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Abstract

We study the existence, uniqueness, and optimal regularity of solutions to trans-
mission problems for harmonic functions with C!:¢ interfaces. For this, we develop
a novel geometric stability argument based on the mean value property.

1. Introduction

Transmission problems in classical elasticity theory were first introduced by
PICONE in 1954; see [14]. In the following years, contributions were made by
Lions [10], StampAaccHIA [16] and CAMPANATO [3]. In 1960, SCHECHTER gen-
eralized the theory to include smooth elliptic operators in nondivergence form in
domains with smooth interfaces [15]. Since then, transmission problems have been
of great interest due to their applications in different areas in science. For instance,
LADYZHENSKAYA and URAL'TSEVA considered in [7] the so-called diffraction prob-
lem. For other recent developments, see [5,8,9,12].

As a particular feature, and in contrast with free boundary problems, transmis-
sion problems deal with a fixed interface where solutions change abruptly and the
primary focus is to study their behavior across this surface. Additionally, these prob-
lems cannot be treated separately as boundary value problems per se, as solutions
interact with each other from each side of the interface through the transmission
condition.

We study the existence, uniqueness and regularity of solutions to a transmission
problem for harmonic functions. One of our main novelties is that the transmission
interface has only C'¢ regularity. Furthermore, we build up a new fine geometric
argument based on the mean value property to show that solutions are C1:% up to
each side of the interface.

The setting is the following: let 2 be a smooth, bounded domain of R”, n > 2.
Let € be a subdomain of © such that Q; CC € and set 2 = Q\ Q). Suppose
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Fig. 1. Geometry for the transmission problem (TP)

that the interface I" between 2 and 25, namely, I' = 92y, is a C1-® manifold, for
some 0 < o < 1. Then Q = Q1 U 2, UT. For a function u : 2 — R, we denote
uj =u|§1 and Uy =g .

We consider the problem of finding a continuous function u : 2 — R such that

Au; =0 in
Aur =0 in Qo
ur =0 on 99 (TP)
Uiy = un onI"

(u1)y — (u2)y =g onl.

Here g € C%%(I") and v is the unit normal vector on I that is interior to Q1; see
Fig. 1. This is a transmission problem in the spirit of Schechter in [15], where I" is
the transmission interface. In contrast to our problem, [15] only deals with " € C*°.
The last two equations on (TP) are called the transmission conditions.

If in (TP) we set g = 0 then u is a harmonic function in 2. Therefore, in order
to have a meaningful elliptic transmission condition, we assume that

g(x)>0 forallx eT.

Hence, u will not be differentiable at those points on I' where g > 0. In turn,
we prove that u is C''* from each side up to I'. In (TP) we have also imposed
homogeneous Dirichlet boundary condition on d€2. This is not a restriction, since
we can always add to # a harmonic function v in €2 such that v = ¢ on 0€2, to make
uy = ¢ on dS2. The one dimensional case is excluded because one can easily find
explicit solutions.

Our main result is the following:

Theorem 1.1. There exists a unique classical solution u to the transmission prob-
lem (TP). Moreover, uy € CY“*(Q)), uy € C“*(Qy), and there exists C =
Cn,a, ") > 0 such that

(173} ”Cl,a(ﬁl) + ””2”C1-"‘(§2) = C”g”COvD‘(F)-
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The appropriate notion of solution to (TP) comes from computing Au in the
sense of distributions. Indeed, if u and I" were sufficiently smooth and ¢ € CZ°(£2),
then

(Au)(g) = fQ ulhpdx = fr ((1)y — (w2, )p dH" ™ = /F godH".

Thus Au is a singular measure concentrated on I' with density g. In Section 2
we show that there exists a unique distributional solution u € Cy (Q) to (TP),
where Co(Q) denotes the space of continuous functions on  that vanish on 3.
Moreover, we prove that u is Log-Lipschitz in £, see Theorem 2.2. The main issue
is the optimal regularity of u up to I'. Theorem 1.1 will be a consequence of our
next result.

Theorem 1.2. (Pointwise C% boundary regularity) Let I' = {(y/, ¥(y)) : ¥ €
B}}, where ¥ is a C? function, for some 0 < a < 1. Assume that 0 € T'. Let u be
a distributional solution to the transmission problem

Au=gdH"!

r:

where g € L®(I'), g > 0, and g € C%%(0). Then there are linear polynomials
P(x)=A-x+ B,and Q(x) = C - x + B such that

luy(x) — P(x)| < D|x|'T@ forall x € Q1N By
luz(x) — Q(x)| < DIx|'T™  forall x € QN By,

with
Al +|B|+|C|+ D < COHw”Cl»a(Bi)([g]C“(O) + llglzer))
and Co = Co(n, ) > 0.

The key tool to prove Theorem 1.2 is a stability result, obtained via a novel
geometric approach we develop, which is based on the mean value property and
the maximum principle, see Theorem 4.2. In fact, our idea is to explicitly construct
classical solutions to problems with flat interfaces that are close to u. With this,
we can transfer the regularity from classical solutions to u. Indeed, as shown in
Section 3, solutions to flat problems have the expected optimal regularity up to the
interface. More precisely, we show that if the flatness and oscillation of the interface
I" are controlled, then we can construct a solution for a flat interface problem, where
the flat interface does not intersect I'. We also quantify how close solutions must
be, depending only on the geometric properties of I and the basic regularity of
u. These ingredients are crucial for the first step in the proof of Theorem 1.2, see
Lemma 5.1. To close the argument, one needs to use these approximations at each
scale. Through these techniques, and similar to the case of elliptic equations [2],
we are able to find that flat solutions are asymptotically close to non-flat solutions.

Our geometric techniques developed in Section 4 are constructive and quan-
titative, and provide a precise understanding of the underlying geometry of the
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transmission problem. Furthermore, this paper is essentially self-contained. We be-
lieve that the tools presented here could be used in free boundary problems, an idea
we will explore in the future. Finally, notice that our results are also useful in terms
of numerical analysis, as our constructions give explicit rates of approximation.
The paper is organized as follows: in Section 2 we prove the existence, unique-
ness and global Log-Lipschitz regularity of the solution u to (TP). Section 3 deals
with the case when the transmission interface is flat. Our geometric stability result
based on the mean value property is proved in Section 4. The proof of Theorems 1.2
and 1.1 are given in Sects. 5 and 6, respectively. The appendix contains some basic
geometric considerations about integration on Lipschitz domains.
Notation. For a point x € R” we write x = (x/, x,,), where x’ € R"!, x, € R.
The gradient in the variables x’ is denoted by V/, d H" ! is the (n — 1)-dimensional
Hausdorff measure in R” and B/.(x) denotes the ball in R"! of radius r > 0
centered at x". When the ball is centered at the origin x’ = 0" orx = 0 = (0, 0),
we will just write B, or B;.

