
Towards Realistic and Reproducible
Web Crawl Measurements

Jordan Jueckstock
North Carolina State University

jjuecks@ncsu.edu

Shaown Sarker
North Carolina State University

ssarker@ncsu.edu

Peter Snyder
Brave Software
pes@brave.com

Aiden Beggs
North Carolina State University

awbeggs@ncsu.edu

Panagiotis Papadopoulos
Telefonica Research

panagiotis.papadop@telefonica.com

Matteo Varvello
Nokia Bell Labs

matteo.varvello@nokia.com

Benjamin Livshits
Brave Software, Imperial College London

ben@brave.com

Alexandros Kapravelos
North Carolina State University

akaprav@ncsu.edu

ABSTRACT
Accurate web measurement is critical for understanding and im-
proving security and privacy online. Such measurements implicitly
assume that automated crawls generalize to typical web user expe-
rience. But anecdotal evidence suggests the web behaves differently
when seen viawell-knownmeasurement endpoints ormeasurement
automation frameworks, for various reasons. Our work improves
the state of web privacy and security by investigating how key
measurements differ when using naive crawling tool defaults vs.
careful attempts to match “real” users across the Tranco top 25k
web domains. We find web privacy and security measurements
significantly affected by vantage point and browser configuration.
We conclude that unless researchers ensure their web measurement
tools match real world user experience, the research community is
likely missing important signals systematically. For example, we
find browser configuration alone causing shifts in 19% of known
ad and tracking domains encountered and altering the loading fre-
quency of up to 10% of distinct JavaScript code units executed. We
find network vantage point having similar, though less dramatic,
effects on the same web metrics. To ensure reproducibility, we care-
fully document our methodology and publish both our code and
collected data.

CCS CONCEPTS
• Information systems→Web crawling; • General and refer-
ence → Measurement.
ACM Reference Format:
Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aiden Beggs, Panagi-
otis Papadopoulos, Matteo Varvello, Benjamin Livshits, and Alexandros
Kapravelos. 2021. Towards Realistic and Reproducible Web Crawl Mea-
surements. In Proceedings of the Web Conference 2021 (WWW ’21), April
19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3442381.3450050

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3450050

1 INTRODUCTION
Research into web security and privacy depends on web measure-
ments for ground truth [20, 23]. Automated, web-scale crawls have
been used to estimate user tracking granularity [12] and regulatory
compliance [13] among other important questions. Ahmad et al.
found nearly 16% of papers recently published across many top
security, privacy, and network measurement venues relying at least
in part on data collected via automated web crawls [9].

Implicit in most automated web measurement work is the as-
sumption that the web encountered through automated measure-
ment is the same as the web encountered by typical web users, or at
least similar enough so that the findings for the former generalize to
the experiences of the latter. However, as crucial as this assumption
is to much security and privacy work, we find that this assumption
has not been systematically studied or assessed.

More concerning, the related work that does exist suggests that
the gap between the “measured” web and the “experienced” web
may be large. For example, Zeber et al. [28] compared results be-
tween automated crawls from different network endpoints against
anonymized browsing sessions provided by volunteers, they found
some dramatic mismatches between the crawls and user sessions
in key privacy metrics (e.g., prominence of 3rd party domains con-
tacted), but left unresolved the question of how much impact was
attributable to sites deliberately discriminating against “unrealis-
tic” clients. Similar work by Ahmad et al. [9] assessed the impact
of user agent choice on web crawl observations, from primitive
headless agents like cURL to sophisticated full-browser frameworks
like OpenWPM [12]. While these results again showed dramatic
divergence in common security and privacy metrics, the authors’
emphasis was on experiment reproducibility, and their analysis
did not attempt to quantify the direct effects of bot detection/dis-
crimination on results. Other recent publications document that
many web sites perform dynamic bot detection [16] and that some
malicious content actively evades visitors from non-residential net-
works [26].

This work aims to improve the state of web privacy and secu-
rity by investigating how the web changes when observed with
typical web measurement techniques, compared to measurement
configurations carefully designed to closely match those of typical
web users. More specifically, we measure how choices in browser
configuration (BC) and network vantage point (VP) affect common
privacy and security metrics. We design BCs and VPs to closely

https://doi.org/10.1145/3442381.3450050
https://doi.org/10.1145/3442381.3450050


match those of typical web users and treat them as ground truth
against which commonly used alternatives can be compared in a
robustly controlled and repeated web crawl over the Tranco top
25K web domains [18].

This study considers three commonly used measurement VPs
(i.e., popular cloud provider, research university, residential ISP)
and two common BCs (one with the default configuration of a pop-
ular browser automation framework, and the other configured to
more closely approximate a standard desktop browser). We treat
the measurements taken from the standard desktop browser BC and
residential ISP VP as “realistic”, or ground truth (i.e., the web as
encountered by typical web users), and consider consistent differ-
ences in results between our ground truth configurations and the
other VP and BC configurations to be a form of measurement bias.
Higher levels of consistent difference between configurations are
constitutes larger measurement bias, and thus a greater threat to
validity to measurement studies employing unrealistic configura-
tions. Our analyses ignore ephemeral outliers and identify data
points showing consistently significant differences among VP and
BC variants across all repeated crawls. We believe our approach es-
tablishes a lower bound on measurement bias (see Section 2.7) that
can be expected from unrealistic web measurement methodology.

We find significant, and sometimes dramatic, differences in com-
mon privacy and security measurements attributable to VP and BC
selection. A partial list of this work’s findings include that certain
commonly used measurement configurations introduce significant
measurement bias regarding which domains are encountered, and
how much traffic is sent to those domains. We find that measure-
ments from cloud VP introduce higher measurement bias than other
measured VPs. We also find that using non-realistic BCs introduces
significant measurement bias regarding which well-known adver-
tising and tracking domains are encountered; measurements taken
with the default puppeteer [4] configuration, for example, miss up
to 19% of realistic advertising and tracking domains encountered.
We observe that non-realistic choices in BC and VP can introduce
similar measurement bias into which JavaScript libraries are ob-
served on the web. We also present case studies demonstrating that
non-realistic measurement configurations cause different patterns
in JS API calls.

