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The goal of this work is to explain an unexpected feature of the expanding
level sets of the solutions of a system where a half-plane in which reaction-
di�usion phenomena take place exchanges mass with a line having a large
di�usion of its own. The system was proposed by H. Berestycki, L. Rossi
and the second author as a model of enhancement of biological invasions
by a line of fast di�usion. It was observed numerically by A.-C. Coulon
that the leading edge of the front, rather than being located on the line,
was in the lower half-plane.

We explain this behavior for a closely related free boundary problem.
We construct travelling waves for this problem, and the analysis of their
free boundary near the line con�rms the predictions of the numerical sim-
ulations.

�1. Introduction

1.1. Model and question. Consider the cylinder

Σ = {(x, y) ∈ R× (−L, 0)}.

We look for a real c > 0, a function u(x) de�ned for x ∈ R, a function v(x, y)
de�ned in Σ, and a curve Γ ⊂ Σ such that

Êëþ÷åâûå ñëîâà: expanding level sets, reaction-di�usion phenomena, line of fast
di�usion.
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

−d∆v + c∂xv = 0 (x, y) ∈ {v > 0},
|∇v| = 1 ((x, y) ∈ Γ := Σ ∩ ∂{v > 0},

−Duxx + c∂xu+ 1/µu− v = 0 for x ∈ R, y = 0,

vy = µu− v for x ∈ R, y = 0 and v(x, 0) > 0,

uy(x,−L) = 0,

u(−∞) = 1/µ, u(+∞) = 0, v(−∞, y) = 1, v(+∞, y) = 0.

(1.1)

In (1.1), the real numbers µ, d,D are �xed positive constants, and the problem
inside Σ is a well-known free boundary problem. We will also consider then
the following more compact problem, with unknowns (c,Γ, u), the function u
being this time de�ned in Σ, solving

−d∆u+ c∂xu = 0 (x, y) ∈ {u > 0},
|∇u| = 1 ((x, y) ∈ Γ := Σ ∩ ∂{u > 0},

−Duxx + c∂xu+ 1/µuy = 0 for x ∈ R, y = 0,
uy(x,−L) = 0,
u(−∞, y) = 1, u(+∞, y) = 0.

(1.2)

In both problems (1.1) and (1.2), we will see that vx 6 0 (respectively, ux 6 0)
inside Σ, and that the free boundary Γ inside Σ will be an analytic curve.
Assume that Γ intersects the line {y = 0}, say at (x, y) = (0, 0). We ask for
the behavior of φ near y = 0.

1.2. Motivation. Our starting point is the system proposed by H. Berestycki,
L. Rossi, and the second author to model the speed-up of biological invasions
by lines of fast di�usion in [4]. In this model, the two-dimensional lower half-
plane (�the �eld�) in which reaction-di�usion phenomena occur interacts with
the x axis (�the road�), which has a much faster di�usion D of its own. It will
sometimes be useful to assume that D > d, but not always. Call u(t, x) the
density of individuals on the road, and v(t, x, y) the density of individuals in
the �eld. The road yields the fraction µu to the �eld, and retrieves the fraction
νv in exchange; the converse process occurs for the �eld. The system for u
and v is

∂tu−D∂xxu = νv(t, x, 0)− µu, x ∈ R,
∂tv − d∆v = f(v), (x, y) ∈ R× R−,
∂yv(t, x, 0) = µu(t, x, t)− νv(t, x, 0), x ∈ R.

(1.3)

Here f is the usual logistic term, f(v) = v − v2. A model involving only the
unknown u can be obtained by forcing the (biologically reasonable) formula
ϕ(x) = ψ(x, 0); in other words, we take the (formal) limit δ → 0 of ν = µ = 1

δ .
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Still arguing in a formal way, we obtain u = v on the road, and the exchange
term is simply vy. Thus, we obtain

∂tv −D∂xxv + vy(t, x, 0) = 0, x ∈ R,
∂tv − d∆v = f(v), (x, y) ∈ R× R−.

(1.4)

From now on, as is rather intuitively clear from the biological modelling, we
will call (1.1) the two-species model, whereas problem (1.2) will be the single-
species model. For the time being, let us only argue on system (1.3). The
�rst question is how the stable state (ν/µ, 1) invades the unstable state (0, 0).
In [5] it was computed with ot→+∞(1) precision: for each direction e in the �eld,
the level sets of v move with a velocity w∗(e) which, quite surprisingly, does
not obey the Huygens principle. The next step is to describe the asymptotic
level sets with Ot→+∞(1) precision; for this purpose numerical simulations
were carried out by A.-C. Coulon, the simulations, which are part of a larger
program of her thesis [8]. The above �gures account for some of her results;
the parameters are

f(v) = v − v2, D = 10, u(0, x) = 1[−1,1](x), v(0, x, y) ≡ 0.

The top �gure represents the level set 0.5 of v at times 10, 20, 30, 40; the bottom
�gure represents the shape of v(40, x, y). Notice that the simulations are carried
out with and upward propagation instead of a downward propagation in our
equations.
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We have found these �gures surprising, all the more as they are quite robust
with respect to all the parameters. Indeed, a naive intuition would suggest that
the leading edge of the invasion is located on the road, especially for large D.
Such is manifestly not the case, the leading edge appears to be located in the
�eld, at a distance to the road that seems to remain more or less constant in
time.

A heuristic explanation is the following: the term v(t, x, 0)−µu(t, x) acts as
an e�ective reaction term for u; given that, everything suggests that the inva-
sion is driven by the road, especially for the large values of D. The immediate
consequence is that vy(t, x, 0) < 0, so the function v increases in the vicinity
of the road, hence the observed behavior. The goal of this paper is to give a
mathematically rigorous account of that fact.

1.3. From reaction-di�usion to free boundaries. Working directly
on (1.3) or (1.4) to explain the above simulations did not lead to a conclu-
sive answer. So, in order to understand the model a little better, we have
chosen here to work on a limiting model, which will keep the main features
of (1.3) or (1.4), this is why we have come up with (1.1) and (1.2). This system
is indeed a limiting model of (1.3), let us explain why. Before that, we consider
a permanent regime (∂tu, ∂tv) = (0, 0) of (1.3), it is logical to think that it will
take the form of a travelling wave

(u(t, x), v(t, x, y)) = (ϕ(x+ ct), ψ(x+ ct, y)), c > 0. (1.5)

It was proved in [10] that travelling waves are indeed attracting for (1.2) (and,
more interestingly, the paper describes how the convergence occurs when D
is very large). We have considered a propagation from right to left, thus the
couple (ϕ, ψ) is an orbit of the following system

−D∂xxϕ+ cϕx = νψ(x, 0)− µϕ, x ∈ R,
−d∆ψ + cψx = f(ψ), (x, y) ∈ Σ,

∂yψ(x, 0) = µϕ(x)− νψ(x, 0), x ∈ R,
(1.6)

where we have omitted the Neumann condition for short. As for the model
(1.4), the corresponding system is (we look for v(t, x, y) under the form ψ(x+
ct, y)):

−D∂xxψ + cϕx + ψy = 0, x ∈ R,
−d∆ψ + cψx = f(ψ), (x, y) ∈ Σ.

(1.7)

A free boundary problem is obtained (once again in a formal way) in the
limit as ε → 0 of a sequence of solutions (uε, vε) to (1.6) with f = fε, an
approximation of the Dirac mass δψ=1. The ultimate result, which we will
explain in this section, is the following. First, denote Γ the unknown boundary

Γ = ∂
(
{ψ = 1}

)
.
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To retrieve (1.1), we set (the functions u and v are not the same as in the
time-dependent problem):

u(x) := 1/µ− ϕ(x), v(x, y) := 1− ψ(x, y).

To retrieve (1.2), it su�ces to set u(x, y) := 1− ψ(x, y) in (1.7).
Let us explain further, in an informal way, why a free boundary will develop

in the plane. This is by no means a new idea, the introduction of reaction terms
leading to free boundaries dates back to Zeldovich [14]. They have turned out
to be very important to study asymptotic models in �ame propagation, because
they introduce di�erent length scales that have the ability to explain subtle
e�ects. Let us for instance quote the pioneering work of Sivashinsky [13] on
the destabilisation of planar solutions under the e�ect of di�erent di�usions.
Actually, as these terms have become a paradigm in the theoretical study of
�ame models, they have given raise to a large amount of works that we will
not be able to quote in detail here.

