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Abstract

We study the existence, uniqueness, and optimal regularity of solutions to trans-
mission problems for harmonic functions withC1,α interfaces. For this, we develop
a novel geometric stability argument based on the mean value property.

1. Introduction

Transmission problems in classical elasticity theory were first introduced by
Picone in 1954; see [14]. In the following years, contributions were made by
Lions [10], Stampacchia [16] and Campanato [3]. In 1960, Schechter gen-
eralized the theory to include smooth elliptic operators in nondivergence form in
domains with smooth interfaces [15]. Since then, transmission problems have been
of great interest due to their applications in different areas in science. For instance,
Ladyzhenskaya andUral’tseva considered in [7] the so-called diffraction prob-
lem. For other recent developments, see [5,8,9,12].

As a particular feature, and in contrast with free boundary problems, transmis-
sion problems deal with a fixed interface where solutions change abruptly and the
primary focus is to study their behavior across this surface.Additionally, these prob-
lems cannot be treated separately as boundary value problems per se, as solutions
interact with each other from each side of the interface through the transmission
condition.

We study the existence, uniqueness and regularity of solutions to a transmission
problem for harmonic functions. One of our main novelties is that the transmission
interface has only C1,α regularity. Furthermore, we build up a new fine geometric
argument based on the mean value property to show that solutions are C1,α up to
each side of the interface.

The setting is the following: let � be a smooth, bounded domain of R
n , n ≥ 2.

Let �1 be a subdomain of � such that �1 ⊂⊂ � and set �2 = �\�1. Suppose
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Fig. 1. Geometry for the transmission problem (TP)

that the interface � between �1 and �2, namely, � = ∂�1, is a C1,α manifold, for
some 0 < α < 1. Then � = �1 ∪ �2 ∪ �. For a function u : � → R, we denote

u1 = u
∣
∣
�1

and u2 = u
∣
∣
�2

.

We consider the problem of finding a continuous function u : � → R such that
⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�u1 = 0 in �1

�u2 = 0 in �2

u2 = 0 on ∂�

u1 = u2 on �

(u1)ν − (u2)ν = g on �.

(TP)

Here g ∈ C0,α(�) and ν is the unit normal vector on � that is interior to �1; see
Fig. 1. This is a transmission problem in the spirit of Schechter in [15], where � is
the transmission interface. In contrast to our problem, [15] only deals with� ∈ C∞.
The last two equations on (TP) are called the transmission conditions.

If in (TP) we set g ≡ 0 then u is a harmonic function in �. Therefore, in order
to have a meaningful elliptic transmission condition, we assume that

g(x) ≥ 0 for all x ∈ �.

Hence, u will not be differentiable at those points on � where g > 0. In turn,
we prove that u is C1,α from each side up to �. In (TP) we have also imposed
homogeneous Dirichlet boundary condition on ∂�. This is not a restriction, since
we can always add to u a harmonic function v in� such that v = φ on ∂�, to make
u2 = φ on ∂�. The one dimensional case is excluded because one can easily find
explicit solutions.

Our main result is the following:

Theorem 1.1. There exists a unique classical solution u to the transmission prob-
lem (TP). Moreover, u1 ∈ C1,α(�1), u2 ∈ C1,α(�2), and there exists C =
C(n, α, �) > 0 such that

‖u1‖C1,α(�1)
+ ‖u2‖C1,α(�2)

≤ C‖g‖C0,α(�).
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The appropriate notion of solution to (TP) comes from computing �u in the
sense of distributions. Indeed, if u and� were sufficiently smooth and ϕ ∈ C∞

c (�),
then

(�u)(ϕ) =
∫

�

u�ϕ dx =
∫

�

(

(u1)ν − (u2)ν
)

ϕ dHn−1 =
∫

�

gϕ dHn−1.

Thus �u is a singular measure concentrated on � with density g. In Section 2
we show that there exists a unique distributional solution u ∈ C0(�) to (TP),
where C0(�) denotes the space of continuous functions on � that vanish on ∂�.
Moreover, we prove that u is Log-Lipschitz in �, see Theorem 2.2. The main issue
is the optimal regularity of u up to �. Theorem 1.1 will be a consequence of our
next result.

Theorem 1.2. (Pointwise C1,α boundary regularity) Let � = {(y′, ψ(y′)) : y′ ∈
B ′
1}, where ψ is a C1,α function, for some 0 < α < 1. Assume that 0 ∈ �. Let u be

a distributional solution to the transmission problem

�u = g dHn−1
∣
∣
�
,

where g ∈ L∞(�), g ≥ 0, and g ∈ C0,α(0). Then there are linear polynomials
P(x) = A · x + B, and Q(x) = C · x + B such that

|u1(x) − P(x)| ≤ D|x |1+α for all x ∈ �1 ∩ B1/2

|u2(x) − Q(x)| ≤ D|x |1+α for all x ∈ �2 ∩ B1/2,

with

|A| + |B| + |C | + D ≤ C0‖ψ‖C1,α(B′
1)

([g]Cα(0) + ‖g‖L∞(�)

)

and C0 = C0(n, α) > 0.

The key tool to prove Theorem 1.2 is a stability result, obtained via a novel
geometric approach we develop, which is based on the mean value property and
the maximum principle, see Theorem 4.2. In fact, our idea is to explicitly construct
classical solutions to problems with flat interfaces that are close to u. With this,
we can transfer the regularity from classical solutions to u. Indeed, as shown in
Section 3, solutions to flat problems have the expected optimal regularity up to the
interface.More precisely, we show that if the flatness and oscillation of the interface
� are controlled, thenwe can construct a solution for a flat interface problem, where
the flat interface does not intersect �. We also quantify how close solutions must
be, depending only on the geometric properties of � and the basic regularity of
u. These ingredients are crucial for the first step in the proof of Theorem 1.2, see
Lemma 5.1. To close the argument, one needs to use these approximations at each
scale. Through these techniques, and similar to the case of elliptic equations [2],
we are able to find that flat solutions are asymptotically close to non-flat solutions.

Our geometric techniques developed in Section 4 are constructive and quan-
titative, and provide a precise understanding of the underlying geometry of the
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transmission problem. Furthermore, this paper is essentially self-contained. We be-
lieve that the tools presented here could be used in free boundary problems, an idea
we will explore in the future. Finally, notice that our results are also useful in terms
of numerical analysis, as our constructions give explicit rates of approximation.

The paper is organized as follows: in Section 2 we prove the existence, unique-
ness and global Log-Lipschitz regularity of the solution u to (TP). Section 3 deals
with the case when the transmission interface is flat. Our geometric stability result
based on the mean value property is proved in Section 4. The proof of Theorems 1.2
and 1.1 are given in Sects. 5 and 6, respectively. The appendix contains some basic
geometric considerations about integration on Lipschitz domains.
Notation. For a point x ∈ R

n we write x = (x ′, xn), where x ′ ∈ R
n−1, xn ∈ R.

The gradient in the variables x ′ is denoted by∇′, dHn−1 is the (n −1)-dimensional
Hausdorff measure in R

n and B ′
r (x ′) denotes the ball in R

n−1 of radius r > 0
centered at x ′. When the ball is centered at the origin x ′ = 0′ or x = 0 = (0′, 0),
we will just write B ′

r or Br .

2. Existence, Uniqueness and Global Log-Lipschitz Regularity

As wementioned in the Introduction, the notion of solution to (TP) comes from
computing �u in the sense of distributions.

Definition 2.1. (Distributional solution) We say that u ∈ C0(�) is a distributional
solution to (TP) if for any ϕ ∈ C∞

c (�) we have
∫

�

u�ϕ dx =
∫

�

gϕ dHn−1.

In this case, we write

�u = g dHn−1
∣
∣
�
.

Even though the definition of distributional solution makes sense for u ∈
L1
loc(�), we ask u to be continuous up to the boundary so that the boundary con-

dition u = 0 is well-defined.
Recall that a bounded function u : � → R is in the space LogLip(�) if

[u]LogLip(�) = sup
x,y∈�
x �=y

|u(x) − u(y)|
|x − y|| log |x − y|| < ∞.