Finally, we use our findings to provide recommendations for
future web privacy and security research, to maximize “realism” in
measurement results. We provide more detailed guidance and dis-
cussion in Section 4, but in summary, we conclude that researchers
should avoid lowest-common-denominator crawlers, such as stock
Puppeteer driving headless Chromium, when assessing real-world
security and privacy concerns.
Contributions: Our core contributions include:

(1) Comprehensive documentation and implementation
details of our synchronized parallel web crawl methodology,
measuring how the privacy and security characteristics of
the web change under different measurement configurations.

(2) The complete dataset generated by crawling the
Tranco 25K top sites from 3 measurement vantage points,
and under two representative browser configurations.

(3) Conclusions and guidance on how future research
should incorporate this work’s findings to improve how

accurately findings from automated web measurements can
generalize to real world, human browsing behavior.

2 METHODOLOGY
Our experiments center on simultaneous visits to top-ranked web
sites by multiple clients differing in realism of network vantage
point (VP) and browser configuration (BC), with controls in place
for confounding factors such as available system resources, DNS
resolution, and sources of entropy available to client-side JS scripts.
Recent work [9] has documented an unfortunate propensity of au-
thors employing web crawls to under-specify the design parameters
of their crawls, frustrating reproduction of results. Here we specify
and justify our crawl design criteria in reproducible detail.

2.1 Approach to Realism
As we attempt to measure the extent to which automated web
measurements can be distorted by unrealistic (i.e., non-human-like)
crawlers, we face a challenge defining and deploying a “realistic”
crawler. Ideally, we would compare a typical automated crawler
directly against a live, human counterpart. Such an ideal experiment
is impractical for several reasons: human volunteers do not scale
well, and using real-world browsing data is fraught with ethical
concerns, if it is even available at all. Our solution is to select VP and
BC alternatives that can be reasonably ranked in order of relative
realism based on known instances of adversarial response (e.g., bot
detection, malicious cloaking). We expect the differences observed
(if any) between lower-realism and higher-realism crawlers, if all
other factors are controlled, to provide a lower bound for expected
differences between typical crawlers and actual human users.

2.2 Realism Variables
Two variables control the range of realism attempted by our clients:
the network endpoint from which we visit pages (vantage point, or
VP) and the browser settings employed (browser configuration, or
BC). Each target URL (Section 2.4) is visited to produce a page set,
the result of visiting that URL simultaneously from each distinct
VP/BC pairing.

2.2.1 Vantage Point (VP). We collected data from three distinct,
representative VPs: a major research university network, a nearby
residential ISP network, and a popular cloud provider’s network
(Amazon AWS). The university and residential endpoints are co-
located in the same city. The cloud endpoint was placed in the
cloud provider’s nearest available datacenter, which is within the
same national border, in a neighboring province. The residential
network provides the ostensible best-case in VP realism, as it is
used exclusively for end-user activities. The university network
combines both end-user and infrastructure activities; its realism
is presumed to fall somewhere between the residential and cloud
extremes. The cloud network provides an expected worst-case in
VP realism as its typical use is for infrastructure rather than end-
user network access. Connectivity via these endpoints is achieved
via implementation details discussed in Section 2.5.

According to IP geolocation data provided by https://ifconfig.co,
the university and residential endpoints were 6 km apart, while the
university and cloud endpoints were 375 km apart. Naturally, the
distance separating the cloud endpoint from its counterparts raises

2

https://ifconfig.co


concerns about the effect of geo-targeted web content. We address
this concern in the discussion of our analysis approach (Section 3).

2.2.2 Browser Configuration (BC). We crawl using two variants
of Puppeteer [4] controlling Chromium 80: a lower-realism naive
variant and a higher-realism stealth variant. Relative realism is
inferred from the ongoing arms race between developers of bots
(automatic, non-human user agents) and bot detectors. The naive
BC, running Chromium in headless mode using stock Puppeteer, is
easy to detect as a bot thanks to identifying quirks [6] of Chrome’s
headless mode, (e.g., “ChromeHeadless” in the User Agent string).
The stealth BC presents a harder target by running the browser in
non-headless mode and using a community-provided stealth plugin
for Puppeteer that adds bot-detection countermeasures such as
spoofing available media codecs to better match consumer devices
and suppressing the tell-tale Navigator.webdriver attribute. The
existence and continued maintenance of the stealth plugin, an ex-
plicit workaround for bot detection of headless Puppeteer crawlers,
indicates that there exists some population of content in the wild
for which our naive BC will be considered “unrealistic” and our
stealth BC “realistic.”

2.2.3 Summary. Each of our page sets comprises 6 synchronized
parallel visits to the same URL, one for each combination of our
3 network VPs and 2 BCs representing a range of relative realism
levels.

2.3 Control Constants
Our analysis of results across VP/BC depends on eliminating as
many sources of irrelevant differences across clients as possible.
To this end we aggressively homogenize all readily controllable
aspects of our crawls across all clients.