The �rst rigorous passage from the reaction-di�usion equation to the free
boundary problem was done in the context of 1D travelling waves, by Beresty-
cki, Nicolaenko, and Scheurer [3]. In several space dimensions, it was done by
Berestycki, Nirenberg, and the �rst author (see [2]), a work that we will much
use here. As far as evolution problems are concerned, the �rst rigorous passage
to the limit was performed in a work of Vazquez and the �rst author [7], which
raises di�culties due to the fact that the boundary condition is not of kinetic
charcter, contrary to what happens in Stefan-type problems.

Now, we recall why a limiting solution (c, u, v) to (2.3) will develop a free
boundary. For this, we consider the simple one-dimensional problem

−du′′ + cu′ + fε(u) = 0 on R,
u(−∞) = 0, u(+∞) = 1.

(1.8)

Standard arguments show that, for a solution (cε, uε) to (1.8), we have cε > 0
and u′ε < 0. We may always assume that uε(0) = ε, so, for x < 0 we have
uε(x) = 1− (1− ε)ecx. As for x > 0, we set

ξ =
x

ε
, uε(x) = εpε

(x
ε

)
.

The function pε solves

−dp′′ + εcεp
′ + pφ(p) = 0 on R+, p(0) = 1, p(+∞) = 0.

Once again, standard arguments show that the term εcεp
′ may be neglected,

so that multiplication by p′ and integration over R+ yields

d
(p′ε)

2(0)

2
=

+∞∫
0

pφ(p)dp =
1

2d
.
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Scaling back, we obtain uε(0) ∼ 1, matching derivatives yields c = 1. The
limit (c, u) of (uε, cε) satis�es therefore

−du′′ + cu′ = 0 on R−, d[u′](0) = 1.

This is the one-dimensional version of the problem inside Σ; here, Γ is the
point x = 0.

1.4. Results. The question is therefore whether, and how, the free bound-
ary Γ meets the �xed boundary {y = 0}. For the two unknowns problem (1.1),
the scaling � both inside the domain and at the vicinity of the hitting point �
is Lipschitz, which allows the use of a large body of existing ideas. On the other
hand, Model (1.2) is not of the standard type, because the characteristic scales
around the free boundary are di�erent inside Σ and on the �xed boundary: in
the latter we have y ∼ x2. However, before studying the free boundary Γ of
Problem (1.2) near the origin, we �rst should make sure that the problem has a
solution. Clearly, the issue is what happens in the vicinity of the axis {y = 0},
therefore we start with a situation for which travelling waves are known to
exist.

Theorem 1.1. System (1.2) has a solution (c,Γ, u, v). We have c > 0 and

∂xu 6 0 (and < 0 to the left of Γ). The function v is globally Lipschitz : |∇v| 6
C for some universal C (therefore, u is C1,1 on the line). The free boundary Γ is

a graph (φ(y), y), and also an analytic curve in {y < 0}. Moreover, it intersects
the x-axis.

Remark 1. A word will have to be said about the analyticity of the free
boundary. Even though we are working in two space dimensions, singularities
may occur, see [11] for a classi�cation of them. That we are able to eliminate
them from the start simpli�es our work very much.

Remark 2. The uniqueness (up to translations) of (c,Γ, u, v) is probably true.
The only issue is to examine the behavior of two solutions whose contact point
lies at the intersection of the x axis and their respective free boundaries. This
will not be pursued here.

Next, we study the free boundary in a neighborhood of the origin. By trans-
lation invariace, we may choose φ(0) = 0.

Theorem 1.2. The free boundary Γ hits the line {y = 0} at a point where

u > 0, in other words we have u(φ(0), 0) > 0. In a neighborhood of (0, 0), Γ is

a graph in the x variable y = ψ(x), x < 0, and there is γ > 0 such that :

ψ(x) = γx+ ox→0−(x). (1.9)

Let us turn to the model with one species.
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Theorem 1.3. Assume that D > d. System (1.2) has a solution (c,Γ, u). We

have c > 0 and ∂xu 6 0 (and < 0 to the left of Γ). The function u is globally

Lipschitz : |∇u| 6 C for some universal C. The free boundary Γ is a graph

(φ(y), y), and also an analytic curve in {y < 0}. Moreover, it intersects the

x-axis, so we may choose φ(0) = 0.

Remark 3. We do not know whether the assumption D > d is indispensable,
or merely technical. In any case, it is consistent with our goal to study phe-
nomena driven by a large di�usion on the road. In [4], the signi�cant threshold
is D = 2d, this is where the velocity of the wave for (1.2) exceeds that of the
plane Fisher-KPP wave.

Theorem 1.4. Assume that D > d. In a neighborhood of (0, 0) Γ is a graph

in the x variable:

y = ψ(x), x < 0, with ψ(x) = − x2

2D
+ ox→0−(x

2). (1.10)

1.5. Discussion, organisation of the paper. We �rst notice, as far as the
two species are concerned, an interesting loss of boundary condition between
the reaction-di�usion system (1.6) and the free boundary problem (1.2), to
the right of the free boundary. In other words, in this area, the road does
not exchange individuals anymore with the �eld. Thus there is an asymptotic
decoupling between the value of u and the value of v at the free boundary,
and this accounts quite well for the numerical simulations. Let us revert to the
old unknowns ϕ and ψ, which denote respectively the density of individuals on
the road and in the �eld. At the intersection between the invasion front and
the road, the density of individuals is at its maximum, whereas the road keeps
feeding the �eld with individuals, as is stated by the exchange condition

ψy ∼ µϕ− ψ ∼ µu(0, 0) > 0.

Therefore, the invasion front in the �eld can only go further, which explains
that its leading edge is not located on the road. This explains the simulations
in [8].

Next, we observe a di�erent behavior for the one species model. A heuristic
reason is that the model is trying to accomodate both the exchange condi-
tion and the free boundary condition, and this is only done at the expense
of a breakdown of the homogeneity near the road. The resulting sitation is
the interaction of an obstacle problem on the road and a solution of the one
phase problem in the �eld. This observation will be investigated further in a
subsequent work.

The last remark concerns the derivation of the one species model from the
two species model, in the limit of in�nite exchange terms µ = ν = 1

δ . This
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passage was done in a rigorous way in [9] in the framework of a reaction-
di�usion system; it would probably be possible to do it, such a task would
probably be not entirely trivial. We postpone this matter to a future work,
as it would not really add more to the understanding of the question at stake
here.

The paper is organised as follows. In �2, we construct a solution to sys-
tem (1.1). This is done by a classical approximation by a family of semilinear
equations where the nonlinearityfε(u) converges, in the measure sense, to δ∂u>0 .
The idea, as well as the inspiration for the proof, is taken from [2]. In �3, we
study the free boundary of the two species model, the main argument will be
a Liouville type theorem for a special class of global solutions. In �4, we con-
struct the travelling wave, and the main part of the analysis is the gradient
bound for u. Finally, in �5, we prove Theorem 1.4. The chief argument in all
these (at times technical) considerations is that the free boundary condition
creates such a rigidity that, unless the solutions behave as they are expected
to behave, basic properties such as, for instance, the positivity of u, will not
hold true.

�2. The travelling wave in the two species model

Let us consider a smooth function φ(u), de�ned on R+, positive on [0, 1),
zero outside, and such that

+∞∫
0

uφ(u)du =
1

2d
. (2.1)

Consider the sequence of reaction terms

fε(u) =
u

ε2
φ
(u
ε

)
. (2.2)

We will obtain a solution to (1.1) as the limit, as ε → 0, of a sequence
(ce, uε, vε)ε of solutions of

−d∆v + c∂xv + fε(v) = 0, (x, y) ∈ Σ,

−Duxx + c∂xu+ 1/µu− v = 0, for x ∈ R, y = 0,
vy = µu− v for x ∈ R, y = 0,

vy(x,−L) = 0,

v(−∞, y) = 1, v(+∞, y) = 0, u(−∞) = 1/µ, u(+∞) = 0.