2. Existence, Uniqueness and Global Log-Lipschitz Regularity

As we mentioned in the Introduction, the notion of solution to (TP) comes from
computing Au in the sense of distributions.

Definition 2.1. (Distributional solution) We say that u € Co(<2) is a distributional
solution to (TP) if for any ¢ € C2°(€2) we have

/qudx:/ggudH”_l.
Q r

Au=gdH"! |F.

In this case, we write

Even though the definition of distributional solution makes sense for u €
Llloc(SZ), we ask u to be continuous up to the boundary so that the boundary con-
dition u = 0 is well-defined.

Recall that a bounded function u : Q — R is in the space LogLip(Q) if

N [1C) b 03]
Loeli(® 7 Veq I — ylllog [x — ]|
xF#y
Theorem 2.2. (Existence, uniqueness, and Log-Lipschitz global regularity) Let I'
be a Lipschitz interface, and g € L°(T"). Then the unique distributional solution
u € Co(2) to (TP) is given by

u(x):/G(x,y)g(y)dH"_l forx € , 2.1
I

where G(x, y) is the Green’s function for the Laplacian in Q. Furthermore, u €
LogLip(2) and there exists C = C(n, ', Q) > 0 such that

lulle@) + [l ogrip) = CllgllLoer)-
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Proof. Let u be as in (2.1). By using a partition of unity on I, it is enough to
assume that I' = ¥ (R"~!) where ¢ : R"~! — R is a Lipschitz function and that
g(y', ¥ (")) has compact support in Bj (see Appendix 7). Then, for any x € €,

u(x)] s/F|G<x,y>|g(y)dH;?*‘
= [B NG Ly O DY T+ IV YOI dy'
1

1
< C(n, D)lgllLer f dy’
O Jo 1@ =y — w2

1 /
|x/ _ y/|n—2 dy

< C(n, F)Ilgllem/

B
< Cn,D)lgllLe).-

Thus, the integral defining « in (2.1) is absolutely convergent and u is bounded.
Next, for any ¢ € C2°(£2), by Fubini’s Theorem and the symmetry G(x, y) =
G(y, x),

/M(X)Aw(X)dx:/ [/ G(x,y)g(y)dH"_l}Aqﬁ(X)dx
Q Q r

= / 146)) / G(y, x)Arp(x)dxdH" " = / g dH" .
r Q r
Moreover, since G(x,y) = 0 for x € 92 and y € 2, by dominated convergence
we see that u(x) converges to 0 as x_€ €2 converges to x.
Now we show that u € LogLip(£2). Since u is harmonic in Q\I", we only need

to prove the regularity of u near I". Suppose that x1, x» € K, where K C Qis a
compact set containing I'. Let 0 < d << 1. If |x; — x2| > d, then

2 u [ee]
1) — uGe)| < %d < Clri — xl.

Assume next that |x; — x2| = 8§ < d. If n > 3, then, since Bas(x1) C Bas(x2), by
classical estimates for the Green’s function,

lu(x1) —ux2)] < /r 1G(x1,y) = Glxa, YlIg(y)dH" !

1 n—1 1 n—1
< CukllgllLem) ———— dH"" + ————dH
BosGepnr X1 — ¥l Bus ()T X2 — ¥l
+/ Md[{”—l]
P\(Bas ey 161 — !
< Caxrlel [/ ! d/+/ L4y
< Cuk.rligllLem ———dy —dy
' By ¥ =y Bl X3 = y"?

1
+ IXI _XZI// ’ ’ | o /|n71 dy,:|
BI\By, D X1 =Y

< Cuk,rliglzoey (Ixr = x2 + lx1 — x2][log |x1 — x2]]).
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The estimate in dimension n = 2 follows the same lines.
For uniqueness, if u, v € Co(2) are distributional solutions, then

/ (u—v)Apdx =0 forevery ¢ € C°().
Q

Hence, u — v € Cp(£2) is harmonic in €2 and, as a consequence, u = v.

Remark 2.3. Note that if u € LogLip(Q2) then u € C 0.7(Q) for every0 <y <1
and there exists C = C(£2, ) > 0 such that

[u]cor @) = Clulpogrip)-

3. Flat Problems

For the next results, we fix the following notation. For a € R we denote

B, = B, (0, a)

B}, =B, (0,a) N{x, > a}

B, =B, (0, a)N{x, <a}
Trq = {x € B.(0',a) : x, = a}
T, = BiN{x, = a}

T} ={x, > a}

T, ={x;, <a}
When a = 0, we use the simplified notation 7 = Ty and B = Bfo.

Theorem 3.1. (Flat problem) Letr > O anda € R. Given 0 < a,y < 1, let
g € CO""(TM) and f € CO”’(BW). Then there exists a unique solution v €
C®(Bra\Tra) N cor (By.q) to the flat transmission problem

Av=gdH"" ' inB.,
v=f on 0B, 4.

Moreover;, if we let vF = VXE then vt e C1@ (Bri/z,a) and

r.a

||Ui||C1,a(ﬁ) < C(ligllcoacr, ) + I fllo@B.0)s

where C = C(n,a,r) > 0.Ifg € Ckf]’”‘(Tr,a), k>1,thenv € Ck""(Bri/zya) and

+
v ”ck,a(ﬁ) < C(lgllckracr, ) + 1 fIL=@B,.))

where C = C(n, o, r, k) > O.
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Proof. By subtracting from v the harmonic function / in B, , that coincides with
f ondB,,, itis enough to assume that f = 0 on d B, ,. We consider only the case
k = 1, thatis, g € C%%(T.,). When k > 1 the proof is completely analogous.
Moreover, it is sufficient to prove the result for a = 0 and » = 1. Indeed suppose
that g is as in the statement, and let g be defined on T, so that

1 -1

whenever x € T, 4. If v is the corresponding solution in By, then
1

g(-x/3 xn) = ri

v(x, x0) = 0(r ', r o, — a)) forx € B,

is the unique solution to Av = gdH n—1 |T such that v = 0 on d B, ,. Moreover,
we have the following control of the norms:

o= R e P A =

~+
= = [V~ E= E= g
Cl'a(Br/z,a) LBy LBy Co’a(Bl/z)

-1 - ~4
<max{l,r ",r (+oz)}||v ||C,va(314_,/2)

< C,max{1, r~!

) r_(]+a)}||§||00u(T)
< Cumax{1, = rm Y (r gl oot o) + I8l cow )
=< Cligllcoe(r, ),

where C > 0 is as in the statement.
Let v be the solution to the mixed boundary value problem
Avt =0 inB;
vF =0  ondBN\T
vl =g/2 onT.

