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Abstract: In this study, nine different statistical models are constructed using different combinations
of predictors, including models with and without projected predictors. Multiple machine learning
(ML) techniques are employed to optimize the ensemble predictions by selecting the top performing
ensemble members and determining the weights for each ensemble member. The ML-Optimized
Ensemble (ML-OE) forecasts are evaluated against the Simple-Averaging Ensemble (SAE) forecasts.
The results show that for the response variables that are predicted with significant skill by individual
ensemble members and SAE, such as Atlantic tropical cyclone counts, the performance of SAE is
comparable to the best ML-OE results. However, for response variables that are poorly modeled by
individual ensemble members, such as Atlantic and Gulf of Mexico major hurricane counts, ML-OE
predictions often show higher skill score than individual model forecasts and the SAE predictions.
However, neither SAE nor ML-OE was able to improve the forecasts of the response variables when
all models show consistent bias. The results also show that increasing the number of ensemble
members does not necessarily lead to better ensemble forecasts. The best ensemble forecasts are from
the optimally combined subset of models.

Keywords: hurricane prediction; machine learning; ensemble model

1. Introduction

Tropical cyclones (TC), known as hurricanes in the Atlantic Ocean and Eastern Pacific,
are extreme weather systems on Earth that have far reaching adverse impacts on the human
society [1,2] and are the costliest natural disasters in the United States [3]. Governmen-
tal agencies and nongovernmental organizations dealing with TC disaster preparedness
planning and post-disaster humanitarian relief efforts, and industries dealing with the
potential impacts from TCs rely on skillful seasonal predictions of TC activities for their
preseason decisions. Hurricane experts have started issuing preseason TC predictions
since 1984 [4], and the methodologies currently used to produce preseason TC forecasts
include multivariate regression [5–8], dynamic models [9], and statistical dynamical ap-
proaches [10–13]. The reliability and utility of such long-range forecasts have met some
skepticism from the public [14]. Findings from several studies also showed that the skills
of preseason forecasts issued by various groups were marginal [15–17]. Thus, there is a
clear gap between the current skills of preseason TC forecasts and the public demand for
such information. Only when such technological gap is bridged, the potential economic
values of seasonal hurricane prediction can be fully realized [18].

Ensemble techniques have been widely used in weather and climate prediction to
reduce forecast uncertainty [19,20]. Applications of artificial intelligence in weather and
climate prediction have emerged in recent years [21,22]. Combination of ensemble forecast-
ing approaches with machine learning (ML) techniques has also been explored. Rasp and
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Lerch [23] and Krasnopolsky and Lin [24] applied neural network (NN) in postprocessing
of ensemble weather forecasting and found NN technique can improve ensemble forecasts
over traditional ensemble approaches. With regard to seasonal hurricane prediction, Jag-
ger and Elsner [25] demonstrated the benefit of using multimodel consensus in seasonal
hurricane prediction. Richmana et al. [26] published an article showing ML techniques
can improve seasonal hurricane prediction over traditional regression models. However,
combining ML and ensemble forecasting has yet to gain wide adoption in the preseason
prediction of hurricanes. In this study, we present a novel approach to seasonal TC predic-
tion based on the optimization of multimodel ensemble forecasts using machine learning
techniques. The goal is to improve preseason prediction of Atlantic hurricane activity by
identifying response variables and scenarios which are likely to benefit from ML-based
optimization of ensemble forecasting.

The ensemble members used in the optimization include nine statistical models and
a suite of models based on machine learning. The rest of the article is organized as
follows. In Section 2, data and methods used in this study are described, followed by a
detailed presentation of results in Section 3. Section 4 discusses the results. Conclusions
are summarized in Section 5.

2. Data and Methods
2.1. Data

The number of tropical cyclones (TCs) in the past seasons was obtained by combining
the historical database known as HURDAT (HURricane DATabase) [27]) and the archived
best track seasonal maps compiled by the National Hurricane Center (NHC). TC counts
were manually determined by region and then further categorized by its peak strength
within each region based on the Saffir–Simpson hurricane wind scale. Forecasts are made
for three categories TC, HU and MH: TC includes tropical storms, hurricanes (categories
1–2) and major hurricanes (category 3 and higher); HU includes hurricanes and major
hurricanes; MH includes major hurricanes only. The three regions are the Gulf of Mexico,
the Caribbean Sea, and the whole North Atlantic Basin (Figure 1). Therefore, for clarity,
nine response variables are listed in Table 1. 
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Figure 1. Three regions for forecast: Gulf of Mexico (bounded by the Gulf coast of the United 

States, from the southern tip of Florida to Texas; on the southwest and south by Mexico; and on 

the southeast by Cuba), Caribbean Sea (bordered by the Yucatan Peninsula and the central Amer‐

ica on the west and southwest; on the south by Venezuela; and the West Indies); the whole Atlan‐

tic Basin is composed of the Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea. 

 

Figure 4. Percentage of times a variable is selected across all 39 windows (unit: %) in the model F with Lasso and SWCV 
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Figure 1. Three regions for forecast: Gulf of Mexico (bounded by the Gulf coast of the United States, from the southern tip
of Florida to Texas; on the southwest and south by Mexico; and on the southeast by Cuba), Caribbean Sea (bordered by the
Yucatan Peninsula and the central America on the west and southwest; on the south by Venezuela; and the West Indies); the
whole Atlantic Basin is composed of the Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea.
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Table 1. Definition of response variables.

Response Variable Region Definitions

ATTC

North Atlantic
Basin

Atlantic Tropical Cyclones: counts of tropical
storms, and hurricanes in North Atlantic

ATHU Atlantic Hurricanes: counts of hurricanes in
North Atlantic

ATMH Atlantic Major Hurricanes: counts of major
hurricanes in North Atlantic

CATC

Caribbean Sea

Caribbean Sea Tropical Cyclones: counts of
tropical storms and hurricanes in Caribbean Sea

CAHU Caribbean Sea Hurricanes: counts of hurricanes
in Caribbean Sea

CAMH Caribbean Sea Major Hurricanes: counts of
major hurricanes in Caribbean Sea

GUTC

Gulf of Mexico

Gulf of Mexico Tropical Cyclones: counts of
tropical storms and hurricanes in Gulf of Mexico

GUHU Gulf of Mexico Hurricanes: counts of hurricanes
in Gulf of Mexico

GUMH Gulf of Mexico Major Hurricanes: counts of
major hurricanes in Gulf of Mexico

