analogical reasoning. To

address questions about the specific nature and content

of relation representations in the brain, it is important to

obtain neural evidence based on item-level analyses. Such

detailed evidence has the potential to identify properties

of relation representation that yield graded variations in

the representations of individual relations and in second-

order relational comparisons. By performing item-level

analyses, we can compare neural activities with predic-

tions derived from alternative computational models to

adjudicate among rival accounts of how semantic relations

are coded and compared in the brain. To test the pro-

posed computational code for semantic relations and their

comparison, various models were used to predict degrees

of relation dissimilarity between word pairs. Model predic-

tions were correlated with patterns of neural dissimilarity

across word pairs andwere used to predict neural activities

in making an analogy judgment.

Computational Models of Relation Representation
and Comparison in Analogy

Here, we test alternative computational models of relation

representation, combining recent advances in machine

learning and cognitive science with neuroimaging. Following

Coleridge, to represent relations between things, it is first

necessary to have representations of those “things”—

in the case of semantic relations, we first need semantic

representations of individual words. To represent word

meanings, we adopt word embeddings produced by a

recent machine-learning model, Word2vec (Mikolov,

Sutskever, Chen, Corrado, & Dean, 2013). This model

applies a predictive learning algorithm to a large text corpus

(e.g., Google News) to create high-dimensional semantic

vectors for individual words. Vectors generated by Word2vec

and similar models have been shown to accurately capture

human judgments of semantic similarities among words

(Zhila, Yih, Meek, Zweig, & Mikolov, 2013) and have also

been used to create a neural decoder to predict patterns of

brain activity produced in response to sentences (Pereira

et al., 2018).

Although major computational models of analogical

reasoning, such as SME (Forbus et al., 2017) and LISA

(Hummel & Holyoak, 2005), critically depend on assump-

tions about relation representations, most such models

do not specify a mechanism by which relations could be

learned from nonrelational inputs. The DORA model

(Doumas, Hummel, & Sandhofer, 2008) does address

relation learning but has not been applied to semantic

vectors as inputs. In the present article, we assessed three

computational models based on semantic vectors.

Two of these models derive dissimilarity predictions di-

rectly fromWord2vec vectors for the individual words in a

pair. These two models differ in their assumptions about

how (or whether) the relation between the two words is

represented. Under Word2vec-concat, the meaning of

the words within a pair is a simple aggregate of the seman-

tic vectors of the two individual words. The dissimilarity

between any two word pairs is computed by the cosine

distance between the two concatenated vectors. This

model is nonrelational, instead capturing semantic dissim-

ilarity across pairs based solely on the meanings of the in-

dividual words. Word2vec-concat serves to identify

patterns of dissimilarity based on lexical semantics, sepa-

rate from any representation of the relation between the

two words within each pair.1

Under Word2vec-diff, the first-order relation between

two words is defined in a generic fashion as the difference

between the semantic vectors of each word within a pair;

second-order dissimilarity of relations is assessed by the

cosine distance between the two difference vectors that

form the analogy. This model, which has been directly

applied to analogy problems in work on machine learning

(Zhila et al., 2013), codes relations only implicitly (i.e., as

a difference vector computed from individual words).

Word2vec-diff is able to solve some verbal analogy prob-

lems based on relatively specific relations (e.g., king:

queen::man:woman), although its success is limited

(Linzen, 2016). To the best of our knowledge, the model

has not been tested with analogies based on abstract

semantic relations of the sort used in this study.

The third computational model, Bayesian Analogy with

Relational Transformations (BART; Lu, Wu, & Holyoak,

2019; Lu, Chen, & Holyoak, 2012), assumes that specific

semantic relations between words are coded as distributed

representations over a set of abstract relations, specified

in a taxonomy founded on linguistic and psychological

evidence (Bejar, Chaffin, & Embretson, 1991). This taxon-

omy includes 10 general types of relations (e.g., similar,

contrast, cause–purpose), each of which has several sub-

types, resulting in 79 semantic relations. BART is trained

with a small number of word pairs (∼20 pairs) as positive

378 Journal of Cognitive Neuroscience Volume 33, Number 3
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examples of each specific relation in the taxonomy (Jurgens

et al., 2012). After learning the set of 79 abstract relations

from example word pairs coded as semantic vectors

derived from Word2vec, for any word pair, BART can

estimate the probability that the word pair instantiates

each learned relation, which constitutes a distributed

representation of the specific relation between the two

words. BART’s relation vectors enable computations of

second-order relational dissimilarity between word pairs,

providing a direct basis for solving verbal analogies in

the form A:B::C:D (e.g., old:young::hot:cold). Behavioral

evidence indicates that BART can solve a set of simple

verbal analogies with a degree of accuracy comparable to

humans (Lu et al., 2019).

