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The goal of this work is to explain an unexpected feature of the expanding
level sets of the solutions of a system where a half-plane in which reaction-
diffusion phenomena take place exchanges mass with a line having a large
diffusion of its own. The system was proposed by H. Berestycki, L. Rossi
and the second author as a model of enhancement of biological invasions
by a line of fast diffusion. It was observed numerically by A.-C. Coulon
that the leading edge of the front, rather than being located on the line,
was in the lower half-plane.

We explain this behavior for a closely related free boundary problem.
We construct travelling waves for this problem, and the analysis of their
free boundary near the line confirms the predictions of the numerical sim-
ulations.

§1. Introduction

1.1. Model and question. Consider the cylinder
S = {(z,y) € R x (—L,0)}.

We look for a real ¢ > 0, a function u(z) defined for x € R, a function v(zx,y)
defined in ¥, and a curve I' C ¥ such that

Karoweswoe caosa: expanding level sets, reaction-diffusion phenomena, line of fast
diffusion.
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—dAv+cOv =0 (z,y) € {v >0},
Vol =1 ((z,y) e I':=Xno{v >0},

—Dugy + cOpu+1/pu—v=0 forzeR, y=0, (1.1)
vy=pu—v forzxeR, y=0andv(z,0) >0,
uy(x,—L) =0,

u(—o0) = 1/u, u(+o0) =0, v(—o0,y) =1, v(+o0,y) = 0.

In (1.1), the real numbers p,d, D are fixed positive constants, and the problem
inside ¥ is a well-known free boundary problem. We will also consider then
the following more compact problem, with unknowns (¢, I',u), the function u
being this time defined in ¥, solving

—dAu+copu= 0 (z,y) € {u> 0},
Vul= 1 ((z,y) €T :=%Nd{u>0},
_Duxx+caxu+1/,uuy =0 fOI‘CL‘ER, y:O, (12)
uy(x’_L) = 07
u(—oo,y) = 1, wu(+oo,y)=0.

In both problems (1.1) and (1.2), we will see that v, < 0 (respectively, u, < 0)
inside X, and that the free boundary I' inside ¥ will be an analytic curve.
Assume that T intersects the line {y = 0}, say at (z,y) = (0,0). We ask for
the behavior of ¢ near y = 0.

1.2. Motivation. Our starting point is the system proposed by H. Berestycki,
L. Rossi, and the second author to model the speed-up of biological invasions
by lines of fast diffusion in [4]. In this model, the two-dimensional lower half-
plane (“the field”) in which reaction-diffusion phenomena occur interacts with
the = axis (“the road”), which has a much faster diffusion D of its own. It will
sometimes be useful to assume that D > d, but not always. Call u(t,z) the
density of individuals on the road, and v(t,z,y) the density of individuals in
the field. The road yields the fraction pu to the field, and retrieves the fraction
vv in exchange; the converse process occurs for the field. The system for u
and v is
Ou — DOypu = vu(t,z,0) — pu, x € R,
Ow —dAv = f(v), (x,y) e RxR_, (1.3)
Oyv(t,z,0) = pu(t,z,t) —vo(t,z,0), zek.

Here f is the usual logistic term, f(v) = v — v2. A model involving only the
unknown u can be obtained by forcing the (biologically reasonable) formula
¢(z) = 1(z,0); in other words, we take the (formal) limit § — 0 of v = pu = .
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Still arguing in a formal way, we obtain v = v on the road, and the exchange
term is simply vy,. Thus, we obtain

O — DOypv + vy (t,2,0) = 0, z e R,
v —dAv=fv), (z,y)eRxR_.

From now on, as is rather intuitively clear from the biological modelling, we
will call (1.1) the two-species model, whereas problem (1.2) will be the single-
species model. For the time being, let us only argue on system (1.3). The
first question is how the stable state (v/u, 1) invades the unstable state (0,0).
In [5] it was computed with 0,40 (1) precision: for each direction e in the field,
the level sets of v move with a velocity wy(e) which, quite surprisingly, does
not obey the Huygens principle. The next step is to describe the asymptotic
level sets with Oy 4+o0(1) precision; for this purpose numerical simulations
were carried out by A.-C. Coulon, the simulations, which are part of a larger
program of her thesis [8]. The above figures account for some of her results;
the parameters are

f('l)) =vV—= U27 D= 107 U(O,.Z') = 1[71,1](1.)7 U(O,(I?,y) =0.

The top figure represents the level set 0.5 of v at times 10, 20, 30, 40; the bottom
figure represents the shape of v(40, z, y). Notice that the simulations are carried
out with and upward propagation instead of a downward propagation in our
equations.

(1.4)
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We have found these figures surprising, all the more as they are quite robust
with respect to all the parameters. Indeed, a naive intuition would suggest that
the leading edge of the invasion is located on the road, especially for large D.
Such is manifestly not the case, the leading edge appears to be located in the
field, at a distance to the road that seems to remain more or less constant in
time.

A heuristic explanation is the following: the term v(t, z,0) — pu(t, ) acts as
an effective reaction term for u; given that, everything suggests that the inva-
sion is driven by the road, especially for the large values of D. The immediate
consequence is that vy(t,z,0) < 0, so the function v increases in the vicinity
of the road, hence the observed behavior. The goal of this paper is to give a
mathematically rigorous account of that fact.

1.3. From reaction-diffusion to free boundaries. Working directly
on (1.3) or (1.4) to explain the above simulations did not lead to a conclu-
sive answer. So, in order to understand the model a little better, we have
chosen here to work on a limiting model, which will keep the main features
of (1.3) or (1.4), this is why we have come up with (1.1) and (1.2). This system
is indeed a limiting model of (1.3), let us explain why. Before that, we consider
a permanent regime (dyu, 0v) = (0,0) of (1.3), it is logical to think that it will
take the form of a travelling wave

(u(t,z),v(t,z,y)) = (p(x + ct),Y(x + ct,y)), ¢> 0. (1.5)

It was proved in [10] that travelling waves are indeed attracting for (1.2) (and,
more interestingly, the paper describes how the convergence occurs when D
is very large). We have considered a propagation from right to left, thus the
couple (¢, 1) is an orbit of the following system

_Dazx¢+c¢x = V¢(xa0)_ﬂ¢v x GR,
*dA"b + )y = f(T/})’ (xvy) €, (16)
@ﬂ/}(% 0) = ,u(;S(x) - VQ]Z)(.T,O), r € R,

where we have omitted the Neumann condition for short. As for the model

(1.4), the corresponding system is (we look for v(¢, z,y) under the form ¢ (x +
ct,y)):

—DO0yzt) + cop + 1y = 0, r € R,
—dA¢ + CT/}x = f(w)v (l’,y) €.

A free boundary problem is obtained (once again in a formal way) in the
limit as ¢ — 0 of a sequence of solutions (ue,v:) to (1.6) with f = f., an
approximation of the Dirac mass dy—;. The ultimate result, which we will
explain in this section, is the following. First, denote I' the unknown boundary

L =0({y =1}).