A variety of climate-related global and regional monthly predictors are taken into
account for the forecast of the forthcoming hurricane season. Most of these candidate
predictors come from the NOAA Earth System Research Laboratory Division (https://psl.
noaa.gov/data/climateindices/list/, accessed on 18 April 2021), including Atlantic and
Pacific SST-related climate indices, El Nino Southern Oscillation (ENSO) related indices,
and atmospheric and teleconnection indices. In addition, measures taken over the main
development region (MDR, 10◦–20◦ N, 80◦–20◦ W) are incorporated as well. All of the
MDR indices are derived from the NCEP–NOAA Reanalysis dataset at https://psl.noaa.
gov/cgi-bin/data/timeseries/timeseries1.pl, accessed on 18 April 2021 [28]. Data obtained
from the same source are the surface latent heat flux (LHF), which is used to compute the
Empirical Orthogonal Functions (EOF) for only the winter season. Global (GGST), North-
Hemisphere (NGST) and South-Hemisphere (SGST) mean land–ocean temperature index,
based on the GISS Surface Temperature Analysis Ver-4, are also considered as predictors. A
total of 34 monthly indices are listed in Table 2. Detailed definitions of these climate indices
are referred to Córdoba et al. [29]. The use of these climatic indices as candidate predictors
in seasonal hurricane prediction has been previously discussed in Keith and Xie [8] and
Córdoba et al. [29].

Table 2. Nine sets of training data consisting of different combinations of covariates over different
time domains.

Model # Time Domain Covariates

F1
(March Outlook)

F1B
January–February

Core
F1N Core + NINO
F1L Core + NINO + LHF

F2
(May Outlook)

F2B
January–April

Core
F2N Core + NINO
F2L Core + NINO + LHF

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/cgi-bin/data/timeseries/timeseries1.pl
https://psl.noaa.gov/cgi-bin/data/timeseries/timeseries1.pl
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Table 2. Cont.

Model # Time Domain Covariates

F3
(March Outlook with
ENSO JAS Forecast)

F3B January–February +
NINO JAS Forecast

Core
F3N Core + NINO
F3L Core + NINO + LHF

Climate Index Climate Index Name

Core

AMM Atlantic Meridional Mode
AMO Atlantic Multidecadal Oscillation
AO Arctic Oscillation

CENSO Bivariate ENSO (El Niño–Southern Oscillation)
time series

DM Atlantic Dipole Mode (DM = TNA – TSA)
EPO East Pacific/North Pacific Oscillation index

GGST Global Mean Land/Ocean Temperature index

NGST North-Hemisphere Mean Land/Ocean
Temperature index

SGST South-Hemisphere Mean Land/Ocean
Temperature index

MDRSST Sea Surface Temperature averaged over Major
Development Region (MDR)

MDROLR Top of Atmosphere Outgoing Longwave
Radiation averaged over MDR

MDRSLP Sea Level Pressure averaged over MDR
MDRU200 Zonal Wind at 200 hPa averaged over MDR
MDRV200 Meridional Wind at 200 hPa averaged over MDR
MDRU850 Zonal Wind at 850 hPa averaged over MDR
MDRV850 Meridional Wind at 850 hPa averaged over MDR
MDRVWS Vertical Wind Shear averaged over MDR

NAO North Atlantic Oscillation
PDO Pacific Decadal Oscillation
PNA Pacific North American index
QBO Quasi-Biennial Oscillation
SFI Solar Flux (10.7 cm)
SOI Southern Oscillation Index
TNI Trans-Niño Index
TNA Tropical Northern Atlantic index
TSA Tropical Southern Atlantic index

WHWP Western Hemisphere Warm Pool
WP Western Pacific index

NINO

MEI Multivariate ENSO Index

NINO12 Extreme Eastern Tropical Pacific SST (0–10◦ S,
90◦ W–80◦ W)

NINO3 Eastern Tropical Pacific SST (5◦ N–5◦ S, 150–90◦

W)

NINO34 East Central Tropical Pacific SST (5◦ N–5◦ S,
170–120◦ W)

NINO4 Central Tropical Pacific SST (5◦ N–5◦ S, 160◦

E–150◦ W)

LHF LHF.WIN LHF EOF Scores for Winter

The statistical model was constructed with data after 1951, since hurricane data after
1951 are considered more reliable and the predictor variables are consistently available after
1951. For the forecast of 2020 hurricane season, there are 69 annual counts. Moreover, only
storms originating over the tropical waters from June 1 to November 30 are considered,
excluding subtropical and extratropical storms.



Atmosphere 2021, 12, 522 5 of 20

2.2. Methods for Forecasting TC Counts
2.2.1. List of Statistical Models as Ensemble Members

A generalized linear model with Lasso regularization is adopted. It assumes that the
logarithm of the expected TC counts in each region is linearly related to the candidate
predictors and performs a variable selection procedure using a shrinkage parameter, to
identify the combination of indices that has the best predictive ability. Lasso’s ability to
handle the cases where there are a large number of features (covariates) against the limited
observations of TC counts (response) per year is especially useful.

However, given that most of the predictors are highly correlated with each other, in
which case Lasso has limitations, a preprocessing hierarchical clustering analysis [30] is
carried out before applying Lasso. It allows us to group covariates into clusters based on
the distances of the covariates correlation matrix, therefore identifies the primary covariates
in each cluster. Specifically, the algorithm selects ten clusters first and then chooses the
variable with the highest correlation with the response variable in each cluster. The reason
to consider ten clusters is that it covers a large enough number of covariates to provide
sufficient information, and in the meantime, it retains a sufficiently small number of
covariates to have enough residual degree of freedom. For comparison, the result using
only hierarchical clustering analysis is given in the next section as well.

The sliding window cross validation (SWCV) method was introduced by Córdoba
et al. [29] to evaluate the performance of the model. In the SWCV, data are partitioned into
w windows, and in each window, there are NT years of training data to construct the model
to forecast the immediate succeeding year. The calculation of w and NT should guarantee
that the sample size of windows and years within each window is not smaller than 30.
Specifically, the first step is to construct the model with data from 1951–1980, and then
forecast 1981. Since there are 69 years, this process can be repeated 39 times. The final 39th
process is to predict 2019 with the model constructed using 1989–2018. Compared to the
regular leave-one-out cross-validation (LOOCV), SWCV respects the chronological order
of the data and allows for a more reasonable procedure.