2.3.1 Workflow & Timeouts. All page visits follow the same work-
flow and employ the same timeout limits for each phase. First, the
browser is launched with a clean user profile (i.e., no cookies or
cached content), instrumentation callbacks are established, and the
browser is navigated to the target URL. If this initial navigation
fails to successfully fetch an HTML document within the navigation
timeout of 𝑇𝑁 = 30 seconds, the page visit is aborted. Otherwise,
the browser is left idle, running JS code and firing timers as needed,
for the loiter timeout of 𝑇𝐿 = 15 seconds. Once the loiter time
is expended, the crawler begins to “tear down” the visit by first
capturing a number of page artifacts (such as final DOM HTML
and screenshot). If this “tear down” process exceeds the watchdog
timeout limit of 𝑇𝐷 = 15 seconds, the page visit is aborted. (All
non-aborted page navigations are considered successful, even if
they never fire the official “load” event.) The theoretical maximum
time taken per page, then, is 60 seconds. We discuss selection of
these parameter values in Section 2.6

2.3.2 DNS Resolution. We configured all browsers at all endpoints
to resolve DNS names using CloudFlare’s popular 1.1.1.1 resolver
network [2]. Our experiment is not designed to measure the impact
of DNS resolution on web content, so we did not perform A/B
crawls with and without CloudFlare’s DNS service. Rather, our goal
is to reduce potential noise caused by using different DNS servers

from different providers with completely different priorities and
quality of service.

2.3.3 JS Entropy Sources. Dynamic resource loading triggered by
JS code has been known to rely on sources of randomness available
to JS programmers, such as the Math.random API, or on the cur-
rent timestamp as returned (with millisecond granularity) by new
Date(). Whenever a new frame is created, our crawler pre-loads
its execution context with a JS polyfill from the Google Catapult
project’s Web Page Replay framework [1] that provides determinis-
tic alternatives to these APIs.

2.3.4 Bandwidth/Latency. To compensate for differences in avail-
able bandwidth and typical latency between our VPs, we used
Chromium’s network throttling support to limit maximum
throughput and minimum request latency to the lowest-common-
denominator in our setup. Unsurprisingly, our network bottleneck
was the residential VP, equipped with asymmetric bandwidth (200
Mbps down, 10 Mbps up) which had to be shared with two residents
compelled to work from home thanks to the COVID-19 pandemic.
We set bandwidth limits arithmetically, by dividing 50% of available
residential bandwidth (each direction) among the workers deployed
there and setting identical limits on all other workers. We measured
the highest round-trip time for a simple HTTP request time experi-
ment conducted through each VP and used the maximum of 64ms
(from residential) as the minimum latency for all workers.

2.3.5 Summary. All anticipated entropy sources are held as con-
stant as is practical across all visits: workflow timeouts, DNS reso-
lution (via CloudFlare), JS entropy sources, and lowest-common-
denominator bandwidth/latency throttling.

2.4 Web Site Selection
We visit the top 25, 000 web domains as ranked by the Tranco list of
top sites [18] (snapshot 77PX). In keeping with our focus on web se-
curity and privacy measurements, our interest is primarily 3rd party
infrastructure content such as advertisement frameworks, track-
ers, and analytics scripts rather than 1st-party application content
or behavior, so we do not expend resources crawling recursively
into a website’s contents beyond the “landing page” provided by
navigating to the domain name itself as an HTTP URL.

Muchweb content is inherently dynamic [7] (e.g., news headlines,
advertisements) or even personalized (e.g., recommended content,
advertisements). Furthermore, the web depends on a strictly-best-
effort Internet, where ephemeral connectivity issues are common.
Such ephemeral noise threatens our ability to isolate meaningful
differences across endpoints. In addition to all the controls enu-
merated above, we combat such noise with repetition, visiting our
itinerary 3 times and factoring consistency across repetitions into
our analysis. Repetition count is not a well standardized parameter
of web crawl methodologies. If mentioned at all, it is typically justi-
fied in relation to a particular metric or analysis technique [9, 24].
We chose 3 repetitions pragmatically: it provides some robustness
against temporary connectivity issues and provides measurement
of stability in observations across crawls while retaining modest
resource overhead.

Since some environmental factors outside our control (e.g., diur-
nal activity patterns affecting network load) directly relate to time,

3



University Primary Cluster

http://example.com/
(university, naive)

http://example.com/
(university, stealth)

http://example.com/
(cloud, naive)

http://example.com/
(cloud, stealth)

Randomized Pass #3

. . .

example.com (#562)

. . .

Randomized Pass #2

. . .

. . .

example.com (#562)

Randomized Pass #1

example.com (#562)

. . .

. . .

Top 25K Domains
. . .

example.com (#562)

. . .

Residential
Outpost Cluster

http://example.com/
(residential, naive)

http://example.com/
(residential, stealth)

example.com
Cloud

SOCKS5
Relay

Figure 1: Workflow from Domain List to Target Server

and since even responsible web crawling at slow rates might well
result in IP blacklisting over the course of a week-long crawl, we
decouple website popularity from time elapsed during the experi-
ment by randomizing the order of domains visited at the start of
each crawl repetition. This shuffling prevents diurnal patterns from
coinciding with domain spacing in our crawl and gives us some
confidence that any rank-based metrics used in our analysis are
not accidental proxies for time-of-day or other temporal patterns.

2.4.1 Summary. We visit the Tranco top 25, 000 domains in a series
of 3 independent crawls. We randomize the order of site visits
within each crawl to decouple our results from potential time-based
confounding factors.

2.5 Implementation Details
Figure 1 illustrates the high-level design of our crawling experiment
and hints at some of the implementation and infrastructure details
briefly discussed here.

2.5.1 Infrastructure. All university and cloud visits were hosted
on an 8-node Kubernetes cluster, comprising 352 total CPUs and
1.5TiB total RAM. Cloud visits were proxied through our Amazon
AWS endpoint using Go Simple Tunnel’s [5] SOCKS5-over-KCP
low-latency encrypted transport mode. Given the asymmetric band-
width available from the residential ISP, described in Section 2.2, we
could not tunnel crawls through this endpoint, as the tunnel would
be effectively throttled by the crippled upstream rate. Instead, we
placed a single-node (16 CPUs, 32GiB RAM) Kubernetes cluster at
the residential endpoint. Workers on this outpost cluster handled all
visits from the residential VP. All workers in the experiment (in both
clusters) were configured with CPU and memory limits derived
to strictly prevent saturation of the outpost’s limited resources.
Bulk data (e.g., HTTP response bodies, VisibleV8 trace logs) was
stored in a local MongoDB server running alongside each cluster.
Post-processed summary data was stored in a single PostgreSQL
server colocated with the primary cluster: outpost post-processing
jobs communicated with this server via persistent SSH tunnel.