We employed a sequential event-related fMRI design

(DeWolf, Chiang, Bassok, Holyoak, & Monti, 2016), in

which participants judged the validity of A:B::C:D analo-

gies involving three types of abstract relations (similar,

contrast, and cause–purpose). This design aimed to sep-

arate the construction of first-order relations (i.e., rela-

tions between words in a pair) from the second-order

assessment of dissimilarity between relations (i.e., the de-

gree of analogical match between A:B and C:D relations).

To test the neural plausibility of the three computa-

tional models, we analyze the A:B and C:D phases of each

analogy with a (dis)similarity analysis assessing the de-

gree to which each computational model matches the

observed neural representations of first-order relations

(i.e., A:B) and the observed neural responses to

second-order relational distance (i.e., A:B vs. C:D). The

A:B phase provides a relatively pure measure of neural

activity involved in coding the individual A and B words

and the A:B relation. To arbitrate between the three alter-

native models (as well as a baseline model based on re-

lation types alone), we probe the representation of this

relation using first a multivariate decoding analysis,

followed by a multivariate representational similarity anal-

ysis (RSA). The C:D phase includes the neural computa-

tion required to compare the two relations (as well as

neural activity required to maintain the A:B relation and

to represent the C:D relation). We examine this represen-

tation using a voxelwise correlation analysis, assessing the

degree to which hypothesized second-order relational

distance resembles neural activity. If semantic relations

have distributed representations based on the taxonomy

of abstract relations, we should find brain regions in

which BART is the best predictor of neural similarity. In

contrast, if relations are coded as atomic units, then sim-

ilarity of two word pairs will only depend on whether

they instantiate the same or different relation types.

METHODS

Participants

Sixteen participants (eight women) were recruited at the

University of California, Los Angeles (UCLA) through a flyer

distributed in the Psychology Department. Participants

signed informed consent before the experimental session

and were paid $50 for their participation in the 1-hr study,

in compliance with the procedures accepted by the local

institutional review board. The study was approved, includ-

ing informed consent procedures, by the UCLA Office of

the Human Research Protection Program.

Stimuli and Design

The stimuli were a set of analogy problems constructed

from word pairs taken from a normed set of examples of

abstract relations (Jurgens et al., 2012). The full norms

include examples of word pairs instantiating 10 general

types of relations, each including 5–10 more specific re-

lations, for a total of 79 distinct relations. For this study,

we focused on three general relation types (chosen as es-

pecially familiar) with three specific relations drawn from

each, for a total of nine relations: similar (synonym, attri-

bute similarity, change), contrast (contrary, directional,

pseudoantonym), and cause–purpose (cause:effect,

cause:compensatory action, activity:goal).

For each relation, we selected 16 word pairs high in

typicality as assessed by human judgments ( Jurgens

et al., 2012), yielding 48 word pairs per relation type

and 144 pairs in total. Examples of the word pairs used

are shown in Table 1. In selecting word pairs to construct

analogy problems, we avoided duplicate pairs that were

simple reversals (e.g., happy–sad and sad–happy),

choosing in such cases the pair with the higher typicality

rating. Pairs that included conspicuously long or low-

frequency words were also excluded. Because, for some

subcategories, it proved difficult to identify 16 pairs that

Table 1. Examples of Word Pairs Used to Generate Analogy

Problems, Organized by General Relation Type and Subtype

Similar

Synonym Attribute Similarity Change

big:large book:magazine acceleration:speed

boat:ship chair:sofa darken:color

Contrast

Contrary Directional Pseudoantonym

accept:reject ahead:behind bright:dull

big:small below:above day:evening

Cause–purpose

Cause:effect Cause:compensatory

action

Activity:goal

accident:damage anger:yell advertise:promote

bath:cleanliness coldness:shiver cook:eat

Chiang et al. 379
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passed our selection criteria, we also included some pairs

that had been used as “seed” examples to elicit word

pairs from humans ( Jurgens et al., 2012). These were

considered excellent examples.

Using the 144 (16 examples × 9 specific relations) dis-

tinct word pairs selected as described above, we formed

pairs of pairs to create verbal analogy problems in the form

A:B::C:D (valid) or else A:B::C 0:D0 (invalid), where all pairs

were drawn from the pool of 144. For the invalid pairs,

the C 0:D0 pair was drawn from a different relation type than

was A:B. We avoided creating invalid items using different

specific relationswithin the samegeneral relation type (e.g.,

specific relations “contrary” and “pseudoantonym,” both

subtypes of “contrast”) because pilot work suggested that

such “near-miss” problems would lead to excessive errors.

At the same time, C 0:D0 pairs always instantiated a natural

semantic relation (rather than being semantically anoma-

lous), forcing participants to consider the paired relations

carefully in judging validity of the analogies.