By classical elliptic regularity, vt € COO(BI‘*') N Cl'“(BlJr/z) and

+ N
19 cva gz < Collglicnacr)

for some Cy = Co(n) > 0. The reflection of v+ onto B[ given by v (x, x,) =
v (x’, —x,,), whenever x,, < 0, solves

AvT =0 in By

vT =0 on 0B \T

v, =—g/2 onT.
It follows that v = v™ Xgr TV xp= is the unique distributional solution to Av =

1 1

gdH"! |T such that v = 0 on dBj. By the same argument as in the proof of
Theorem 2.2, it is clear that v € C*(B;\T) N LogLip(B;). Moreover, v¥ €
Cl(By),) with

15 ro g < Callgllcoary

for some C = C(n) > 0, as desired. O
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Corollary 3.2. Given |a| < 1/4, co > 0, and f € C*V(By), with0 < y < 1,
there exists a unique solution v e C®(B\T,) N C%Y (By) to

Av =codH" Y7, in B
v=f on 0B

such that, for any k > 1,
¥l ek gnme) < Cleo + 1 lLe@nn),
where C = C(n, o, k) > 0.

Proof. Fix k > 1. By Theorem 3.1 with r = 4, there is a unique solution w €
C®(B4.q\T4.q) N C*Y (Byy) to Aw = codH" ™! |T4 such that w = 0 on By 4.

Moreover, ||willc,w(§) < Ccg, for some C = C(n,a,k) > 0. Let h be the

harrnoiic function in By such that 4 = w — f on dB;. Then h € C®°(B;) N
C%¥(By), and

Il cra g < CUwlLe@n) + 1 flze@sy) < C(co+I1f lx@sy),

where C = C(n, o, k) > 0. Definev = w —h on ‘By. Then v is the unique solution
to Av = gdH""!|z, withv = f on 3 B;. Moreover, since B, N T," C B

2,a’

||vi||ck,a(ﬁ/2mai) =< ”wi”Ck,a(%) 1l cre @) < Clco+ Il flliLe@ay))-

4. The Stability Result

In this section we prove our stability result, Theorem 4.2. As we mentioned at
the beginning, our argument is based on the mean value property and, therefore, it
is self-contained.

Fix ¢ > 0,and let Q, = {x € Q : dist(x,0RQ) < e}and [, = {x € Q :
dist(x, I') < ¢}. Consider the average

ugs(x) = u(y)dy  for x € Q..

|Be| JB, (x)

Proposition 4.1. (Properties of averages) Let u be the distributional solution given
in Theorem 2.2. The following properties hold:

(i) If Be(x) NT = & then us(x) = u(x).
(ii) ug — u uniformly in compact subsets of 2, as ¢ — 0.
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(iii) If g € L°°(T") then g, € C.(T';), where

gs(x) = g AH""  for x € T,.

|Be| JrnB, (x)
Moreover, Aug(x) = go(x) for any x € Q.
Proof. Since u is harmonic outside of I', (i) is immediate by the mean value

property.
For (ii), recall by Remark 2.3 thatu € C 0.7 (Q). Therefore,

|ug (x) lu(y) —u(x)|dy < Cligllireme” — 0

B¢l JB.(x)

as e — 0.

We now show (iii). If g € L°°(I"), by dominated convergence, g. € C.(T',).
Moreover, for any ¢ € C2°(2), we have

(Aug)(p) =/Qua(X)A<p(X)dx

IBI

= |Bs| // u(x)Ap(z — y)dzdy

/ / g()e(z — y)dH! " dy

/ / u(x +y)Ap(x)dxdy
Be

£
=

|
5= —J\

[/B oz —y) dy} g(2) dei.l_l

[/QXBS = Yel) dy} gy dH! !

.—E
il

\

/ x5, (z — ) g(2) dH ' p(y) dy

i

Theorem 4.2. (Stability) Ler 0 < €,0 < 1/2and 0 < §,y < 1 be given, and let
I = {0, ¥ : ¥y € B}}, where  is a Lipschitz function. Assume that T is
Oe-flat in By in the sense that

/ g(2) dHZ’,”} o(y)dy =/ 2 ("e(y) dy.
INB.(y) Q

O

I' C{x € By :|xy| <0¢}

and that T is also e-horizontal in By, that is,

172

I=e=v@ -0, D)= (1+[VyE)P) =1
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for every x € I, where v(x) denotes the upward pointing normal on T'. Then there
exists C = C(n) > 0 such that for any u € CY%7 (By) and g € L°°(T) satisfying
Au=gdH" ', inB
lg—1] <6 onT,

the classical solution v € C®°(B1\T—gs) N C*Y (By) to the flat problem

{Av =dH""!, i B

v=u on 0B
satisfies
u—v| <CO+5+¢") inBip. 4.1

Remark 4.3. The interface for the flat problem in Theorem 4.2 is T_g, = B N
{x, = —0¢}, which lies below I" in the x,-direction. To approximate u with the
solution to a flat problem where the interface lies above I' in the x,,-direction, it is
enough to consider the classical solution v to

{Av =dH"Y,  in B

v=u on dB;.
In this case, the same conclusion as in Theorem 4.2 holds.

Before proceeding with the proof, we need the following geometric result (see
Fig. 2):

Lemma 4.4. Let I" be as in Theorem 4.2. Define M = 1 4 26 and let x € B1_ e
be such that dist(x, I') < €. Then

{y/:(y/’ ‘(/f(y/)) EBS(X)} C BZ(M€)2_(XVL+95)2)I/2(X,) = {y/:(y/9 _08) GBME(X)}

(4.2)

and
{y/:(y/v W(y/)) € BMS(X)} D) BESZ—(X,,-I—@S)Q)I/Z(X/) = {y/:(y/ﬂ _98) € BS(X)}
4.3)

Proof. If x is as in the statement then, by the flatness condition on I', we have
|xn] < (1 +60)e.
Let us prove (4.2). Suppose first that —fe < x,, < 6. Then

{y/ 1 (', () € Be()}y C{y": (v, xn) € Be(x)} = BL(x').
Since

(Me)? — (x +602)* = (1 +260)%e? — (x, + O¢)?
> (1440 +40%)e? — (206)* = 2 + 40¢* > &2,
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we see that B, (x) C B(/(Me)k(x Lo (x”) and the conclusion follows. Assume

now that fe < x,, < (1 4+ 0)e. Notice that

{y/ : (y/v 1//()’/)) € Bs(x)} C {y/ : (y/’ 98) € BS(x)} = BESZ_(XH_QE)Z)I/Z(X/)~
Since

(Me)>—(x, + 08) — (£ — (x, — 0£)?)
= (14260)%e% — (x2 +20ex, + (Be)?) — &2 + (x — 20ex, + (0)?)
= 40e% + 462 — 49ex, > 406> > 0,

we find that Béaz—(xn—98)2)1/2 x" c BE(ME)Z—(xn+98)2)l/2 (x"), as desired. The last

case is when —(1 + 0)e < x,, < —6e. Here it is clear that, since M > 1,

(Y 1 (¢ () € Be(x)} C{y : (y, —0¢) € Bo(x)}

Y /
= Beo—gua0e12 )

/ /
C B(Mey—(uy 40212 (X)-
This concludes the proof of (4.2).