2.5.2 DNS Customization. The Chromium browser does not pro-
vide runtime options to select a custom DNS resolver. Our
workaround was to configure all Chromium instances, not just
those visiting via the cloud endpoint, to use a local SOCKS5 proxy

configured to use our desired remote DNS server for name resolu-
tion. This approach gave us easy control over DNS server selection
without altering the originating IP address of the request, and had
the additional benefit of normalizing connection overhead, proxy
latency, and Chrome error reporting between the local and cloud
endpoints.

2.5.3 Synchronization. Even with careful resource tuning and
throttling, page sets will not remain synchronized across a multi-
day crawl experiment without help. Unsynchronized tests over the
top 1K sites revealed that page visits from the same set would be
spaced far apart soon after the experiment began: e.g., by the time
400 domains had been processed, the residential visits were already
over 30 minutes behind their cloud and university counterparts
(which were less than a minute apart), despite uniform CPU and
memory limits and no sign of network bandwidth saturation at any
VP. To provide maximum comparability across control variables,
we set out to synchronize visit starts within page sets to be nearly
instantaneous.

Workers in both clusters pulled page visit jobs from a single
Redis-backed work queue hosted in the primary cluster. Outpost
workers accessed this Redis server via a persistent SSH tunnel
between the clusters. We augmented the off-the-shelf work queue
logic with a custom synchronization barrier implemented using
atomic counters and pub/sub notifications provided by the same
central Redis server. Under this scheme, each job in a page set is
tagged with a shared sync tag which serves as a Redis key for storing
an atomic counter (initially 0). After pulling a job from the queue
but before starting the visit, workers subscribe to notifications for
that sync tag, atomically increment the sync counter and, if the
returned value matches the expected total count (e.g., 6), publish
a notification to release all workers waiting on that tag. With this
implementation in place, 99.8% of all page sets in our primary
experiment saw all 6 visits launched within a 1 second window,
with a mean launch window of 91ms.

2.5.4 Summary. We split our infrastructure into a primary and an
outpost cluster to work around asymmetric bandwidth limits for the
residential VP. DNS resolution customization is controlled via local
and remote SOCKS5 proxies, simplifying implementation and unify-
ing behavior and reporting across all variants. Work is distributed
and synchronized across the clusters via a central Redis server

4



using standard work-queuing and custom barrier synchronization
techniques.

2.6 Precautions & Pilot Experiments
As there is no universal “ground truth” for web crawl data collection,
we can validate our system only in a precautionary, best-effort sense.
We list here predictable threats to validity which we considered
and mitigated, along with experimental confirmation of reasonable
results.
Is the navigation timeout𝑇𝑁 = 30𝑠 reasonable?: We believe so,
for two reasons: the 30 second timeout is comparable to timeouts in
similar work [24], and it is longer than what we expect a typical user
to tolerate, based both on widely agreed-upon web user experience
guidelines [3] and past user behavioral studies [21].
Is the loiter timeout𝑇𝐿 = 15𝑠 adequate to allow full page load
before shutting down?: Yes. We performed a pilot experiment
over the Tranco top 1K testing loiter times ranging from 15s to 60s in
5s increments and found no variation in how many pages achieved
a full “page load” event. We did not test loiter times below 15s as
the distribution of successful page load times indicated 15s to be
the minimum reasonable lower bound.
Do the network bandwidth and latency throttling controls
distort page performance?: No. We tested the Tranco top 1K
with and without bandwidth/latency throttling and found essen-
tially no difference in error rate and other core statistics. The results
were in fact so similar we were tempted to eliminate the throttling
from the experiment controls. But given past experience suggest-
ing that top sites behave better than average, we left the controls
enabled in the event that lower-ranked sites generate load such
that the mismatch in available bandwidth between clusters might
harm the comparability of results.
Are the limited resources available at the residential outpost
able to keep pace with their beefier counterparts?: Yes. We
set CPU, memory, and bandwidth limits on all workers to lock total
use of system resource below potential saturation for the lowest
common denominator environment (the residential outpost). Pilot
tests during heavy residential network usage (e.g., video conferenc-
ing) revealed neither impact to our collection speed or success nor
degradation observable by the residents. During this test we specif-
ically monitored the upstream bandwidth used by post-processing
when shipping data back to Postgres via SSH tunnel and found it
well-constrained below a peak rate of 1.5Mbps without any specific
limits or throttling being applied.

2.6.1 Primary Experiment Consistency. The primary experiment
ran from 30 April to 9May (2020). We queued a total of 450, 000 page
visits, of which 449, 936 (99.99%) completed without fatal error. Of
these completed pages, 375, 246 (83.40%) were completely successful
and 74, 690 (16.60%) experienced some level of failure. Note that
we are extremely conservative in labelling failure, including pages
that loaded and collected content successfully but which failed to
shut down collection in a timely manner and were thus forcibly
aborted late in the page visit workflow. The reported failure rate is
thus a lower bound on the number of visits producing useful data
for analysis.

We confirmed that our collection was free of any unexpected pat-
terns in failure rates relating to Tranco rank, time of day, or day of
experiment. The Tranco rank independence reassured us that our pi-
lot experiments focused on the top 1K applied reasonably to the rest
of the crawl. The time of day independence reassured us that our
residential outpost workers were coexisting peacefully with the res-
idential traffic. And the day of experiment independence reassured
us that our endpoints were not subjected to effective blacklisting
or other progressive service degradation over the course of the
experiment, as confirmed independently by reputation monitoring
provided by https://hetrixtools.com/.