Counterbalancing was used to create four complete

sets of analogy problems. To form an individual set of

72 analogy problems, for each of the nine specific rela-

tions, 8 of the 16 pairs were assigned to the A:B role

and four were assigned to the C:D role. The remaining

four pairs were assigned to the C0:D0 role associated with

A:B pairs for four of the six specific relations representing

the two remaining general relation types. Assignments to

the C:D role were random, subject to the above restric-

tion. Subject to all of the above restrictions, specific four-

term analogy problems were created by random pairing

of word pairs. For each specific relation, four problems

were valid and four were invalid. Within a set of 72 anal-

ogy problems, each of the 144 word pairs occurred twice

in the A:B role and once in each of the C:D and C 0:D0

roles. Across four sets of problems, each of the 144 word

pairs appeared in each role with the same proportions

(i.e., twice as often as A:B than as C:D or C 0D0).

The four sets, with a total of 288 problems (4 sets × 72

problems each), were treated as four blocks administered

to each participant. The procedure for problem generation

ensured that any individual analogy problem occurred only

once in the set of 288 problems. The order of problemswas

randomized within each block, and the order of the four

blockswas counterbalanced across participants. The overall

aim of this procedure for problem creation was to ensure

that data analyses could be based on neural patterns asso-

ciated with each of the 16 word pairs representing each of

the nine specific relations (144 pairs in total), in each of the

three possible roles (A:B, C:D, C 0:D0), while avoiding any

confounding between specific pairs and roles. Finally, each

of these four sets was further split into two sets of 36 for

presentation convenience.

Procedure

The experiment was administered using PsychoPy2 (Peirce,

2009). On each trial (see Figure 1), participants were first

shown the A:B word pair for 2 sec and then the C:D pair

for 2 sec (with an average 0.5-sec jitter in between). The

words “yes” or “no” then appeared on the left and right of

the screen, indicating the assignment of two response but-

tons used to indicate whether or not the two pairs repre-

sented the same relation. Critically, the assignment of

“yes” and “no” buttons was randomly varied, ensuring that

participants could not begin planning a motor response

during the earlier phases of the trial. Participants were in-

structed that all word pairs represented a meaningful rela-

tion but were not made aware of the structure of the

relations. The A:B phase provided a measure of neural ac-

tivity involved in coding the individual A and B words and

theA:B relation. TheC:D phase included the neural compu-

tation required to compare the two relations (as well as neu-

ral activity required to maintain the A:B relation and to

represent the C:D relation).

fMRI Data Acquisition

Data were acquired on a 3-T Siemens PRISMA MRI scanner

at the OneMind Staglin IMHRO Center for Cognitive

Neuroscience at UCLA. Structural data were acquired using

a T1-weighted sequence (magnetization prepared rapid

gradient echo, repetition time = 1900 msec, echo time =

2.26 msec, voxel size = 1 mm3 isovoxel). BOLD data were

acquired with a T2*-weighted gradient recall echo

sequence (repetition time = 1000 msec, echo time =

37 msec, 60 interleaved slices [2-mm gap], voxel size = 2 ×

2 × 2 mm, 6× multiband acceleration).

fMRI Preprocessing

Data preprocessing was carried out using FMRIB Software

Library (FSL; Jenkinson, Beckmann, Behrens, Woolrich, &

Figure 1. Timing of events on each trial. In a rapid event-related fMRI

design, healthy young adults were asked to evaluate two pairs of

semantic concepts. Participants were shown two word pairs, first an A:B

pair for 2 sec and then a C:D pair for 2 sec after a jitter, and finally a cue

to make a yes/no decision about the validity of the analogy. Participants

responded by pressing a button box, where the location of “yes” and

“no” buttons varied from trial to trial, making it impossible to plan a

specific motor response until the first two phases had been completed.

The A:B phase provides a relatively pure measure of neural activity

involved in coding the A:B relation. The C:D phase includes the neural

computation required to compare the two relations (as well as neural

activity required to maintain the A:B relation and to represent the

C:D relation).

380 Journal of Cognitive Neuroscience Volume 33, Number 3
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Smith, 2012). Preprocessing steps included motion

correction, slice-timing correction (using Fourier-space

time-series phase shifting), spatial smoothing using a

Gaussian kernel of 5-mm FWHM, and high-pass temporal

filtering (Gaussian-weighted least-squares straight line

fitting, with σ= 50.0 sec). Spatial smoothing was omitted

from the above preprocessing steps for all analyses (RSA and

voxelwise correlation) to preserve spatial heterogeneities.

Beta-series (Rissman, Gazzaley, & D’Esposito, 2004)

parameter estimates were derived using the least-squares

separate approach (Mumford, Turner, Ashby, & Poldrack,

2012). The least-squares separate algorithm iteratively es-

timates parameters for an event using a general linear

model (GLM) including a regressor for that event as well

as another regressor for all other events. This procedure

was used to estimate beta parameters for all A:B and C:D

word pairs, which were used as features in the dissimilarity

and voxelwise correlation analyses.