(2.3)

Let us come back to (2.3). For every ε > 0, (2.3) has (Dietrich [9, Theorem 1])
a unique solution (cε, uε) such that cε > 0, 0 < uε < 1, and ∂xuε, ∂xvε < 0; we
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will show that, up to a subsequence, (cε, uε) converges, as ε→ 0, to a solution
of (1.2).

2.1. Basic bounds. The �rst task is to show that the travelling wave velocity
is uniformly bounded from above, that is, to prove the following.

Proposition 2.1. There is K > 0 independent of ε such that cε 6 K.

Proof. We may, even if it means translating uε, assume the normalisation
condition

min
[−L,0]

vε(0, y) = ε. (2.4)

Therefore, fε(u) ≡ 0 on R− × [−L, 0], and uε solves a purely linear equation.
If

ρ 6 min
( 1

D
,
1

d

)
c,

then

(u(x), v(x, y)) :=
(
1− (1− ε)eρx

)( 1

µ
, 1
)

is a subsolution to (1.2) on R−, thus u(x, y) > u(x) on R−. Choosing ρ to be
the above minimum, we obtain

∂xv(0, ye) 6 −(1− ε)min
( 1

D
,
1

d

)
c,

where yε is a point in [−L, 0] where the minimum in (2.4) is attained.
On the right half of Σ, another simple subsolution to (1.2) is

(uε(x), vε(x, y)) = εp
(x
ε

)( 1

µ
, 1
)
,

with

−p′′ + pφ(p) = 0 for ξ > 0, p(0) = 1, p(+∞) = 0.

Since it is convex, it is a subsolution to the equation for v, and since it is
monotone decreasing, it is also a subsolution of the equation inside the right
half of Σ. The exchange condition for v is automatically satis�ed. The classical
sliding argument (slide (uε, vε) until the two components exceed (uε, vε), then
slide back until one of the two components reaches a contact point) yields
(uε, vε) > (uε, vε). Thus

∂xvε(0, yε) > v′ε(0) = p′(0) = −
√
2.

This implies

(1− ε)min
( 1

D
,
1

d

)
c 6

√
2,

the required bound. �
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The next step is a uniform gradient bound on vε. Notice that uε satis�es a
linear ODE with bounded right-hand side, thus is uniformly C1,1 at this stage.

Proposition 2.2. There is a universal M > 0 such that |∇vε| 6M in Σ.

For convenience, in the sequel we will drop the subscript ε for cε, uε and vε.
The �rst ingredient is a gradient bound in {v 6 ε}, away from the road.

Lemma 2.3. Consider λ ∈ (0, 1) and a point (x0, x0) ∈ Σ such that u(x0, y0) =
λε. Assume that y0 6 −2ε. Then we have

0 6 u(x, y) 6 Cε, (x, y) ∈ Bε(x0, y0),

and

|∇u(x0, y0)| 6 C,

for some universal C > 0.

Proof. Notice, following [2], that the case of y0 close to −L is not really an
issue, because one may, thanks to the Neumann condition at y = −L, extend
the function u evenly in y to R × (−2L, 0). This said, we do the classical
Lipschitz scaling

v(x0 + εξ, εζ) = εp(ξ, ζ), (ξ, ζ) ∈ B2(0), (2.5)

and p solves

−d∆p+ εc∂ξp+ pφ(p) = 0 (ξ, ζ) ∈ B2(0), p(0, 0) = λ.

Then (see [2] again), from the Harnack inequality, p is universally controlled
in B1(0), hence ∇u(x0, y0) = ∇p(0, 0) is universally controlled. �
Lemma 2.4. Consider λ ∈ (0, 1), y0 ∈ [−ε, 0], and x0 ∈ R such that

u(x0, y0) = λε.

Then we have

0 6 u(x, y) 6 Cελ, (x, y) ∈ Bε(x0, y0), y 6 0,

for some C > 0 that depends neither on ε, nor on λ.

Proof. Recall that u and v are bounded independently of ε. We redo the
scaling (2.5), leaving u untouched. The only thing that has to be examined is
the Neumann condition for p, which reads

pζ(ξ, 0) + εp(ξ, ζ) = u(x0 + εξ, 0). (2.6)

We make the slight abuse of notations consisting in denoting by u(ξ, ζ) the
function u(x0 + εξ, y0 + εζ), this function is clearly C1,α uniformly in ε. We
may indeed subtract from p any suitable harmonic function V satisfying the
Neumann condition (2.6), thus V is uniformly C2,α in B3/4. We then apply the
argument of Lemma 2.4 to v − V . �
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These two lemmas lead to an e�ortless

Proof of Proposition 2.2. Let Γε be the curve {v = ε}. The function vy is
bounded on Γε, as well as on ∂Σ\Γε, moreover it satis�es −∆yy + c∂xvy = 0
to the left of Γε, thus it is bounded everywhere. The same argument applies
to vx, but for this quantity we use the Robin condition d∂yvx+ vx = ux (recall
that ux is uniformly bounded) and the Neumann conditon for vx at the bottom
of Σ. �

2.2. Convergence of the approximating sequence. The last ingredient
that we need is a uniform lower bound on the travelling vave velocity. In this
proposition we put the subscripts ε back in.

Proposition 2.5. There is c0 > 0 such that cε > c0.

Proof. We start with the following identity

cε =
1

L+ dµ

∫
Σ

fε(vε) dxdy, (2.7)

obtained by integrating the system for (uε, vε) over Σ. We may normalise vε
so that

vε

(
0,−L

4

)
= ε.

From [2], the family of measures

σε = 1BL/4

(
0,−L

4

)
fε(vε) dxdy

converges (possibly up to a subsequence), in the measure sense, to the image
of the Lebesgue measure on a locally BV graph {h(y), y)}. Thus the sequence(
(L+dµ)cε

)
ε
converges, still up to a subsequence, to a limit that is larger than

the length of Γ inside BL/4(0,−L
4 ), a positive number. �

Putting everything together, we may prove the Theorem 1.1.

Proof of Theorem 1.1. Possibly up to a subsequence, the sequence (uε, vε)ε
converges uniformly on Σ, and in H1

loc(Σ) weakly, to a function (u(x), v(x, y))
that is both Lipschitz and inH1

loc(Σ). Notice that u is much smoother, it is C2,1.
Let us repeat here that the family of measures (fε(vε) dxdy)ε converges (see [2]
again), in every set of the form R×K (K is a compact subset of [−L, 0)), to
the length measure of the graph

Γ = {(h(y), y) − L 6 y < 0}.
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For every δ ∈ (0, L4 ), identity (2.7) implies∫
R×[−L,−δ]

fε(u) dxdy 6 (L+ dµ)cε. (2.8)

Passing to the limit ε→ 0 yields

−δ∫
−L

√
1 + (h′(y))2dy 6 (L+ dµ)c. (2.9)

Thus, the function h belongs to BV ([−L, 0)), thus can be extended by conti-
nuity to y = 0. We may always assume that h(0) = 0. It remains to prove that
∂{u > 0} is analytic. Let us set

Fε(v) =

v∫
0

fε(v)dv,

we claim that, for every ε > 0, vε is a local minimiser of the energy∫
e−cεx

(1
2
|∇v|2 + Fε(v)

)
dxdy.

More precisely, for every ball B whose closure is included in Σ, then vε min-
imises the energy

Jε(ϕ,B) =

∫
B

e−cεx
(1
2
|∇ϕ|2 + Fε(ϕ)

)
, (2.10)

over all functions ϕ ∈ H1(B) whose trace on ∂B is vε. This is easily seen from
the monotonicity of vε in x, and a sliding argument. On the other hand, we
use the two following facts, taken from [2]: �rst, the family (vε)ε is compact in
H1

loc(Σ), (ii). there is a uniform nondegeneracy property:

vε(x, y) > kd
(
(x, y), {vε ∈ (aε, bε)}

)
.

This implies that, for every ball B inside Σ we have:

lim
ε→0

Jε(vε, B) =

∫
B

e−cx

2
|∇v|2 dxdy +

∫
{v>0}∩B

e−cx dxdy := J(v,B).