(1.7)
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To retrieve (1.1), we set (the functions u and v are not the same as in the
time-dependent problem):

u(z) :=1/p—¢(z), v(z,y) =1 —P(z,y).
To retrieve (1.2), it suffices to set u(z,y) := 1 — ¥ (z,y) in (1.7).

Let us explain further, in an informal way, why a free boundary will develop
in the plane. This is by no means a new idea, the introduction of reaction terms
leading to free boundaries dates back to Zeldovich [14]. They have turned out
to be very important to study asymptotic models in flame propagation, because
they introduce different length scales that have the ability to explain subtle
effects. Let us for instance quote the pioneering work of Sivashinsky [13] on
the destabilisation of planar solutions under the effect of different diffusions.
Actually, as these terms have become a paradigm in the theoretical study of
flame models, they have given raise to a large amount of works that we will
not be able to quote in detail here.

The first rigorous passage from the reaction-diffusion equation to the free
boundary problem was done in the context of 1D travelling waves, by Beresty-
cki, Nicolaenko, and Scheurer [3]. In several space dimensions, it was done by
Berestycki, Nirenberg, and the first author (see [2]), a work that we will much
use here. As far as evolution problems are concerned, the first rigorous passage
to the limit was performed in a work of Vazquez and the first author [7], which
raises difficulties due to the fact that the boundary condition is not of kinetic
charcter, contrary to what happens in Stefan-type problems.

Now, we recall why a limiting solution (¢, u,v) to (2.3) will develop a free
boundary. For this, we consider the simple one-dimensional problem

—du" 4+ cu' + fo(u) = 0on R,

u(—o0) =0, u(+00) =1. (1.8)

Standard arguments show that, for a solution (cg,u:) to (1.8), we have c¢. > 0
and u. < 0. We may always assume that u.(0) = ¢, so, for x < 0 we have
ue(zr) =1— (1 —e)e“*. As for z > 0, we set

x x

e=2, u(a)=ep(2).

€ €

The function p. solves
—dp" +eccp’ +pp(p) =0 on Ry, p(0) =1, p(+00) =0.
Once again, standard arguments show that the term ec.p’ may be neglected,
so that multiplication by p’ and integration over R yields
“+oo

/\2
d<pa)2 O_ /W(p)dp = 2%
0
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Scaling back, we obtain u-(0) ~ 1, matching derivatives yields ¢ = 1. The
limit (¢, u) of (ue,cc) satisfies therefore

—du" +cu' =0o0n R_, d[](0)=1.

This is the one-dimensional version of the problem inside X; here, I' is the
point x = 0.

1.4. Results. The question is therefore whether, and how, the free bound-
ary I' meets the fixed boundary {y = 0}. For the two unknowns problem (1.1),
the scaling — both inside the domain and at the vicinity of the hitting point —
is Lipschitz, which allows the use of a large body of existing ideas. On the other
hand, Model (1.2) is not of the standard type, because the characteristic scales
around the free boundary are different inside ¥ and on the fixed boundary: in
the latter we have y ~ 2. However, before studying the free boundary I' of
Problem (1.2) near the origin, we first should make sure that the problem has a
solution. Clearly, the issue is what happens in the vicinity of the axis {y = 0},
therefore we start with a situation for which travelling waves are known to
exist.

Theorem 1.1. System (1.2) has a solution (¢,T',u,v). We have ¢ > 0 and
Oyu < 0 (and < 0 to the left of T'). The function v is globally Lipschitz: |Vvu| <
C for some universal C (therefore, u is C1 on the line). The free boundary T is
a graph (©(y),vy), and also an analytic curve in {y < 0}. Moreover, it intersects
the z-axis.

Remark 1. A word will have to be said about the analyticity of the free
boundary. Even though we are working in two space dimensions, singularities
may occur, see [11] for a classification of them. That we are able to eliminate
them from the start simplifies our work very much.

Remark 2. The uniqueness (up to translations) of (¢, I', u, v) is probably true.
The only issue is to examine the behavior of two solutions whose contact point
lies at the intersection of the z axis and their respective free boundaries. This
will not be pursued here.

Next, we study the free boundary in a neighborhood of the origin. By trans-
lation invariace, we may choose ¢(0) = 0.

Theorem 1.2. The free boundary I' hits the line {y = 0} at a point where
u > 0, in other words we have u(¢(0),0) > 0. In a neighborhood of (0,0), I" is
a graph in the x variable y = (z), = < 0, and there is v > 0 such that:

¥(x) =y + 0550~ (2). (1.9)

Let us turn to the model with one species.
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Theorem 1.3. Assume that D > d. System (1.2) has a solution (c,I',u). We
have ¢ > 0 and Oyu < 0 (and < 0 to the left of T'). The function w is globally
Lipschitz: |Vu| < C for some universal C. The free boundary T is a graph
(p(v),y), and also an analytic curve in {y < 0}. Moreover, it intersects the
x-aris, so we may choose p(0) = 0.

Remark 3. We do not know whether the assumption D > d is indispensable,
or merely technical. In any case, it is consistent with our goal to study phe-
nomena driven by a large diffusion on the road. In [4], the significant threshold
is D = 2d, this is where the velocity of the wave for (1.2) exceeds that of the
plane Fisher-KPP wave.

Theorem 1.4. Assume that D > d. In a neighborhood of (0,0) I" is a graph
i the x variable:

2

y=v(0), <0, with ¥(x) = =75+ 0, (2?). (1.10)

1.5. Discussion, organisation of the paper. We first notice, as far as the
two species are concerned, an interesting loss of boundary condition between
the reaction-diffusion system (1.6) and the free boundary problem (1.2), to
the right of the free boundary. In other words, in this area, the road does
not exchange individuals anymore with the field. Thus there is an asymptotic
decoupling between the value of v and the value of v at the free boundary,
and this accounts quite well for the numerical simulations. Let us revert to the
old unknowns ¢ and 1, which denote respectively the density of individuals on
the road and in the field. At the intersection between the invasion front and
the road, the density of individuals is at its maximum, whereas the road keeps
feeding the field with individuals, as is stated by the exchange condition

Yy ~ pp — P ~ pu(0,0) > 0.

Therefore, the invasion front in the field can only go further, which explains
that its leading edge is not located on the road. This explains the simulations
in [8].

Next, we observe a different behavior for the one species model. A heuristic
reason is that the model is trying to accomodate both the exchange condi-
tion and the free boundary condition, and this is only done at the expense
of a breakdown of the homogeneity near the road. The resulting sitation is
the interaction of an obstacle problem on the road and a solution of the one
phase problem in the field. This observation will be investigated further in a
subsequent work.

The last remark concerns the derivation of the one species model from the
two species model, in the limit of infinite exchange terms py = v = %. This
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passage was done in a rigorous way in |9] in the framework of a reaction-
diffusion system; it would probably be possible to do it, such a task would
probably be not entirely trivial. We postpone this matter to a future work,
as it would not really add more to the understanding of the question at stake
here.