2.6.2 Summary. We justify our choice of timeouts from prior prac-
tice and specific testing. We verify that our results are not contami-
nated with noise from resource saturation within either cluster or
from resource mismatch between clusters. We find that errors do
not appear correlated to potential time- or rank-based confounding
factors, implying that our observations are consistent and reason-
ably robust.

2.7 Quantifying Measurement Bias
Our analysis depends on quantifying how much crawlers, differing
only in relative realism, record consistently, significantly different
web measurement results. A specific measurement that consistently,
significantly differs across a realism variable like VP or BC consti-
tutes measurement bias.

2.7.1 Bias Scores. To facilitate comparing and reasoning about bias,
we quantify it to produce a concrete score. We begin by aggregating
an additive metric (e.g., total requests) grouped by an entity (e.g.,
eTLD+1 domain of an HTTP request URL) and a control variable
(e.g., VP or BC). We then compute each entity’s bias scores, one for
each distinct combination of control variables (e.g., stealth-vs.-naive,
or residential-vs.-cloud). For a pair of metrics 𝑎 and 𝑏, the score
formula is 𝑅(log2 𝑎 − log2 𝑏), where 𝑅(𝑥) is the common integer
rounding function (rounding away-from-0 at .5). Using differences
of logarithms provides more descriptive power than a simple count
difference while avoiding the extreme outliers likely when using
ratios. A stealth-vs.-naive score of 2.0 for the domain example.com,
for instance, shows that sites sent 4× as many 3rd party requests to
example.com during stealth crawls than on naive crawls. A score of
−1.0would indicate 2× as many requests on naive crawls compared
to stealth crawls. A score close to 0 (i.e., the majority of scores in
practice) indicates insignificant bias across our experiments for that
domain.

2.7.2 Bias Consistency. Transient outliers are eliminated by inde-
pendently scoring results from each of our 3 crawl repetitions and
keeping only the entities (e.g., the 3rd party domains or JS script
families) found in all 3 measurement sets. This intersection con-
structs a synthetic score set, where each datapoint is computed as
the median of corresponding bias scores from the 3 measurement
sets.

Intersecting the measurement sets also provides insight into
how consistent the bias scores are across crawl repetitions. For
each median bias score recorded in the synthetic score set, we keep
the count of distinct bias scores from which the median was picked,
a value in the range [1, 𝑛] where 𝑛 is the number of measurement

5

https://hetrixtools.com/


VP/BC # of Refuseniks

Cloud 72
Naive 69
Stealth 30
Residential 11
University 2

Table 1: Some “refusenik” sites always fail navigation from
a single configuration but not its’ complements

sets (𝑛 = 3 in our experiment). Given a mean score-count 𝐶𝑚 ,
a consistency score 𝐶𝑠 can be computed, ranging from 0 (total
inconsistency) to 1 (total consistency).

𝐶𝑠 =
(𝑛 − 1) − (𝐶𝑚 − 1)

𝑛 − 1
2.7.3 Summary. We quantify magnitude and consistency scores
of bias for identical datapoints across endpoints. Visualizations of
these metrics are introduced and explained in Section 3.2.

3 RESULTS
We analyze the data collected via the experiments described in Sec-
tion 2 to assess the impact of crawler realism on simple, quantifiable
metrics such as volume of HTTP requests to 3rd party domains. We
apply our quantified measurement bias (Section 2.7) methodology
to progressively finer-grained breakdowns of the data collected
in our crawls: first using all 3rd party HTTP requests, then such
requests flagged by ad and tracker filter lists, then flagged requests
divided by Same Origin Policy (SOP) isolation context, and finally
considering some of the content loaded itself (i.e., JS script bodies).
The results show a significant number of 3rd party domains and JS
script families exhibiting consistently mismatched results across
VP/BC, implying lack of crawler realism can significantly bias crawl
results.

3.1 Refusenik Sites
We identified a small but impressive collection of “refuseniks”: sites
that always failed to load from a particular vantage point (VP) or
browser configuration (BC) but which never failed to load from
complementary configurations (naive vs. stealth, for instance). The
total number and category of these sites is provided in Table 1.
The largest categories for which service was refused (cloud for VP,
naive for BC) are intuitive, confirming expectations that some sites
aggressively block probable bots or crawlers altogether. The resi-
dential and university share is small enough to be within the realm
of accident, but the number of stealth-refusing sites is puzzling.
One possible explanation is that since each visit involves 2 parallel
requests (one naive, one stealth) from each endpoint IP, with high
likelihood that the stealthy request will be slightly later than the
naive request (as headless browsers have lower startup overhead),
the stealth requests are more likely to run afoul of over-aggressive
per-IP rate limiting. We do not investigate farther, as the number
of refuseniks is too low to impact our other measurements.

10 5 0 5 10
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

R<C 1.8% / 1.4% (0.59) R>C 3.5% / 1.7% (0.77)

R=C 94.8% / 97.0% (0.96)

U<C 1.1% / 0.8% (0.57) U>C 3.4% / 1.7% (0.76)

U=C 95.5% / 97.5% (0.96)

R<U 1.5% / 0.9% (0.55) R>U 0.9% / 0.4% (0.47)

R=U 97.6% / 98.7% (0.96)