On the other hand, for every ϕ ∈ H1(B) whose trace on B is v, consider
ϕε ∈ H1(B) whose trace on B is vε and such that the family (ϕε)ε converges
to ϕ in H1(B). We have Jε(vε, B) 6 Jε(ϕ,B), which implies, sending ε → 0:
J(v,B) 6 J(ϕ,B). Thus, v is a local minimizer of J . However, J is of the type
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of functionals treated in the paper [1]: its results are applicable, which imples
the analyticity of ∂{v > 0} inside Σ.

Finally, since v is Lipschitz, and because of the uniform convergence of (vε)ε
to v, we have v(x, 0) = 0 if x > 0. �
Remark. The above argument also explains the loss of the exchange condition
for v to the right of the free boundary, simply because the free boundary is
forced to hit the road. There is a boundary layer in which the condition v = 0,
located on a curve very close to the road, eventually overcomes the exchange
condition in the limit ε→ 0.

�3. The two species model: the free boundary near (0,0)

The main feature of Model (1.1) is that the equation inside Σ, together
with the free boundary conditions, can be studied in a neighborhood of a free
boundary point up to the top of Σ via Lipschitz rescalings: (x, y) = δ(ξ, ζ).
This will enable us to show, in a relatively easy way, the linear behavior of the
free boundary in the vicinity of the road. Let us �rst state a rigidity result in 2
space dimensions.

Theorem 3.1. Pick λ ∈ [0, 1). Let u(x, y) solve

∆u = 0, (x, y) ∈ R× R− ∩ {u > 0},
|∇u| = 1, (x, y) ∈ ∂{u > 0},

uy(x, 0) = λ if x < 0,
u(x, 0) = 0 if x > 0.

(3.1)

Also assume that ∂xu 6 0. Then we have:

∂{u > 0} = {y = −
√
1− λ2

λ
x, x < 0},

and

u(x, y) =
(√

1− λ2x+ λy
)+
.

Proof. Let Ω be the positivity set of u, identify R2 with the complex plane,
and set

f(z) = uy(x, y) + iux(x, y), z = x+ iy.

Then f is analytic in Ω, let us assume that it is a nonconstant function. It is
open from Ω onto its image, and maps Γ onto (a portion of) the unit circle,
which we call γ1, whereas it maps the negative x axis onto (a portion of) the
vertical line {ImZ = λ}, which we call γ2. From its connectedness, γ1∪γ2 (but
not only) enclose f(Ω). And, since ∂xu 6 0, f(Ω) is bounded by γ1 ∪ γ2 ∪ γ3,
where γ3 is a nonvoid, possibly very irregular curve. One of its end-points is on
γ1 � call it z1; thus γ1 is the segment [z1,

√
1− λ2+ iλ] � and the other on γ2
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� call it z2. It stays in the upper half of the complex plane, and is constructed
as follows: for each ray D starting from

√
1− λ2 + iλ and not meeting γ1 ∪ γ2,

let ZD be the furthest point from
√
1− λ2 + iλ in f(Ω): the set of all such

ZD's determines γ3. Two cases are to be considered.

Case 1. γ3 has points strictly above the horizontal axis. Let D be a ray starting
from

√
1− λ2 + iλ, and let Z0 be the furthest point in D ∩ γ3. If Z0 has

a preimage by f , we have a contradiction because f is open. If Z0 has no
preimage, this means the existence of a sequence (zn)n such that

lim
n→+∞

|zn| = 0 or lim
n→+∞

|zn| = +∞,

and such that limn→+∞ f(zn) = Z0. The sequence of locally uniformly bounded
functions

fn(z) = f(
z

|zn|
) if |zn| → 0, (3.2)

or

fn(z) = f(z|zn|) if |zn| → +∞, (3.3)

converges, up to a subsequence, uniformly locally to an analytic function f∞(z),
by Montel's theorem. The function f∞ takes the value Z0, but it is also non-
constant analytic, in a possibly di�erent positivity set Ω∞. However, by de�-
nition, Z0 is still the furthest point between D and f∞(Ω∞), and the openness
of f∞ yields a contradiction. Thus f is constant, and so is ∇u.
Case 2. γ3 meets the horizontal axis. Let µ ∈ [0, 1] belong to γ3. As above,
there is a sequence (zn)n whose modulus goes to 0 or +∞, such that

lim
n→+∞

f(zn) = µ.

Let fn be de�ned as in (3.2) or (3.3), and let f∞ be one of its limits. By
nondegeneracy (i.e., linear growth from each point of the free boundary, which
is, in this case, inherited from its analyticity), there is a nontrivial solution u∞
of (3.1), and a point (x0, y0) in the positivity set of u∞ such that

∂xu∞(x0, y0) = 0.

Since ∂xu∞ 6 0, it is zero everywhere. The only possibility for Γ∞ is that it is
horizontal, a contradiction with the fact that it has to meet the x axis. �

In particular, for λ = 0 we have:

∂{u > 0} = {y = 0}, u(x, y) = y−.

The same argument as in Theorem 3.1 yields the following statement.
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Corollary 3.2. Pick λ ∈ [0, 1], and consider a solution (φ(y), u(x, y)), with
φ(y) < 0 and ∂xu 6 0, of

∆u = 0, u > 0 (x < φ(y)),
|∇u| = 1 (x = φ(y)),

uy(x, 0) = λ (x ∈ R).
(3.4)

Then φ is constant negative, and λ = 1.

As a consequence of these rigidity properties for 2D global solutions, we
prove Theorem 1.2.

Proof of Theorem 1.2. Let (c, u, v,Γ) be the solution of (1.1). We claim
that Γ hits the road at a point that we may assume, by translation invariance,
to be (0, 0). Let us prove that u(x0) > 0. Indeed, suppose the contrary and
suppose that u(x0) = 0. Consider a Lipschitz blow-up of v around (x0, 0):

vδ(ξ, ζ) =
v(δξ, δζ)

δ
. (3.5)

Call Γδ its free boundary, let us �rst show that, as δ → 0, it does not collapse
on the x axis. In other words, we want to show the existence of ρ0 > 0 such
that, if Γδ is the positivity set of uδ within B1(0), then

Bρ0(−1,−2ρ0) ⊂ Ωδ.

Assume that it is not the case, then we have limδ→0 vδ(ξ, 0) = 0 uniformly on
every compact in ξ, simply because v is Lipschitz. And so, by the exchange
condition, we have limδ→0 ∂yvδ(−1, 0) = 0. On the other hand, let ζδ be the
smallest ζ < 0 such that (−1, ζ) ∈ Γδ. Clearly, ζδ tends to 0 as δ → 0. Rescale
vδ with |ζδ|, taking (−1, ζδ) as the origin. That is, we set

vδ(ξ, ζ) = |ζδ|Vδ
(
ξ + 1

|ζδ|
,
ζ − ζδ
|ζδ|

)
.

(A subsequence of) the sequence (Vδ)δ will converge, as δ → 0, to a solution V∞
of (3.4), with λ = 0, something that Corollary 3.2 excludes. As δ → 0, (a sub-
sequence of) (vδ)δ converges locally uniformly to a global solution V∞ of (3.1),
with λ = 0. By Theorem 3.1, we have V∞(ξ, ζ) = ξ−. Thus, the equation for u
in a neighborhood of x = x0 is

−Du′′ + cu′ + µu ∼ x0 − x, x < 0,

u(0) = u′(0) = 0.