The paper is organised as follows. In §2, we construct a solution to sys-
tem (1.1). This is done by a classical approximation by a family of semilinear
equations where the nonlinearity f: (u) converges, in the measure sense, to dg, -
The idea, as well as the inspiration for the proof, is taken from [2]. In §3, we
study the free boundary of the two species model, the main argument will be
a Liouville type theorem for a special class of global solutions. In §4, we con-
struct the travelling wave, and the main part of the analysis is the gradient
bound for u. Finally, in §5, we prove Theorem 1.4. The chief argument in all
these (at times technical) considerations is that the free boundary condition
creates such a rigidity that, unless the solutions behave as they are expected
to behave, basic properties such as, for instance, the positivity of u, will not
hold true.

§2. The travelling wave in the two species model

Let us consider a smooth function ¢(u), defined on Ry, positive on [0, 1),
zero outside, and such that

—+00
1

du = —. 2.1
[ wetwan = o (2.1)
0

Consider the sequence of reaction terms

u U

fow) = 0(2). (2.2)

We will obtain a solution to (1.1) as the limit, as ¢ — 0, of a sequence
(Ce, ue, Vs )e of solutions of

—dAv+cOv+ fe(v) = 0, (x,y) €3,

—Dugy + cOpu+1/pu—v= 0, forzeR, y=0,
vy= pu—v forzeR y=0, (2.3)
vy(x,—L) = 0,

v(—o0,y) =1, v(+o0,y) = 0, wu(—o00)=1/u, u(+o0)=0.

Let us come back to (2.3). For every € > 0, (2.3) has (Dietrich |9, Theorem 1|)
a unique solution (cg,u:) such that ¢ > 0, 0 < us < 1, and Oyue, Opve < 0; we
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will show that, up to a subsequence, (¢, u:) converges, as € — 0, to a solution
of (1.2).

2.1. Basic bounds. The first task is to show that the travelling wave velocity
is uniformly bounded from above, that is, to prove the following.

Proposition 2.1. There is K > 0 independent of € such that cc. < K.

Proof. We may, even if it means translating u., assume the normalisation
condition

mLin} v:(0,y) = €. (2.4)
Therefore, f-(u) =0 on R_ x [-L,0], and u. solves a purely linear equation.
If
_—r
S mn | —, = |G,
PSMEAD 4
then

(ula) o) = (1= (1= 2)e) (1)

is a subsolution to (1.2) on R_, thus u(x,y) > u(zx) on R_. Choosing p to be
the above minimum, we obtain

11
0 07 < —(1 = i (77 7) 9
L 0(0, ye) (1 — &) min )¢
where y. is a point in [—L, 0] where the minimum in (2.4) is attained.
On the right half of 3, another simple subsolution to (1.2) is
z\ /1
u (), v (2, =ep| — —,1),
(e (), )) = op ()
with
—p" +pp(p) =0 for £ >0, p(0)=1, p(+o0) = 0.
Since it is convex, it is a subsolution to the equation for v, and since it is
monotone decreasing, it is also a subsolution of the equation inside the right
half of ¥. The exchange condition for v is automatically satisfied. The classical
sliding argument (slide (u., v:) until the two components exceed (u,, v;), then
slide back until one of the two components reaches a contact point) yields
(ue,ve) = (ug,ve). Thus

9z0:(0, =) = v1(0) = p'(0) = —V/2.
This implies
11
(1 — &) min (5, ﬁ)c < V2,
the required bound. -
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The next step is a uniform gradient bound on v.. Notice that u. satisfies a
linear ODE with bounded right-hand side, thus is uniformly C*! at this stage.

Proposition 2.2. There is a universal M > 0 such that |Vv:| < M in X.

For convenience, in the sequel we will drop the subscript ¢ for c., u. and v..
The first ingredient is a gradient bound in {v < €}, away from the road.

Lemma 2.3. Consider A € (0,1) and a point (xg,x9) € ¥ such that u(zg, yo) =
Ae. Assume that yo < —2e. Then we have

0 <ulz,y) <Ce, (z,y) € Be(zo,%0),
and
[Vu(zo, y0)| < C,
for some universal C' > 0.
Proof. Notice, following [2], that the case of yy close to —L is not really an
issue, because one may, thanks to the Neumann condition at y = —L, extend

the function w evenly in y to R x (—2L,0). This said, we do the classical
Lipschitz scaling

U(‘TO =+ €€7EC) = Ep(éa C)? (§7C) € B2(0)7 (25)

and p solves

—dAp +ecdep +pp(p) =0 (£,¢) € B2(0), p(0,0) = A.
Then (see [2| again), from the Harnack inequality, p is universally controlled
in B1(0), hence Vu(zg,yo) = Vp(0,0) is universally controlled. O
Lemma 2.4. Consider A € (0,1), yo € [—¢,0], and zp € R such that

u(zo, yo) = Ae.
Then we have
0<u(z,y) < Ced, (z,y) € Be(z0,%0), y <0,
for some C > 0 that depends neither on €, nor on .

Proof. Recall that v and v are bounded independently of . We redo the
scaling (2.5), leaving u untouched. The only thing that has to be examined is
the Neumann condition for p, which reads

pC(§7O)+€p(§? C) :u($0+5€a0)' (26)
We make the slight abuse of notations consisting in denoting by (&, () the
function u(xg + €€, yo + £¢), this function is clearly C1® uniformly in . We
may indeed subtract from p any suitable harmonic function V satisfying the
Neumann condition (2.6), thus V' is uniformly C%¢ in Bs/4. We then apply the
argument of Lemma 2.4 to v — V. U
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These two lemmas lead to an effortless

Proof of Proposition 2.2. Let I'c be the curve {v = €}. The function v, is
bounded on I';, as well as on 9¥\I'c, moreover it satisfies —Ay, + cdyv, =0
to the left of I'z, thus it is bounded everywhere. The same argument applies
to vg, but for this quantity we use the Robin condition d0yv, + v, = u, (recall
that ug is uniformly bounded) and the Neumann conditon for v, at the bottom
of 3. O

2.2. Convergence of the approximating sequence. The last ingredient
that we need is a uniform lower bound on the travelling vave velocity. In this
proposition we put the subscripts - back in.

Proposition 2.5. There is cg > 0 such that c. > cp.

Proof. We start with the following identity

/fz—: Ve dl‘dy, (27)

= L+d

obtained by integrating the system for (u.,v:) over ¥. We may normalise v,

so that
L
ve (O’ _Z> -

From [2], the family of measures

0 = 1BL/4< )fe(ve) dxdy

converges (possibly up to a subsequence), in the measure sense, to the image
of the Lebesgue measure on a locally BV graph {h(y),y)}. Thus the sequence
((L—I—du)cs) converges, still up to a subsequence, to a limit that is larger than

the length of I inside By 4(0, L) a positive number. O
Putting everything together, we may prove the Theorem 1.1.

Proof of Theorem 1.1. Possibly up to a subsequence, the sequence (ue, v¢)e
converges uniformly on ¥, and in H{ () weakly, to a function (u(z),v(z,y))
that is both Lipschitz and in 10C(E). Notice that u is much smoother, it is 02 L
Let us repeat here that the family of measures (fz(v:) dzdy). converges (see [2]
again), in every set of the form R x K (K is a compact subset of [—L,0)), to
the length measure of the graph

I'={(h(y),y) —L<y<0}.
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For every ¢ € (0, %), identity (2.7) implies

[ stwdedy < L+ dpye. 2.8)
RX[—L,—4]
Passing to the limit € — 0 yields
-8
[ VIF )Py < (L o+ due (29)
—L

Thus, the function h belongs to BV ([—L,0)), thus can be extended by conti-
nuity to y = 0. We may always assume that h(0) = 0. It remains to prove that
0{u > 0} is analytic. Let us set

v
F.(v) = /fg(v)dv,
0
we claim that, for every € > 0, ve is a local minimiser of the energy

—Ce 1 2
/e (2\VU\ + Fe(v)) dxdy.