For (4.3), notice that if x, > (1 — 6)¢ then the inclusion follows as {y’ :
(y', —0¢) € B¢(x)} = &. We therefore assume that —(1 + 0)e < x, < (1 — 0)s.
If x, > —6¢, then

VO YO € Bue(x)} Dy 1 (Y, —0e) € Bye(x)}
=B
(

!/ !/
D) B(Sz—(xn+98)2)1/2 ()C )a

/
(Me2—(xy-+0ey)12 ()

because M > 1. If —(1 +0)e < x,, < —0¢, then

{y/ : (y/’ Kﬁ(y/)) € BME(-X))} D) {y/ : (y/’ 98) € BM&‘(X)} = Bé(MS)Z—(X,L—QE)Z)l/Z('x/)
and

(Me)? — (xp — 08)% — (€% — (x + 06)2)
= (14+260)%% — (x2 — 20¢ex, + (0e)?)
— 2 4 (x2 + 20ex, + (02)?)
=40 4 46%¢* + 40¢ex, > 0,

so that Bé(Ms)z—(xn—Gs)z)l/z x> Bész—(xn+98)2)l/2 (x"), as desired, whence, (4.3)
holds. ]
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Oe

—be

Fig. 2. The red setis {y" : (y/, —0¢) € By )N : ), ¥ (y)) € Be(x)}

Proof of Theorem 4.2. Let M = 1 4 26 > 1. By Corollay 3.2 with a = —0s,
and ¢cg = M"(1 4+ 8)(1 — &)~! there is a unique classical solution w to the flat
transmission problem

Aw = M"(1+8)(1 —e) ' dH"! |T_9 in B

w=u on dBj.

Moreover, since u € C%? (By), then w € C®(Bi\T_gs) N C*¥ (By).
Define the averages

us(x) = u(y)ydy forx € Bi_ C B

|B:| JB.(x)

and

Wy (X) = w(y)dy forx € Bi_pe C By.

[Bumel JBye(x)

By Proposition 4.1(iii), Aug(x) = gs(x) for every x € Bj_, and

Aw e (x) = M'(1+8)(1—e) 'dH"™ ' forx € Bi_e.

[Brel J By ()NT_ge

In addition, notice that

supp(Aug) C {x € Bj_, : dist(x, ') < ¢}
and

supp(Aw,y,) C {x € Bi—pe : |xn] < Me}.
Since I' is fe-flat in By and M = 1 + 20, it follows that

supp(Aug) C supp(Aw ).
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Let us first show that
Aw gy, > Aug in Bi_jpe.

If x ¢ supp(g,) there is nothing to prove because Aw,,, > 01in Bi_y,. Let us
then take x € Bj_j, such that dist(x, ') < ¢. Using that 0 < g < 146, ' is
g-horizontal and (4.2) in Lemma 4.4, we get

1

M"|Be| J By ()NT_ge

1
> B.] O YNV 1L+ IVY()IFdy

{y:(y",—0&)€Bpe (x)}

1
Z B gOLYONY 1L+ IVY()I2dy

O () eBe (x))
1

= gdH" ' = Aug(x).
|Be| JB, (onr

Awy, (x) = M"(1+8)(1 —¢g) L dH"!

We also have
Wy <Ue+Ce”  ondBI_pye

for some C = C(n,I') > 0. Indeed, fix any x € dB1_j,, and liz € 0B be such
that dist(x, dB;) = |x — z| = Me. By using that w, u € C%¥ (By), and w = u on
0By,
Wige (X) — e (x) = (Wyy, (X)) — w(x)) + (Wx) — w(z))
+ (@) —ux) + (u(x) —ue(x))

< lw(y) —wx)|dy + CllgllLer)lx — z|”
[Bumel J By (x) (4.4)
+ lu(y) —u(x)|dy
|Be| JB,(x)
< Ce’,

where C = C(n) > 0, because I' is e-horizontal and |g — 1| < § on I". Hence, by
the maximum principle, w,,, — us < Ce" in Bj_py,. Consequently, by arguing
similarly as to (4.4), it follows that, for some C = C(n) > 0,

w—u<Ce in Bji_pye. (4.5)
Secondly, consider the classical solution w to the flat transmission problem
Aw=M"( -8 dH"! |T79 in B
w=u on dB;

and the corresponding averages w, and u . of w and u, respectively. Since g >
1 — &, by (4.3) in Lemma 4.4, we find that

AW, (x) = M1 —8)dH" !

|Be| J B, (x)NT_p.
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1
< g YOI+ IV ()P dy

[Bumel Jiy:(y,—0¢)eB: (x))

1
< gOLYONY 1L+ IVY()IFdy

[Bmel Jiy:(v', 9 (/)€Bye ()}
1

~IBumel Jpy,onr

gdH"_1 = Aupe(x).

By using parallel arguments to those in (4.4) we also get that, for some C = C(n) >
0,
u—w<Ce¥ inBj_pe. (4.6)

Define w = 2. By (4.5) and (4.6),

wHw W —w

u—wilb—l-CsV—_z = 2_+C8V
and
w + w w—w
u—wfg—Csy—_z =_2 —Cév.
Hence,
L Y
lu — wlre(s ) = Ellw = WllLo(By )y + Ce”.
Since

AW —w) =[M"(1=8) = M"A+81 —e)~1dH"" [, inB

w—w=0 on 0B
by Theorem 3.1,
i — wlro,, < CIM" A+ 8)(1—8e) ™' =M1 =8)| <CO+65+e)
for some C = C(n) > 0. Therefore,
lu —wllpeos, < CO+35+¢e"). 4.7)

Also, Aw = (1 4+ n) dH"_1|T79 , where

M"(1+8)(1—e)~ L+ M~"(1 - )
7 .
Observe that, since 0 < 0,¢& < 1/2,0 < § < 1, it follows that

1+n=

M+ 8) + (1= 8) (1 — &) —2(1 — &)M"|
B 2(1 — e)M" 4.8)
<CIA+20)" +1-2(1+20)"|+8+¢) <CO+8+e),

where C = C(n) > 0.

0]
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Let v € C®(B1\T_gp:) N C%" (By) be the solution to

Av=dH" ", inB
v=1u on dBy;

see Corollary 3.2. Then v — w solves

{A(v —w) =ndH"'[ inB

v—w=0 on 0 Bj.
Therefore, by (4.8),
lv—wllpes) =Clnl < CO+35+e¢), 4.9)

where C = C(n) > 0. From (4.7) and (4.9) the estimate on the statement is proved.
O

Remark 4.5. (Divergence form equations) Recall that our proof of Theorem 4.2 is
self-contained, based on the mean value property for harmonic functions and the
maximum principle. In view of recently developed mean value formulas for solu-
tions to divergence form elliptic equations by BLANK—HAO [1], the natural ques-
tion of extending our geometric techniques to transmission problems for divergence
form elliptic equations arise. For this case, our maximum principle techniques must
be replaced by energy methods. More importantly, not much is known about the
geometry of the mean value sets from [1], so it is not clear at all how to mimic
geometric arguments such as those in Lemma 4.4.