Stealth Only
R/C
U/C
R/U

Figure 2: Distributions of cross-VP request volume bias by
3rd-party domains (stealth BC only); nearly twice as many
domains consistently favor residential VP over the cloud VP
as vice versa (3.5% > 1.8%).
3.2 Volume Biases in HTTP Traffic
Defining and Visualizing Request Bias: The volume of HTTP
requests sent during a page visit, broken down by the target domain
(specifically the eTLD+1, or the public DNS suffix plus one additional
label), is a useful metric for quickly gauging both the richness of
a page’s content and the potential advertising/tracking privacy
footprint of a visit to that page. When applied to the volume of
HTTP requests sent to 3rd party domains during page visits, the
measurement bias methodology described in Section 2.7 identifies
domains which (1) are contacted on each of our 3 experiments and
which (2) serve significantly different levels of traffic to different
VP/BC crawlers (i.e., are biased for/against a given configuration).
Bias visualizations such as Figure 2 plot the distribution of bias
scores along with total percentages of eTLD+1 domains having bias
scores < 0, = 0, and > 0 for each curve, along with the percentage
of total HTTP requests associated with that set of contexts, and the
corresponding bias consistency scores. Logarithmic scale is used on
the Y axis to keep the curvesmeaningful, as the central 0 column (i.e.,
the non-biased contexts) typically overpowers the tails containing
the significantly biased entities. E.g., in Figure 2, the “R/C” curve
plots bias scores for request volume per domain compared between
residential (R) and cloud (C) VPs. 3.5% of the consistently-present
domains exhibited bias scores > 0 (i.e., pro-residential) and 1.8% bias
scores < 0 (i.e., pro-cloud). The pro-residential domains account for
1.7% of all requests observed, while their pro-cloud counterparts
account for 1.4% of all requests. The pro-residential domain set
score noticeably higher in consistency (0.77 vs. 0.59).

3.2.1 Measuring Request Bias. We find measurement bias in the
volume of all requests per target eTLD+1 across both VP and BC
(Figures 2 & 3). Some of the pro-cloud biased domains probably
serve ad content that geo-targets the cloud endpoint’s location. But
the asymmetry of the anti-cloud bias (i.e., about twice as many
domains show pro-residential bias as show pro-cloud bias) argues
against geo-targeting, which ought to have roughly symmetric
effect between two regions, as the defining factor. Cross-BC mea-
surement bias has no obvious geo-targeting component, so the near
parity in total domains showing pro-naive vs. pro-stealth bias is
somewhat surprising. The opposing sides of the BC bias curves

6



7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

S<N 3.5% / 2.7% (0.72) S>N 3.7% / 2.9% (0.81)

S=N 92.8% / 94.3% (0.97)

Residential Only

Figure 3: Distribution of stealth-vs.-naive traffic volume bias
scores for 3rd-party domains (residential VP only); more
symmetric than its cross-VP counterparts.
do show subtly asymmetric shape (which we note is strongest on
the most realistic VP, residential): pro-stealth bias is concentrated
among a smaller number of domains with higher bias scores, while
pro-naive bias is concentrated among more domains with less pro-
nounced bias scores.

We find that domains showing significant measurement bias
account for reasonable shares of overall request volume. The set
of consistently-present (i.e., not ephemeral, or seen in only one
sub-experiment) domains visualized in Figures 2 & 3 represents
92-93% of all domains encountered in any of our sub-experiments,
and these consistent domains account for 98-99% of all requests
recorded. These numbers demonstrate that our bias set intersection
successfully (Section 2.7) captures the core of domains that account
for the overwhelming majority of traffic while eliminating transient
red herrings. The share of total requests associated with the biased
domains for each curve (the second percentage listed for each curve)
is consistently lower than the corresponding share of domains, but
never so much so as to be trivial. These domains showing cross-
VP and cross-BP traffic volume measurement bias are clearly not
dominant, high-traffic providers, but in aggregate they account for
non-trivial volumes of traffic, especially considering cross-BC bias.

We believe bot-detection, whether to shield proprietary data
from scrapers or to avoid useless/fraudulent advertising impres-
sions, to be a significant source of the observed measurement bias,
as predicted by our realism-by-proxy design argument (Section 2.1).
Manual inspection of highly-Tranco-ranked domains present at
both extremes of the VP/BC bias distribution curves generally sup-
ports this theory. The intersection of pro-stealth and pro-residential
bias outlier domains ordered by Tranco rank revealed a number
of high-profile brands and content providers within the top 25:
usnews.com, accuweather.com, lego.com, lowes.com, dhl.com,
hotels.com, expedia.com, and ti.com. Only a few similarly high-
profile brands appear in the top-ranked 25 domains from the com-
plementary intersection of pro-naive, pro-cloud bias outliers, e.g.
amazon.de and audible.com. The notion that premium content
providers, especially those serving dynamic and potentially propri-
etary price data, would show significant anti-bot bias is hardly sur-
prising, nor is it of great interest to security and privacy researchers.
A more useful question is whether known ad and tracking traffic
exhibits similar biases.

4 2 0 2 4 6
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

R<C 2.9% / 1.1% (0.66) R>C 5.4% / 1.1% (0.79)

R=C 91.6% / 97.8% (0.95)

U<C 2.0% / 0.7% (0.68) U>C 5.3% / 1.3% (0.71)

U=C 92.7% / 98.0% (0.95)

R<U 2.1% / 0.6% (0.53) R>U 1.4% / 0.3% (0.46)

R=U 96.5% / 99.1% (0.94)

Stealth Only
R/C
U/C
R/U

Figure 4: Distributions of cross-VP ad/tracker request vol-
ume bias by 3rd-party domains (stealth BC only); little
change from global cross-VP distributions.

4 2 0 2 4 6 8
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

S<N 8.9% / 4.6% (0.82) S>N 9.8% / 4.5% (0.89)

S=N 81.3% / 91.0% (0.96)

Residential Only

Figure 5: Distribution of stealth-vs.-naive ad/tracker traffic
volume bias scores for 3rd-party domains (residential VP
only); BC bias is more common among these domains than
the global population.