More precisely, for every ball B whose closure is included in X, then v, min-
imises the energy

10.B) = [ e (3106 + Fi0)). (210)
B
over all functions ¢ € H!(B) whose trace on 9B is v.. This is easily seen from
the monotonicity of v. in z, and a sliding argument. On the other hand, we
use the two following facts, taken from [2]: first, the family (v.). is compact in
H} (%), (ii). there is a uniform nondegeneracy property:

loc
ve(w,y) 2 kd((2,y), {v- € (ae, be)}).
This implies that, for every ball B inside > we have:

lim J;(ve, B) = / ¢ \Vo|? dady + / e “dxdy = J(v, B).
e—0 2
B {v>0}NB

On the other hand, for every ¢ € H'(B) whose trace on B is v, consider
¢. € H'(B) whose trace on B is v. and such that the family (¢.). converges
to ¢ in H'(B). We have J.(v., B) < J.(¢, B), which implies, sending ¢ — 0:
J(v,B) < J(¢, B). Thus, v is a local minimizer of J. However, J is of the type
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of functionals treated in the paper [1]: its results are applicable, which imples
the analyticity of d{v > 0} inside X.

Finally, since v is Lipschitz, and because of the uniform convergence of (v.).
to v, we have v(z,0) =0 if z > 0. O

Remark. The above argument also explains the loss of the exchange condition
for v to the right of the free boundary, simply because the free boundary is
forced to hit the road. There is a boundary layer in which the condition v = 0,
located on a curve very close to the road, eventually overcomes the exchange
condition in the limit € — 0.

§3. The two species model: the free boundary near (0,0)

The main feature of Model (1.1) is that the equation inside ¥, together
with the free boundary conditions, can be studied in a neighborhood of a free
boundary point up to the top of ¥ wia Lipschitz rescalings: (z,y) = 6(&, ().
This will enable us to show, in a relatively easy way, the linear behavior of the
free boundary in the vicinity of the road. Let us first state a rigidity result in 2
space dimensions.

Theorem 3.1. Pick A € [0,1). Let u(z,y) solve
Au= 0, (z,y) e RxR_N{u>0},
Vul = 1, (z,y) € o{u> 0},

uy(z,0) = X ifx <0,

uw(z,0)= 0 ifz>0.

Also assume that O,u < 0. Then we have:
V1— )2

A

Hu>0}={y=— z, v <0},

and

u(z,y) = (\/ 1— XNz + )\y)+.

Proof. Let Q be the positivity set of u, identify R? with the complex plane,
and set
[(z) = uy(z,y) + iug(z,y), z=x+1y.

Then f is analytic in €2, let us assume that it is a nonconstant function. It is
open from {2 onto its image, and maps I" onto (a portion of) the unit circle,
which we call 71, whereas it maps the negative z axis onto (a portion of) the
vertical line {ImZ = A}, which we call 2. From its connectedness, 1 U~y2 (but
not only) enclose f(€2). And, since d,u < 0, f(2) is bounded by 1 U vy2 U s,
where 73 is a nonvoid, possibly very irregular curve. One of its end-points is on
~v1 — call it 21; thus 1 is the segment [21, V1 — A2 4+4\] — and the other on 75
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— call it zo. It stays in the upper half of the complex plane, and is constructed
as follows: for each ray D starting from /1 — A2 4+ ¢\ and not meeting vy, Uo,
let Zp be the furthest point from v1 — A2 4+ i\ in f(Q): the set of all such
Zp’s determines 3. Two cases are to be considered.

Case 1. 3 has points strictly above the horizontal azis. Let D be a ray starting
from v1— A2 + i), and let Zy be the furthest point in D N ~3. If Zy has
a preimage by f, we have a contradiction because f is open. If Zy has no
preimage, this means the existence of a sequence (z,), such that
lim |z, =0o0r lim |z,|= 400,
n—-+o00 n——+o0o
and such that lim,,_, 4 f(2n) = Zo. The sequence of locally uniformly bounded

functions
Ja(2) = 1) i eal =0 (3:2)

|2n]
or
fn(2) = f(zlzn]) if |2n]| — o0, (3.3)
converges, up to a subsequence, uniformly locally to an analytic function foo(2),
by Montel’s theorem. The function fo takes the value Zg, but it is also non-
constant analytic, in a possibly different positivity set Q. However, by defi-

nition, Zj is still the furthest point between D and foo(£2o0), and the openness
of foo yields a contradiction. Thus f is constant, and so is Vu.

Case 2. 3 meets the horizontal axis. Let p € [0, 1] belong to 3. As above,
there is a sequence (z,), whose modulus goes to 0 or +oo, such that

lim f(zn) = .

n—-+00

Let f, be defined as in (3.2) or (3.3), and let fo be one of its limits. By
nondegeneracy (i.e., linear growth from each point of the free boundary, which
is, in this case, inherited from its analyticity), there is a nontrivial solution u«
of (3.1), and a point (xo,yo) in the positivity set of us such that

896“00(3707 Z/o) =0.

Since O uso < 0, it is zero everywhere. The only possibility for ' is that it is
horizontal, a contradiction with the fact that it has to meet the x axis. O

In particular, for A = 0 we have:
Hu>0}={y =0}, ulz,y)=y .

The same argument as in Theorem 3.1 yields the following statement.
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Corollary 3.2. Pick A € [0,1], and consider a solution (p(y),u(x,y)), with
©(y) <0 and Ozu < 0, of

Au= 0, u>0 (x<e(y)),

Vul =1 (z = ¢(y)), (3.4)
uy(z,0) = X (z €R).

Then @ is constant negative, and A = 1.

As a consequence of these rigidity properties for 2D global solutions, we
prove Theorem 1.2.

Proof of Theorem 1.2. Let (c,u,v,I') be the solution of (1.1). We claim
that I hits the road at a point that we may assume, by translation invariance,
to be (0,0). Let us prove that u(xg) > 0. Indeed, suppose the contrary and
suppose that u(zg) = 0. Consider a Lipschitz blow-up of v around (x¢,0):
v(d¢, ¢

e, ) = L0808 (3.5)
Call T's its free boundary, let us first show that, as 6 — 0, it does not collapse
on the z axis. In other words, we want to show the existence of pg > 0 such
that, if I's is the positivity set of us within B;(0), then

BPO(—I, —2pg) C Q5.