Theorem 2.2. (Existence, uniqueness, and Log-Lipschitz global regularity) Let �

be a Lipschitz interface, and g ∈ L∞(�). Then the unique distributional solution
u ∈ C0(�) to (TP) is given by

u(x) =
∫

�

G(x, y)g(y) dHn−1 for x ∈ �, (2.1)

where G(x, y) is the Green’s function for the Laplacian in �. Furthermore, u ∈
LogLip(�) and there exists C = C(n, �,�) > 0 such that

‖u‖L∞(�) + [u]LogLip(�) ≤ C‖g‖L∞(�).
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Proof. Let u be as in (2.1). By using a partition of unity on �, it is enough to
assume that � = ψ(Rn−1) where ψ : R

n−1 → R is a Lipschitz function and that
g(y′, ψ(y′)) has compact support in B ′

1 (see Appendix 7). Then, for any x ∈ �,

|u(x)| ≤
∫

�

|G(x, y)|g(y) dHn−1
y

=
∫

B′
1

|G(x, (y′, ψ(y′)))|g(y′, ψ(y′))
√

1 + |∇′ψ(y′)|2 dy′

≤ C(n, �)‖g‖L∞(�)

∫

B′
1

1

|(x ′ − y′, xn − ψ(y′))|n−2 dy′

≤ C(n, �)‖g‖L∞(�)

∫

B′
1

1

|x ′ − y′|n−2 dy′

≤ C(n, �)‖g‖L∞(�).

Thus, the integral defining u in (2.1) is absolutely convergent and u is bounded.
Next, for any ϕ ∈ C∞

c (�), by Fubini’s Theorem and the symmetry G(x, y) =
G(y, x),
∫

�

u(x)�ϕ(x) dx =
∫

�

[ ∫

�

G(x, y)g(y) dHn−1
]

�ϕ(x) dx

=
∫

�

g(y)

∫

�

G(y, x)�xϕ(x) dx dHn−1 =
∫

�

g(y)ϕ(y) dHn−1.

Moreover, since G(x̄, y) = 0 for x̄ ∈ ∂� and y ∈ �, by dominated convergence
we see that u(x) converges to 0 as x ∈ � converges to x̄ .

Now we show that u ∈ LogLip(�). Since u is harmonic in �\�, we only need
to prove the regularity of u near �. Suppose that x1, x2 ∈ K , where K ⊂ � is a
compact set containing �. Let 0 < d << 1. If |x1 − x2| ≥ d, then

|u(x1) − u(x2)| ≤ 2‖u‖L∞(�)

d
d ≤ C |x1 − x2|.

Assume next that |x1 − x2| = δ < d. If n ≥ 3, then, since B2δ(x1) ⊂ B4δ(x2), by
classical estimates for the Green’s function,

|u(x1) − u(x2)| ≤
∫

�

|G(x1, y) − G(x2, y)||g(y)| dHn−1

≤ Cn,K ‖g‖L∞(�)

[ ∫

B2δ(x1)∩�

1

|x1 − y|n−2 dHn−1 +
∫

B4δ(x2)∩�

1

|x2 − y|n−2 dHn−1

+
∫

�\(B2δ(x1)∩�)

|x1 − x2|
|x1 − y|n−1 dHn−1

]

≤ Cn,K ,�‖g‖L∞(�)

[ ∫

B ′
2δ(x ′

1)

1

|x ′
1 − y′|n−2 dy′ +

∫

B ′
4δ(x ′

2)

1

|x ′
2 − y′|n−2 dy′

+ |x1 − x2|
∫

B ′
1\B ′

2δ(x ′
1)

1

|x ′
1 − y′|n−1 dy′

]

≤ Cn,K ,�‖g‖L∞(�)

(|x1 − x2| + |x1 − x2|| log |x1 − x2||
)

.
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The estimate in dimension n = 2 follows the same lines.
For uniqueness, if u, v ∈ C0(�) are distributional solutions, then

∫

�

(u − v)�ϕ dx = 0 for every ϕ ∈ C∞
c (�).

Hence, u − v ∈ C0(�) is harmonic in � and, as a consequence, u ≡ v.

Remark 2.3. Note that if u ∈ LogLip(�) then u ∈ C0,γ (�) for every 0 < γ < 1
and there exists C = C(�, γ ) > 0 such that

[u]C0,γ (�) ≤ C[u]LogLip(�).

3. Flat Problems

For the next results, we fix the following notation. For a ∈ R we denote

Br,a = Br (0
′, a)

B+
r,a = Br (0

′, a) ∩ {xn > a}
B−

r,a = Br (0
′, a) ∩ {xn < a}

Tr,a = {x ∈ Br (0
′, a) : xn = a}

Ta = B1 ∩ {xn = a}
T +

a = {xn ≥ a}
T −

a = {xn ≤ a}.
When a = 0, we use the simplified notation T = T0 and B±

r = B±
r,0.

Theorem 3.1. (Flat problem) Let r > 0 and a ∈ R. Given 0 < α, γ < 1, let
g ∈ C0,α(Tr,a) and f ∈ C0,γ (Br,a). Then there exists a unique solution v ∈
C∞(Br,a\Tr,a) ∩ C0,γ (Br,a) to the flat transmission problem

{

�v = g dHn−1
∣
∣
Tr,a

in Br,a

v = f on ∂ Br,a .

Moreover, if we let v± = vχ
B±

r,a
, then v± ∈ C1,α(B±

r/2,a) and

‖v±‖
C1,α(B±

r/2,a)
≤ C

(‖g‖C0,α(Tr,a) + ‖ f ‖L∞(∂ Br,a)

)

,

where C = C(n, α, r) > 0. If g ∈ Ck−1,α(Tr,a), k ≥ 1, then v ∈ Ck,α(B±
r/2,a) and

‖v±‖
Ck,α(B±

r/2,a)
≤ C

(‖g‖Ck−1,α(Tr,a) + ‖ f ‖L∞(∂ Br,a)

)

,

where C = C(n, α, r, k) > 0.
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Proof. By subtracting from v the harmonic function h in Br,a that coincides with
f on ∂ Br,a , it is enough to assume that f = 0 on ∂ Br,a . We consider only the case
k = 1, that is, g ∈ C0,α(Tr,a). When k ≥ 1 the proof is completely analogous.
Moreover, it is sufficient to prove the result for a = 0 and r = 1. Indeed suppose
that g is as in the statement, and let g̃ be defined on T , so that

g(x ′, xn) = r−1g̃
(

r−1x ′, r−1(xn − a)
)

,

whenever x ∈ Tr,a . If ṽ is the corresponding solution in B1, then

v(x ′, xn) = ṽ
(

r−1x ′, r−1(xn − a)
)

for x ∈ Br,a

is the unique solution to �v = g dHn−1
∣
∣
Tr,a

such that v = 0 on ∂ Br,a . Moreover,
we have the following control of the norms:

‖v±‖
C1,α(B±

r/2,a)
= ‖ṽ±‖

L∞(B±
1/2)

+ r−1‖∇ṽ±‖
L∞(B±

1/2)
+ r−(1+α)[∇ṽ±]

C0,α(B±
1/2)

≤ max{1, r−1, r−(1+α)}‖ṽ±‖
C1,α(B±

1/2)

≤ Cn max{1, r−1, r−(1+α)}‖g̃‖C0,α(T )

≤ Cn max{1, r−1, r−(1+α)}(r‖g‖L∞(Tr,a) + r1+α[g]C0,α(Tr,a)

)

≤ C‖g‖C0,α(Tr,a),

where C > 0 is as in the statement.
Let v+ be the solution to the mixed boundary value problem

⎧

⎪⎨

⎪⎩

�v+ = 0 in B+
1

v+ = 0 on ∂ B+
1 \T

v+
xn

= g/2 on T .

By classical elliptic regularity, v+ ∈ C∞(B+
1 ) ∩ C1,α(B+

1/2) and

‖v+‖
C1,α(B+

1/2)
≤ C0‖g‖C0,α(T )

for some C0 = C0(n) > 0. The reflection of v+ onto B−
1 given by v−(x ′, xn) =

v+(x ′,−xn), whenever xn ≤ 0, solves
⎧

⎪⎨

⎪⎩

�v− = 0 in B−
1

v− = 0 on ∂ B−
1 \T

v−
xn

= −g/2 on T .

It follows that v = v+χ
B+
1

+ v−χ
B−
1
is the unique distributional solution to �v =

g dHn−1
∣
∣
T such that v = 0 on ∂ B1. By the same argument as in the proof of

Theorem 2.2, it is clear that v ∈ C∞(B1\T ) ∩ LogLip(B1). Moreover, v± ∈
C1,α(B±

1/2) with

‖v±‖
C1,α(B±

1/2)
≤ Cn‖g‖C0,α(T )

for some C = C(n) > 0, as desired. ��
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Corollary 3.2. Given |a| < 1/4, c0 > 0, and f ∈ C0,γ (B1), with 0 < γ < 1,
there exists a unique solution v ∈ C∞(B1\Ta) ∩ C0,γ (B1) to

{

�v = c0 dHn−1|Ta in B1

v = f on ∂ B1

such that, for any k ≥ 1,

‖v±‖Ck,α(B1/2∩T ±
a ) ≤ C

(

c0 + ‖ f ‖L∞(∂ B1)

)

,

where C = C(n, α, k) > 0.