This implies u(x) ∼ x3

6D for x < 0 close to 0. Thus u(x) < 0 in a neighborhood
of 0, a contradiction with the positivity of u. So, u(0) > 0, let us set

λ = µu(0) > 0.
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We come back to the blow-up (3.5). Each converging subsequence has a solution
of (3.1) as a limit, which is unique by virtue of Theorem 3.1. So, the whole
blow-up converges to

V∞(x) =
(
λy −

√
1− λ2x

)+
,

which implies, we come back to the solution (c, u, v,Γ) of (1.1), that Γ has

slope γ =
√
1−λ2
λ at (0, 0). This proves Theorem 1.2. �

�4. The travelling wave of the single species model

As in �2, we will construct a solution to (1.2) as the limit, as ε → 0, of a
sequence (ce, uε)ε of solutions of

−d∆u+ c∂xu+ fε(u) = 0, (x, y) ∈ Σ,

−Duxx + c∂xu+ 1/µuy = 0 for x ∈ R, y = 0,
uy(x,−L) = 0,

u(−∞, y) = 1, u(+∞, y) = 0,

(4.1)

the function fε being as in (2.2). For every ε > 0, (4.1) has (Dietrich [9] once
again) a unique solution (cε, uε) such that cε > 0, 0 < uε < 1, and ∂xuε < 0; we
will show that, up to a subsequence, (cε, uε) converges, as ε→ 0, to a solution
of (1.2). Our �rst task is to show that cε is uniformly bounded from above,
that is, to veryfy the following.

Proposition 4.1. There is K > 0 independent of ε such that cε 6 K.

Proof. The proof is similar to that of Proposition 2.1. In R− × [−L, 0], we
work with the subsolution

u(x) := 1− (1− ε)eρx

with

ρ 6 min
( 1

D
,
1

d

)
c,

whereas, to the right of Σ, we work with

uε(x) = εp
(x
ε

)
,

with
−p′′ + pφ(p) = 0 for ξ > 0, p(0) = 1, p(+∞) = 0.

Since it is convex, it is a subsolution to the Wentzell boundary condition on
R+, and since it is monotone decreasing, it is also a subsolution of the equation
inside the right half of Σ. �

The next step is a uniform gradient bound on uε.
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Theorem 4.2. Assume that D > d. There is a universal M > 0 such that

∥∇uε∥∞ 6M .

This does not result from the application of known theorems, and will be
rather involved. So, we �rst assume that it holds, and �nish the construction
of the travelling wave of (1.2).

4.1. Construction of a solution to the one species model, given The-

orem 4.2. Let us �rst state an equivalent of Proposition 2.5

Proposition 4.3. There is c0 > 0 such that cε > c0.

Proof of Theorem 1.3. Arguing as in the proof of Theorem 1.1, we obtain
a solution u to (1.2), at least for the free boundary problem inside, with a free
boundary (h(y), y) that meets the top of Σ at a point that we may assume to
be 0. So, we have u(x, 0) = 0 if x > 0.

To the left of Γ ∩ Σ we have u > 0. We infer that u(x, 0) > 0 if x < 0.
Indeed, assume that u(x, 0) = 0 for x < x̄ < 0, and that u(x, 0) > 0 if x > x̄.
As a consequence of the de�nition of Γ, there is r ∈ (0, |x̄|) such that

u > 0 in Br(x̄− r, 0) ∩ {y < 0}.
Wet come back to uε, the situation is a follows:

−d∆uε + cε∂xuε = 0, x̄− r 6 x 6 x̄, −r < y < 0;
−D∂xxuε + cε∂xuε + ∂yuε = 0, x̄− r 6 x 6 x̄;

uε(x, 0) = oε→0(1), x̄− r 6 x 6 x̄;
uε(x, y) > λr|y| for some λr > 0,

(4.2)

the last inequality being valid because of the Hopf lemma for u applied at every
point of the road between (x̄− r, 0) and (x̄, 0) on the one hand, and the fact,
on the other hand, that the convergence of uε to u is better than uniform in
{x̄ − r 6 x 6 x̄, −r 6 y 6 0} � the Schauder estimates being valid in this
area. As a consequence, we have

∂yuε(x, 0) 6 −λr for x̄− r 6 x 6 x̄, −r 6 y < 0. (4.3)

Since ux(x̄−r, 0) = 0, we have uε(x̄−r, 0) = oε→0(1). Integrating the Wentzell
condition for uε between x̄− r and x̄ and taking (4.3) into account, we obtain,
when ε > 0 is su�ciently small:

uε(x̄, 0) < 0,

a contradiction.
Let us �nally show that u solves the full free boundary problem (1.2).

From identity (2.7) and the boundedness of the sequence (cε)ε, we deduce
that (fε(uε) dxdy)ε converges (still up to a subsequence) to the length measure
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on Γ, plus a possible �nite measure on the boundary R×{y = 0}. We note that
u(x, 0) is at least C1,1: indeed, ∂yuε is uniformly bounded, due to Theorem 4.2.
Thus ∂xxuε( · , 0) is also uniformly bounded, a property that passes on to ∂xxu.
So, the contribution of the limiting measure on R × {y = 0} is nonexistent,
which proves that the Wentzell condition is satis�ed both a.e. and in the dis-
tributional sense. The rest of the system is proved to be solved precisely as in
Theorem 1.1. �

4.2. Gradient bound in the region u ∼ ε. The outline of the proof is
still, roughly, that of the Lipschitz bound in [2]. However, here, the vicinity
of the road requires a special treatment and this is where we will, eventually,
need D > d. In the sequel we will, for convenience, drop the subscript ε for cε
and uε. First, recall the gradient bound in {u 6 ε}, away from the road.

Lemma 4.4. Consider λ ∈ (0, 1) and a point (x0, y0) ∈ Σ such that

u(x0, y0) = λε.

Assume that y0 6 −2ε. Then we have

0 6 u(x, y) 6 Cε, (x, y) ∈ Bε(x0, y0),

and |∇u(x0, y0)| 6 C, for some universal C > 0.

Proof. Set

p(ξ, ζ) = εu(x0 + εξ, y0 + εζ), (4.4)

and apply [2]. �

The main part of the task is therefore to bound ∇u at distance less than ε
from the road. We start with the most extreme case, i.e., a point on the road.

Lemma 4.5. Consider λ ∈ (0, 1) and x0 ∈ R such that

u(x0, 0) = λε.

Then we have

0 6 u(x, y) 6 Cελ, (x, y) ∈ Bε(x0, y0), y 6 0,

for some C > 0 that depends neither on ε nor on λ.

Proof. This looks, at �rst sight, like an innocent repetition of the previ-
ous lemma. However one quickly realises that the Lipschitz scaling yields the
boundary condition

−Dpξξ + εcpξ + ε/µpζ = 0,
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so that half of the Wentzell condition is lost when one sets ε = 0. Of course this
implies that p is linear on the road, hence constant in order to keep its positiv-
ity. However it does not prevent large gradients in y: assume for de�niteness
that λ = 1; if p(−1, 0) =M >> 1, then

q(ξ, ζ) =
p(ξ, ζ)

M
,

and q solves the equation

−∆q + qφ(Mq) = 0

inside the cylinder, while keeping the condition qξξ = 0. So, it is an asymptotic
global solution for in�niteM , which implies that one cannot hope for a uniform
bound for p in this setting.

So, this time we use the mixed Lipschitz-quadratic scaling

u(x0 +
√
εξ, εζ) = ελp(ξ, ζ), (ξ, ζ) ∈ B2(0), ζ < 0 (4.5)

and p solves the system −dεpξξ − dpζζ +
√
εc∂ξp+ pφ( pλ) = 0, (ξ, ζ) ∈ ∩{ζ < 0},

−Dpξξ +
√
εc∂ξp+ 1/µpζ = 0 for −2 < ξ < 2, ζ = 0,

p(0, 0) = λ.
(4.6)

We claim that p(0,−1) is universally bounded, both with respect to λ and ε.
Call Mλ,ε this quantity, we have

p(ξ,−1) >Mλ,ε for ξ 6 0.

Assume that a subsequence of (Mλ,ε)λ,ε (that we still relabel (Mλ,ε)λ,ε) with
ε→ 0 grows to in�nity. We claim the existence of ξλ,ε < 0 going to 0 as ε→ 0
and such that

p(ξλ,ε, ) > kMλ,ε (4.7)

for some universal k > 0. If this is not the case, then there is a universal ξ0 < 0
such that

lim
ε→0

p(ξ, 0)

Mλ,ε
= 0 uniformly in ξ ∈ [ξ0, 0].