Assume that it is not the case, then we have lims_,ov5(£,0) = 0 uniformly on
every compact in &, simply because v is Lipschitz. And so, by the exchange
condition, we have lims_,o Oyvs(—1,0) = 0. On the other hand, let (5 be the
smallest ¢ < 0 such that (—1,() € I's. Clearly, (s tends to 0 as 6 — 0. Rescale
vs with |(s], taking (—1,s5) as the origin. That is, we set

_ E+1 ¢(—G
”‘5(5’0“@"/‘5( Gl 1G] )

(A subsequence of) the sequence (Vy)s will converge, as  — 0, to a solution Vi,
of (3.4), with A = 0, something that Corollary 3.2 excludes. As 6 — 0, (a sub-
sequence of) (vs)s converges locally uniformly to a global solution V4, of (3.1),
with A = 0. By Theorem 3.1, we have V(§,{) = £ . Thus, the equation for u
in a neighborhood of z = x is
—Du' +cu +Fpun~zo—2, <O,
u(0) = 4/(0) = 0.

This implies u(x) ~ % for x < 0 close to 0. Thus u(x) < 0 in a neighborhood
of 0, a contradiction with the positivity of u. So, u(0) > 0, let us set

A = pu(0) > 0.
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We come back to the blow-up (3.5). Each converging subsequence has a solution
of (3.1) as a limit, which is unique by virtue of Theorem 3.1. So, the whole

blow-up converges to
Vool(z) = (Ay — V1 — )\295)+,

which implies, we come back to the solution (c¢,u,v,I") of (1.1), that I" has
slope v = 7”/\_)‘2 at (0,0). This proves Theorem 1.2. O

§4. The travelling wave of the single species model
As in §2, we will construct a solution to (1.2) as the limit, as € — 0, of a
sequence (ce, uc)e of solutions of
—dAu+ coyu+ fo(u) = 0, (z,y) €,

—Dugy +cOpu+1/puy, = 0 forxz eR, y =0,

uy(x,—L) = (4.1)

=)

U(—OO, y) = 17 u(—i—oo,y) = 07
the function f. being as in (2.2). For every € > 0, (4.1) has (Dietrich [9] once
again) a unique solution (ce, u¢) such that ¢. > 0,0 < u. < 1, and Oyu: < 0; we
will show that, up to a subsequence, (¢, ue) converges, as € — 0, to a solution

of (1.2). Our first task is to show that ¢, is uniformly bounded from above,
that is, to veryfy the following.

Proposition 4.1. There is K > 0 independent of € such that c. < K.

Proof. The proof is similar to that of Proposition 2.1. In R_ x [-L,0], we
work with the subsolution

u(x):=1—(1—¢)e’

<nin (1)
P X Mmin Da d ¢,
whereas, to the right of ¥, we work with

u(2) = ep(3).

3

with

with
—p" +pp(p) =0 for £ >0, p(0) =1, p(+o0) = 0.
Since it is convex, it is a subsolution to the Wentzell boundary condition on

R, and since it is monotone decreasing, it is also a subsolution of the equation
inside the right half of 3. U

The next step is a uniform gradient bound on ..
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Theorem 4.2. Assume that D > d. There is a universal M > 0 such that
IVue|loo < M.

This does not result from the application of known theorems, and will be
rather involved. So, we first assume that it holds, and finish the construction
of the travelling wave of (1.2).

4.1. Construction of a solution to the one species model, given The-
orem 4.2. Let us first state an equivalent of Proposition 2.5

Proposition 4.3. There is cg > 0 such that c. = cp.

Proof of Theorem 1.3. Arguing as in the proof of Theorem 1.1, we obtain
a solution u to (1.2), at least for the free boundary problem inside, with a free
boundary (h(y),y) that meets the top of ¥ at a point that we may assume to
be 0. So, we have u(z,0) =0 if x > 0.

To the left of I' N ¥ we have u > 0. We infer that u(z,0) > 0 if z < 0.
Indeed, assume that u(x,0) = 0 for x < & < 0, and that u(z,0) > 0 if z > Z.
As a consequence of the definition of I', there is r € (0, |Z|) such that

u>0in B.(z —7r,0)N{y <0}.
Wet come back to u., the situation is a follows:

—dAus +cOpue = 0, ZT—r<e<z —r<y<O;
—DO0yzue + ccOpte + Oyus = 0, T —r <2< T;
(4.2)
ue(z,0) = o0es0(l), T—r<az<T
us(z,y) = Arly| for some A\, > 0,

the last inequality being valid because of the Hopf lemma for u applied at every
point of the road between (z — r,0) and (Z,0) on the one hand, and the fact,
on the other hand, that the convergence of u. to u is better than uniform in
{z —r <z <z —r <y <0} — the Schauder estimates being valid in this
area. As a consequence, we have

Oyus(x,0) < =M forz —r<ax <z, —r<y<0. (4.3)

Since uz(Z —7,0) = 0, we have u.(z —r,0) = 0.—,0(1). Integrating the Wentzell
condition for u. between Z —r and Z and taking (4.3) into account, we obtain,
when € > 0 is sufficiently small:

ue(z,0) <0,

a contradiction.

Let us finally show that u solves the full free boundary problem (1.2).
From identity (2.7) and the boundedness of the sequence (c:)., we deduce
that (fz(ue) dzdy). converges (still up to a subsequence) to the length measure
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on I', plus a possible finite measure on the boundary R x {y = 0}. We note that
u(z,0) is at least C1: indeed, Oy u, is uniformly bounded, due to Theorem 4.2.
Thus Oz us(-,0) is also uniformly bounded, a property that passes on to Oz, u.
So, the contribution of the limiting measure on R x {y = 0} is nonexistent,
which proves that the Wentzell condition is satisfied both a.e. and in the dis-
tributional sense. The rest of the system is proved to be solved precisely as in
Theorem 1.1. [l

4.2. Gradient bound in the region u ~ e. The outline of the proof is
still, roughly, that of the Lipschitz bound in [2]. However, here, the vicinity
of the road requires a special treatment and this is where we will, eventually,
need D > d. In the sequel we will, for convenience, drop the subscript . for c.
and u.. First, recall the gradient bound in {u < e}, away from the road.

Lemma 4.4. Consider X € (0,1) and a point (zo,y0) € ¥ such that
u(zo,Yo) = Ae.
Assume that yo < —2¢. Then we have
0 <u(z,y) <Ce (2,y) € Be(wo, y0),
and |Vu(zo,yo)| < C, for some universal C > 0.

Proof. Set
p(&a C_:) = E’LL(LUO + 5{) Yo + EC)a (44)
and apply [2]. 0

The main part of the task is therefore to bound Vu at distance less than e
from the road. We start with the most extreme case, i.e., a point on the road.

Lemma 4.5. Consider A € (0,1) and zo € R such that
u(zo,0) = Ae.
Then we have
0 <u(z,y) <Ced, (x,y) € Be(wo,90), y <0,
for some C > 0 that depends neither on € nor on A.

Proof. This looks, at first sight, like an innocent repetition of the previ-
ous lemma. However one quickly realises that the Lipschitz scaling yields the
boundary condition

—Dpee + ecpe +¢/upe =0,
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so that half of the Wentzell condition is lost when one sets € = 0. Of course this
implies that p is linear on the road, hence constant in order to keep its positiv-
ity. However it does not prevent large gradients in y: assume for definiteness
that A = 1; if p(—1,0) = M >> 1, then

6. ) = 2&

M )

and ¢ solves the equation
—Aq+qp(Mq) =0

inside the cylinder, while keeping the condition g¢¢ = 0. So, it is an asymptotic
global solution for infinite M, which implies that one cannot hope for a uniform
bound for p in this setting.