Proof. Fix k ≥ 1. By Theorem 3.1 with r = 4, there is a unique solution w ∈
C∞(B4,a\T4,a) ∩ C0,γ (B4,a) to �w = c0 dHn−1

∣
∣
T4,a

such that w = 0 on ∂ B4,a .

Moreover, ‖w±‖
Ck,α(B±

2,a)
≤ Cc0, for some C = C(n, α, k) > 0. Let h be the

harmonic function in B1 such that h = w − f on ∂ B1. Then h ∈ C∞(B1) ∩
C0,γ (B1), and

‖h‖Ck,α(B1/2)
≤ C

(‖w‖L∞(∂ B1) + ‖ f ‖L∞(∂ B1)

) ≤ C
(

c0 + ‖ f ‖L∞(∂ B1)

)

,

where C = C(n, α, k) > 0. Define v = w −h on B1. Then v is the unique solution

to �v = g dHn−1|Ta with v = f on ∂ B1. Moreover, since B1/2 ∩ T ±
a ⊂ B±

2,a ,

‖v±‖Ck,α(B1/2∩T ±
a ) ≤ ‖w±‖

Ck,α(B±
2,a)

+ ‖h‖Ck,α(B1/2)
≤ C

(

c0 + ‖ f ‖L∞(∂ B1)

)

.

��

4. The Stability Result

In this section we prove our stability result, Theorem 4.2. As we mentioned at
the beginning, our argument is based on the mean value property and, therefore, it
is self-contained.

Fix ε > 0, and let �ε = {x ∈ � : dist(x, ∂�) < ε} and �ε = {x ∈ � :
dist(x, �) < ε}. Consider the average

uε(x) = 1

|Bε|
∫

Bε(x)

u(y) dy for x ∈ �ε.

Proposition 4.1. (Properties of averages) Let u be the distributional solution given
in Theorem 2.2. The following properties hold:

(i) If Bε(x) ∩ � = ∅ then uε(x) = u(x).
(ii) uε → u uniformly in compact subsets of �, as ε → 0.
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(iii) If g ∈ L∞(�) then gε ∈ Cc(�ε), where

gε(x) = 1

|Bε|
∫

�∩Bε(x)

g(y) dHn−1 for x ∈ �ε.

Moreover, �uε(x) = gε(x) for any x ∈ �ε.

Proof. Since u is harmonic outside of �, (i) is immediate by the mean value
property.

For (i i), recall by Remark 2.3 that u ∈ C0,γ (�). Therefore,

|uε(x) − u(x)| ≤ 1

|Bε|
∫

Bε(x)

|u(y) − u(x)| dy ≤ C‖g‖L∞(�)ε
γ → 0

as ε → 0.
We now show (i i i). If g ∈ L∞(�), by dominated convergence, gε ∈ Cc(�ε).

Moreover, for any ϕ ∈ C∞
c (�), we have

(�uε)(ϕ) =
∫

�

uε(x)�ϕ(x) dx

= 1

|Bε|
∫

Bε

∫

�

u(x + y)�ϕ(x) dx dy

= 1

|Bε|
∫

Bε

∫

�

u(z)�ϕ(z − y) dz dy

= 1

|Bε|
∫

Bε

∫

�

g(z)ϕ(z − y) dHn−1
z dy

= 1

|Bε|
∫

�

[ ∫

Bε

ϕ(z − y) dy

]

g(z) dHn−1
z

= 1

|Bε|
∫

�

[ ∫

�

χBε (z − y)ϕ(y) dy

]

g(z) dHn−1
z

= 1

|Bε|
∫

�

∫

�

χBε (z − y) g(z) dHn−1
z ϕ(y) dy

=
∫

�

[
1

|Bε|
∫

�∩Bε(y)

g(z) dHn−1
z

]

ϕ(y) dy =
∫

�

gε(y)ϕ(y) dy.

��
Theorem 4.2. (Stability) Let 0 < ε, θ < 1/2 and 0 < δ, γ < 1 be given, and let
� = {(y′, ψ(y′)) : y′ ∈ B ′

1}, where ψ is a Lipschitz function. Assume that � is
θε-flat in B1 in the sense that

� ⊂ {x ∈ B1 : |xn| < θε}
and that � is also ε-horizontal in B1; that is,

1 − ε ≤ ν(x) · (0′, 1) = (

1 + |∇′ψ(x ′)|2)−1/2 ≤ 1
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for every x ∈ �, where ν(x) denotes the upward pointing normal on �. Then there
exists C = C(n) > 0 such that for any u ∈ C0,γ (B1) and g ∈ L∞(�) satisfying

{

�u = g dHn−1
∣
∣
�

in B1

|g − 1| ≤ δ on �,

the classical solution v ∈ C∞(B1\T−θε) ∩ C0,γ (B1) to the flat problem
{

�v = dHn−1
∣
∣
T−θε

in B1

v = u on ∂ B1

satisfies

|u − v| ≤ C(θ + δ + εγ ) in B1/2. (4.1)

Remark 4.3. The interface for the flat problem in Theorem 4.2 is T−θε = B1 ∩
{xn = −θε}, which lies below � in the xn-direction. To approximate u with the
solution to a flat problem where the interface lies above � in the xn-direction, it is
enough to consider the classical solution v to

{

�v = dHn−1
∣
∣
Tθε

in B1

v = u on ∂ B1.

In this case, the same conclusion as in Theorem 4.2 holds.

Before proceeding with the proof, we need the following geometric result (see
Fig. 2):

Lemma 4.4. Let � be as in Theorem 4.2. Define M = 1 + 2θ and let x ∈ B1−Mε

be such that dist(x, �) < ε. Then

{y′ :(y′, ψ(y′))∈ Bε(x)} ⊂ B ′
((Mε)2−(xn+θε)2)1/2

(x ′) = {y′ :(y′,−θε)∈ BMε(x)}
(4.2)

and

{y′ :(y′, ψ(y′)) ∈ BMε(x)} ⊃ B ′
(ε2−(xn+θε)2)1/2

(x ′) = {y′ :(y′,−θε) ∈ Bε(x)}.
(4.3)

Proof. If x is as in the statement then, by the flatness condition on �, we have
|xn| < (1 + θ)ε.

Let us prove (4.2). Suppose first that −θε < xn < θε. Then

{y′ : (y′, ψ(y′)) ∈ Bε(x)} ⊂ {y′ : (y′, xn) ∈ Bε(x)} = B ′
ε(x ′).

Since

(Mε)2 − (xn + θε)2 = (1 + 2θ)2ε2 − (xn + θε)2

≥ (1 + 4θ + 4θ2)ε2 − (2θε)2 = ε2 + 4θε2 > ε2,
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we see that B ′
ε(x ′) ⊂ B ′

((Mε)2−(xn+θε)2)1/2
(x ′) and the conclusion follows. Assume

now that θε ≤ xn < (1 + θ)ε. Notice that

{y′ : (y′, ψ(y′)) ∈ Bε(x)} ⊂ {y′ : (y′, θε) ∈ Bε(x)} = B ′
(ε2−(xn−θε)2)1/2

(x ′).

Since

(Mε)2−(xn + θε)2 − (ε2 − (xn − θε)2)

= (1 + 2θ)2ε2 − (x2n + 2θεxn + (θε)2) − ε2 + (x2n − 2θεxn + (θε)2)

= 4θε2 + 4θ2ε2 − 4θεxn ≥ 4θε2 ≥ 0,

we find that B ′
(ε2−(xn−θε)2)1/2

(x ′) ⊂ B ′
((Mε)2−(xn+θε)2)1/2

(x ′), as desired. The last
case is when −(1 + θ)ε < xn ≤ −θε. Here it is clear that, since M > 1,

{y′ : (y′, ψ(y′)) ∈ Bε(x)} ⊂ {y′ : (y′,−θε) ∈ Bε(x)}
= B ′

(ε2−(xn+θε)2)1/2
(x ′)

⊂ B ′
((Mε)2−(xn+θε)2)1/2

(x ′).