Nine sets of predictors are used as training data (Table 2), and each set of the predictors
are paired with nine response variables to construct nine sets of statistical models. Therefore,
a total of 9 × 9 regression models are analyzed in this study. F1X, F2X, and F3X, where x
represents B, N, L, respectively, represent different groupings of observed and projected
predictors. Under each scenario, there are three groups of predictors that are designed
to investigate whether it is worth incorporating the forecasts of future ENSO index and
the EOF value of winter LHF. For example, F1 models use only predictors observed in
January and February, so they can be used to make forecasts as early as March, whereas F2
models use predictors observed from January to April, so predictions can only be made in
or after May. F3 models use January observed predictors and projected predictors. For each
training set {xi, yi}N

1 , we model the count with a Poisson distribution: Yl ∼ Poisson(λl),
with log (λl) = β0 + β{T}xi. Here, we try to minimize the following function:

min{β0,β} {−
1
N

l(β|X, Y) + α (∑N
{j=1}

∣∣β j
∣∣)}, (1)

where:
l( β|X, Y ) = ∑N

{i=1}(yi(β0 + β{T}xi) − exp(β0 + β{T}xi)), (2)

where α is the Lasso shrinkage parameter, β0 is the intercept, β j and index j are the
regression coefficients and the selected indices, respectively, which are specific to each
region and strength category of TC (i = 1, 2 . . . 9).

The forecast value from F is compared with the observed value yi through the log-
arithm score (LS) which is defined as the logarithm of the probability estimate of the
value. LS has the advantage of respecting the probabilistic nature of the forecast value,
and therefore would be a proper scoring rule to evaluate the forecasts generated from
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probabilistic models. For a certain year, the likelihood skill score (H) is computed using the
following formula:

H = LS(F̂, yi)− LS(F, yi), (3)

where F̂ represents climatology. It is used here as a reference to evaluate the efficiency of
our proposed models, defined as:

F̂ ∼ Poisson(y), y =
n

∑
i=1

yi
n

, (4)

We then take the average of H among all of the windows, with a positive value
indicating superior skill of models against climatology.

For clarity, the procedure for the forecast of 2020 hurricane season can be described as
follows:

1. Partition data into windows, w = 39 for SWCV and no window for LOOCV (used
here as the baseline);

2. In each window, carry out the hierarchical clustering analysis and select the ten
primary predictors; construct the model with Lasso using the ten covariates selected;

3. Calculate the logarithm scores between the forecast and observed values;
4. Compare scores with climatology using the mean likelihood skill score (H).

Readers are referred to Córdoba et al. [29] for more detailed information.

2.2.2. Machine Learning Based Linear Combination of Statistical Models to Produce
Ensemble Models

The first way to take advantage of the ensemble of models is to do a weighted
combination of their outputs. Specifically, the ensemble model we explored in this part is
as follows:

ŷ =
9

∑
i=1

wimi, (5)

where mi is the ith statistical model output, wi is the ith weight parameter, ŷ is the predicted
count. The overall training and validation methodology follows (for SWCV):

1. Divide the data into 39 windows with 31 years in each window. The first 30 years are
used for training and validation is performed on the 31st year.

2. In each window, construct a model: use the predictions from 9 statistical models for
each of the 30 years as training set and apply the optimization techniques to learn
weight parameters. Predict count for the 31st year using the trained ensemble model.

3. Compare scores against climatology using the mean H value.

For LOOCV, we used the same methods but instead of 39 windows, for each of the
69 years one year was the validation year while the remaining 68 years were used as
the training set. The baseline method we used for the weighted combination is simple
averaging of the output of models; all weights have value 0.11. We will refer to this simple
averaging method as SAE from now on. We then used several optimization techniques for
optimizing the weights in the ensemble model, with all initial weights set to 0.11. These
methods include the ridge regression, lasso regression, linear regression, and gradient
descent and for every method before optimization begins, the initial weights are equal to
that of the SAE model. The objective function of each optimization method is listed with y
as the true count and ŷ as the ensemble output.

• Lasso optimization:

min
w

(‖ ŷ− y ‖L2)
2 + α ‖ w ‖L1 , α = 1 (6)

where α is the Lasso shrinkage parameter and ‖ w ‖L1 is the L1 norm of the weights in
the ensemble model.
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• Ridge optimization:

min
w

(‖ ŷ− y ‖L2)
2 + α(‖ w ‖L2)

2, α = 1 (7)

where α is the ridge shrinkage parameter and ‖ w ‖L2 is the L2 norm of the weights in
the ensemble model.

• Linear regression:
min

w
(‖ Xw− y ‖L2)

2, (8)

where y is the true count for m training years, of shape m× 1, X is a matrix of shape
m× 9 where each row corresponds to the output counts of nine statistical models and
w is the weight vector of shape 9× 1. For SWCV, m = 30 in each window, whereas for
LOOCV, m = 68. The minimum value for the objective function will be 0 if Xw = y,
but it is not always possible that y will be in the column space of X, and hence the
linear regression method finds the orthogonal projection of y into the column space
of X. Let the orthogonal projection of y in the column space of X be Xŵ, then ŵ will
be the weight that gives a minimum value for the given objective function such that
no other weights can give a lower value for the function. In this way, we obtain the
weights ŵ.

• Gradient descent:

The function to minimize is the same as in the linear regression case. The differences
are on how to determine the weights. In this method, we use the gradients of the objective
function with respect to weights for updating weight values. A gradient of the objective
function determines the direction in which the objective function is increasing the most,
and so at each step we move in the direction opposite to that of the gradient. Learning rate
is a hyperparameter that is multiplied by the gradient at each update of weights to control
by how much the weight is updated. The gradient of the objective function with respect to
the weights for a year is obtained as:

L = (‖ ŷi − yi ‖L2)
2 = (ŷi − yi)

2 = (mT
i w− yi)

2
(9)

Gradient of the objective function with respect to a weight wj =
∂L
∂wj

:

∂L
∂wj

=
∂(mT

i w−yi)
2

∂wj

= 2× (mT
i w− yi)×

∂(mi1w1+...+mijwj+...+mi9w9−yi)

∂wj

= 2× (mT
i w− yi)×mij

(10)

where w are the weights and mi = [mi1 mi2 . . . mi9]
T is the output of nine ensemble

member models for year i.
The algorithm for optimizing weights for a window with SWCV using gradient

descent is:
For epochs from 1 to 200 is:
For year i from 1 to 30 is:

w = w− (2× lr× (mT
i w− yi))×mi,

where lr is the learning rate, which is empirically selected among the values 0.001, 0.0001,
and 0.00001.