So, this time we use the mixed Lipschitz-quadratic scaling

u(zo + V&€, eC) = eAp(§,€),  (§,¢) € B2(0), (<0 (4.5)

and p solves the system

—depee — dpec +VecOep +pp(R) = 0, (§¢) € N{¢ < 0},
—Dpee + ecOep+1/pupe = 0 for =2 <€ <2, (=0, (4.6)
p(0,0) = A.

We claim that p(0, —1) is universally bounded, both with respect to A and e.
Call M) . this quantity, we have
p(&,—1) = M) for £ < 0.

Assume that a subsequence of (M), (that we still relabel (M) )y .) with
e — 0 grows to infinity. We claim the existence of §) . < 0 going to 0 as € — 0
and such that

p(E)\,E?) = kMA,a (47)
for some universal k£ > 0. If this is not the case, then there is a universal £ < 0

such that
iy P& 0)

e—0 M)\,S

= 0 uniformly in £ € [£o, 0].

This entails the existence of a universal constant vy > 0 such that

pC(§7 O) < _’YOM)\,Ea § € [50 + \/‘57 _\/a (48)
Indeed, we have p(¢,¢) > p(€, (), where

—deggé—dgcc—i-\/gs/zcgg—kgz 0 (&€ (&,0)x(—1,0)),
]2(5,0) :p(ga 0)’ B(gv _1> = M), (g € (5070))3
p(0,¢) =p(&,¢) = 0 (C€(=1,0)).
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Rescaling in & — so as to recover a fully elliptic equation for p — shows that
Qc(f, 0) satisfies an estimate of the type (4.8).

Now, from Rolle’s theorem, there is &) _ € (%0, %D) such that pe(€) ., 0) =
o(My ) (recall that p is o(My ) on (& +¢€,—¢)). So, on (350 €)..) we have:

YoM,
ngg(f, 0) - Ecp§(€7 0) < _767

Pe(§ex,0) = o(Mye),  p(ELA(ELA,0) = o( M)

Integration of this very simple differential inequality between {;7 5 and ?% yields

p(E0.0) = o(b0) — roMen (B0 ) <o) - %0 <o

a contradiction.
So, we have found fe A, going to 0 as € — 0 such that (4.7) holds true. Thus,
there exists £\ € (£, ,,0) such that

(gs Ao ) (172)7 ii_ff(l)pg(fg,,\o) = a)e = —OQ.

Now we notice that p¢(§,0) is less than some universal C' > 0, for § €
(€ \» +00): indeed, set

ey p( g,\»O) i ¢ < 5)\;
7e) {maO) 6> ¢

so that p(¢) < C (universal) on ( ;’7)\, 1). We have p(&,¢) < ¢(&,¢), where
—deg,, —dg. + e eg +g= 0 (€€ (-1,1) x (=1,0)),

0 (-1,1
4(§,0) =p(&), p(&;—1) = 0 (€ (=1,1)),
Q(ilaC) =0 (g € (_170))1

5)\7

which satisfies
Qc(fyo) < C, C > 0 (universal).

So this time we have

Dpee(€,0) — ecpe(€,0) < —C on (€2, 1),
while
p£(§€ Ao ) (0 2] (5;A(§QA7 ) = a)e — —O0.

Again, 1ntegrat10n of the differential inequality on (£” Y 1) yields the existence
of &\ > &, such that p(¢’\,) < 0, a contradiction. Thus our claim that
p(0, —1) is universally bounded is proved.
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It remains to see that p(0,() is universally bounded for ( € [—1,0]. First,
notice that we have in fact proved that

p(§, —1) is universally bounded for —1 < ¢ < 1.
We have also proved that
pc(€,—1) < C, C >0 is universal.

Having this remark at hand, we may repeat the above argument, replacing —1
by ¢. O

Instructed by Lemma 4.5, we may now bound u in an e-neighborhood of the
road.

Lemma 4.6. Consider A € (0,1) and (z9,yo) € R X (—¢,0) such that
u(zo,yo) = Ae.
Then we have
0 <u(z,y) < Ced, (2,y) € Bae(wo,50), y <0,
for some C > 0 that depends neither on €, nor on .
Proof. We start again the mixed scaling (4.5), so that p solves (4.6). Set

Yo = 6\<07 thus U(CUO,?/O) = 5p(0) CO) =eA.

The only thing that we have to prove is that p(0,0) is universally bounded
from above and below. The case where

p(0,0) _
im =
e—0 p(O, CO)
amounts to the previous lemma, so it only remains to exclude the case where
p(0,0)
im
=0 p(0,Co)
This time it will be more useful to work in the Lipschitz scaling (4.4). Set

p(0,0) ~ (& 0)
p(0,¢0)’ €60 = M.y’

M, =

so that g solves the equation
—dAq +ecOeq + qp(Menq) =0 (§,¢) € B2(0), ¢(0,0) = 1.

Now, notice a very simple bound for Vg: the supremum of f. being of order ¢,
the elliptic estimates [12] for the original Wentzell problem (4.1) yield
Cp

HDZUHWZP(Bmi) < =
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where B is any closed ball of radius 1, and C), depends on p but not on ¢.
Hence we have o

IVulloo < (4.10)
C > 0 is universal. Hence the condition for ¢ on the road becomes
o1
Dqee = ecqe +€/pqe = ]\4( ) =o(1).
£,

This implies, in order to keep the positivity of ¢, that g¢(0,0) is universally
bounded; as a result, there is 79 > 0 universal, and & > 0 universal as well,
such that

70 < Q(£7O) < ,_;07 5 € (_60750)'
Thus ¢(&,¢ > q(£,¢) with

—dAgtecqg, +g= 0 ((§C) € (=%,%) x (=1,0)),
q(§,0) =0, ¢(§,—-1) = 0 (£ € (=£0,%)),
q(£6,¢) = 0 (Ce(=1,0))
and the strong maximum principle implies the existence of a universal v, > 0
such that ¢(0, o) > 70, a contradiction. O

Putting Lemmas 4.5 and 4.6 together, we obtain the gradient bound in the
region where f.(u) is active.

Corollary 4.7. There is M > 0 (universal) such that |Vu(x,y)| < M if
u(z,y) <e.

Proof. Consider A € (0,1) and a point (zg,7¢) € X such that u(zo,yo) = e.
By Lemma 4.4, it is sufficient to assume that yg > —2¢. From Lemmas 4.5
and 4.6 we have, in the Lipschitz scaling (4.4):

The Wentzell condition reads once again as

pee(§,0) =o(1), —2< <2,
so that pe(§,0) = o(1), for —2 < £ < 0, in order to keep the positivity of p.
Extend p(¢,0) in a C1! fashion inside [—2, 2] x[—2, 0], call p(&, ) this extension.
Then p — p solves an elliptic equation with bounded right-hand side inside
[—2,2] x [—2,0], while satisfying a Dirichlet condition on the road segment
(—2,2). Hence, the classical local elliptic estimates yield

Il 2By (0)nfc<0}) < Cry Cp > 0 depending only on 7.