This concludes the proof of (4.2).
For (4.3), notice that if xn ≥ (1 − θ)ε then the inclusion follows as {y′ :

(y′,−θε) ∈ Bε(x)} = ∅. We therefore assume that −(1 + θ)ε < xn < (1 − θ)ε.
If xn ≥ −θε, then

{y′ : (y′, ψ(y′)) ∈ BMε(x))} ⊃ {y′ : (y′,−θε) ∈ BMε(x)}
= B ′

((Mε)2−(xn+θε)2)1/2
(x ′)

⊃ B ′
(ε2−(xn+θε)2)1/2

(x ′),

because M > 1. If −(1 + θ)ε < xn < −θε, then

{y′ : (y′, ψ(y′)) ∈ BMε(x))} ⊃ {y′ : (y′, θε) ∈ BMε(x)} = B ′
((Mε)2−(xn−θε)2)1/2

(x ′)

and

(Mε)2 − (xn − θε)2 − (ε2 − (xn + θε)2)

= (1 + 2θ)2ε2 − (x2n − 2θεxn + (θε)2)

− ε2 + (x2n + 2θεxn + (θε)2)

= 4θε2 + 4θ2ε2 + 4θεxn ≥ 0,

so that B ′
((Mε)2−(xn−θε)2)1/2

(x ′) ⊃ B ′
(ε2−(xn+θε)2)1/2

(x ′), as desired, whence, (4.3)
holds. ��
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x

0

Bε(x)

BMε(x)

Γ
−θε

θε

Fig. 2. The red set is {y′ : (y′, −θε) ∈ BMε(x)}\{y′ : (y′, ψ(y′)) ∈ Bε(x)}

Proof of Theorem 4.2. Let M = 1 + 2θ > 1. By Corollay 3.2 with a = −θε,
and c0 = Mn(1 + δ)(1 − ε)−1 there is a unique classical solution w to the flat
transmission problem

{

�w = Mn(1 + δ)(1 − ε)−1 dHn−1
∣
∣
T−θε

in B1

w = u on ∂ B1.

Moreover, since u ∈ C0,γ (B1), then w ∈ C∞(B1\T−θε) ∩ C0,γ (B1).
Define the averages

uε(x) = 1

|Bε|
∫

Bε(x)

u(y) dy for x ∈ B1−ε ⊂ B1

and

wMε(x) = 1

|BMε|
∫

BMε(x)

w(y) dy for x ∈ B1−Mε ⊂ B1.

By Proposition 4.1(i i i), �uε(x) = gε(x) for every x ∈ B1−ε, and

�wMε(x) = 1

|BMε|
∫

BMε(x)∩T−θε

Mn(1 + δ)(1 − ε)−1 dHn−1 for x ∈ B1−Mε.

In addition, notice that

supp(�uε) ⊂ {x ∈ B1−ε : dist(x, �) < ε}
and

supp(�wMε) ⊂ {x ∈ B1−Mε : |xn| < Mε}.
Since � is θε-flat in B1 and M = 1 + 2θ , it follows that

supp(�uε) ⊂ supp(�wMε).
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Let us first show that

�wMε ≥ �uε in B1−Mε.

If x /∈ supp(gε) there is nothing to prove because �wMε ≥ 0 in B1−Mε. Let us
then take x ∈ B1−Mε such that dist(x, �) < ε. Using that 0 < g ≤ 1 + δ, � is
ε-horizontal and (4.2) in Lemma 4.4, we get

�wMε(x) = 1

Mn|Bε|
∫

BMε(x)∩T−θε

Mn(1 + δ)(1 − ε)−1 dHn−1

≥ 1

|Bε|
∫

{y′:(y′,−θε)∈BMε(x)}
g(y′, ψ(y′))

√

1 + |∇′ψ(y′)|2 dy′

≥ 1

|Bε|
∫

{y′:(y′,ψ(y′))∈Bε(x)}
g(y′, ψ(y′))

√

1 + |∇′ψ(y′)|2 dy′

= 1

|Bε|
∫

Bε(x)∩�

g dHn−1 = �uε(x).

We also have

wMε ≤ uε + Cεγ on ∂ B1−Mε

for some C = C(n, �) > 0. Indeed, fix any x ∈ ∂ B1−Mε, and let z ∈ ∂ B1 be such
that dist(x, ∂ B1) = |x − z| = Mε. By using that w, u ∈ C0,γ (B1), and w = u on
∂ B1,

wMε(x) − uε(x) = (wMε(x) − w(x)) + (w(x) − w(z))

+ (u(z) − u(x)) + (u(x) − uε(x))

≤ 1

|BMε|
∫

BMε(x)

|w(y) − w(x)| dy + C‖g‖L∞(�)|x − z|γ

+ 1

|Bε|
∫

Bε(x)

|u(y) − u(x)| dy

≤ Cεγ ,

(4.4)

where C = C(n) > 0, because � is ε-horizontal and |g − 1| ≤ δ on �. Hence, by
the maximum principle, wMε − uε ≤ Cεγ in B1−Mε. Consequently, by arguing
similarly as to (4.4), it follows that, for some C = C(n) > 0,

w − u ≤ Cεγ in B1−Mε. (4.5)

Secondly, consider the classical solution w̄ to the flat transmission problem
{

�w̄ = M−n(1 − δ) dHn−1
∣
∣
T−θε

in B1

w̄ = u on ∂ B1

and the corresponding averages w̄ε and uMε of w̄ and u, respectively. Since g ≥
1 − δ, by (4.3) in Lemma 4.4, we find that

�w̄ε(x) = 1

|Bε|
∫

Bε(x)∩T−θε

M−n(1 − δ) dHn−1
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≤ 1

|BMε|
∫

{y′:(y′,−θε)∈Bε(x)}
g(y′, ψ(y′))

√

1 + |∇′ψ(y′)|2 dy′

≤ 1

|BMε|
∫

{y′:(y′,ψ(y′))∈BMε(x)}
g(y′, ψ(y′))

√

1 + |∇′ψ(y′)|2 dy′

= 1

|BMε|
∫

BMε(x)∩�

g dHn−1 = �uMε(x).

By using parallel arguments to those in (4.4) we also get that, for someC = C(n) >

0,

u − w̄ ≤ Cεγ in B1−Mε. (4.6)

Define w = w+w̄

2 . By (4.5) and (4.6),

u − w ≤ w̄ + Cεγ − w + w̄

2
= w̄ − w

2
+ Cεγ

and

u − w ≤ w − Cεγ − w + w̄

2
= w − w̄

2
− Cεγ .

Hence,

‖u − w‖L∞(B1/2) ≤ 1

2
‖w̄ − w‖L∞(B1/2) + Cεγ .

Since
{

�(w̄ − w) = [M−n(1 − δ) − Mn(1 + δ)(1 − ε)−1] dHn−1
∣
∣
T−θε

in B1

w̄ − w = 0 on ∂ B1

by Theorem 3.1,

‖w̄ − w‖L∞(B1/2) ≤ C |Mn(1 + δ)(1 − ε)−1 − M−n(1 − δ)| ≤ C(θ + δ + ε)

for some C = C(n) > 0. Therefore,

‖u − w‖L∞(B1/2) ≤ C(θ + δ + εγ ). (4.7)

Also, �w = (1 + η) dHn−1
∣
∣
T−θε

, where

1 + η = Mn(1 + δ)(1 − ε)−1 + M−n(1 − δ)

2
.

Observe that, since 0 < θ, ε < 1/2, 0 < δ < 1, it follows that

|η| = |M2n(1 + δ) + (1 − δ)(1 − ε) − 2(1 − ε)Mn|
2(1 − ε)Mn

≤ C
(|(1 + 2θ)2n + 1 − 2(1 + 2θ)n| + δ + ε

) ≤ C(θ + δ + ε),

(4.8)

where C = C(n) > 0.
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Let v ∈ C∞(B1\T−θε) ∩ C0,γ (B1) be the solution to

{

�v = dHn−1
∣
∣
T−θε

in B1

v = u on ∂ B1;

see Corollary 3.2. Then v − w solves

{

�(v − w) = η dHn−1
∣
∣
T−θε

in B1

v − w = 0 on ∂ B1.

Therefore, by (4.8),

‖v − w‖L∞(B1) ≤ C |η| ≤ C(θ + δ + ε), (4.9)

where C = C(n) > 0. From (4.7) and (4.9) the estimate on the statement is proved.
��

Remark 4.5. (Divergence form equations) Recall that our proof of Theorem 4.2 is
self-contained, based on the mean value property for harmonic functions and the
maximum principle. In view of recently developed mean value formulas for solu-
tions to divergence form elliptic equations by Blank–Hao [1], the natural ques-
tion of extending our geometric techniques to transmission problems for divergence
form elliptic equations arise. For this case, our maximum principle techniques must
be replaced by energy methods. More importantly, not much is known about the
geometry of the mean value sets from [1], so it is not clear at all how to mimic
geometric arguments such as those in Lemma 4.4.