Dissimilarity Analyses

RSA (Nili et al., 2014; Kriegeskorte & Kievit, 2013;

Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte,

Goebel, & Bandettini, 2006) was used to characterize the

similarities of neural responses across pairs during the

A:B phase. RSA characterizes the representation in a brain

region by a representational dissimilaritymatrix (RDM) and

compares this empirical matrix with a theoretical model.

An RDM is a square symmetric matrix, with each entry

referring to the dissimilarity between the activity patterns

associatedwith two trials (e.g., entry [1, 2] would represent

the dissimilarity between activity patterns on Trial 1 and

Trial 2). Procedurally, each element of the RDM is calculated

as 1minus the Pearson correlation between the beta series for

each pair of trials (Carota, Kriegeskorte, Nili, & Pulvermüller,

2017; Nili et al., 2014).

Hypothesis models were manually generated to reflect

idealized RDMs expected given a theoretical representa-

tional space. We generated theoretical RDMs from each

of the three computational models (see Figure 2 for in-

tercorrelations among RDMs). Each model uses a differ-

ent calculation to yield a feature vector characterizing a

word pair; however, the RDM was calculated in the same

way for all models, as the cosine distance between word-

pair representations.

RDMs and hypothesis models were compared by calcu-

lating a “second-order similarity” (Nili et al., 2014), defined

as the Spearman correlation coefficient between the two

matrices. Resulting correlation values were registered to

the Montreal Neurological Institute template for group

analysis, and statistical significance of positive values was

assessed using FSL randomise (Winkler, Ridgway,

Webster, Smith, & Nichols, 2014; Smith & Nichols, 2009).

All analyses were carried out using Python, making exten-

sive use of the machine learning packages Scikit-learn

(Pedregosa et al., 2011) and NiLearn (Abraham et al., 2014).

For the C:D phase (second-order relation comparison),

a univariate dissimilarity analysis was performed. All the

models of analogical comparison considered in this article

make the general prediction that the conceptual difficulty

of deciding the validity of an analogy will be related to the

relation-based dissimilarity of the A:B and C:D word pairs,

with greater dissimilarity making the decision more diffi-

cult. In this analysis, only trials consisting of valid analogies

Figure 2. Correlations among

different theoretical RDMs.

Chiang et al. 381
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(i.e., A:B::C:D) were included so that the relation repre-

sentations during theC:D phase would not be confounded

by additional cognitive operations associated with pro-

cessing a relation inconsistent with A:B. To derive a specific

prediction from each of the three candidate models in

the article, for every valid analogy of word pairs, A:B::C:D,

a relational dissimilarity measure was calculated by taking

the cosine distance between the representations of A:B

and of C:D specified by the model (i.e., higher cosine dis-

tance implies greater dissimilarity between the two pairs).

Thesemodel-derived relational dissimilarity scores for each

trial were then correlated (using Spearman’s rho) with

voxel activity to identify brain regions that track relational

dissimilarity according to the predictions from each of the

alternative models. The resulting p values were adjusted

for multiple comparisons by controlling the false discovery

rate at q = 0.05.

Data and Code Availability

Raw and preprocessed NIFTI files, as well as experiment

timing files, are available at openneuro.org. Code for the

BART model can be downloaded from cvl.psych.ucla.

edu/BART2code.zip. Code for the experiment and all

custom analyses can be found at github.com/njchiang

/analogy-fmri.

RESULTS

Behavioral Results

Mean proportion correct in solving analogy problems was

0.82 (SD = 0.07) across all conditions, an accuracy level

well above chance ( p < .001). A repeated-measures

ANOVA was conducted on performance accuracy across

the three abstract relation types for A:B. Problems using

the “contrast” relation yielded the highest accuracy (M =

0.87, SD = 0.08), followed by “cause–purpose” (M = 0.82,

SD=0.07) and “similar” (M=0.78, SD=0.09). Bonferroni-

corrected t tests indicated that “contrast” problems were

more accurate than either of the other relation types

( p < .005).

RT was calculated as the time from the appearance of

the response cue (i.e., “yes” and “no” indicators after the

C:D phase) to the button press. Only RTs for accurate trials

were analyzed. Mean RT was 913 msec (SD = 255 msec)

across all relation types. No reliable RT differences were

found among the three types.

To examine how well the different models can account

for human behavioral performance, we derived predictions

of accuracy on the analogy task for each of the three

models. For BART (which is based on vectors of probability

values), we applied a nonlinear cubic power transformation

to down-weight contributions to the decision stage from

the large number of dimensions with low probabilities. As

the human task involved yes/no judgments, a decisionmod-

ule is required to derive such judgments from the vectors

produced by each model. We used the same decision

module for all three models. For each model, relational

dissimilarity between the A:B and C:D word pairs in an

experimental trial was calculated using cosine distance

between the vectors. Each model’s yes/no response was

determined by whether the cosine distance was less/greater

than a decision threshold. This threshold was selected by

a search to maximize each model’s accuracy.