Besides experimenting with different optimization methods, we also experiment with
the composition of the ensemble. Instead of using all nine statistical models, we tried to
pick the top k models, k = 2, 3, . . . , 8, 9. The quality of the model was determined based
on the mean H value among all validation years in 39 windows for SWCV and among all
69 validation years for LOOCV.
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3. Results
3.1. Results from Emsemble Members
3.1.1. Results from Regression Models

Before proceeding to examine the results obtained through the ensemble optimization
techniques, the performances of the nine statistical models are discussed first. For each
response over three regions, three comparisons are made: the first compares the perfor-
mances of two cross-verification methods (SWCV and LOOCV), the second compares the
models constructed using Lasso and those generated using only the hierarchical clustering
algorithm in the process of variable selection, and the final compares the proposed models
against climatology to see if there is any improvement and efficiency.

Mean squared errors (MSE) and mean H values are used to measure the difference
between models with the SWCV or LOOCV method applied. Take the tropical cyclone of
the Atlantic Basin as an example, Figure 2a gives the difference of MSE between climatology
and each model F, along with the percentage of change presented within the curly brackets.
It shows that at least one model F with the SWCV method has lower MSE than climatology.
The largest percentage of improvement comes from model F3B with a 22.3% improvement,
in this case. Compared to SWCV, all models with LOOCV method show much lower MSEs
than climatology. Correspondingly, Figure 2b shows the mean H values of each model
validated using SWCV (bottom panel) and LOOCV (upper panel). The mean H value is
slightly higher using LOOCV than using SWCV, suggestion LOOCV is a less strict method
since LOOCV allows the use of future data to evaluate the forecasts of past seasons during
the cross-validation process, which differs from the real-world scenario. In contrast, SWCV
avoids assessing the past forecasts with future data and presents a more realistic scenario in
the forecast procedure. Therefore, the following comparisons are made among the models
using SWCV validation.
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for SWCV and LOOCV methods. Positive values denote the superior skill of model F with Lasso applied, compared to
the climatology.

Since candidate indices are highly correlated with each other, we use Lasso to select
the primary covariates in the process of variable selection. As a comparison, Figure 3
gives the mean H values for the responses between the models constructed with Lasso
and those without Lasso (using hierarchical clustering analysis only). Positive values
indicate significantly better skill for models with the clustering algorithm. As stated earlier,
the validation of the given models is accomplished with SWCV. For all the responses
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considered, the negative H-scores clearly state that models with Lasso demonstrate better
predictive skill than models in which clustering analysis is applied.
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Figure 3. Mean H values with SWCV applied between Lasso and clustering models by response: (a) ATTC, (b) ATHU, (c)
ATMH, (d) CATC, (e) CAHU, (f) CAMH, (g) GUTC, (h) GUHU, and (i) GUMH. Positive values denote the superior skill of
model F with clustering analysis, compared to the models with Lasso applied.

The primary variables selected among each window are different; therefore, it is
necessary to analyze the percentage of times a variable is selected for a specific response
and model. Figures 4 and 5 give a summary of the top twenty variables selected from the
total 39 windows with Lasso or clustering analysis per response and for SWCV. NINO
variables are highlighted with bold lines. It is intriguing to note that the forecast NINO
variables are selected as a predictor in the clustering models only for the prediction of
ATTC and ATHU. In contrast, forecast JAS NINO variables are chosen in most Lasso
models, except for the response of ATMH, CAHU, and CAMH. All models selecting JAS
NINO variables come from F3X, suggesting the tight correlation between the number of
storms and the hurricane-season ENSO condition. Additionally, it is worth noting that
different predictors make different contributions to each response variable in different
models. Certain predictors are consistently selected for some responses of the same region
across all Lasso models. TNA in February is chosen in the forecasts of TC and HU in the
Atlantic Basin. When predicting the 2020 season in the Caribbean, SOI of March and AO
of April are selected across all F for TC, HU, and MH. February TNA is selected for TC
and HU only in the same region. In the Gulf of Mexico, SOI of January and the second
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EOF value of the winter LHF (LHF.win2) are consistently picked out across all models for
predictions of all three responses. In addition, MDROLR of February is selected for TC and
MH of the Gulf of Mexico region.
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Figure 4. Percentage of times a variable is selected across all 39 windows (unit: %) in the model F with Lasso and SWCV per
response: (a) ATTC, (b) ATHU, (c) ATMH, (d) CATC, (e) CAHU, (f) CAMH, (g) GUTC, (h) GUHU, and (i) GUMH. NINO
variables are highlighted in bold lines.

To further illustrate the selection of significant predictors, the top five most selected
predictors by Lasso and clustering algorithm are shown in Tables 3 and 4, respectively.
For brevity, only predictor-selection for ATTC is presented. The percentage of times each
variable is selected is calculated across all 39 windows. Predictor selections for other
response variables are presented in Figures 4 and 5 and discussed earlier.
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Table 3. Five most selected variables with Lasso and SWCV, for ATTC per model. Percentage of times a variable is selected
is calculated across all 39 windows and given in the curly brackets (unit: %). NINO variables are highlighted in bold.

F 1 2 3 4 5

F1B EPO02 (56) MDRV20002 (38) MDRSLP02 (36) AMO01 (36) TNA02 (33)
F1N EPO02 (54) TSA02 (46) MDRV20002 (44) MDRSLP02 (36) AMO01 (33)
F1L EPO02 (44) MDRSLP02 (41) TNA02 (36) MDRV20002 (36) TSA02 (36)

F2B TSA03 (72) NGST04 (54) TNA02 (38) EPO02 (36) MDRSLP02 (36)
F2N TSA03 (67) NGST04 (59) TNA02 (41) EPO02 (31) NINO1202 (31)
F2L TSA03 (69) NGST04 (51) TNA02 (44) EPO02 (33) MDRSLP02 (28)

F3B EPO02 (51) MDRSLP02 (41) NINO1208 (41) TNA02 (36) AMO01 (36)
F3N EPO02 (49) MDRSLP02 (38) TSA02 (38) NINO1208 (38) AMM01 (36)
F3L EPO02 (44) AMM01 (44) MDRSLP02 (41) TNA02 (36) NINO1208 (36)
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Table 4. Same as Table 3, but for models with clustering algorithm.