This entails the existence of a universal constant γ0 > 0 such that

pζ(ξ, 0) 6 −γ0Mλ,ε, ξ ∈ [ξ0 +
√
ε,−

√
ε]. (4.8)

Indeed, we have p(ξ, ζ) > p(ξ, ζ), where

−dεp
ξξ

− dp
ζζ

+
√
ε
3/2
cp
ξ
+ p = 0 (ξ ∈ (ξ0, 0)× (−1, 0)),

p(ξ, 0) = p(ξ, 0), p(ξ,−1) = Mλε (ξ ∈ (ξ0, 0)),
p(0, ζ) = p(ξ0, ζ) = 0 (ζ ∈ (−1, 0)).
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Rescaling in ξ � so as to recover a fully elliptic equation for p � shows that
p
ζ
(ξ, 0) satis�es an estimate of the type (4.8).

Now, from Rolle's theorem, there is ξ′λ,ε ∈ ( ξ02 ,
ξ0
4 ) such that pξ(ξ

′
λ,ε, 0) =

o(Mλ,ε) (recall that p is o(Mλ,ε) on (ξ0 + ε,−ε)). So, on (3ξ04 , ξ
′
λ,ε) we have:

Dpξξ(ξ, 0)− εcpξ(ξ, 0) 6 −
γ0Mλ,ε

µ
,

pξ(ξ
′
ε,λ, 0) = o(Mλ,ε), p(ξ′ε,λ(ξ

′
ε,λ, 0) = o(Mλ,ε).

Integration of this very simple di�erential inequality between ξ′ε,λ and
3ξ0
4 yields

p
(3ξ0

4
, 0
)
= o(Mλ,ε)−

1

2
γ0Mε,λ

(3ξ0
4

− ξ′λ,ε

)2
6 O(1)− 9ξ20

16
< 0,

a contradiction.
So, we have found ξε,λ, going to 0 as ε→ 0 such that (4.7) holds true. Thus,

there exists ξ′′ε,λ ∈ (ξ′ε,λ, 0) such that

p(ξ′′ε,λ, 0) ∈ (1, 2), lim
ε→0

pξ(ξ
′′
ε,λ0) := aλ,ε = −∞.

Now we notice that pζ(ξ, 0) is less than some universal C > 0, for ξ ∈
(ξ′′ε,λ,+∞): indeed, set

p̃(ξ) =

{
p(ξ′′ε,λ, 0) if ξ 6 ξ′′ε,λ,

p(ξ, 0) if ξ > ξ′′ε,λ,

so that p̃(ξ) 6 C (universal) on (ξ′′ε,λ, 1). We have p(ξ, ζ) 6 q(ξ, ζ), where

−dεq
ξξ

− dq
ζζ

+
√
ε
3/2
cq
ξ
+ q = 0 (ξ ∈ (−1, 1)× (−1, 0)),

q(ξ, 0) = p̃(ξ), p(ξ,−1) = 0 (ξ ∈ (−1, 1)),
p(±1, ζ) = 0 (ζ ∈ (−1, 0)),

which satis�es

q
ζ
(ξ, 0) 6 C, C > 0 (universal).

So this time we have

Dpξξ(ξ, 0)− εcpξ(ξ, 0) 6 −C on (ξ′′ε,λ, 1),

while

pξ(ξ
′′
ε,λ, 0) ∈ (0, 2], p(ξ′ε,λ(ξ

′
ε,λ, 0) = aλ,ε → −∞.

Again, integration of the di�erential inequality on (ξ′′ε,λ, 1) yields the existence

of ξ′′′ε,λ > ξ′′ε,λ such that p(ξ′′′ε,λ, ) < 0, a contradiction. Thus our claim that

p(0,−1) is universally bounded is proved.
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It remains to see that p(0, ζ) is universally bounded for ζ ∈ [−1, 0]. First,
notice that we have in fact proved that

p(ξ,−1) is universally bounded for −1 6 ξ 6 1.

We have also proved that

pζ(ξ,−1) 6 C, C > 0 is universal.

Having this remark at hand, we may repeat the above argument, replacing −1
by ζ. �

Instructed by Lemma 4.5, we may now bound u in an ε-neighborhood of the
road.

Lemma 4.6. Consider λ ∈ (0, 1) and (x0, y0) ∈ R× (−ε, 0) such that

u(x0, y0) = λε.

Then we have

0 6 u(x, y) 6 Cελ, (x, y) ∈ B2ε(x0, y0), y 6 0,

for some C > 0 that depends neither on ε, nor on λ.

Proof. We start again the mixed scaling (4.5), so that p solves (4.6). Set

y0 = εζ0, thus u(x0, y0) = εp(0, ζ0) = ελ.

The only thing that we have to prove is that p(0, 0) is universally bounded
from above and below. The case where

lim
ε→0

p(0, 0)

p(0, ζ0)
= 0

amounts to the previous lemma, so it only remains to exclude the case where

lim
ε→0

p(0, 0)

p(0, ζ0)
= +∞. (4.9)

This time it will be more useful to work in the Lipschitz scaling (4.4). Set

Mε,λ =
p(0, 0)

p(0, ζ0)
, q(ξ, ζ) =

p(ξ, ζ)

Mε,λ
,

so that q solves the equation

−d∆q + εc∂ξq + qφ(Mε,λq) = 0 (ξ, ζ) ∈ B2(0), q(0, 0) = 1.

Now, notice a very simple bound for ∇q: the supremum of fε being of order ε,
the elliptic estimates [12] for the original Wentzell problem (4.1) yield

∥D2u∥W 2,p(B∩Σ̄) 6
Cp
ε
,
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where B is any closed ball of radius 1, and Cp depends on p but not on ε.
Hence we have

∥∇u∥∞ 6 C

ε
, (4.10)

C > 0 is universal. Hence the condition for q on the road becomes

Dqξξ = εcqξ + ε/µqζ =
O(1)

Mε,λ
= o(1).

This implies, in order to keep the positivity of q, that qξ(0, 0) is universally
bounded; as a result, there is γ0 > 0 universal, and ξ0 > 0 universal as well,
such that

γ0 6 q(ξ, 0) 6 1

γ0
, ξ ∈ (−ξ0, ξ0).

Thus q(ξ, ζ > q(ξ, ζ) with

−d∆q + εcq
ξ
+ q = 0 ((ξ, ζ) ∈ (−ξ0, ξ0)× (−1, 0)),

q(ξ, 0) = γ0, q(ξ,−1) = 0 (ξ ∈ (−ξ0, ξ0)),
q(±ξ0, ζ) = 0 (ζ ∈ (−1, 0))

and the strong maximum principle implies the existence of a universal γ′0 > 0
such that q(0, ζ0) > γ′0, a contradiction. �

Putting Lemmas 4.5 and 4.6 together, we obtain the gradient bound in the
region where fε(u) is active.

Corollary 4.7. There is M > 0 (universal) such that |∇u(x, y)| 6 M if

u(x, y) 6 ε.

Proof. Consider λ ∈ (0, 1) and a point (x0, x0) ∈ Σ such that u(x0, y0) = λε.
By Lemma 4.4, it is su�cient to assume that y0 > −2ε. From Lemmas 4.5
and 4.6 we have, in the Lipschitz scaling (4.4):

0 6 p(ξ, ζ) 6 C, (ξ, ζ) ∈ B2(0) ∩ ζ < 0.

The Wentzell condition reads once again as

pξξ(ξ, 0) = o(1), −2 6 ξ 6 2,

so that pξ(ξ, 0) = o(1), for −2 6 ξ 6 0, in order to keep the positivity of p.
Extend p(ξ, 0) in a C1,1 fashion inside [−2, 2]×[−2, 0], call p̃(ξ, ζ) this extension.
Then p − p̃ solves an elliptic equation with bounded right-hand side inside
[−2, 2] × [−2, 0], while satisfying a Dirichlet condition on the road segment
(−2, 2). Hence, the classical local elliptic estimates yield

∥p∥Lr(B1(0)∩{ζ<0}) 6 Cr, Cp > 0 depending only on r.

This implies, in turn, the uniform boundedness of |∇p(0, ζ0)|, hence the corol-
lary. �
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4.3. The gradient bound away from the region u ∼ ε. Let us mention
from the outright that it is the sole place where we will need D > d. Once
again, we do not know if this is essential.