Blocklists All Requests Main Frame 1st Party 3rd Party
Involved Sub-frames Sub-frames

-/- 23,970,789 21,051,929 819,194 2,043,325
-/EP 5,470,406 3,855,858 227,974 1,333,700
EL/- 5,032,267 2,085,177 647,012 2,197,150
EL/EP 1,142,609 581,767 71,877 475,750

Table 2: Total HTTP requests by EasyList/EasyPrivacy
match and frame context

3.2.2 Request Bias by Known Ad/Tracker Domains. Of more con-
cern to security and privacy researchers, we find traffic volumemea-
surement bias patterns more pronounced among requests flagged
by one or both of the popular, community-maintained EasyList (EL)
and EasyPrivacy (EP) filter lists. In our experiment roughly a third
of all recorded requests matched blocking rules in one or both
of these lists; see Table 2. Figures 4 & 5 illustrate the shifts in mea-
surement bias distributions across VP (using stealth BC) and bias
across BC (using residential VP). The maximum bias score values
shrink, but the total share of biased domains increases to nearly 20%
of those contacted in all crawls. Furthermore, the consistency of

7



4 2 0 2 4 6 8
Bias Score

100

101

102

103

104

Di
st

in
ct

 e
TL

D+
1s

S<N 6.8% / 1.9% (0.88) S>N 10.5% / 16.1% (0.90)

S=N 82.7% / 82.0% (0.97)

Main Frame Only

8 6 4 2 0 2 4 6
Bias Score

S<N 43.1% / 61.8% (0.64) S>N 7.3% / 4.8% (0.64)

S=N 49.6% / 33.4% (0.88)

1st-Party Sub-frame Only

6 4 2 0 2 4 6
Bias Score

S<N 20.9% / 9.7% (0.65) S>N 10.1% / 7.9% (0.66)

S=N 69.0% / 82.3% (0.89)

3rd-Party Sub-frame Only

Figure 6: Distributions of stealth-vs.-naive ad/tracker traffic volume bias scores for 3rd-party domains (residential VP only)
broken down by browser frame context; sub-frames show radically different (and less intuitive) BC bias distributions than
main frames.

cross-BC bias distributions for flagged requests increases over that
of the global cross-BC distributions (0.89 > 0.81 and 0.82 > 0.72).

As when considering all requests, we find biased domains to
account for a respectable share of all EL/EP-flagged requests. The
set of all consistently-present domains visualized in Figures 4 & 5
accounts for only 85-89% of all domains associated with any EL/EP
requests, but in every case these consistent domains account for
over 99% of all EL/EP requests. Once again, the filtering effect of
intersecting results across multiple crawls eliminates significant
chaff from the results.

Domains showing high bias cross-VP saw both a relative do-
main share increase and a relative request volume share decrease.
But domains showing high bias cross-BC showed a more intuitive
correlation between request volume and domain share, with both
increasing significantly over the all-requests distributions. Again,
these domains clearly do not dominate traffic volume, but particu-
larly in the case of BC bias outliers, they account for a non-trivial
amount of requests flagged by our filter lists.

When considering only likely advertising and tracker content,
the puzzle of the BC curves’ near symmetry is amplified. It makes
sense for advertisers or trackers to show pro-stealth bias as a result
of detecting and avoiding an obviously automated browser. But the
nearly equal share of domains showing apparent pro-naive bias
is counter-intuitive. Some portion of this activity, especially that
with low bias scores, is probably still related to defensive analytic
behavior triggered by the presence of a headless client. But the
presence of more extreme bias scores do not fit this explanation as
well, given that such fingerprinting and reporting behavior ought
to require significantly less request volume than serving typical
ads or monitoring user activity over time.

A partial explanation may be displacement of content providers
that more aggressively block bots by those which do not during
naive crawls. There is a statistically significant (though modest in
effect size) difference in distribution of Tranco ranks between the
pro-stealth and pro-naive sets of biased domains across all VPs,
with the median rank of the pro-stealth bias set being consistently
higher (i.e., a lower number) than its pro-naive counterpart. E.g.,
considering only residential VP data, the median naive rank =

18,360.0, the median stealth rank = 12,198.5, and a Mann-Whitney
one-tailed test finds significant difference with 𝑃 < 0.0011. Other
VPs given slightly different values but show the same direction
and scale of gap in median ranks, the same order of magnitude
for 𝑃 , and near-identical effect size (0.60). The modest effect size is
unsurprising given the significant overlap in distributions, but the
bias is unmistakable and consistent. We note that the rank skew
between stealth and naive biased-domain sets is likewise visible
(and statistically significant to the same level, albeit with slightly
smaller effect size) in the bias sets derived from all, as opposed to
only requests flagged by filter lists.

3.2.3 Request Bias & Frame Context. Continuing to consider only
requests tagged by filter lists for ad and tracker content, we find
more dramatic and surprising shifts in measurement bias when
breaking down comparisons by browser frame/security contexts
and security origins. 2 Here we consider only cross-BC measure-
ment bias within the residential VP, as shown in Figure 6. Cross-VP
measurement bias patterns are unchanged from previous analyses
and are not discussed further. Note that these traffic share per-
centages are not restricted to a particular frame context but are
computed globally for all requests tagged by our filter lists.

Sub-frames, of both first and third party domain origin, account
for only 22% of all requests but 44% of requests matched by EasyList
or EasyPrivacy rules. Unsurprisingly given their overall traffic share
(Table 2), main frame bias score distributions closely follow the
overall distributions. Sub-frame BC bias scores, however, both grow
in overall share and swing counter-intuitively to the pro-naive side,
probably in part because the much smaller share of traffic being
considered is more readily influenced by popular outliers.

The pattern of lower Tranco ranks (higher popularity) found
in the pro-stealth distributions vs. their pro-naive counterparts,
present in both previous breakdowns, evaporates for sub-frames.
1U = 427615.5, 𝑛1 = 801, 𝑛2 = 882
2All frames are associated with a security origin URL scheme, hostname, and port. It
may match the origin of the main document (a 1st party frame) or not (a 3rd party
frame), in which case the browser’s Same Origin Policy (SOP) will restrict its access to
the main frame’s contents. 3rd party frames commonly host advertising and tracking
content.