This implies, in turn, the uniform boundedness of |Vp(0, (o)|, hence the corol-
lary. O
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4.3. The gradient bound away from the region v ~ . Let us mention
from the outright that it is the sole place where we will need D > d. Once
again, we do not know if this is essential.

Proof Theorem 4.2. We set
Q. =2\{u < e}
Since dyu < 0, the set {u < €} sits on the right of the smooth graph
e = {(h(y),y), y € [-L, 0]},

where he is a smooth function (whose derivatives may nonetheless blow-up as
e — 0). We may assume that h.(0) = 0, and we set . = h.(—L); thus, we
have

00 = (—00,0) x {0} UT'. U (=00, 2:) x {—L}.

First, we bound u, from above. On I'; we have u, < C. On (—o0,z.) x {—L}
we have u, = 0. So, let us find a differential inequality for u, on (—oo,0) x {0}.
In Q. we have

D D

—Dugr+cu, = D(—uxxjt%uz) + (1—E>cux = Duy, + (1—g)cux = Duy,y,
simply because ¢ > 0, u; < 0, and D > d. This inequality carries over to the
boundary (—oo,z.) x {0} to yield DOyu, + u, < 0. We also have —DAw,, +
cOzuy = 0 in €., therefore u, can only assume a positive maximum on I',
where it is uniformly bounded from above. If not, it is bounded from above
by 0.

Now, we bound u; from below. We now know that u, < C, so, using u,; <0
we write

Uze (2,0) — cuz(z,0) < C (x<0)
uz(0,0) = O(1) because of Corollary 4.7

Integrating this inequality backward, and using Proposition 4.3, we obtain
uz(x,0) > —C, C > 0 is universal. On (—oo,z.) x {0} we have dyu, = 0, and
uz; bounded on I'.. Thus, u, is bounded from below in €2..

Finally, we may bound u, from below: now we know the boundedness of u,,
so the Wentzell condition becomes

Doyuy(z,0) 4+ uy(z,0) = O(1).

On I';, uy is still bounded, while it still satisfies the Dirichlet condition on
(—00,x¢). The lower bound follows from the maximum principle. O
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§5. The free boundary near (0,0) in the single species model

For the reader’s convenience, we recall the system solved by (¢, ', u):

—dAu+ copu= 0, (x,y) € {u> 0},
uy = 0, (:c,y) el
—Dugy +cOpu+1/pu, = 0 forzeR, y=0, (5.1)
uy(z,—L) = 0,
u(—oo,y) = 1, wu(+oo,y)=0.

Let us first explain the heuristics of Theorem 1.4. The starting point is a very
simple global asymptotic solution, in the limit as € — 0 of the parabolic scaling:

u(z,y) = Ev(%,g). (5.2)

In other words, we have the following situation:

DU& +cge v = 0

782’055 — V¢ = 60’05 =0

Setting € = 0 yields ve¢ = 0, hence v(§,0) = 1 for £ < 0. So, we have
v(£,0) = % and

52
060 =(¢+55).
hence the free boundary has the form (1.10). So, we are going to make this
rigorous in the remaining part of the section.
We may assume that I' meets the axis {y = 0} at the point (0,0), and start
the proof of Theorem 1.2. If X = (Z,y) € ¥ is a free boundary point, and

d > 0 is so small that Bes(X) C X, rescale u at scale 0:
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Let I's be the rescaled free boundary. As is well known, we have
—dAus + 508{%; = 0 (B2(0)),
Vus| =1 (T's), (5.4)
u(0) = 0.

The uniform gradient bound comes from Theorem 1.1. We may therefore safely
forget about u., and concentrate on the solution u(z,y) of (1.2). And so, in the
sequel, we will use the letter € for any small parameter, without any further
reference to the approximate solution constructed in the preceding section.

This section more or less follows the organisation of §3: first, we will state
a (more standard) rigidity property adapted to the needs of the asymptotic
situations that we will encounter. We will then prove Theorem 1.4.

5.1. Another 2D rigidity result. The following proposition is a conse-
quence of the 2D monotonicity formula.

Proposition 5.1. Consider a solution u(z,y) of

Au= 0 ({u>0}),
[Vul= 1 (0{u > 0}), (5.5)
u(z,0)= 0 (zeR).

Assume that 0{u > 0} meets the x-azxis at the point (0,0), which is the only
point where it may fail to be analytic. Then u(x,y) =y~ .

Proof. It is based on [6], Theorem 12.1. Set
Ul(ﬂj,y) :U(.’B,y), Ug(l‘,y) :U(.’L‘7 _y)

The functions u; and ug are harmonic in disjoint domains, and have a common
zero line: the axis {y = 0}. Thus ([6, Theorem 12.1]) the quantity

1

i / |V |? dzdy / |Vug|? dady
Br(0) Br(0)

is monotone increasing in R. As a consequence, the quantity

1

i / |Vu|* dedy
Br(0)

Ju(R) =

is also monotone increasing in R. Because of the gradient bound and nondegen-
eracy, the quantities limp_,¢ J,,(R) and limp_, 1~ Jy(R) exist and are nonzero.
Notice that J, is invariant under Lipschitz scaling, that is,

1
TR = [ [Vundedy = 1y (1), unley) = gu(Re, Ry).
B1(0)
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The analyticity of the free boundary entails sufficient compactness to infer
that the family (ug)r converges in H'(B1(0)) as R — 0 (respectively, R —
+00), possibly up to a subsequence, to a limit u~ (respectively, u™). Another
application of Theorem 12.1 of [6] to u™ yields

Ju=(r) = Constant, hence J, 1 (r) = 0.
Hence we have
lim J,(R) =0, lim J,(R)=0.
R—0 R—+o00

Following the proof of the theorem, we see that limp_o J/,(R) (respectively,
limpg 400 JI,(R)) is proportional to

/ |Vu~|? dady / \Vu™|? dzdy

951 (0) -2 <respectively, 25:(0) - 2) .
/ \Vu~|? dzdy / |Vu™|? dedy

B (0) B1(0)

However, still following the proof of the theorem, we find out that the above
quantities are zero if and only if
W)=y

actually the u* have to be proportional to y~, but the free boundary relation
imposes the proportionality coefficient. Thus J has the same limits at 0 and
+00, thus J is constant. Thus J'(R) = 0, and u(x,y) = y~. This proves the
proposition. O

u

5.2. Analysis of the free boundary. The first step is to show that the Lip-
schitz scale inside breaks down as the free boundary approaches the horizontal
axis, and becomes flatter and flatter.