Remark 4.6. (Nondivergence form equations) The second natural question would
be to extend our methods to transmission problems with nondivergence form elliptic
equations, where the maximum principle is a more adequate tool. In this situation,
not only there are no useful mean value formulas available, but also the notion
of distributional solution we consider in this paper does not apply anymore. The
first step would be to prove existence, uniqueness, and some initial regularity of
viscosity solutions. This is an open problem.

5. Proof of Theorem 1.2

Throughout this section, I" is an interface in By given by the graph of a function
X, = ¥ (x’) : T — R. Thus, we can write B] = Q{ UT" U Q,, where Q| = {x =
(x', xp) € By : x, > ¥ (x")}. We also assume that 0 € T.
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5.1. Preliminary Lemmas

Lemma 5.1. Given 0 < «, y < 1, there exist constants Cop > 0,0 < A < 1/_2
0 < 0,8, & < A depending only on n, a and y, such that for any u € C%Y (By)

satisfying

Au=gdH" |, inB
ul <1 in B
lg — 1] <§ onT

if T is O¢-flat and e-horizontal in By, then there are linear polynomials Py (x) =
A-x+Band Q1(x) =C-x+B,withA,C e R", B € R, and |A|+|B|+]|C| < Cy,
such that

lui(x) — Pr(x)| < A% forallx € QN B,
lua(x) — OQ1(x)| < A% forallx € Q>N B;.

Moreover, V' Py = V'Q1 and (P1)x, — (Q1)x, = 1.

Proof. Fix 0 < 6,5, < A < 1/2 to be chosen later. Consider the solutions

|

oty -
=2 XBmT_*HS‘FE XBinT,

=qt

<

XEinTyt TV XEinT;

to the flat transmission problems given in Theorem 4.2, and Remark 4.3, respec-
tively. By Corollary 3.2 with k = 2,

10"l 2@ ) + 18 ez < C(1+ lulli=ay) < Co
for some Cop = Cp(n) > 0. In particular,
O]+ [VuO)] + [v(0)] + [Vo(0)| < Co.
Let /& be the harmonic function in By such that 4 = u on d B;. Define
Pi(x) = v(0) + Vv(0) - x + [5 — v, (0) + /1y, (0) ]xn
Q1(x) = 9(0) + V(0) - x + [ — § — iy, (0) + /1, (0) | .

Then Pj and Q; are small perturbations of the linear parts of v and v at the origin,
respectively. To see this, first note that the functions v(x’, x,) — h(x’, x,) and
v(x’, —x,) — h(x’, —x,) satisfy the same transmission problem on 7_g, with zero
data on 0 B;. By uniqueness,

v, x,) — h(x', x,) = 0(x', —x,) — h(x’, —x,)  forall x € Bj.

In particular, v(x’,0) = v(x,0), V'v(x’,0) = V'0(x’,0), and thus, P;(0) =
Q1(0), and V'P; = V'v(0) = V'0(0) = V'Qy. Clearly, (P1)y, — (QDx, = 1.
Moreover,

vy, (¢, 0) = Ay, (x", 0) = — 1y, (', 0) + Ay, (x7, 0)
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and thus, |§ — v, (0) + hy, (0)| = | = § — ¥y, (0) + hy, (0)]. Let us show that

13— v, (0) + hy, (0)] < D(Be)” (5.1)

for some D = D(n) > 0. Recall that by the construction of v in Corollary 3.2,
we can write v = w — H, where w € C® (B4, _g:\T_ge) N C*Y (By _g,) is the
harmonic function in B4 _g, such that w = 0 on d B4 _g,, and H is the harmonic
function in B, with H = w — u on 0 B;. Then

13 = v, (0) + hy, (0)] < |wy, (0) = 3|+ [(H + h), 0]

In particular, wy, (0) = w (0), where w™ is the harmonic function in B ,. such
that w = 0 on 88:796\196, and w;: = % on 7T_y.. By the mean value theorem,

wy, (0) — 3 = w (0/,0) — w] (0, —0e) = w;  (0,&)0e

Xn Xn XnXn

for some —fe < & < 0. Moreover, by Theorem 3.1, lwT|| < Dy, for

C2e(By_p,)
some constant Dy = Dg(n) > 0. Hence,

lwy, (0) — | < Dobe.

Next, note that H + & is harmonic in By, and H + h = w on 9 B;. Consider the
harmonic function ¢ in Bj_ge —ge such that ¢ = w on Bj_g. —g.. Observe that
Bi_g¢,—9s C Bj.Since w is symmetric with respect to the plane 7_g,, it follows that
¢, (x', —0¢) = 0forany (x’', —0¢) € Bi_ps,—ps. Therefore, |¢y, (0)| < Dobe. By
interior estimates, the maximum principle, and the facts that w € C O’3’(B_1) and
dist(0 By, 0 B1—ge,—pe) < 20¢,

|(H + h)y,(0) — ¢x, (0)] < Di|(H +h) — wlzo@B,_g. _g) < D1(0€)”
for some Dy = Di(n) > 0, and thus,
[(H + h)x, (0)] < D1(e)” + |¢x, (0)] < D1(8e)” 4+ Dobe < D(0¢e)”

for some D = D(n) > 0. Therefore, (5.1) holds.
If x € 21 N Byz, by Theorem 4.2 and (5.1), there are constants C, D > 0,
depending only on 7, such that

lup(x) — Pr(x)| < |ux) —v(x)] + [ulx) — Pr(x)]
< lu(x) = v(@)| + [v(x) — v(0) — Vv(0)]
+ |5 = v, 0) + Ay, (0)] x|
< CO+8+¢")+ | D*llL~@ins ) x* + DO) |x,]
<C@O+8+¢")+ Colx|> + D©Be)” |x,].
Similarly, if x € Q2 N By 2,

u2(x) = Q1(x)] < C(O + 8+ ") + Colx|* + D(0)” |x,].
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First, choose 0 < A < 1/2 such that

14

Colx|* < forall x € B;.

Then, choose 0 < 6, §, & < A such that

14«

2

CO+8+e")+ D) A <
O

Lemma 5.2. Given 0 < o < 1, there exist Cop > 0,0 <A < 1/2,and 0 < <1,
depending only on n and o, such that for any distributional solutionu € C(B) to

Au=gdH" . inB
lul <1 in By

lgl <9 onT,

there is a linear polynomial P(x) = A-x + B, with A € R", B € R and
|A| 4+ |B| < Co, such that

lu(x) — P(x)] <A forallx € B.

Proof. Fix A, > 0 to be determined. Let v be the harmonic function in B such
that v = u on 0 By. Then, the difference w = u — v is the distributional solution to

Aw = gdH”_1|r in By
w=0 on 0Bj.