The BART model yielded mean accuracy of 0.823, very

similar to human-level performance (0.822). Both the

Word2vec-diff and Word2vec-concat models yielded accu-

racy levels near chance (0.576 and 0.583, respectively),

substantially lower than human performance. At the level

of individual relation types, the BART model yielded a

proportion correct of 0.802 for “similar,” 0.896 for “con-

trast,” and 0.708 for “cause–purpose.” BART’s accuracy

was close to the human level for the former two relations

but less accurate than human performance for the “cause–

purpose” relation, suggesting that humans may benefit

from a deeper understanding of causal relations (e.g.,

knowledge of how causality is related to interventions;

Waldmann, 2017).

Univariate Analyses of A:B and C:D Phases

We first performed univariate analyses to identify the brain

regions active during the A:B and C:D phases of each trial

(including both valid and invalid trials). The general rela-

tion type was coded separately for each phase. A univariate

analysis using theGLM approachwas performed to identify

regions engaged in representing semantic relations. The

response phase of each trial was included as a condition

of noninterest, as well as motion parameters. The GLM

analysis was carried out using FSL FEAT (Jenkinson et al.,

2012; Smith et al., 2004). Before univariate analysis, data

underwent preprocessing steps including motion correc-

tion, slice-timing correction (using Fourier-space time-

series phase shifting), spatial smoothing using a Gaussian

kernel of 5-mm FWHM, and high-pass temporal filtering

(Gaussian-weighted least-squares straight line fitting, with

σ = 50.0 sec). Data from individual runs were aggregated

employing a mixed effects model (i.e., employing both

within- and between-participant variance) and using auto-

matic outlier detection. Statistical significance for univari-

ate analyses was assessed using FSL randomise with

threshold-free cluster enhancement (TFCE) cluster correc-

tion (Winkler et al., 2014; Smith & Nichols, 2009).

In the A:B stage, related word pairs elicited mostly left-

lateralized frontal and temporal activity, bilateral parietal

activity, and activity in the occipital lobe (see Figure 3A).

The C:D stage, compared to simple fixation, recruited many

of the same regions as did the A:B stage (likely involved in

processing each word of the C:D pair and encoding their

semantic relation), as well as unique activations likely

involved in second-order relation assessment for relation

comparison. Specifically, the A:B and C:D phases shared

activations in the inferior lateral occipital cortex (BA 19),
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fusiform gyrus (BA 37), and left frontal regions spanning the

RLPFC (BAs 10 and 47). In addition, processing C:D word

pairs uniquely led to a greater BOLD response in the left in-

ferior frontal gyrus (pars triangularis, pars opercularis; BAs

44 and 45) as well as bilateral superior parietal cortex

(inBA 7).

As shown in Figure 3B, the univariate comparison of

C:D minus A:B revealed a frontoparietal network, mainly

left lateralized. Specifically, the contrast uncovered signif-

icant clusters in the left RLPFC (BAs 10 and 47), replicating

prior results implicating this region in complex relational

comparisons (Bunge et al., 2009; Christoff et al., 2001), as

well as in the left inferior frontal gyrus (BAs 44 and 45) and

bilateral posterior parietal (BA 7) and occipital (BA 19)

cortices.

Decoding Neural Activity Patterns to Classify
Relation Types

To characterize the representations of abstract semantic

relations in the brain, we conducted a multivariate pattern

analysis (MVPA; e.g., Haxby et al., 2001) using a search-

light method (Kriegeskorte et al., 2006). Classifiers were

trained to distinguish between the three general relation

types (similar, contrast, and cause–purpose) and were

evaluated using a leave-one-run-out cross-validation

approach (see Etzel & Braver, 2013). For each participant,

two such classifications were run: one on the A:B phase

and one on the C:D phase (including both valid and inva-

lid trials). We used a 5-mm-radius sphere and a linear SVM

(Abraham et al., 2014; Pedregosa et al., 2011).

This MVPA revealed left-lateralized areas of the brain

capable of distinguishing different types of abstract rela-

tions on the basis of activation patterns across both the

A:B and C:D phases. In addition, during the second-order

comparison (i.e., the C:D phase), the three abstract rela-

tions could also be distinguished in the left rostrolateral

and right frontotemporal cortices.2 As shown in Figure 4,

distributed areas of the brain are involved in decoding

semantic relation types (similar, contrast, and cause–

purpose). Areas in color achieved above-chance classifica-

tion performance ( p < .01), as assessed by a Wilcoxon

signed-rank test with TFCE cluster correction (Smith &

Nichols, 2009).