Proof Theorem 4.2. We set

Ωε = Σ\{u 6 ε}.

Since ∂xu < 0, the set {u 6 ε} sits on the right of the smooth graph

Γε =
{
(hε(y), y), y ∈ [−L, 0]

}
,

where hε is a smooth function (whose derivatives may nonetheless blow-up as
ε → 0). We may assume that hε(0) = 0, and we set xε = hε(−L); thus, we
have

∂Ωε = (−∞, 0)× {0} ∪ Γε ∪ (−∞, xε)× {−L}.

First, we bound uy from above. On Γε we have uy 6 C. On (−∞, xε)× {−L}
we have uy = 0. So, let us �nd a di�erential inequality for uy on (−∞, 0)×{0}.
In Ωε we have

−Duxx+cux = D
(
−uxx+

c

d
ux

)
+
(
1−D

d

)
cux = Duyy+

(
1−D

d

)
cux > Duyy,

simply because c > 0, ux < 0, and D > d. This inequality carries over to the
boundary (−∞, xε) × {0} to yield D∂yuy + uy 6 0. We also have −D∆uy +
c∂xuy = 0 in Ωε, therefore uy can only assume a positive maximum on Γε,
where it is uniformly bounded from above. If not, it is bounded from above
by 0.

Now, we bound ux from below. We now know that uy 6 C, so, using ux < 0
we write

uxx(x, 0)− cux(x, 0) 6 C (x < 0)
ux(0, 0) = O(1) because of Corollary 4.7

Integrating this inequality backward, and using Proposition 4.3, we obtain
ux(x, 0) > −C, C > 0 is universal. On (−∞, xε)× {0} we have ∂yux = 0, and
ux bounded on Γε. Thus, ux is bounded from below in Ωε.

Finally, we may bound uy from below: now we know the boundedness of ux,
so the Wentzell condition becomes

D∂yuy(x, 0) + uy(x, 0) = O(1).

On Γε, uy is still bounded, while it still satis�es the Dirichlet condition on
(−∞, xε). The lower bound follows from the maximum principle. �
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�5. The free boundary near (0, 0) in the single species model

For the reader's convenience, we recall the system solved by (c,Γ, u):

−d∆u+ c∂xu = 0, (x, y) ∈ {u > 0},
uν = 0, (x, y) ∈ Γ,

−Duxx + c∂xu+ 1/µuy = 0 for x ∈ R, y = 0,
uy(x,−L) = 0,

u(−∞, y) = 1, u(+∞, y) = 0.

(5.1)

Let us �rst explain the heuristics of Theorem 1.4. The starting point is a very
simple global asymptotic solution, in the limit as ε→ 0 of the parabolic scaling:

u(x, y) = εv
( x√

ε
,
y

ε

)
. (5.2)

In other words, we have the following situation:

Dvξξ + cεξ + vζ = 0

ζ = 0

(Γ)

[v] = 0,
√
ε2v2ζ + v2ζ = 1

−ε2vξξ − vζζ = εcvξ = 0 v = 0

Setting ε = 0 yields vζζ ≡ 0, hence v(ξ, 0) ≡ 1 for ξ < 0. So, we have

v(ξ, 0) = ξ2

2D and

v(ξ, ζ) =
(
ζ +

ξ2

2D

)
+
,

hence the free boundary has the form (1.10). So, we are going to make this
rigorous in the remaining part of the section.

We may assume that Γ meets the axis {y = 0} at the point (0,0), and start
the proof of Theorem 1.2. If X̄ = (x̄, ȳ) ∈ Σ is a free boundary point, and
δ > 0 is so small that B2δ(X̄) ⊂ Σ, rescale u at scale δ:

x− x̄ = δξ, y − ȳ = δζ, u(x, y) = δuδ(ξ, ζ). (5.3)
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Let Γδ be the rescaled free boundary. As is well known, we have

−d∆uδ + δc∂ξuδ = 0 (B2(0)),
|∇uδ| = 1 (Γδ),
u(0) = 0.

(5.4)

The uniform gradient bound comes from Theorem 1.1. We may therefore safely
forget about uε, and concentrate on the solution u(x, y) of (1.2). And so, in the
sequel, we will use the letter ε for any small parameter, without any further
reference to the approximate solution constructed in the preceding section.

This section more or less follows the organisation of �3: �rst, we will state
a (more standard) rigidity property adapted to the needs of the asymptotic
situations that we will encounter. We will then prove Theorem 1.4.

5.1. Another 2D rigidity result. The following proposition is a conse-
quence of the 2D monotonicity formula.

Proposition 5.1. Consider a solution u(x, y) of

∆u = 0 ({u > 0}),
|∇u| = 1 (∂{u > 0}),

u(x, 0) = 0 (x ∈ R).
(5.5)

Assume that ∂{u > 0} meets the x-axis at the point (0, 0), which is the only

point where it may fail to be analytic. Then u(x, y) = y−.

Proof. It is based on [6], Theorem 12.1. Set

u1(x, y) = u(x, y), u2(x, y) = u(x,−y).
The functions u1 and u2 are harmonic in disjoint domains, and have a common
zero line: the axis {y = 0}. Thus ([6, Theorem 12.1]) the quantity

1

R4

∫
BR(0)

|∇u1|2 dxdy
∫

BR(0)

|∇u2|2 dxdy

is monotone increasing in R. As a consequence, the quantity

Ju(R) =
1

R2

∫
BR(0)

|∇u|2 dxdy

is also monotone increasing in R. Because of the gradient bound and nondegen-
eracy, the quantities limR→0 Ju(R) and limR→+∞ Ju(R) exist and are nonzero.
Notice that Ju is invariant under Lipschitz scaling, that is,

Ju(R) =

∫
B1(0)

|∇uR|2 dxdy = JuR(1), uR(x, y) =
1

R
u(Rx,Ry).
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The analyticity of the free boundary entails su�cient compactness to infer
that the family (uR)R converges in H1(B1(0)) as R → 0 (respectively, R →
+∞), possibly up to a subsequence, to a limit u− (respectively, u+). Another
application of Theorem 12.1 of [6] to u± yields

Ju±(r) = Constant, hence J ′
u±(r) = 0.

Hence we have
lim
R→0

J ′
u(R) = 0, lim

R→+∞
J ′
u(R) = 0.

Following the proof of the theorem, we see that limR→0 J
′
u(R) (respectively,

limR→+∞ J ′
u(R)) is proportional to∫

∂B1(0)

|∇u−|2 dxdy

∫
B1(0)

|∇u−|2 dxdy
− 2

(
respectively,

∫
∂B1(0)

|∇u+|2 dxdy

∫
B1(0)

|∇u+|2 dxdy
− 2

)
.

However, still following the proof of the theorem, we �nd out that the above
quantities are zero if and only if

u±(y) = y−;

actually the u± have to be proportional to y−, but the free boundary relation
imposes the proportionality coe�cient. Thus J has the same limits at 0 and
+∞, thus J is constant. Thus J ′(R) ≡ 0, and u(x, y) = y−. This proves the
proposition. �
5.2. Analysis of the free boundary. The �rst step is to show that the Lip-
schitz scale inside breaks down as the free boundary approaches the horizontal
axis, and becomes �atter and �atter.

Lemma 5.2. There is a universal C > 0 such that, for ε > 0 su�ciently small,
we have

Γ ∩Bε(0) ⊂ (−ε, 0]× (−Cε2, 0].