Moreover, |w|zx ) < CligllLea) < C8, where C = C(n) > 0. Define P(x) =
v(0) + Vv(0) - x. By interior estimates and the maximum principle, we have

ID7v] LBy )) < CollvliL=s,) < Co  forall j >0,
where Co = Co(n, j) > 0. Hence, for x € B;, with0 < A < 1/2, we get

u(x) — P(x)] < |u(x) — (@) + [v(x) — P(x)]|
< C8 + [|D*v]| Lo, ) 1 I
< C8+ Coa.

First, choose 0 < A < 1/2, such that CoaA?> < A!*%/2. Then choose 0 < § < 1
such that C§ < Al1+@ /2. O



Regularity for C L@ Interface Transmission Problems 283

5.2. Proof of Theorem 1.2

Fix0 < a,y < 1.Let Co, A, 0, &,5 > 0 be the minimum of the corresponding
constants given in Lemmas 5.1 and 5.2. Let 0 < §p < min {8, Oe, Al;} First,
we normalize the problem. Recall that we are assuming that 0 € T', that is, that

¥(0) =0.
(i) By rotation, we can assume that v(0) = ¢,. In particular, V' (0") = (/.
(ii) If g(0) # 0, we can suppose that g(0) = 1. Indeed, we consider v = u/g(0).
The case g(0) = 0 will be addressed at the end.
(iii) Assume that ||u| o~ (p,) < 1, and that

—g(0
[glcowgy = sup l8) — 2O _

< .
xelNBy, x#£0 x|

Indeed, one can consider

u

V= 30 .
lull Loo(By) + [g]CO.a(o)

(IV) AISO, we let [W]Cl,u(o) < [w]CL"‘(Bi) < (S(). Recall that

IV (x") — V' (00)] IV (x|
[Vlcre) =~ sup T = s
x'€B], x'#0' |x'] x'€By, x'#£0 x|
Then, for this normalization one can take
4
¢ =8 ——.
[Ylcres)
‘We make an abuse of notation and call the solution, the interface, the parametriza-
tion and the right hand side as in the statement, namely, u, I', ¥, and g, respectively.
It is enough to prove the following.

Claim. For all k > 1, there exist linear polynomials P, = Ay - x + By and
Qr = Cy - x + By, such that

M A1 — Akl + M |Chgt = Crl + |Bigt — Bil < CoatH)
where Co = Co(n) > 0, and such that
lup(x) — Pr(x)| < A+ forall x € Q1 N B«
luz (x) — Qr(x)| < AR+ forall x € , N Bjx.

Moreover, V' Py = V' Q and (Pt)y, — (Ok)x, = 1.

We prove the claim by induction. Let us start with the case k = 1. By the
normalization, u, I" and g satisfy the assumptions on Lemma 5.1. Indeed, by (i)
and (iv), for any (x/, x,) € T,

lxnl = 1Y (D = ¥ (") = ¢ (0) = V' (0) - x'| < [¥]cre) < 8o < be.
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Also, 1 < (1+|V'yx)HY? < (14812 < (1 —e)~!. Moreover, by (iii),
lg(x) — 1] = [g(x) — g(0)| < [g]cow(p)lx|® <o <8 foramyx eT.

Hence, by Lemma 5.1, there are linear polynomials P;(x) = A; - x + Bj, and
01(x) = Cy-x + By, with Ay, C; € R", By € R, and |A{| + |B1] + |C1| < Co,
such that

lui(x) — Pr(x)| < A% forallx € Q; N By

lua(x) — Q1(x)| < A% forall x € Q, N B;.
Moreover, V/'Py = V'Qy, and (Py)y, — (Q1)x, = L.

For the induction step, assume that the claim holds for some k& > 1, and let Py
and Qy be such polynomials. Denote by
Q0 ={x € B Ak x e Q;} fori=1,2
e =1{x e B akx e ry.

Note that if y,« is a parametrization of I';« in By, then ¥k (x") = Ak Wk x'). In
particular, V'« (x) = V' (3kx), and thus, for x € [y, if vy« (x) is the normal

vector on x pointing at €2, |, then v, (x) = v(Akx). Define Py = Py X+ 0k xo,-
Consider the rescaled function

u(Wkx) — P (W x)
k(14a)

wx) = for x € Bj. (5.2)

By the induction hypothesis, ||w]|;~(p,;) < 1. Notice that w is a piecewise contin-
uous function with a jump discontinuity on I'y«. In fact, if

o= w‘ﬁl.xk’ w2 = w‘ﬁz.xk’

then for x € I';«, by the normalization (iv), and the induction hypothesis, we have

|0k (W x) — Pr(Mkx)|

— _ 4 —ka
= w2 )] = = e (5.3)
< ) ke sup |xn|
xEFAk
Y5 (X))
= sup );\T = [¥lcre) =< do-

x'€B]
Letv =vixg , +vaxg > where vy and v; are the solutions to
1,2k 2,2k
Av,- =0 in Qi,kk

Vi = Wi on 8Q,~’)\k\l—‘)~k
on I';«
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fori = 1,2. Then v € C°(B). Moreover,

A(Ui _wl') =0 in Qi,)uk
Vi —W; = 0 on 8Qi’)\k\r)"k (54)
)i wlng

vi —w; = (—1 on k.

By the maximum principle and (5.3) it follows that

v —wllLeesy) = lvr —willize, 0 + vz = wallLe(e, 4 55)
= lwi —w2llz= ;) = o

We compute the distributional Laplacian of v and estimate its size. For any
@ € C°(By),
Av(p) =/ v(x)Ap(x)dx
B

:/ vl(x)Ago(x)dx—i-/ v2(x)Ag(x) dx
QL k k

1.2 2,
I,

(vi —w)(x)Ap(x) dx +/ (v2 — w2)(x) Agp(x) dx
+/ w(x)A@(x)dx
By

1.0k §2; 3k
=h+ DL+ 1.

Fori = 1, 2, by Green’s formula,
1 n—1
I = = (w1 —w2) (), (x)dH
2 I W

FEDH [ =y, g0 ar
k

[k

where we recall that v, is the unit normal vector on I';x pointing at €2, ;. Note
that

u(Zkx) Pr(WFx)
I =Aw(p) =A (W) (p) — A (W (@).
Since u is a distributional solution, by doing a change of variables, we get

N / UG x) Ap(x) dx

By

_ pke-m) / u() Ay y) dy
k

A

= ke / g0 y)dH) !
'NB,k

NB,
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=x’</ g x)p(x)dH" !
ik

A

Also, by Green’s formula, the induction hypothesis and (5.3),

AP (M%) (@) = 2k / [VP(Fx) = VOr(F0)] - vje () p(x) dH" !