F 1 2 3 4 5

F1B EPO02 (69) MDRSLP02 (67) MDRV20002 (51) MDRSLP01 (49) TSA02 (41)
F1N MDRSLP02 (77) EPO02 (67) MDRV20002 (56) AMM01 (54) TSA02 (46)
F1L MDRSLP02 (67) LHF.WIN3 (51) EPO02 (49) AMM01 (49) MDRV20002 (49)

F2B TSA03 (74) NGST04 (54) TNA02 (49) NAO03 (41) MDRSLP02 (38)
F2N TSA03 (67) NGST04 (59) TNA02 (44) MDRSLP02 (41) AMO04 (41)
F2L TSA03 (72) NGST04 (54) TNA02 (46) MDRSLP02 (38) NAO03 (38)

F3B EPO02 (59) MDRSLP02 (56) MDRV20002 (49) NINO1208 (44) TSA02 (41)
F3N MDRSLP02 (67) EPO02 (56) MDRV20002 (51) AMM01 (49) WP02 (49)
F3L MDRSLP02 (54) EPO02 (46) AMM01 (46) LHF.WIN3 (46) MDRV20002 (44)

Our final goal is to compare model F with SWCV and Lasso against the climatology
and see if there is improvement. Mean H values are given in Figure 6, and the positive
values indicate significant difference from the climatology and there are skills brought by
the specific F. For each response, there is at least one model F that has a better skill than
the climatology, except for the hurricane in the Atlantic basin and Gulf of Mexico, and for
major hurricanes in the Atlantic basin and Caribbean.

Atmosphere 2021, 2, 27 FOR PEER REVIEW 12 of 20 
 

 

F3L MDRSLP02 (54) EPO02 (46) AMM01 (46) LHF.WIN3 (46) MDRV20002 (44) 

Our final goal is to compare model F with SWCV and Lasso against the climatology 
and see if there is improvement. Mean H values are given in Figure 6, and the positive 
values indicate significant difference from the climatology and there are skills brought by 
the specific F. For each response, there is at least one model F that has a better skill than 
the climatology, except for the hurricane in the Atlantic basin and Gulf of Mexico, and for 
major hurricanes in the Atlantic basin and Caribbean. 

  
(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

Figure 6. Mean H values between model F with Lasso and SWCV applied, and the climatology by response: (a) ATTC, (b) 
ATHU, (c) ATMH, (d) CATC, (e) CAHU, (f) CAMH, (g) GUTC, (h) GUHU, and (i) GUMH. Positive values denote the 
significant improvement of model F, compared to the climatology. 

3.1.2. Potential Benefits of Multimodel Ensemble 
To evaluate whether preseason Atlantic hurricane count predictions would benefit 

from multimodel ensemble forecasts using existing regression models, the average of the 
predictions from the top three models ranked by the positive mean H-scores are computed 
for the period of 2005–2019. Among all top three models, F3L (32%) and F2N (29.5%) are the 
most selected models, followed by F1L and F3N (11.4%). The difference of MSE between 
climatology and model prediction is 3.08 and 18.16, respectively for TC in the Atlantic 
basin from the best individual model (with the highest positive H-score) and the top three 

Figure 6. Mean H values between model F with Lasso and SWCV applied, and the climatology by response: (a) ATTC,
(b) ATHU, (c) ATMH, (d) CATC, (e) CAHU, (f) CAMH, (g) GUTC, (h) GUHU, and (i) GUMH. Positive values denote the
significant improvement of model F, compared to the climatology.
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3.1.2. Potential Benefits of Multimodel Ensemble

To evaluate whether preseason Atlantic hurricane count predictions would benefit
from multimodel ensemble forecasts using existing regression models, the average of the
predictions from the top three models ranked by the positive mean H-scores are computed
for the period of 2005–2019. Among all top three models, F3L (32%) and F2N (29.5%) are the
most selected models, followed by F1L and F3N (11.4%). The difference of MSE between
climatology and model prediction is 3.08 and 18.16, respectively for TC in the Atlantic
basin from the best individual model (with the highest positive H-score) and the top three
model ensemble. It is apparent that both the best model and the ensemble results show
skills over climatology. Forecasts based on the top three model ensemble improve further,
leading to about 41% improvement against the climatology. Additionally, for each year,
the H-score was calculated and its mean and standard error for the 2005–2019 period
were computed using bootstrap with replacement (B = 1000). A similar conclusion was
reached from the H-score, which showed that the best individual model and the ensemble
prediction performed better than climatology, with an average H-score of 0.21 and 0.65,
respectively. This demonstrates that if one can correctly identify the top performing models
prior to issuing the preseason Atlantic hurricane prediction, the multimodel ensemble
based on a subset of the top performing models has the potential to significantly improve
the preseason prediction. The mean H-scores (0.65) of the ensemble forecasts based on the
averaging of top three models for Atlantic TC counts are in line with those reported by
Colorado State University (0.60) and the tropical Storm Risk group (0.77) for the period of
2005–2019.

3.2. Comparison of Forecasts Using Simple Average Ensemble (SAE)

As discussed in Section 2.2.2, we also created SAE models using the top 2, 4, 5 . . .
9 models based on the ranks of models, as shown in Table 5 for SWCV and Table 6 for
LOOCV. In general, SAE predictions using 2–5 models are in line with the top three model
SAE, but six or more model SAE performed worse. Figure 7 shows the results for the mean
H-scores using ensemble of the top three models for SWCV. We can see that the SAE of
the top three models gives a better performance for all responses than the nine model
SAE (Figure 8). For example, the mean H-score from the average ensemble of the top
three models for Gulf of Mexico Tropical Cyclones (GUTC) is 0.2 while the mean H-score
obtained by the nine model SAE is 0.13.

Table 5. Rank of nine individual models with SWCV validation.

Rank ATTC ATHU ATMH CATC CAHU CAMH GUTC GUHU GUMH

1 F3B F3N F3L F2N F2B F1N F3L F1L F1L
2 F2L F3B F1L F3N F2L F1B F1N F3N F1N
3 F2B F3L F1N F3B F1B F3L F3B F1B F3L
4 F3L F2N F1B F2B F1N F3N F1B F2L F1B
5 F3N F1N F3N F3L F2N F3B F1L F1N F2B
6 F2N F2B F2L F2L F1L F1L F3N F3L F3N
7 F1N F2L F3B F1L F3N F2B F2N F2B F2L
8 F1L F1B F2B F1N F3L F2L F2L F3B F3B
9 F1B F1L F2N F1B F3B F2N F2B F2N F2N
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Table 6. Rank of nine individual models with LOOCV validation.