During the A:B phase, the active regions for relation

classification include frontal and temporal cortices (most

pronounced in the left hemisphere) as well as bilateral

parietal cortices. During the C:D phase, the three relation

types can also be distinguished inmany of the same regions

and also in additional regions in the right hemisphere

(particularly across frontal and temporal cortices). Overall,

the overlap in regions capable of distinguishing the three

semantic relations across both the A:B and C:D phases

(areas in yellow in Figure 4) includes areas previously

Figure 3. Univariate analysis results. (A) Main effects of the A:B and C:D phases of trials. Clusters were obtained by contrasting each phase (i.e., A:B

and C:D) to simple fixation. (B) C:D − A:B univariate contrast. Regions in which activity while reading the C:D word pair was greater than when

reading the A:B word pair. Depicted group-level activations were obtained with a nonparametric permutation approach (FSL randomise); significance

was set at p = .05 family-wise error rate, cluster-corrected with TFCE (Smith & Nichols, 2009).

Figure 4. MVPA searchlight results. Regions in which the three general

semantic relations could be discriminated above chance during

different phases of the analogy task (corrected p < .01, assessed using

FSL randomise with TFCE cluster correction for multiple comparisons).
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proposed to underlie the semantic representation system

for individual words (Carota et al., 2017; de Heer, Huth,

Griffiths, Gallant, & Theunissen, 2017; Huth, de Heer,

Griffiths, Theunissen, & Gallant, 2016; Binder, Desai,

Graves, & Conant, 2009). The MVPA also highlights the im-

portant role of parietal regions associated more specifically

with relational reasoning (Wendelken, 2015).

First-order Relations (A:B Phase)

The MVPA reported above involved training classifiers to use

neural activity to distinguish among relation types, making

use of any and all properties of individual words and/or

relations that may reliably influence brain signals, without

any guidance from computational models. We then moved

on to perform analyses that use computational models

to predict neural activity, with a particular focus on alternative

representations of relations per se. To assess and contrast the

neural plausibility of the first-order relational representa-

tions specified by each of the three models (Word2vec-diff,

Word2vec-concat, and BART), we performed an RSA

(Kriegeskorte et al., 2008). Specifically, we compared the

matrix of trial-by-trial dissimilarity across word pairs

derived from the BOLD signal during the A:B phase (i.e.,

the empirical RDM) to that predicted by each of the three

computational models (see Figure 5). We also included in

the analysis a fourth relation-type model (i.e., the design

matrix) to serve as a simple baseline model distinguishing

the three general relation types (i.e., similar, contrast, and

cause–purpose; see Figure 6).

Figure 5. RSA approach to

discovering neural signatures of

specific relations. For any two

word pairs shown during the

A:B phase (e.g., rich:poor, hot:

cold ), three alternative models

are used to predict dissimilarity

based on the cosine distance

between the representations

of each individual word pair,

using 300-dimensional

Word2vec vectors as inputs

(left). Word2vec-concat

(nonrelational) concatenates

the vectors for individual words

in a pair, Word-2vec-diff

(generic relation) defines the

relation as the difference vector,

and BART (specific relations)

creates a new relational vector

for each pair based on

previously learned relations. The neural response to each word pair (right) is obtained, allowing a calculation of dissimilarity between patterns of

voxels. Neural dissimilarities are compared with computational predictions to arbitrate between alternative models.

Figure 6. Theoretical RDMs. The RDMs derived from the three computational models are of size 144 × 144 (i.e., based on individual word pairs).

Theoretical RDMs capturing the cosine distance between the vector representation for each word pair were correlated with empirical RDMs derived

from brain activity patterns.
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We performed RSAs using a whole-brain searchlight

approach. Among the four models that were tested, only

the RDMderived fromBART yielded significant correlations

with neural RDMs (Figure 7A). These correlations primarily

involved the left superior parietal lobe and left intraparietal

sulcus. In approximately the same regions, the correlation

for BART was significantly greater than those for either of

the other computational models (Figure 7B) or for the

relation-type baseline model (Figure 7C).

Second-order Relational Processing (C:D Phase)

To investigate second-order relational comparisons, we

performed a form of dissimilarity analysis in which we

contrasted the three models by calculating, for each, a

measure of relational dissimilarity between first-order rela-

tions. BART and the two Word2vec models make the gen-

eral prediction that the conceptual difficulty of identifying

a valid analogy is proportional to the (word or relation-

based) dissimilarity of the A:B and C:D word pairs, with

greater dissimilarity making the analogy harder to verify.