Remark 4.6. (Nondivergence form equations) The second natural question would
be to extend ourmethods to transmission problemswith nondivergence form elliptic
equations, where the maximum principle is a more adequate tool. In this situation,
not only there are no useful mean value formulas available, but also the notion
of distributional solution we consider in this paper does not apply anymore. The
first step would be to prove existence, uniqueness, and some initial regularity of
viscosity solutions. This is an open problem.

5. Proof of Theorem 1.2

Throughout this section, � is an interface in B1 given by the graph of a function
xn = ψ(x ′) : T → R. Thus, we can write B1 = �1 ∪ � ∪ �2, where �1 = {x =
(x ′, xn) ∈ B1 : xn > ψ(x ′)}. We also assume that 0 ∈ �.
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5.1. Preliminary Lemmas

Lemma 5.1. Given 0 < α, γ < 1, there exist constants C0 > 0, 0 < λ < 1/2,
0 < θ, δ, ε < λ depending only on n, α and γ , such that for any u ∈ C0,γ (B1)

satisfying
⎧

⎪⎨

⎪⎩

�u = g dHn−1
∣
∣
�

in B1

|u| ≤ 1 in B1

|g − 1| ≤ δ on �

if � is θε-flat and ε-horizontal in B1, then there are linear polynomials P1(x) =
A·x +B and Q1(x) = C ·x +B, with A, C ∈ R

n, B ∈ R, and |A|+|B|+|C | ≤ C0,
such that

|u1(x) − P1(x)| ≤ λ1+α for all x ∈ �1 ∩ Bλ

|u2(x) − Q1(x)| ≤ λ1+α for all x ∈ �2 ∩ Bλ.

Moreover, ∇′ P1 = ∇′Q1 and (P1)xn − (Q1)xn = 1.

Proof. Fix 0 < θ, δ, ε < λ < 1/2 to be chosen later. Consider the solutions

v = v+χB1∩T +
−θε

+ v−χB1∩T −
−θε

v̄ = v̄+χB1∩T +
θε

+ v̄−χB1∩T −
θε

to the flat transmission problems given in Theorem 4.2, and Remark 4.3, respec-
tively. By Corollary 3.2 with k = 2,

‖v+‖C2,α(B1/2∩T +
−θε)

+ ‖v̄−‖C2,α(B1/2∩T −
θε)

≤ C
(

1 + ‖u‖L∞(B1)

) ≤ C0

for some C0 = C0(n) > 0. In particular,

|v(0)| + |∇v(0)| + |v̄(0)| + |∇v̄(0)| ≤ C0.

Let h be the harmonic function in B1 such that h = u on ∂ B1. Define

P1(x) = v(0) + ∇v(0) · x + [ 1
2 − vxn

(0) + hxn (0)
]

xn

Q1(x) = v̄(0) + ∇v̄(0) · x + [ − 1
2 − v̄xn (0) + hxn (0)

]

xn .

Then P1 and Q1 are small perturbations of the linear parts of v and v̄ at the origin,
respectively. To see this, first note that the functions v(x ′, xn) − h(x ′, xn) and
v̄(x ′,−xn) − h(x ′,−xn) satisfy the same transmission problem on T−θε with zero
data on ∂ B1. By uniqueness,

v(x ′, xn) − h(x ′, xn) = v̄(x ′,−xn) − h(x ′,−xn) for all x ∈ B1.

In particular, v(x ′, 0) = v̄(x ′, 0), ∇′v(x ′, 0) = ∇′v̄(x ′, 0), and thus, P1(0) =
Q1(0), and ∇′ P1 = ∇′v(0) = ∇′v̄(0) = ∇′Q1. Clearly, (P1)xn − (Q1)xn = 1.
Moreover,

vxn
(x ′, 0) − hxn (x ′, 0) = −v̄xn (x ′, 0) + hxn (x ′, 0)
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and thus,
∣
∣ 1
2 − vxn

(0) + hxn (0)
∣
∣ = ∣

∣ − 1
2 − v̄xn (0) + hxn (0)

∣
∣. Let us show that

∣
∣ 1
2 − vxn

(0) + hxn (0)
∣
∣ ≤ D(θε)γ (5.1)

for some D = D(n) > 0. Recall that by the construction of v in Corollary 3.2,
we can write v = w − H , where w ∈ C∞(B4,−θε\T−θε) ∩ C0,γ (B4,−θε) is the
harmonic function in B4,−θε such that w = 0 on ∂ B4,−θε, and H is the harmonic
function in B1, with H = w − u on ∂ B1. Then

∣
∣ 1
2 − vxn

(0) + hxn (0)
∣
∣ ≤ ∣

∣wxn (0) − 1
2

∣
∣ + |(H + h)xn (0)|.

In particular, wxn (0) = w+
xn

(0), where w+ is the harmonic function in B+
4,−θε such

that w = 0 on ∂ B+
4,−θε\T−θε, and w+

xn
= 1

2 on T−θε. By the mean value theorem,

wxn (0) − 1
2 = w+

xn
(0′, 0) − w+

xn
(0′,−θε) = w+

xn xn
(0′, ξ)θε

for some −θε ≤ ξ ≤ 0. Moreover, by Theorem 3.1, ‖w+‖
C2,α(B+

2,−θε)
≤ D0, for

some constant D0 = D0(n) > 0. Hence,

|wxn (0) − 1
2 | ≤ D0θε.

Next, note that H + h is harmonic in B1, and H + h = w on ∂ B1. Consider the
harmonic function φ in B1−θε,−θε such that φ = w on B1−θε,−θε. Observe that
B1−θε,−θε ⊂ B1. Sincew is symmetricwith respect to the plane T−θε , it follows that
φxn (x ′,−θε) = 0 for any (x ′,−θε) ∈ B1−θε,−θε. Therefore, |φxn (0)| ≤ D0θε. By
interior estimates, the maximum principle, and the facts that w ∈ C0,γ (B1) and
dist(∂ B1, ∂ B1−θε,−θε) ≤ 2θε,

|(H + h)xn (0) − φxn (0)| ≤ D1‖(H + h) − w‖L∞(∂ B1−θε,−θε) ≤ D1(θε)γ

for some D1 = D1(n) > 0, and thus,

|(H + h)xn (0)| ≤ D1(θε)γ + |φxn (0)| ≤ D1(θε)γ + D0θε ≤ D(θε)γ

for some D = D(n) > 0. Therefore, (5.1) holds.
If x ∈ �1 ∩ B1/2, by Theorem 4.2 and (5.1), there are constants C, D > 0,

depending only on n, such that

|u1(x) − P1(x)| ≤ |u(x) − v(x)| + |v(x) − P1(x)|
≤ |u(x) − v(x)| + |v(x) − v(0) − ∇v(0)|

+ ∣
∣ 1
2 − vxn

(0) + hxn (0)
∣
∣|xn|

≤ C(θ + δ + εγ ) + ‖D2v‖L∞(�1∩B1/2)|x |2 + D(θε)γ |xn|
≤ C(θ + δ + εγ ) + C0|x |2 + D(θε)γ |xn|.

Similarly, if x ∈ �2 ∩ B1/2,

|u2(x) − Q1(x)| ≤ C(θ + δ + εγ ) + C0|x |2 + D(θε)γ |xn|.
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First, choose 0 < λ < 1/2 such that

C0|x |2 ≤ λ1+α

2
for all x ∈ Bλ.

Then, choose 0 < θ, δ, ε < λ such that

C(θ + δ + εγ ) + D(θε)γ λ ≤ λ1+α

2
.

��

Lemma 5.2. Given 0 < α < 1, there exist C0 > 0, 0 < λ < 1/2, and 0 < δ < 1,
depending only on n and α, such that for any distributional solution u ∈ C(B1) to

⎧

⎪⎨

⎪⎩

�u = g dHn−1
∣
∣
�

in B1

|u| ≤ 1 in B1

|g| ≤ δ on �,

there is a linear polynomial P(x) = A · x + B, with A ∈ R
n, B ∈ R and

|A| + |B| ≤ C0, such that

|u(x) − P(x)| ≤ λ1+α for all x ∈ Bλ.

Proof. Fix λ, δ > 0 to be determined. Let v be the harmonic function in B1 such
that v = u on ∂ B1. Then, the difference w = u − v is the distributional solution to

{

�w = g dHn−1
∣
∣
�

in B1

w = 0 on ∂ B1.