Rank ATTC ATHU ATMH CATC CAHU CAMH GUTC GUHU GUMH

1 F2B F2N F3N F3L F2B F1B F1N F1L F1L
2 F3N F2L F3B F3B F2L F3N F2L F3N F3L
3 F2N F2B F3L F2N F2N F3B F1B F3B F2L
4 F2L F3L F1N F3N F3L F3L F3B F3L F1B
5 F3B F3B F1L F1B F3B F1N F2B F1N F3B
6 F3L F3N F1B F1N F3N F2L F3N F1B F3N
7 F1N F1N F2L F2B F1L F1L F1L F2N F2N
8 F1B F1B F2N F2L F1N F2N F3L F2L F1N
9 F1L F1L F2B F2N F1B F2B F2N F2B F2BAtmosphere 2021, 2, 27 FOR PEER REVIEW 14 of 20 
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Figure 7. Mean H values between ensemble models of top three models using different optimizations with SWCV and
the climatology by response: (a) ATTC, (b) ATHU, (c) ATMH, (d) CATC, (e) CAHU, (f) CAMH, (g) GUTC, (h) GUHU,
and (i) GUMH. Positive values denote superior skill of the ensemble model over climatology. Lr represents the ensemble
model with optimization using linear regression. Avg represents the average of all selected models and Gd_1 represents the
ensemble model with gradient descent optimization with a learning rate of 0.001. Gd_2 represents the ensemble model with
gradient descent optimization with a learning rate of 0.0001. Gd_3 represents the ensemble model with gradient descent
optimization with a learning rate of 0.00001.
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Figure 9 shows the comparison between the top three model SAE and the nine model
SAE for SWCV. Except for the Atlantic hurricanes, the top three model SAE performs better
than the nine model SAE.
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3.3. Optimization of Top Three Model Ensemble

Figure 7 shows the different ensemble models obtained by performing various opti-
mizations discussed in Section 2.2.2 using top three model weighted ensemble for SWCV,
which are shown in Table 5. In some cases, the machine-learning-based optimizations
for the top three model weighted average (ML-OP predictions) led to a higher mean H-
score than the corresponding SAE predictions. More detailed comparisons are shown
in Figure 10.
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Figure 10. Comparisons between average ensemble of top three models with best optimized top
three ensemble models obtained using the methods described in Section 2.2.2. Gd_3 represents the
model with gradient descent optimization having learning rate 0.00001. Lasso represents the model
with Lasso optimization. Gd_2 represents the model with gradient descent optimization having
learning rate 0.0001. Lr represents the model with linear regression optimization.

Figure 10 shows the comparison of the scores of the top three model SAE with that of
the best optimized ensemble of top three models (ML-OP) for each category. We see that for
CATC, the gradient descent optimization with a learning rate of 0.0001 improved the mean
H-score by 0.03 over the SAE; for CAHU linear regression optimization improved the mean
H-score by 0.03 over the SAE; for ATMH Lasso optimization improved the mean H-score
by 0.04 over the SAE; and for GUHU Lasso optimization improved the mean H-score by
0.04 over the SAE.

4. Discussion

The performance of individual and various combinations of ensemble forecasts are
summarized in Table 7. Mean H-scores are used to measure the performance of individual
and ensemble models using SWCV validation. The left column lists the nine categories
of response variables (ATTC, ATHU, ATMH, CATC, CATHU, CAMH, GUTC, GUHU,
GUMH). The other columns show the best H-score for individual models. The column
index (1-9) indicates the number of top performing models used in the ensemble. Index
1 means the best performing individual model. Index 2 means best two-model ensemble
forecast, etc. Numbers in bold indicate the best H-score. Numbers in italic are H-scores
of ensemble forecasts that are better than the best individual model forecast. Numbers
highlighted in gray are H-scores using simple average ensembles. It is evident that except
for Gulf of Mexico tropical storm counts (GUTC), ensemble forecasts score higher than the
best individual models. For example, the H-scores for all ensemble forecasts of Atlantic
TC counts (0.19–0.23) are better than the best individual model forecasts (0.18). Ensembles
using the top two to five models generally perform better than using six or more models.
For Atlantic TC counts and Gulf of Mexico TC counts, ensemble forecasts using simple
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averaging of the forecasts of ensemble members perform as good as or better than using
more complex machine learning algorithms. For major hurricane counts over the entire
Atlantic or Gulf of Mexico, and for TC and hurricane counts in the Caribbean Sea, optimized
ensemble forecasts using machine learning algorithms perform better than ensembles
derived from simple averaging. For Atlantic and Gulf of Mexico hurricane counts and
Caribbean Sea major hurricane counts, no model or model ensemble shows any skill
compared with climatology when validated using SWCV. The lack of prediction skill for
Caribbean Sea major hurricane count by all models could be due to the small sample size
in the relatively small study region.

Table 7. Mean H-scores for individual and ensemble models using SWCV validation. The left column lists the nine
categories of response variables (ATTC, ATHU, ATMH, CATC, CAHU, CAMH, GUTC, GUHU, GUMH). The other columns
show the best H-score for individual models. The column index (1–9) indicates the number of top performing models used
in the ensemble. Index 1 means the best performing individual model. Index 2 means the best two-model ensemble forecast,
etc. Numbers in bold indicate the best H-score. Numbers in italic are the H-scores of ensemble forecasts that are better than
the best individual model forecast. Numbers highlighted in gray are H-scores using simple average ensembles.

Response 1 2 3 4 5 6 7 8 9
ATTC 0.18 0.23 0.22 0.23 0.23 0.22 0.21 0.20 0.19
ATHU −0.03 0.00 0.00 −0.04 −0.05 −0.05 −0.07 −0.09 −0.11
ATMH −0.02 0.03 0.03 0.02 −0.01 −0.02 −0.02 −0.01 0.00
CATC 0.12 0.20 0.21 0.20 0.20 0.18 0.17 0.16 0.14
CAHU 0.15 0.19 0.17 0.21 0.17 0.13 0.18 0.10 0.08
CAMH −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GUTC 0.23 0.22 0.20 0.19 0.18 0.17 0.16 0.14 0.13
GUHU −0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GUMH 0.07 0.09 0.06 0.08 0.02 0.00 0.00 0.00 0.00

It is possible to pick the best performing ensemble forecast options for each response
variable based on the results presented above, but the performance of ensemble forecasts
optimized by using machine learning techniques is limited by the skills of the ensemble
members. When the ensemble members have common weaknesses, then such weaknesses
cannot be overcome using ensemble optimization. In such a scenario, as in the case of
Atlantic hurricane counts (ATHU), all existing models suffer from systematic biases, new
models or modeling approaches should be considered instead of attempting to optimize
sub-ensembles of existing biased models.