Specifically, for every valid A:B::C:D analogy (144 prob-

lems in total), we calculated the cosine distance between

the representations of A:B and C:D specified by each

model, with higher cosine distance implying greater dis-

similarity between the two pairs of words. For each indi-

vidual participant, the relational dissimilarity scores

derived from each model were then correlated (using

Spearman’s rho) with observed activity during the C:D

phase of each valid analogy. (The relation-type model

was inapplicable because valid analogies by definition have

the same relation for A:B andC:D.) ThisC:D-phase analysis

was conducted using a whole-brain approach. For each

voxel, we computed the rank correlation between voxel

activity and relational dissimilarity.

Only BART yielded significant correlations as assessed by

randomise with TFCE correction. Relational dissimilarity

measures as calculated by BART correlatedwith voxel activity

in left-lateralized frontal, temporal, and parietal sites (see

Figure 8). Specifically, BART correlated with voxel activity

within ventrolateral pFC including the pars opercularis, tri-

angularis, and orbitalis of the inferior frontal gyrus; dorsolat-

eral pFC spanning BAs 8, 9, and 46 in the middle frontal

gyrus; and RLPFC in the BA 10 portions of the inferior

and middle frontal gyri, as well as in lateral premotor cortex

in BA 6, and in the medial aspect of the superior frontal gy-

rus in BAs 6, 8, and 9. In addition, significant correlations

were also detected in parietal areas in the intraparietal sul-

cus spanning BAs 40 and 7 and in temporal areas spanning

BAs 21 and 22.

As a follow-up, a semipartial correlation analysis was per-

formed to test whether BART captured additional informa-

tion relative to the Word2vec-derived models. Relational

dissimilarity scores derived from Word2vec-concat and

Word2vec-diff were first regressed out of fMRI-based

dissimilarity scores, and the resulting residuals were then

correlated with relational dissimilarity predictions derived

from BART. The same procedure was performed with the

group-averaged trial-by-trial accuracy, to examine the

effect of task difficulty. Essentially, the same areas shown

in Figure 8 (left frontoparietal network as well as tempo-

ral regions) exhibited statistically significant semipartial

correlations with BART as assessed by randomise with

Figure 7. Searchlight results

for RSAs testing alternative

models as predictors of neural

dissimilarity during the A:B

phase for 144 word pairs

instantiating abstract semantic

relations. (A) Lateral and

posterior views of areas in

which the BART model

based on distributed relation

representations was significantly

correlated with neural RDM.

None of the other three models

yielded areas with significant

correlations. (B) Posterior view

of areas in which correlation

of BART with neural RDM

was significantly greater than

correlation for each of the

alternative computational

models. (C) Posterior view of

areas in which correlation of

BART with neural RDM was

significantly greater than that

for the baseline model, which

assumes discrete codes for relations. Colored regions represent searchlight sphere centers that were significant as assessed by FSL randomise with

TFCE cluster correction for multiple comparisons (corrected p < .05).
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TFCE correction. The reverse analysis was also performed.

No regions showed a significant impact of the Word2vec

models after controlling for variance predicted by BART.

Finally, a similar semipartial correlation analysis was per-

formed controlling for trial-by-trial accuracy (mean accuracy

for each item across all participants), again for valid analo-

gies only. Rather than solely reflecting the conceptual diffi-

culty of identifying a valid analogy, mean accuracy is a

coarser measure of overall task difficulty, because errors

may arise at multiple processing stages (e.g., word identifi-

cation ormotor responses). After partialing out the variance

predicted by accuracy, the same areas shown in Figure 8

exhibited statistically significant semipartial correlations

with BART as assessed by randomisewith TFCE correction.

The reverse analysis yielded no areas that were reliably

predicted by accuracy after controlling for the variance

predicted by BART.

DISCUSSION

This study combined computational modeling with neuro-

imaging to investigate the representation and comparison

of abstract semantic relations in the brain. We used a

sequential presentation of verbal analogies with clear tem-

poral phases to examine the neural activity associated with

(1) representing the individual words in a pair and the rela-

tion between them and (2) comparing two first-order rela-

tions (while also separating these high-level reasoning

processes from planning for a motor response). By testing

alternative computational models of relational dissimilarity,

we were able to distinguish between rival accounts of how

semantic relations are coded and compared in the brain.

The BART model, which postulates that semantic relations

between words are coded as a distributed representation

based on a taxonomy of abstract relations, was able to pre-

dict patterns of neural activity during analogical reasoning

that could not be explained by alternative models. During

the phase in which a single relation is being encoded (A:B

phase), the BARTmodel was themost effective predictor of

patterns of neural activity in the left superior parietal cortex,

a region previously associated with relation representation

(Wendelken, 2015; Wendelken et al., 2008). During the

phase in which relations are compared to verify whether

the analogy is valid (C:D phase), BART was the most effec-

tive predictor of neural activity in multiple prefrontal ROIs,

including areas in the left RLPFC previously linked to

higher-order relational comparisons (Green et al., 2010;

Bunge et al., 2005, 2009). Although the left RLPFC has re-

ceived themost attention in the literature, the present find-

ings are consistent with previous evidence that analogical

reasoning depends on a broader left frontoparietal network

(for a review, see Holyoak & Monti, this issue).