Moreover, ‖w‖L∞(B1) ≤ C‖g‖L∞(�) ≤ Cδ, where C = C(n) > 0. Define P(x) =
v(0) + ∇v(0) · x . By interior estimates and the maximum principle, we have

‖D jv‖L∞(B1/2) ≤ C0‖v‖L∞(B1/2) ≤ C0 for all j ≥ 0,

where C0 = C0(n, j) > 0. Hence, for x ∈ Bλ, with 0 < λ < 1/2, we get

|u(x) − P(x)| ≤ |u(x) − v(x)| + |v(x) − P(x)|
≤ Cδ + ‖D2v‖L∞(B1/2)|x |2
≤ Cδ + C0λ

2.

First, choose 0 < λ < 1/2, such that C0λ
2 ≤ λ1+α/2. Then choose 0 < δ < 1

such that Cδ ≤ λ1+α/2. ��
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5.2. Proof of Theorem 1.2

Fix 0 < α, γ < 1. Let C0, λ, θ, ε, δ > 0 be the minimum of the corresponding
constants given in Lemmas 5.1 and 5.2. Let 0 < δ0 < min

{

δ, θε, λ1+α

2

}

. First,
we normalize the problem. Recall that we are assuming that 0 ∈ �, that is, that
ψ(0′) = 0.

(i) By rotation, we can assume that ν(0) = en . In particular, ∇′ψ(0′) = 0′.
(ii) If g(0) �= 0, we can suppose that g(0) = 1. Indeed, we consider v = u/g(0).

The case g(0) = 0 will be addressed at the end.
(iii) Assume that ‖u‖L∞(B1) ≤ 1, and that

[g]C0,α(0) = sup
x∈�∩B1, x �=0

|g(x) − g(0)|
|x |α ≤ δ0.

Indeed, one can consider

v = δ0
u

‖u‖L∞(B1) + [g]C0,α(0)
.

(iv) Also, we let [ψ]C1,α(0) ≤ [ψ]C1,α(B′
1)

≤ δ0. Recall that

[ψ]C1,α(0) = sup
x ′∈B′

1, x ′ �=0′

|∇′ψ(x ′) − ∇′ψ(0′)|
|x ′|α = sup

x ′∈B′
1, x ′ �=0′

|∇′ψ(x ′)|
|x ′|α .

Then, for this normalization one can take

φ = δ0
ψ

[ψ]C1,α(B′
1)

.

Wemakean abuseof notation andcall the solution, the interface, the parametriza-
tion and the right hand side as in the statement, namely, u,�,ψ , and g, respectively.

It is enough to prove the following.
Claim. For all k ≥ 1, there exist linear polynomials Pk = Ak · x + Bk and
Qk = Ck · x + Bk such that

λk |Ak+1 − Ak | + λk |Ck+1 − Ck | + |Bk+1 − Bk | ≤ C0λ
k(1+α)

where C0 = C0(n) > 0, and such that

|u1(x) − Pk(x)| ≤ λk(1+α) for all x ∈ �1 ∩ Bλk

|u2(x) − Qk(x)| ≤ λk(1+α) for all x ∈ �2 ∩ Bλk .

Moreover, ∇′ Pk = ∇′Qk and (Pk)xn − (Qk)xn = 1.
We prove the claim by induction. Let us start with the case k = 1. By the

normalization, u, � and g satisfy the assumptions on Lemma 5.1. Indeed, by (i)
and (iv), for any (x ′, xn) ∈ �,

|xn| = |ψ(x ′)| = |ψ(x ′) − ψ(0′) − ∇′ψ(0′) · x ′| ≤ [ψ]C1,α(0) ≤ δ0 ≤ θε.
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Also, 1 ≤ (1 + |∇′ψ(x ′)|2)1/2 ≤ (1 + δ20)
1/2 ≤ (1 − ε)−1. Moreover, by (i i i),

|g(x) − 1| = |g(x) − g(0)| ≤ [g]C0,α(0)|x |α ≤ δ0 ≤ δ for any x ∈ �.

Hence, by Lemma 5.1, there are linear polynomials P1(x) = A1 · x + B1, and
Q1(x) = C1 · x + B1, with A1, C1 ∈ R

n , B1 ∈ R, and |A1| + |B1| + |C1| ≤ C0,
such that

|u1(x) − P1(x)| ≤ λ1+α for all x ∈ �1 ∩ Bλ

|u2(x) − Q1(x)| ≤ λ1+α for all x ∈ �2 ∩ Bλ.

Moreover, ∇′ P1 = ∇′Q1, and (P1)xn − (Q1)xn = 1.
For the induction step, assume that the claim holds for some k ≥ 1, and let Pk

and Qk be such polynomials. Denote by

�i,λk = {x ∈ B1 : λk x ∈ �i } for i = 1, 2

�λk = {x ∈ B1 : λk x ∈ �}.

Note that if ψλk is a parametrization of �λk in B ′
1, then ψλk (x ′) = λ−kψ(λk x ′). In

particular, ∇′ψλk (x ′) = ∇′ψ(λk x), and thus, for x ∈ �λk , if νλk (x) is the normal
vector on x pointing at�λk ,1, then νλk (x) = ν(λk x). DefinePk = Pkχ�1 +Qkχ�2 .
Consider the rescaled function

w(x) = u(λk x) − Pk(λ
k x)

λk(1+α)
for x ∈ B1. (5.2)

By the induction hypothesis, ‖w‖L∞(B1) ≤ 1. Notice that w is a piecewise contin-
uous function with a jump discontinuity on �λk . In fact, if

w1 = w
∣
∣
�1,λk

, w2 = w
∣
∣
�2,λk

,

then for x ∈ �λk , by the normalization (iv), and the induction hypothesis, we have

|(w1 − w2)(x)| = |Qk(λ
k x) − Pk(λ

k x)|
λk(1+α)

= λ−kα|xn| (5.3)

≤ λ−kα sup
x∈�

λk

|xn|

≤ sup
x ′∈B′

1

|ψλk (x ′)|
λkα

≤ [ψ]C1,α(0) ≤ δ0.

Let v = v1χ�1,λk
+ v2χ�2,λk

, where v1 and v2 are the solutions to

⎧

⎪⎨

⎪⎩

�vi = 0 in �i,λk

vi = wi on ∂�i,λk \�λk

vi = w1+w2
2 on �λk
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for i = 1, 2. Then v ∈ C0(B1). Moreover,
⎧

⎪⎨

⎪⎩

�(vi − wi ) = 0 in �i,λk

vi − wi = 0 on ∂�i,λk \�λk

vi − wi = (−1)i w1−w2
2 on �λk .

(5.4)

By the maximum principle and (5.3) it follows that

‖v − w‖L∞(B1) ≤ ‖v1 − w1‖L∞(�1,λk ) + ‖v2 − w2‖L∞(�2,λk )

= ‖w1 − w2‖L∞(�
λk ) ≤ δ0.

(5.5)

We compute the distributional Laplacian of v and estimate its size. For any
ϕ ∈ C∞

c (B1),

�v(ϕ) =
∫

B1

v(x)�ϕ(x) dx

=
∫

�1,λk

v1(x)�ϕ(x) dx +
∫

�2,λk

v2(x)�ϕ(x) dx

=
∫

�1,λk

(v1 − w1)(x)�ϕ(x) dx +
∫

�2,λk

(v2 − w2)(x)�ϕ(x) dx

+
∫

B1

w(x)�ϕ(x) dx

≡ I1 + I2 + I3.

For i = 1, 2, by Green’s formula,

Ii = 1

2

∫

�
λk

(w1 − w2)(x)ϕν
λk (x) dHn−1

+ (−1)i+1
∫

�
λk

(vi − wi )ν
λk (x)ϕ(x) dHn−1,

where we recall that νλk is the unit normal vector on �λk pointing at �1,λk . Note
that

I3 = �w(ϕ) = �

(
u(λk x)

λk(1+α)

)

(ϕ) − �

(Pk(λ
k x)

λk(1+α)

)

(ϕ).

Since u is a distributional solution, by doing a change of variables, we get

�(u(λk x))(ϕ) =
∫

B1

u(λk x)�ϕ(x) dx

= λk(2−n)

∫

B
λk

u(y)�yϕ(λ−k y) dy

= λk(2−n)

∫

�∩B
λk

g(y)ϕ(λ−k y) dHn−1
y
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= λk
∫

�
λk

g(λk x)ϕ(x) dHn−1.