1Y%

+ /r [0x (%) = PLOF )]y, (0) dH !
2k

= Ak/ v (W x)p(x) dH" !
Tk

M

+ Ak / (i — w2) ()@, () dH" .
FAk

Then
L= / Zep(n) dH" ™! — / (w1 — w2) (W), (1) dH" 7,
Fkk F)Lk
where
5 _ g(kkx) — vn(kkx)
g(-x) - )\'ka .
Therefore,

20) = [ [ = w00 = 2 = w2 0+ 500 Jo(o a .
k

A
By che boundary estimates for harmonic functions in (5.4), and by (5.3),
(i = wi)v,i oo, xnBsm) < Cllwr — wallLeer,,y < Cdo

where C = C(n, «) > 0. Moreover, for x € I';«x, by the normalization,

3 lgOkx) — 1] |1 — v, (Wrx)]
g = =+ {ia

< [&lco.e(gy + [Valcoe gy = 80 + 8o = 230.

By the maximum principle, |[v| o) < llw|lz>(B,) < 1. Therefore, we can apply
Lemma 5.2 to v to find a linear polynomial P(x) = A-x+B,withA e R*, B e R
and |A| + |B| < Cy, such that

I4a

[v(x) — P(x)] = forall x € B;.

Hence, for any x € Bj;, by the estimate above and (5.5),

[wx) — P(x)| < [wx) —v(x)|+ [v(x) — P(x)]
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)\H-Dl

<$
<oy + >
<!t

since 89 < A1 /2. According to (5.2),

AKx) — Pr(ak
u xjk(1+a];( ) _ P(x)| < Alte for all x € By,
or equivalently, for y = A¥x,
lu(y) — Pr(y) — AK0F0 p(y 73Ky < A kFDU+0) forall y € Bjir1.

Define the polynomials P41 and Qg+ as
Pep1 () = Pe(y) + 25T P (305 Qurt(3) = Qi (y) + A AFO Py /iy,
From the previous estimate, it follows that

|1 (y) = Pryr ()] < 26D+ forall y € Q1 N Byxs
luz(y) — Qpy1(y)| < A&FDUTD) forall y € Q2 N Byisi.
+ A

Moreover, since Pi(0) = Q4 (0), and V' P, = V'Qy, it is clear that Py ((0) =
Qi+1(0),and V' Py = V' Qpr 1. Also, (Pei1)x, —(Qit1)x, = (P)x, —(Q1)x, =
LIf Peg1(y) = Agy1 -y + By and Qp41(y) = Cpy1 - y + By then

Aps1 = A+ A59A, By = B + M9 B . Gy = O 4+ ARA.
By the estimate |A| 4 | B| < Co, we conclude
WAkt — Akl + M [Cipt — Chl + [ Bigr — Bil < Coa*H),

The proof of the claim is completed.

Finally, we consider the case g(0) = 0. As before, it is enough to prove the
following.
Claim. For all k > 1, there exists a linear polynomial Py = Ay - x + By such that

Akt — Al + Byt — Bl < Coa1+)
where Co = Co(n) > 0, and such that
u(x) — Pi(x)] < AF0H) forall x € QN Bys.
The proof is by induction. For k = 1, since ||u|[zp,) < 1, and

llgllLoery = sup |g(x) — g(0)] < do
xel’

we can apply Lemma 5.2 to u. Then we find a linear polynomial Py (x) = Aj-x+Bj,
with A} € R", B; € R, and |A{| + |B1| < Co, such that

lu(x) — Py(x)| < A% forall x € By.
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Assume the claim holds for £ > 1. Define

u(Mkx) — P (0kx)
Ak(1+a)

w(x) = for x € Bj.
Then, for any ¢ € C°(By),

_ At (@) _ / g(x)

n—1
Aw(p) = PY(E) ke px)dH" .
A
Also, for any x € I'j«,
g0l 1g(fx) — g(0)]
Mo - ke

=< [glcoe(g) = do.

Then the claim follows for k + 1, by applying, once again, Lemma 5.2. O

6. Proof of Theorem 1.1

To prove Theorem 1.1 we need Campanato’s characterization of C'* spaces [4]
and a technical result that patches the interior and boundary estimates together. We
believe that the latter belongs to the folklore (see, for example, [13]) but, for the
sake of completeness, we will give a proof.

Theorem 6.1. (Campanato) Let u be a measurable function defined on a bounded
che domain 2. Then u € CL%(Q) if and only if there exists Co > 0 such that for
any x € Q, there exists a linear polynomial Q(z) such that

lu(z) — Qx(2)] < Colx — 2|+

for all z € Bi(x) N Q. In this case, if Cy denotes the least constant Cy > 0 for
which the property above holds, then

”u”Cl,a(ﬁ) ~ Cy + sup | Qx|,
xeQ

where | Q| denotes the sum of the coefficients of the polynomial Q(z).

Proposition 6.2. Let S be a collection of measurable functions defined on a bounded
CY® domain Q. For x € Q, we let dy = dist(x, 02). Fix u € S, and suppose the
following hold.

(i) (Interior estimates). There exist A, C, D > 0 such that for any x € 2 there
exists a linear polynomial Px(z) such that

| PyllLoo(By + dx IV PllLoeBy < Cllull Lo ()

and

lull s
u(z) — Pe(2)] < (AdT” +D )|z — x|t
X

forallz € B = By, 2 (x).
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(ii) (Boundary estimates). There exists E > 0 such that for any y € 0%2, there is a
linear polynomial P\ (z) such that

| PyllLoe(@) + IVPyllLe) < E
and
u(z) — Py(2)| < E|z — y|'™

forall 7 € Q.

(iii) (Invariance property). For any u € S, and any y € 0%2, with corresponding
linear polynomial Py as in (ii), the function v = u — Py also satisfies the
estimates of (i).

Then S Cc Ch (), and there exists M > 0, depending only on A,C, D, E
such that

lullcrag < MllullLe@)-

Proof. We need to show that any u € S satisfies the Campanato characterization
from Theorem 6.1. Let us pick any point x € Q. If x € 92 then the polynomial
0x(2) = Px(z), where P, (z) is as in assumption (ii), satisfies the Campanato
condition with Co = E.