The present findings support three major conclusions.

First, analogical reasoning depends on fine coding of

semantic relations with distributed representations, pri-

marily supported by the left superior parietal cortex.

Second, the content of these distributed representations

can be learned from a small number of examples instanti-

ating abstract relations, as operationalized in a computa-

tional model, BART. This model not only accounts for

behavioral accuracy in solving verbal analogy problems

but also yields measures of item-level relation dissimilarity

that correlate with dissimilarity of neural responses in

frontoparietal regions. This evidence for distributed coding

of relations is inconsistent with models of analogical rea-

soning based on localist relation representations (e.g.,

Forbus et al., 2017). Third, during verification of an analogy,

Figure 8. Correlation between

model-derived relational

dissimilarity betweenA:B andC:D

relations and trial parameter

estimates during the C:D phase.

Average Spearman correlation

between BART-derived relational

dissimilarity between A:B and

C:D relations and trial parameter

estimates during the C:D phase.

Only the relational dissimilarity

measure predicted by BART was

significantly correlated with trial

parameter estimates. Regions

significantly correlated with

BART also show significant

correlations after accounting for

variance accounted for by both

the Word2vec models and also

after accounting for trial

difficulty (estimated by mean

accuracy). Significance was

assessed using FSL randomise with TFCE cluster correction for multiple comparisons (corrected p < .05). Top row: lateral and dorsal views. Bottom

row: medial and anterior views.
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neural activities in frontal areas (including the left RLPFC)

as well as parietal and temporal regions exhibit a graded

response to the degree of relational dissimilarity between

the two word pairs forming the analogy. The graded neural

responses in analogy-selective frontal regions can be pre-

dicted by the BART model based on its distributed rela-

tion representations.

The fact that dissimilarity measures derived from the

BARTmodel yielded stronger andmore reliable predictions

of relational processing—for both first- and second-order

relations—than did the Word2vec-diff model is consistent

with computational evidence favoring the former model

as an account of human relational judgments (Lu et al.,

2019). The relative success of the BARTmodel in predicting

patterns of neural activity is directly relevant to a debate as

to whether or not individual semantic relations have explic-

it representations (Popov et al., 2017). Whereas Word2vec-

diff provides only a generic and implicit representation of

relational dissimilarity (i.e., the difference vector between

semantic vectors for two words), BART learns representa-

tions of individual semantic relations, which in the context

of analogical reasoning collectively provide a distributed

representation of the relations(s) linking any word pair.

The neural evidence favoring BART as a model of relation

dissimilarity thus supports the hypothesis that the brain

encodes semantic relations between words as distributed

representations across abstract semantic relations, such

as the specific relations “synonym,” “antonym,” and

“cause–effect.” By coupling computational modeling with

analyses of dissimilarity in neural activity, it proved possible

to resolve a major theoretical issue concerning the repre-

sentation of semantic relations.

This study focused on abstract semantic relations. These

are particularly important because a pool of abstract rela-

tions may provide basic elements that can be used to rep-

resent more specific relations. However, further research

will be required to determine the extent towhich the neural

basis for relational reasoning may differ for more concrete

semantic and visuospatial relations (e.g., inferring that

grasping a hammer enables it to be lifted). More generally,

future studies may benefit from applying the overall strate-

gy of model-guided item-level analyses of neural patterns.

This approach has the potential to be used to analyze pat-

terns of neural activity underlying semantic representations

of information units more complex than individual words.

Careful task design (e.g., presenting a problem in sequential

phases) can be used to separate key component processes.

Alternative computational models can then be used to

generate item-level predictions of neural activity using both

RSA and other analytic techniques, such as neural encoding

analyses (Huth et al., 2016; Mitchell et al., 2008). This

research strategy shows promise in decoupling component

processes and in identifying specific representations under-

lying high-level reasoning. Future work should aim to

develop and test well-specified computational models of

how propositions and larger knowledge units are repre-

sented in the brain and used to reason.
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Notes

1. We also tested a similar model, Word2vec-sum (Pereira et al.,
2018; Mikolov et al., 2013), which aggregates a word pair via vector
addition rather than concatenation. All results obtained using
Word2vec-sum were virtually identical to those based on
Word2vec-concat; hence, we only report results for Word2vec-
concat.
2. Significant decoding abilitywas also observed in early visual cor-
tex. Although visual properties of the stimuli were not precisely
quantified in this experiment, we ran an RSA using number of char-
acters in word pairs as a proxy for perceptual differences. We ob-
served a significant correlation with this word length model in the
early visual cortex region.
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