Also, by Green’s formula, the induction hypothesis and (5.3),

�(Pk(λ
k x))(ϕ) = λk

∫

�
λk

[∇ Pk(λ
k x) − ∇Qk(λ

k x)
] · νλk (x)ϕ(x) dHn−1

+
∫

�
λk

[

Qk(λ
k x) − Pk(λ

k x)
]

ϕν
λk (x) dHn−1

= λk
∫

�
λk

νn(λk x)ϕ(x) dHn−1

+ λk(1+α)

∫

�
λk

(w1 − w2)(x)ϕν
λk (x) dHn−1.

Then

I3 =
∫

�
λk

g̃(x)ϕ(x) dHn−1 −
∫

�
λk

(w1 − w2)(x)ϕν
λk (x) dHn−1,

where

g̃(x) = g(λk x) − νn(λk x)

λkα
.

Therefore,

�v(ϕ) =
∫

�
λk

[

(v1 − w1)ν
λk (x) − (v2 − w2)ν

λk (x) + g̃(x)
]

ϕ(x) dHn−1.

By C1,α boundary estimates for harmonic functions in (5.4), and by (5.3),

‖(vi − wi )ν
λk ‖L∞(�

λk ∩B3/4) ≤ C‖w1 − w2‖L∞(�
λk ) ≤ Cδ0

where C = C(n, α) > 0. Moreover, for x ∈ �λk , by the normalization,

|g̃(x)| ≤ |g(λk x) − 1|
λkα

+ |1 − νn(λk x)|
λkα

≤ [g]C0,α(0) + [νn]C0,α(0) ≤ δ0 + δ0 = 2δ0.

By the maximum principle, ‖v‖L∞(B1) ≤ ‖w‖L∞(B1) ≤ 1. Therefore, we can apply
Lemma 5.2 to v to find a linear polynomial P(x) = A · x + B, with A ∈ R

n , B ∈ R

and |A| + |B| ≤ C0, such that

|v(x) − P(x)| ≤ λ1+α

2
for all x ∈ Bλ.

Hence, for any x ∈ Bλ, by the estimate above and (5.5),

|w(x) − P(x)| ≤ |w(x) − v(x)| + |v(x) − P(x)|
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≤ δ0 + λ1+α

2
≤ λ1+α,

since δ0 ≤ λ1+α/2. According to (5.2),
∣
∣
∣
∣

u(λk x) − Pk(λ
k x)

λk(1+α)
− P(x)

∣
∣
∣
∣
≤ λ1+α for all x ∈ Bλ,

or equivalently, for y = λk x ,

|u(y) − Pk(y) − λk(1+α) P(y/λk)| ≤ λ(k+1)(1+α) for all y ∈ Bλk+1 .

Define the polynomials Pk+1 and Qk+1 as

Pk+1(y) = Pk(y) + λk(1+α) P(y/λk), Qk+1(y) = Qk(y) + λk(1+α) P(y/λk).

From the previous estimate, it follows that

|u1(y) − Pk+1(y)| ≤ λ(k+1)(1+α) for all y ∈ �1 ∩ Bλk+1

|u2(y) − Qk+1(y)| ≤ λ(k+1)(1+α) for all y ∈ �2 ∩ Bλk+1 .

Moreover, since Pk(0) = Qk(0), and ∇′ Pk = ∇′Qk , it is clear that Pk+1(0) =
Qk+1(0), and∇′ Pk+1 = ∇′Qk+1.Also, (Pk+1)xn −(Qk+1)xn = (Pk)xn −(Qk)xn =
1. If Pk+1(y) = Ak+1 · y + Bk+1 and Qk+1(y) = Ck+1 · y + Bk+1 then

Ak+1 = Ak + λkα A, Bk+1 = Bk + λk(1+α)B, Ck+1 = Ck + λkα A.

By the estimate |A| + |B| ≤ C0, we conclude

λk |Ak+1 − Ak | + λk |Ck+1 − Ck | + |Bk+1 − Bk | ≤ C0λ
k(1+α).

The proof of the claim is completed.
Finally, we consider the case g(0) = 0. As before, it is enough to prove the

following.
Claim. For all k ≥ 1, there exists a linear polynomial Pk = Ak · x + Bk such that

λk |Ak+1 − Ak | + |Bk+1 − Bk | ≤ C0λ
k(1+α)

where C0 = C0(n) > 0, and such that

|u(x) − Pk(x)| ≤ λk(1+α) for all x ∈ � ∩ Bλk .

The proof is by induction. For k = 1, since ‖u‖L∞(B1) ≤ 1, and

‖g‖L∞(�) = sup
x∈�

|g(x) − g(0)| ≤ δ0

we can applyLemma5.2 to u. Thenwefind a linear polynomial P1(x) = A1·x+B1,
with A1 ∈ R

n , B1 ∈ R, and |A1| + |B1| ≤ C0, such that

|u(x) − P1(x)| ≤ λ1+α for all x ∈ Bλ.



288 L. A. Caffarelli, M. Soria-Carro & P. R. Stinga

Assume the claim holds for k ≥ 1. Define

w(x) = u(λk x) − Pk(λ
k x)

λk(1+α)
for x ∈ B1.

Then, for any ϕ ∈ C∞
c (B1),

�w(ϕ) = �(u(λk x))(ϕ)

λk(1+α)
=

∫

�
λk

g(λk x)

λkα
ϕ(x) dHn−1.

Also, for any x ∈ �λk ,

|g(λk x)|
λkα

= |g(λk x) − g(0)|
λkα

≤ [g]C0,α(0) ≤ δ0.

Then the claim follows for k + 1, by applying, once again, Lemma 5.2. ��

6. Proof of Theorem 1.1

To prove Theorem 1.1we need Campanato’s characterization ofC1,α spaces [4]
and a technical result that patches the interior and boundary estimates together. We
believe that the latter belongs to the folklore (see, for example, [13]) but, for the
sake of completeness, we will give a proof.

Theorem 6.1. (Campanato) Let u be a measurable function defined on a bounded
C1,α domain �. Then u ∈ C1,α(�) if and only if there exists C0 > 0 such that for
any x ∈ �, there exists a linear polynomial Qx (z) such that

|u(z) − Qx (z)| ≤ C0|x − z|1+α

for all z ∈ B1(x) ∩ �. In this case, if C∗ denotes the least constant C0 > 0 for
which the property above holds, then

‖u‖C1,α(�) ∼ C∗ + sup
x∈�

|Qx |,

where |Qx | denotes the sum of the coefficients of the polynomial Qx (z).

Proposition 6.2. Let S be a collection of measurable functions defined on a bounded
C1,α domain �. For x ∈ �, we let dx = dist(x, ∂�). Fix u ∈ S, and suppose the
following hold.

(i) (Interior estimates). There exist A, C, D > 0 such that for any x ∈ � there
exists a linear polynomial Px (z) such that

‖Px‖L∞(B) + dx‖∇ Px‖L∞(B) ≤ C‖u‖L∞(B)

and

|u(z) − Px (z)| ≤
(

A
‖u‖L∞(B)

d1+α
x

+ D

)

|z − x |1+α

for all z ∈ B ≡ Bdx /2(x).
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(ii) (Boundary estimates). There exists E > 0 such that for any y ∈ ∂�, there is a
linear polynomial Py(z) such that

‖Py‖L∞(�) + ‖∇ Py‖L∞(�) ≤ E

and

|u(z) − Py(z)| ≤ E |z − y|1+α

for all z ∈ �.
(iii) (Invariance property). For any u ∈ S, and any y ∈ ∂�, with corresponding

linear polynomial Py as in (i i), the function v = u − Py also satisfies the
estimates of (i).

Then S ⊂ C1,α(�), and there exists M > 0, depending only on A, C, D, E
such that

‖u‖C1,α(�) ≤ M‖u‖L∞(�).

Proof. We need to show that any u ∈ S satisfies the Campanato characterization
from Theorem 6.1. Let us pick any point x ∈ �. If x ∈ ∂� then the polynomial
Qx (z) ≡ Px (z), where Px (z) is as in assumption (i i), satisfies the Campanato
condition with C0 = E .

Suppose next that x ∈ �. Let y ∈ ∂� be a boundary point that realizes the
distance from x to the boundary, namely, dx = |x − y|. Let Py(z) be the linear
polynomial that satisfies (i i). Consider the function v(z) = u(z)− Py(z). By (i i i),
there is a linear polynomial Px (z) such that the conditions in (i) are met for v in
place of u. We claim that the polynomial Qx for the Campanato condition is

Qx (z) ≡ Py(z) + Px (z).

To show this, we split the argument into two cases.