In a closer look at the predictions of individual models (Figure 11), we found that large
forecast errors occurred in all models in a very small number of years, such as 1995 and
2005. The year 1995 saw a hyperactive Atlantic hurricane season with 19 named storms,
11 hurricanes, and 5 major hurricanes. It was considered the start of the transition from
less active to highly active decadal periods. The year 2005 was the busiest season on record
prior to its time, with 27 named storms, 15 hurricanes and 7 major hurricanes. In both
seasons, none of the publicly published seasonal hurricane prediction models were able to
predict the level of activity. These are considered outliers in a statistical sense. Removing
these two years from the training and validation data significantly improves the forecast
skill of individual models as well as the ensemble. For example, the H-scores for the top
ranked individual and ensemble models turned positive using SWCV. This suggests that
extreme events such as 1995 and 2005 might need to be dealt with separately from the other
years by using different approaches.
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5. Conclusions

In this study, nine different statistical models are constructed using different combina-
tions of predictors, including models with and without projected El Nino indices. Multiple
machine learning (ML) techniques are employed to optimize the ensemble prediction by
selecting the top performing ensemble members and determining the weights for each
ensemble member. The ML-Optimized Ensemble (ML-OE) forecasts are evaluated against
the benchmark of Simple-Averaging Ensemble (SAE) forecasts. The results show that for
response variables that are handled well by individual ensemble members, such as tropical
cyclone counts over the entire Atlantic basin, the performance of SAE is comparable to
the best ML-OE results. However, for response variables which are poorly modeled by
individual ensemble members, such as major hurricane counts or hurricane counts in
smaller sub-basins, ML-OE predictions show consistently higher skill score than individual
model and the SAE prediction. The results also show that increasing the number of en-
semble members does not necessarily lead to better ensemble forecasts. The best ensemble
forecasts are from the optimally combined small subset of top performing models. The
results further indicate that for response variables that are predicted with large systematic
biases of the same sign by a majority of or all the ensemble members, ensemble techniques
cannot produce better forecasts. A closer look at the years when systematic forecast biases
occurred shows that these are hyperactive record-breaking seasons. Predictions of such
extreme events might need to be dealt with different modeling approaches.

There are several directions worth future explorations. The first is the application
of more sophisticated machine learning algorithms, including some traditional nonlin-
ear ML models (e.g., random forests) and LSTM or Transformers or other Deep Neural
Networks (DNN) that have shown some promising results in predicting sequences of
data. The applications of DNNs require large volumes of data, for which high-resolution
temporal records can be useful. The second direction is the application of fine-grained
time series analysis, such as Dynamic Time Warping (DTW), which can be used to get
similarity measures between years for temporal data analysis. The third direction is to
deal with extreme anomalies and the rest of the data separately using different approaches.
Ultimately, one needs to address the issue of predictability, i.e., with the limitations of
available data for the response and predictor variables, what is the upper limit of preseason
hurricane forecast accuracy? What is the maximum forecast lead time for skillful preseason
hurricane predictions?

Author Contributions: Conceptualization, L.X. and X.S. (Xipeng Shen); methodology, L.X. and X.S.
(Xipeng Shen); software, X.S. (Xia Sun) and S.U.S.; validation, all; formal analysis, all; investigation,
all; resources, L.X. and X.S. (Xipeng Shen); data curation, X.S. (Xia Sun); writing—original draft
preparation, all; writing—review and editing, L.X. and X.S. (Xipeng Shen); visualization, X.S. (Xia



Atmosphere 2021, 12, 522 19 of 20

Sun) and S.U.S.; supervision, L.X. and X.S. (Xipeng Shen); project administration, L.X.; funding
acquisition, L.X. All authors have read and agreed to the published version of the manuscript.

Funding: This study is funded by the National Science Foundation’s Center for Accelerated Real-
Time Analytics (CARTA) through award #2020-2696.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this study are available upon request.

Acknowledgments: This study is funded by the National Science Foundation’s Center for Accel-
erated Real-Time Analytics (CARTA) through award #2020-2696. We appreciate the support from
CARTA center management.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grinsted, A.; Ditlevsen, P.; Christensen, J.H. Normalized US hurricane damage estimates using area of total destruction, 1900-2018.

Proc. Natl. Acad. Sci. USA 2019, 116, 23942–23946. [CrossRef] [PubMed]
2. Doocy, S.; Dick, A.; Daniels, A.; Kirsch, T.D. The human impact of tropical cyclones: A historical review of events 1980-2009 and

systematic literature review. PLOS Curr. Disasters 2013. [CrossRef] [PubMed]
3. Smith, A.B.; Katz, R.W. US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards

2013, 67, 387–410. [CrossRef]
4. Gray, W.M. Summary of 1984 Atlantic Seasonal Tropical Cyclone Activity and Verification of Author’s Forecast (PDF) (Report); Colorado

State University: Fort Collins, CO, USA, 2018.
5. Gray, W.M. Atlantic seasonal hurricane frequency, Part I: El Niño and 30 mb quasi-biennial influence. Mon. Weather Rev. 1984,

112, 1649–1668. [CrossRef]
6. Gray, W.M. Atlantic seasonal hurricane frequency, Part II: Forecasting its variability. Mon. Weather Rev. 1984, 112, 1669–1683.

[CrossRef]
7. Landsea, C.W.; Gray, W.M.; Mielke, P.W., Jr.; Berry, K.J. Seasonal forecasting of Atlantic hurricane activity. Weather 1994, 49,

273–284. [CrossRef]
8. Keith, E.; Xie, L. Predicting Atlantic Tropical Cyclone Seasonal Activity in April. Weather Forecast. 2009, 24, 436–455. [CrossRef]
9. Camargo, S.J.; Wing, A.A. Tropical cyclones in climate models. Wiley Interdiscip. Rev. Clim. Chang. 2005, 7, 211–237. [CrossRef]
10. Klotzbach, P.J.; Caron, L.-P.; Bell, M.M. A statistical/dynamical model for North Atlantic seasonal hurricane prediction. Geophys.

Res. Lett. 2020, 47. [CrossRef]
11. Vecchi, G.A.; Zhao, M.; Wang, H.; Villarini, G.; Rosati, A.; Kumar, A.; Held, I.M.; Gudgel, R. Statistical–dynamical predictions of

seasonal North Atlantic hurricane activity. Mon. Weather Rev. 2011, 139, 1070–1082. [CrossRef]
12. Kim, H.-M.; Webster, P.J. Extended-range seasonal hurricane forecasts for the North Atlantic with a hybrid dynamical-statistical

model. Geophys. Res. Lett. 2010, 37, L21705. [CrossRef]
13. Wang, H.; Schemm, J.-K.E.; Wang, W.; Long, L.; Chelliah, M.; Bell, G.D.; Peng, P. Statistical Forecast Model for Atlantic Seasonal