Lemma 5.2. There is a universal C > 0 such that, for e > 0 sufficiently small,
we have
I'NB.(0) C (—¢,0] x (—Ce2,0].
Proof. Assume the lemma to be false, that is, there is a sequence (x¢, d:) with
I'N9B:(0) = {(zedc)}
and
lim z./6. = 0. (5.6)
e—0 B
Drop the subscript . and scale with § as in (5.3), with X = (0,0). The Wentzell

condition implies that
0—0
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The situation implies the existence of X; in B1(0) N {us > 0} whose distance
to I's, as well as to {y = 0, }, is universally controlled from below. From
nondegeneracy, us(Xs) is universally controlled from below. We send 4§ to 0
and use the compactness of (ug)s provided by the uniform gradient bound: we
recover a function us (&, ), as well as an asymptotic smooth (possibly outside
the origin) free boundary I'w,. Call Q the area limited by {¢ = 0} and I,
we have

—Ause =01in Qso,  Uso = 0 on 9No. (5.7)
Nondegeneracy implies that us(§,—1) is uniformly controlled from below,
which implies in turn

for some universal ¢q. Returning to us, we obtain the same kind of bound: for
every p > 0, there is g, > 0 such that

Dcus(€,C) < —qp for small 6, —& < & < —p.

We have, because of (5.6):

li = .

5o = +oo
The Wentzell condition at {¢ = 0} implies

—D8§§U(5 + 5035u(5 > qé(l(_f&_p) — Cl(_p,o)), ugs(0,0) = 8§U§(O, 0) =0.
Integration of this inequality (this is by now a routine argument) yields
U5(_§5,0) < _%6 < 07

the required contradiction. This proves the lemma. O

The next lemma shows that, if the free boundary wiggles before reaching
the point (0,0), it does so in a controlled fashion.

Lemma 5.3. For every ¢ > 0, let (& be defined as

(- =imf{eRy:(—¢,¢) T}, ¢ =sup{¢ € Ry :(—¢,() €T}
There is a universal g € (0,1) such that
¢ 1> gl
Proof. Do the Lipschitz scaling (5.3) with X = (—¢,0) and § = ¢&. Assume
that, for a sequence §, — 0 we have:
lim inf{¢ >0: (0,—(¢) €T, }=0.

n—-+oo

This implies immediately

lim ws,(£,0)=0, £>0, lim Oeus,(0,0)=0.

n——+oo n—-+0o0o
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By compactness, we obtain a nontrivial limiting couple (', us) that solves
the free boundary problem in R x R_ and is such that (0,0) € I's. For £ <0
we have Ogetioo(§,0) = 0, therefore us(£,0) = 0 for £ € R. This is against
Proposition 5.1. Il

Lemma 5.3 will trigger an obvious analogy between the equation for y and
the obstacle problem, in the sense that v behaves in a quadratic fashion in the
vicinity of the point where the inside free boundary hits the axis {y = 0}. This
is expressed in the next proposition.

Proposition 5.4. For some C > 0 and for all x € [—1,0], we have

$2

el < u(z,0) < C2”.
Proof. Of course, it suffices to prove the result for small . Consider any
sequence (&,,), going to 0, without loss of generality we may shift the origin

from —e, to 0. Let us set
Op = C;;

We wish to prove that u(—ey,0) is of the order d,; because of the gradient
bound, it is certainly O(d,). Let us prove the converse, i.e., that

6 = O(u(—en,0)).

Assume this is not true. Do, as in the preceding situation, the Lipschitz scal-
ing (5.3) with 6 = 6,. Let (I';,, u,) be the scaled versions of u and I'. Send
n — +oo, we recover an unbounded analytic curve ' = {hoo((),(} lying
strictly below {¢ = 0}, and a positive harmonic function u, defined above '
and satisfying the free boundary relation on I'. This is impossible, due once
again to Proposition 5.1. The same proposition will imply

Ocss(0,0) =1,

so that, for the unscaled function u(z,y), there is ¢ > 0, universal, such that
uy(x,0) > q for v <€ (—&,,0) as soon as n is sufficiently large, except perhaps
in an o(ey)-neighborhood of 0. So, by scaling, we have u,(x,0) > ¢if ¢ <0
is sufficiently small. Integration of the Wentzell boundary condition yields the
quadratic nondegeneracy of u on the road, in a small neighborhood of 0. [

The last ingredient that we need is that, at each point of the free boundary
near (0,0), the normal is almost vertical.

Lemma 5.5. There is 09 > 0 such that, if © € (—0dp,0), there is a unique
y = k(x) such that (z,y) € I'. Fory € (—do,0), let v(z) = (vi(x),va(x)) be the
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outward normal to Q0 at the point (z,k(x)). Then for some C > 0 we have:

—Cz? < k(z) < ——. :
Cz* < k(x) c (5.8)

Moreover, we have:

lim vy (x) =0, limwe(x)=—1.
z—0 z—0

Proof. For every small ¢, let J. be the smallest § such that
(—e,—0) el
from Lemma 5.3 the largest d such that this property holds is also of order J;.
We do the Lipschitz scaling with
X = (—¢,0), 6&=06..

Let us be the rescaled function, and send ¢ to 0. From the above lemmas, we
obtain a couple (I's, o) where I'sg is a union of analytic curves, one above
the other, trapped in a bounded strip of the form R x (=M, 0), and u solves
the free boundary problem in the set Qo between I's, and {{ = 0}. Moreover,
the top part of 9 is a straight line, and there is ¢ > 0 such that

Uso(&,0) = q.

We also know that d¢ucs < 0, therefore it has two limits uZ (¢) as ( — =+oo.
Hence these limits are nontrivial, and they also solve the free boundary prob-
lem. So, an easy computation yield

ux()=@@+0*, (<o
Thus, we have
uo(§,¢) = (¢ +Q)", To={C=—q}.
Thus, the whole family (u.). converges to (¢ + ¢)*. For £ € (—1,1), this also

implies the uniqueness of ¢ such that (&,() € I'. Hence I'; is an analytic graph
(&, ke(€)) with (kL) bounded by Lemma 5.3. Hence we have

lim ke (z) = —¢, limkl(z) =0 uniformly in £ € (—1,1).
e—0 e—0
This implies the convergence of the normals, as stated in the lemma. O

Proof of Theorem 1.2. We finally revert to the Lipschitz-parabolic scaling,
and set: )
P=VEE y=e uel6,Q) = Su(vg eQ) (59)
Let T'c be, once again, the free boundary of u.. It suffices to prove that, for
small € > 0, the only ¢ < 0 such that (—1,() € I'. satisfies
1

2D
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Pick any small § € (0,2). From Lemma 5.5, for —2 < £ < —9§, there is a unique
¢-(€) < 0 such that

(§,¢(¢)) e T

From Lemma 5.5 we have
lim Ocue (€, ¢=()) = lim dyu(veg, eC:(€)) = 1.
e—0 e—0
From the proof of the same lemma we have
lim Gu-(€,0) = 1.
The Wentzell condition for u,. is

DOccus — ecOgue = Ocus ~c50 1 for £ < —0,
u:(0,0) = 0O:u:(0,0) = 0.

Integrating this relation and taking the boundedness of d¢u. into account yields

1

limue(=1,0) = —35-

And, from the proof of Lemma 5.5, we have

1
mue(—1,) = (¢ + 55)"

li
e—0
This implies the result. O

Remark 4. The gradient bounds, as well as the upper and lower bounds on
¢, do not depend on L. In the proof of Theorem 1.2, the convergence of u. to
(C+ 55)" is uniform in L > 1.
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