Suppose next that x € Q. Let y € 92 be a boundary point that realizes the
distance from x to the boundary, namely, d, = |x — y|. Let Py(z) be the linear
polynomial that satisfies (ii). Consider the function v(z) = u(z) — Py(z). By (iii),
there is a linear polynomial P, (z) such that the conditions in (i) are met for v in
place of u. We claim that the polynomial Q. for the Campanato condition is

0x(2) = Py(Z) + Py (2).
To show this, we split the argument into two cases.
Case 1. Suppose that |z — x| < d, /2. This is the case when we can apply (i) for
v— Py
lu(z) — Qx () = [u(z) — Py(2) — Pe(2)| = [v(2) — Px(2)]

lvllLeo(s
< (A—df;g”“” + D) Iz — x|!+e
X

lu — PyllLo(s
_ (A )d1+a( w2 | p\ e
X

Now, we notice that, by (i7), by the choice of y, and the fact that |z — x| < d, /2,
u(z) = Py(2)| < Elz — y|'"™® < E(3/2dy)'* < 2T Ed;**.
Hence,
u(z) = Qx () = @"YAE + D)|z — x|+
and Cy = 21" AE + D.
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Case 2. Suppose that |z — x| > d, /2. By the estimate in (i) for P,(z), we get
[Px(2)| = | Px(x) + VP (x) - (z — x)|
< Cllu — PyllLes) + Cdy u — Pyl lz — x|.
Also, by the boundary estimate in (ii),
lu = Pyllz~es) < 3/2)' T Ed}™.
Hence,
[u(z) — Ox ()| < [u(z) — Py(2)| + [Px(2)]
< Elz = yI" + Cllu = Pylipoo(p) + Cdy Hu = Pyllo(sylz — x|
5 31+0{E|Z _ x|1+0( + 31+aCEdi+a _|_ Cd;1(3/2)1+aEd;+a|Z _ X|
<3 E1 +20)z — x| T
Thus, in this case, the Campanato constant is Co = 3ltep (14 20C). O

Proof of Theorem 1.1. Letu € LogLip(Q) be the solution given by Theorem 2.2.
We will show the statement for the function u; : €, — R, and we can argue
similarly for u; : Q — R.

The following holds:

(1) (Interior estimates). For any x € €2, there exists a linear polynomial Py (z)
such that

| PellLoeBy + di IV Pyllpoo(py < (1 4+ 2n)|luz|l o)

and

el Loe By
d}}-i-(x

1+o

luz(z) — Pe(2)] <2 'n |z — x|

forallz € B = By, 2(x).
Indeed, fix x € 2. Since u, is harmonic, it is smooth in £2,, so we can define

Py (z) = ua(x) + Vua(x) - (z — x).
Then, by classical interior estimates for harmonic functions,
| PxliLoesy + dxllV PellLoosy < lluzllLoe(sy + dxllVuzllLeo(sy + di | Vuz | L)

< lluzllzoo(p) + 2nlluzllL(B)
< (1 +2n)|VuzllL=(s).

Moreover,

2(2) — Py(2)] < ID*uzll oo (pylz — x|

Uzl Lo (B — Uzl Lo (B
< el )|, 2 < 2 1, 1u2lli=s)

14«
< |z — x| ™.
d dy ™
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(ii) (Boundary estimates). Consider 02, = I' U 92.
If y € T, by Theorem 1.2, there exists a linear polynomial Py (z) such that

I PyllLe(y) + IVPyllLe,) < E
and
luz(z) — Py(2)| < Elz — y|'*®

forall z € Q,, with E < Co||1ﬂ||c1,a(BD||g||co,a(r), and Cy = Co(n, ) > 0.
If y € 9Q2 € C*, since up = 0, then, by classical boundary regularity for
harmonic functions, u» € C"*(BNQ), with B = B,(y), for some r > 0
sufficiently small. By Theorem 6.1, there exists a linear polynomial Py(z)
such that

luz(z) — Py(2)| < Colz — y|'*®

for all z € Q», for some Cy(n, &) > 0.

(iii) (Invariance property). Fix y € 02, and let Py be the corresponding linear
polynomial given in (i7). Clearly, the function v = u — Py is harmonic in 25,
so it satisfies the interior estimates in (7).

Therefore, by Theorem 6.2, we have u; € C La (52), and there exists a constant
C > 0, depending only on n, « and I such that luzllcre g,y < Cligllcoer). O
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Appendix
A special Lipschitz domain €2 in R” is a set of the form
Q={(,xp) eR": X' e R" x, > v (X))},
where Y € Lip(R"_l), that is, there exists M > 0 such that
W) =y = Mix' =y forallx’,y e R

In other words, 2 is the set of points lying above the graph of a Lipschitz function
Y. Then, by Rademacher’s Theorem, ¥ is Fréchet differentiable almost everywhere
with [V || poogn-1y < M. On 92 we thus have

) (Vyr(x"), —=1)
dH" Y, = /1 + |V )2dy' and v, ¢ (1) = ———,
laa \/7 1+ |V (x)|2
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where x = (x/, ¥ (x’)) € 9. For a measurable function f on 92, we have

rd = [T+ v

For more details see [6,11].

A bounded Lipschitz domain in R” is a bounded domain €2 such that the boundary
0<2 can be covered by finitely many open balls B; in R", j =1,..., J, centered
at 0€2, such that

Q2

BjﬂQZBjﬂQj, j=1,...,J,

where €2; are rotations of suitable special Lipschitz domains given by Lipschitz
functions ;. One may then assume that 92N B can be represented in local coordi-
nates by x, = ¥, (x"), where ¥/; is a Lipschitz function on R"~! with ¥;(0') = 0.
Recall also that if i is a Lipschitz function defined on an set A C R"~1, with
Lipschitz constant M, then there exists an extension ¥ : R*~! — R of ¢ such that
¥ = v on A and the Lipschitz constant of 1 does not exceed M, see [6].

Let Q) = QN (U]J'=1 B;)". A partition of unity {£;} jj.:() subordinated to
{Qo, By, ..., By} is a family of nonnegative smooth functions &; on R" such that

J —
£ e C(Q) & eCX(B)), j=1,...,J and Z,-,o?f(x) =1 forallx € Q.

It follows that 0 < &; < 1, j = 0,1,...,J. Obviously the family {éj}JJ‘:1
is a partition of unity subordinated to the open cover {Bj, ..., By} of Q2 and
Z]J-ZI £j(x) = 1forevery x € 9Q.

Let f : ' — R be a measurable function, where I' = 92 is the boundary of a
bounded Lipschitz domain £2. Consider the balls B, j = 1,..., J, that cover I
as above, and the corresponding Lipschitz functions v; : R"! - R. Let {& | }]J.:1

be a smooth partition of unity subordinated to the open cover {B} ]J':1 of I'. Then

J J
dH" ! = / FAHM ! = / FAHM
/1"f JZ:% rgjf JZ:; B_,mrsjf

Let us consider each one of the terms in the sum above separately. We study the
following situation: let B be a ball and let f : BN T — R of compact support
in BNT.Lety : R"1 > Rbea Lipschitz function such that w(B{) =BNT.
Then, by extending trivially f to the rest of the graph of ¥ and using the coarea
formula [6,11],

denfl :/ ‘]Edanl :/ denfl
BT v (B)) YR

— v "y, / N2 dy!

—/Rnilf(yﬂﬂ(y)) 1+ [V (y)I=dy

= fB TG IVE )Py
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Remark. The contents of this work are part of the second author’s PhD dissertation.
She presented these results at the AMS Fall Central Sectional Meeting at Univer-
sity of Michigan, Ann Arbor (Oct. 2018), the Barcelona Analysis Conference at
Universitat de Barcelona (Jun. 2019), and the Midwest Geometry Conference at
Iowa State University (Sep. 2019).
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