Proof. Assume the lemma to be false, that is, there is a sequence (xε, δε) with

Γ ∩ ∂Bε(0) = {(xε, δε)}
and

lim
ε→0

xε
√
δε = 0. (5.6)

Drop the subscript ε and scale with δ as in (5.3), with X̄ = (0, 0). The Wentzell
condition implies that

uδ(ξ, 0) = O(δξ2) −−−→
δ→0

0.
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The situation implies the existence of X̄δ in B1(0) ∩ {uδ > 0} whose distance
to Γδ, as well as to {y = 0, }, is universally controlled from below. From
nondegeneracy, uδ(X̄δ) is universally controlled from below. We send δ to 0
and use the compactness of (uδ)δ provided by the uniform gradient bound: we
recover a function u∞(ξ, ζ), as well as an asymptotic smooth (possibly outside
the origin) free boundary Γ∞. Call Ω∞ the area limited by {ζ = 0} and Γ∞,
we have

−∆u∞ = 0 in Ω∞, u∞ = 0 on ∂Ω∞. (5.7)

Nondegeneracy implies that u∞(ξ,−1) is uniformly controlled from below,
which implies in turn

uζ(ξ, 0) 6 −2q

for some universal q. Returning to uδ, we obtain the same kind of bound: for
every ρ > 0, there is qρ > 0 such that

∂ζuδ(ξ, ζ) 6 −qρ for small δ, −ξδ < ξ 6 −ρ.
We have, because of (5.6):

lim
δ→0

ξδ = +∞.

The Wentzell condition at {ζ = 0} implies

−D∂ξξuδ + δc∂ξuδ > qδ(1(−ξδ ,−ρ) − C1(−ρ,0)), uδ(0, 0) = ∂ξuδ(0, 0) = 0.

Integration of this inequality (this is by now a routine argument) yields

uδ(−ξδ, 0) 6 −qρ
3
δ < 0,

the required contradiction. This proves the lemma. �
The next lemma shows that, if the free boundary wiggles before reaching

the point (0,0), it does so in a controlled fashion.

Lemma 5.3. For every ε > 0, let ζ±ε be de�ned as

ζ−ε = inf{ζ ∈ R+ : (−ε, ζ) ∈ Γ}, ζ+ε = sup{ζ ∈ R+ : (−ε, ζ) ∈ Γ}.
There is a universal q ∈ (0, 1) such that

|ζ−ε | > q|ζ+ε |.

Proof. Do the Lipschitz scaling (5.3) with X̄ = (−ε, 0) and δ = ζ+ε . Assume
that, for a sequence δn → 0 we have:

lim
n→+∞

inf{ζ > 0 : (0,−ζ) ∈ Γδn} = 0.

This implies immediately

lim
n→+∞

uδn(ξ, 0) = 0, ξ > 0, lim
n→+∞

∂ξuδn(0, 0) = 0.
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By compactness, we obtain a nontrivial limiting couple (Γ∞, u∞) that solves
the free boundary problem in R× R− and is such that (0, 0) ∈ Γ∞. For ξ < 0
we have ∂ξξu∞(ξ, 0) = 0, therefore u∞(ξ, 0) ≡ 0 for ξ ∈ R. This is against
Proposition 5.1. �

Lemma 5.3 will trigger an obvious analogy between the equation for y and
the obstacle problem, in the sense that u behaves in a quadratic fashion in the
vicinity of the point where the inside free boundary hits the axis {y = 0}. This
is expressed in the next proposition.

Proposition 5.4. For some C > 0 and for all x ∈ [−1, 0], we have

x2

C
6 u(x, 0) 6 Cx2.

Proof. Of course, it su�ces to prove the result for small x. Consider any
sequence (εn)n going to 0, without loss of generality we may shift the origin
from −εn to 0. Let us set

δn := ζ+εn .

We wish to prove that u(−εn, 0) is of the order δn; because of the gradient
bound, it is certainly O(δn). Let us prove the converse, i.e., that

δn = O
(
u(−εn, 0)

)
.

Assume this is not true. Do, as in the preceding situation, the Lipschitz scal-
ing (5.3) with δ = δn. Let (Γn, un) be the scaled versions of u and Γ. Send
n → +∞, we recover an unbounded analytic curve Γ∞ = {h∞(ζ), ζ} lying
strictly below {ζ = 0}, and a positive harmonic function u∞ de�ned above Γ∞
and satisfying the free boundary relation on Γ. This is impossible, due once
again to Proposition 5.1. The same proposition will imply

∂ζu∞(0, 0) = 1,

so that, for the unscaled function u(x, y), there is q > 0, universal, such that
uy(x, 0) > q for x <∈ (−εn, 0) as soon as n is su�ciently large, except perhaps
in an o(εn)-neighborhood of 0. So, by scaling, we have uy(x, 0) > q if x < 0
is su�ciently small. Integration of the Wentzell boundary condition yields the
quadratic nondegeneracy of u on the road, in a small neighborhood of 0. �

The last ingredient that we need is that, at each point of the free boundary
near (0, 0), the normal is almost vertical.

Lemma 5.5. There is δ0 > 0 such that, if x ∈ (−δ0, 0), there is a unique

y = k(x) such that (x, y) ∈ Γ. For y ∈ (−δ0, 0), let ν(x) = (ν1(x), ν2(x)) be the
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outward normal to Ω at the point (x, k(x)). Then for some C > 0 we have:

−Cx2 6 k(x) 6 −x
2

C
. (5.8)

Moreover, we have:

lim
x→0

ν1(x) = 0, lim
x→0

ν2(x) = −1.

Proof. For every small ε, let δε be the smallest δ such that

(−ε,−δ) ∈ Γ,

from Lemma 5.3 the largest δ such that this property holds is also of order δε.
We do the Lipschitz scaling with

X̄ = (−ε, 0), δ = δε.

Let uε be the rescaled function, and send ε to 0. From the above lemmas, we
obtain a couple (Γ∞, u∞) where Γ∞ is a union of analytic curves, one above
the other, trapped in a bounded strip of the form R× (−M, 0), and u∞ solves
the free boundary problem in the set Ω∞ between Γ∞ and {ζ = 0}. Moreover,
the top part of ∂Ω∞ is a straight line, and there is q > 0 such that

u∞(ξ, 0) = q.

We also know that ∂ξu∞ 6 0, therefore it has two limits u±∞(ζ) as ζ → ±∞.
Hence these limits are nontrivial, and they also solve the free boundary prob-
lem. So, an easy computation yield

u±∞(ζ) = (q + ζ)+, ζ < 0.

Thus, we have
u∞(ξ, ζ) = (q + ζ)+, Γ∞ = {ζ = −q}.

Thus, the whole family (uε)ε converges to (q + ζ)+. For ξ ∈ (−1, 1), this also
implies the uniqueness of ζ such that (ξ, ζ) ∈ Γ. Hence Γε is an analytic graph
(ξ, kε(ξ)) with (k′ε)ε bounded by Lemma 5.3. Hence we have

lim
ε→0

kε(x) = −q, lim
ε→0

k′ε(x) = 0 uniformly in ξ ∈ (−1, 1).

This implies the convergence of the normals, as stated in the lemma. �
Proof of Theorem 1.2. We �nally revert to the Lipschitz-parabolic scaling,
and set:

x =
√
εξ, y = εζ, uε(ξ, ζ) =

1

ε
u(
√
εξ, εζ). (5.9)

Let Γε be, once again, the free boundary of uε. It su�ces to prove that, for
small ε > 0, the only ζ < 0 such that (−1, ζ) ∈ Γε satis�es

ζ = − 1

2D
.
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Pick any small δ ∈ (0, 2). From Lemma 5.5, for −2 6 ξ 6 −δ, there is a unique
ζε(ξ) 6 0 such that

(ξ, ζε(ξ)) ∈ Γε.

From Lemma 5.5 we have

lim
ε→0

∂ζuε(ξ, ζε(ξ)) = lim
ε→0

∂yu(
√
εξ, εζε(ξ)) = 1.

From the proof of the same lemma we have

lim
ε→0

∂ζuε(ξ, 0) = 1.

The Wentzell condition for uε is

D∂ξξuε − εc∂ξuε = ∂ζuε ∼ε→0 1 for ξ 6 −δ,
uε(0, 0) = ∂ξuε(0, 0) = 0.

Integrating this relation and taking the boundedness of ∂ζuε into account yields

lim
ε→0

uε(−1, 0) = − 1

2D
.

And, from the proof of Lemma 5.5, we have

lim
ε→0

uε(−1, ζ) = (ζ +
1

2D
)+.

This implies the result. �
Remark 4. The gradient bounds, as well as the upper and lower bounds on
c, do not depend on L. In the proof of Theorem 1.2, the convergence of uε to
(ζ + 1

2D )+ is uniform in L > 1.
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