Hurricane Activity Based on the NCEP Dynamical Seasonal Forecast. J. Clim. 2009, 22, 4481–4500. [CrossRef]
14. How Accurate are Pre-Season Hurricane Landfall Forecasts? Available online: https://www.washingtonpost.com/news/capital-

weather-gang/wp/2013/04/23/how-accurate-are-pre-season-hurricane-landfall-forecasts/ (accessed on 26 February 2021).
15. Klotzbach, P.J.; Saunders, M.A.; Bell, G.D.; Blake, E.S. North Atlantic Seasonal Hurricane Prediction. In Climate Extremes: Patterns

and Mechanisms, Geophysical Monograph 226; Wang, S.-S., Yoon, J.-H., Funk, C.C., Gillies, R.R., Eds.; American Geophysical Union:
Washington, DC, USA; John Wiley & Sons: Hoboken, NJ, USA, 2017. [CrossRef]

16. Blake, E.B.; Gibney, E.J.; Brown, D.P.; Mainelli, M.; Franklin, J.L.; Kimberlain, T.B.; Hammer, G.R. Tropical Cyclones of the eastern
North Pacific Ocean, 1949–2006. In Historical Climatology Series; National Climatic Data Center: Miami, FL, USA, 2008; Volume
2–6, in publication.

17. Klotzbach, P.J.; Gray, W.M. Updated 6–11-Month Prediction of Atlantic Basin Seasonal Hurricane Activity. Weather Forecast. 2004,
19, 917–934. [CrossRef]

18. Emanuel, K.; Fondriest, F.; Kossin, J. Potential Economic Value of Seasonal Hurricane Forecasts. Weather Clim. Soc. 2012, 4,
110–117. [CrossRef]

19. Palmer, T.N. Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys. 1999, 63. [CrossRef]
20. Slingo, J.; Palmer, T. Uncertainty in weather and climate prediction. Phil. Trans. R. Soc. A. 2011, 369, 4751–4767. [CrossRef]
21. Hewage, P.; Trovati, M.; Pereira, E.; Behera, A. Deep learning-based effective fine-grained weather forecasting model. Pattern

Anal. Appl. 2021, 24, 343–366. [CrossRef]
22. Scher, S.; Messori, G. Predicting weather forecast uncertainty with machine learning. Q. J. R Meteorol. Soc. 2018, 144, 2830–2841.

[CrossRef]

http://doi.org/10.1073/pnas.1912277116
http://www.ncbi.nlm.nih.gov/pubmed/31712413
http://doi.org/10.1371/currents.dis.2664354a5571512063ed29d25ffbce74
http://www.ncbi.nlm.nih.gov/pubmed/23857074
http://doi.org/10.1007/s11069-013-0566-5
http://doi.org/10.1175/1520-0493(1984)112&lt;1649:ASHFPI&gt;2.0.CO;2
http://doi.org/10.1175/1520-0493(1984)112&lt;1669:ASHFPI&gt;2.0.CO;2
http://doi.org/10.1002/j.1477-8696.1994.tb06035.x
http://doi.org/10.1175/2008WAF2222139.1
http://doi.org/10.1002/wcc.373
http://doi.org/10.1029/2020GL089357
http://doi.org/10.1175/2010MWR3499.1
http://doi.org/10.1029/2010GL044792
http://doi.org/10.1175/2009JCLI2753.1
https://www.washingtonpost.com/news/capital-weather-gang/wp/2013/04/23/how-accurate-are-pre-season-hurricane-landfall-forecasts/
https://www.washingtonpost.com/news/capital-weather-gang/wp/2013/04/23/how-accurate-are-pre-season-hurricane-landfall-forecasts/
http://doi.org/10.1002/9781119068020.ch19
http://doi.org/10.1175/1520-0434(2004)019&lt;0917:UMPOAB&gt;2.0.CO;2
http://doi.org/10.1175/WCAS-D-11-00017.1
http://doi.org/10.1088/0034-4885/63/2/201
http://doi.org/10.1098/rsta.2011.0161
http://doi.org/10.1007/s10044-020-00898-1
http://doi.org/10.1002/qj.3410


Atmosphere 2021, 12, 522 20 of 20

23. Rasp, S.; Lerch, S. Neural Networks for Postprocessing Ensemble Weather Forecasts. Mon. Weather Rev. 2021, 146, 3885–3900.
Available online: https://journals.ametsoc.org/view/journals/mwre/146/11/mwr-d-18-0187.1.xml (accessed on 26 February
2021).

24. Krasnopolsky, V.M.; Lin, Y. A Neural Network Nonlinear Multimodel Ensemble to Improve Precipitation Forecasts over
Continental US. Adv. Meteorol. 2018, 2012, 649450. [CrossRef]

25. Jagger, T.H.; Elsner, J.B. A Consensus Model for Seasonal Hurricane Prediction. J. Clim. 2010, 23, 6090–6099. [CrossRef]
26. Richmana, M.B.; Lesliea, L.M.; Ramsay, H.A.; Klotzbach, P.J. Reducing Tropical Cyclone Prediction Errors Using Machine

Learning Approaches. Procedia Comput. Sci. 2015. [CrossRef]
27. Jarvinen, B.R.; Neumann, C.J.; Davis, M.A.S. A Tropical Cyclone Data Tape for the North Atlantic Basin, 1886–1983: Contents,

Limitations, and Uses; NOAA Technical Memorandum NWS NHC 22: Coral Gables, FL, USA, 1984; p. 21.
28. Leetmaa, A.; Reynolds, R.; Jenne, R.; Josepht, D. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 1996, 77,

437–470.
29. Córdoba, M.A.; Fuentes, M.; Guinness, J.; Xie, L. Verification of Statistical Seasonal Tropical Cyclone Forecast. Zenodo 2019.

[CrossRef]
30. Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J.

Classif. 2014, 31, 274–295. [CrossRef]

https://journals.ametsoc.org/view/journals/mwre/146/11/mwr-d-18-0187.1.xml
http://doi.org/10.1155/2012/649450
http://doi.org/10.1175/2010JCLI3686.1
http://doi.org/10.1016/j.procs.2017.09.048
http://doi.org/10.5281/zenodo.2562195
http://doi.org/10.1007/s00357-014-9161-z

	Introduction 
	Data and Methods 
	Data 
	Methods for Forecasting TC Counts 
	List of Statistical Models as Ensemble Members 
	Machine Learning Based Linear Combination of Statistical Models to Produce Ensemble Models 


	Results 
	Results from Emsemble Members 
	Results from Regression Models 
	Potential Benefits of Multimodel Ensemble 

	Comparison of Forecasts Using Simple Average Ensemble (SAE) 
	Optimization of Top Three Model Ensemble 

	Discussion 
	Conclusions 
	References