Case 1. Suppose that |z − x | < dx/2. This is the case when we can apply (i) for
v − Px :

|u(z) − Qx (z)| = |u(z) − Py(z) − Px (z)| = |v(z) − Px (z)|
≤

(

A
‖v‖L∞(Bdx /2(x))

d1+α
x

+ D

)

|z − x |1+α

=
(

A
‖u − Py‖L∞(Bdx /2(x))

d1+α
x

+ D

)

|z − x |1+α.

Now, we notice that, by (i i), by the choice of y, and the fact that |z − x | < dx/2,

|u(z) − Py(z)| ≤ E |z − y|1+α ≤ E(3/2dx )
1+α ≤ 21+α Ed1+α

x .

Hence,

|u(z) − Qx (z)| ≤ (21+α AE + D)|z − x |1+α

and C0 = 21+α AE + D.
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Case 2. Suppose that |z − x | ≥ dx/2. By the estimate in (i) for Px (z), we get

|Px (z)| = |Px (x) + ∇ Px (x) · (z − x)|
≤ C‖u − Py‖L∞(B) + Cd−1

x ‖u − Py‖L∞(B)|z − x |.
Also, by the boundary estimate in (i i),

‖u − Py‖L∞(B) ≤ (3/2)1+α Ed1+α
x .

Hence,

|u(z) − Qx (z)| ≤ |u(z) − Py(z)| + |Px (z)|
≤ E |z − y|1+α + C‖u − Py‖L∞(B) + Cd−1

x ‖u − Py‖L∞(B)|z − x |
≤ 31+α E |z − x |1+α + 31+αC Ed1+α

x + Cd−1
x (3/2)1+α Ed1+α

x |z − x |
≤ 31+α E(1 + 2C)|z − x |1+α.

Thus, in this case, the Campanato constant is C0 = 31+α E(1 + 2C). ��
Proof of Theorem 1.1. Let u ∈ LogLip(�) be the solution given by Theorem 2.2.
We will show the statement for the function u2 : �2 → R, and we can argue
similarly for u1 : �1 → R.
The following holds:

(i) (Interior estimates). For any x ∈ �2, there exists a linear polynomial Px (z)
such that

‖Px‖L∞(B) + dx‖∇ Px‖L∞(B) ≤ (1 + 2n)‖u2‖L∞(B)

and

|u2(z) − Px (z)| ≤ 2α−1n
‖u‖L∞(B)

d1+α
x

|z − x |1+α

for all z ∈ B ≡ Bdx /2(x).
Indeed, fix x ∈ �2. Since u2 is harmonic, it is smooth in �2, so we can define

Px (z) = u2(x) + ∇u2(x) · (z − x).

Then, by classical interior estimates for harmonic functions,

‖Px‖L∞(B) + dx‖∇ Px‖L∞(B) ≤ ‖u2‖L∞(B) + dx‖∇u2‖L∞(B) + dx‖∇u2‖L∞(B)

≤ ‖u2‖L∞(B) + 2n‖u2‖L∞(B)

≤ (1 + 2n)‖∇u2‖L∞(B).

Moreover,

|u2(z) − Px (z)| ≤ ‖D2u2‖L∞(B)|z − x |2

≤ n
‖u2‖L∞(B)

d2
x

|z − x |2 ≤ 2α−1n
‖u2‖L∞(B)

d1+α
x

|z − x |1+α.



Regularity for C1,α Interface Transmission Problems 291

(ii) (Boundary estimates). Consider ∂�2 = � ∪ ∂�.
If y ∈ �, by Theorem 1.2, there exists a linear polynomial Py(z) such that

‖Py‖L∞(�2) + ‖∇ Py‖L∞(�2) ≤ E

and

|u2(z) − Py(z)| ≤ E |z − y|1+α

for all z ∈ �2, with E ≤ C0‖ψ‖C1,α(B′
1)

‖g‖C0,α(�), and C0 = C0(n, α) > 0.
If y ∈ ∂� ∈ C∞, since u2 = 0, then, by classical boundary regularity for
harmonic functions, u2 ∈ C1,α(B ∩ �), with B ≡ Br (y), for some r > 0
sufficiently small. By Theorem 6.1, there exists a linear polynomial Py(z)
such that

|u2(z) − Py(z)| ≤ C0|z − y|1+α

for all z ∈ �2, for some C0(n, α) > 0.
(iii) (Invariance property). Fix y ∈ ∂�2, and let Py be the corresponding linear

polynomial given in (i i). Clearly, the function v = u2 − Py is harmonic in�2,
so it satisfies the interior estimates in (i).

Therefore, by Theorem 6.2, we have u2 ∈ C1,α(�2), and there exists a constant
C > 0, depending only on n, α and � such that ‖u2‖C1,α(�2)

≤ C‖g‖C0,α(�). ��
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Appendix

A special Lipschitz domain � in R
n is a set of the form

� = {(x ′, xn) ∈ R
n : x ′ ∈ R

n−1, xn > ψ(x ′)},
where ψ ∈ Lip(Rn−1), that is, there exists M > 0 such that

|ψ(x ′) − ψ(y′)| ≤ M |x ′ − y′| for all x ′, y′ ∈ R
n−1.

In other words, � is the set of points lying above the graph of a Lipschitz function
ψ . Then, by Rademacher’s Theorem,ψ is Fréchet differentiable almost everywhere
with ‖∇ψ‖L∞(Rn−1) ≤ M . On ∂� we thus have

dHn−1
∣
∣
∂�

=
√

1 + |∇ψ(x ′)|2 dx ′ and ν(x ′, ψ(x ′)) = (∇ψ(x ′),−1)
√

1 + |∇ψ(x ′)|2 ,
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where x = (x ′, ψ(x ′)) ∈ ∂�. For a measurable function f on ∂�, we have
∫

∂�

f (x) dHn−1 =
∫

Rn−1
f (x ′, ψ(x ′))

√

1 + |∇ψ(x ′)|2 dx ′.

For more details see [6,11].
A bounded Lipschitz domain in R

n is a bounded domain � such that the boundary
∂� can be covered by finitely many open balls B j in R

n , j = 1, . . . , J , centered
at ∂�, such that

B j ∩ � = B j ∩ � j , j = 1, . . . , J,

where � j are rotations of suitable special Lipschitz domains given by Lipschitz
functionsψ j . Onemay then assume that ∂�∩B j can be represented in local coordi-
nates by xn = ψ j (x ′), where ψ j is a Lipschitz function on R

n−1 with ψ j (0′) = 0.
Recall also that if ψ is a Lipschitz function defined on an set A ⊂ R

n−1, with
Lipschitz constant M , then there exists an extension ψ : R

n−1 → R of ψ such that
ψ = ψ on A and the Lipschitz constant of ψ does not exceed M , see [6].
Let �0 = � ∩ (⋃J

j=1 B j
)c. A partition of unity {ξ j }J

j=0 subordinated to
{�0, B1, . . . , BJ } is a family of nonnegative smooth functions ξ j on R

n such that

ξ0 ∈ C∞
c (�0) ξ j ∈ C∞

c (B j ), j = 1, . . . , J and
∑J

j=0
ξ j (x) = 1 for all x ∈ �.

It follows that 0 ≤ ξ j ≤ 1, j = 0, 1, . . . , J . Obviously the family {ξ j }J
j=1

is a partition of unity subordinated to the open cover {B1, . . . , BJ } of ∂� and
∑J

j=1 ξ j (x) = 1 for every x ∈ ∂�.
Let f : � → R be a measurable function, where � = ∂� is the boundary of a
bounded Lipschitz domain �. Consider the balls B j , j = 1, . . . , J , that cover �

as above, and the corresponding Lipschitz functions ψ j : R
n−1 → R. Let {ξ j }J

j=1

be a smooth partition of unity subordinated to the open cover {B j }J
j=1 of �. Then

∫

�

f dHn−1 =
J

∑

j=1

∫

�

ξ j f dHn−1 =
J

∑

j=1

∫

B j ∩�

ξ j f dHn−1.

Let us consider each one of the terms in the sum above separately. We study the
following situation: let B be a ball and let f̄ : B ∩ � → R of compact support
in B ∩ �. Let ψ : R

n−1 → R be a Lipschitz function such that ψ(B ′
1) = B ∩ �.

Then, by extending trivially f̄ to the rest of the graph of ψ and using the coarea
formula [6,11],

∫

B∩�

f̄ dHn−1 =
∫

ψ(B′
1)

f̄ dHn−1 =
∫

ψ(Rn−1)

f̄ dHn−1

=
∫

Rn−1
f̄ (y′, ψ(y′))

√

1 + |∇ψ(y′)|2 dy′

=
∫

B′
1

f̄ (y′, ψ(y′))
√

1 + |∇ψ(y′)|2 dy′.
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