8



Many factors contribute: the relatively small set of domains in-
volved, the extreme mismatch in set size, and the fact that, on man-
ual inspection, we found a fair number of extremely high-ranked
domains had crept into the pro-naive bias set (e.g., 4 Google do-
mains, including google.com, in the top 10 pro-naive outliers). The
presence of “heavy-hitter” domains is a first in our outlier analysis
so far, and is underscored by traffic share analysis.

The set of domains consistent across all crawls for main frame
EL/EP requests comprised 83-84% of all domains associatedwith any
EL/EP request, much like the previous all-frames breakdown. As
seen above, though, the sub-frames are different beasts altogether.
The total set of consistent domains considered here comprises only
9-11% of all EL/EP-associated domains, but these account for an
impressive 89-90% of all EL/EP flagged requests (obviously, when
considering all frames). That large share of traffic going to a small
subset of domains is not surprising when considering the presence
of dominant players like Google. What is surprising is how deci-
sively skewed this bias distribution is to the pro-naive side. We
suspected that the presence of Google and other top-tier players in
this small pocket of bias might be related to CAPTCHA deployment,
but a search of the 31,787 distinct stemmed URLs (consisting only of
hostname eTLD+1 and path component, sans query string) within
this context and BC yielded only a single hit on any obvious variant
of the word “CAPTCHA,” in a single URL requested by a single site,
once per visit. Of course, there is no reason to believe adversarial
content will always advertise itself as such in domain names or URL
paths, and it remains plausible that at least some of this pro-naive
phenomenon is related to active adversarial response to suspected
bots.

3.2.4 Summary. Around 5% of content-providing domains show
significant measurement bias across VP, clearly favoring non-cloud
endpoints. From our most realistic VP (residential), measurement
bias across BC among HTTP traffic domains is more prominent,
accounting for over 7% of domains and over 5% of total HTTP traffic
volume. Request volume measurement bias becomes notably more
pronounced among domains flagged by filter lists as serving ads
and trackers, with nearly 20% of domains’ traffic strongly correlated
to choice of BC.

3.3 Content-Level Biases in JavaScript
3.3.1 Biases in Scripts Loaded. We find that the loading and execu-
tion of JS script families shows measurement bias patterns compara-
ble to domain bias in requests. We define a "script family" to be a set
of JS scripts observed loading and executing by the VisibleV8 [16]
JS API tracing system that all share a common lexical hash. We com-
pute lexical hashes by tokenizing all JS scripts using the industry
standard Esprima JS parser and computing the SHA256 hash of the
resulting sequence of token type names. Lexical hashes thus ignore
variance in whitespace, comments, identifiers, and atomic values
like number or string literals. We computed 258,236 total distinct
lexical hashes from 1,517,281 total distinct scripts, not including
4,364 distinct scripts that failed tokenization because of syntactic
irregularities (such scripts are excluded from lexical hash based
analysis). To facilitate correlating script loading and HTTP traffic
patterns, we consider only scripts loaded via URL (as opposed to

6 4 2 0 2 4 6
Bias Score

100

101

102

103

104

105

Di
st

in
ct

 L
ex

ica
l H

as
he

s

R<C 2.1% / 2.3% (0.62) R>C 3.7% / 2.7% (0.80)

R=C 94.2% / 95.0% (0.95)

U<C 1.2% / 1.2% (0.59) U>C 3.6% / 2.2% (0.76)

U=C 95.3% / 96.6% (0.95)

R<U 2.0% / 2.2% (0.60) R>U 1.2% / 2.3% (0.54)

R=U 96.8% / 95.6% (0.95)

Stealth Only
R/C
U/C
R/U

Figure 7: Distribution of cross-VP execution frequency bias
for families of JS code (stealth BC only).

10 5 0 5 10
Bias Score

100

101

102

103

104

105

Di
st

in
ct

 L
ex

ica
l H

as
he

s

S<N 4.5% / 9.3% (0.79) S>N 5.4% / 4.8% (0.87)

S=N 90.1% / 85.9% (0.97)

Residential Only

Figure 8: Distribution of stealth-vs.-naive execution fre-
quency bias for families of JS code (residential VP only).
eval or similar means). For reference, 87.9% of script families we ob-
served were loaded at least once via a script URL (either the source
of a <script> tag or the URL of an HTML document statically
embedding JS code).

Measurement bias visualizations for script loading (Figures 7 and
8) show bias score distributions for distinct lexical hashes of script
bodies (i.e., “script families”). Figures include the percentage of total
script loads/executions associated with each subset of script fami-
lies (i.e., “execution share”). Script loading measurement bias across
VP (considering only stealthy BC; Figure 7) reveal approximately
5% of the stable script family population showing persistent bias
for/against a given VP. Execution shares are closely aligned with
overall script family population share (e.g., 2.1% of script families
show pro-cloud VP bias, and these account for 2.3% of observed
script executions). The clearest direction of VP bias is, unsurpris-
ingly, against the cloud endpoint (population shares of 3.7% vs. 2.1%
and 3.6% vs. 1.2% for the R/C and U/C curves, respectively). Bias
across BC (considering only residential VP; Figure 8) is twice as
pronounced, with about 10% of the script family population show-
ing consistent BC preference. Script loading BC bias appears fairly
symmetric, as with request/domain BC bias. One curious quirk
appears in BC script loading bias: the set of unbiased script families
is extremely stable (0.97 consistency score) but accounts for less

9



Sc
ri
pt

D
om

ai
n
B
ia
s
Se
ts General Domain Bias Sets ScriptD

om
ain

B
ias

Sets

< = >

R<C 11.1% 87.1% 1.8%
2.1% 66.6% 31.2% R>C

U<C 14.1% 84.1% 1.8%
2.2% 66.0% 31.8% U>C

R<U 9.6% 89.5% 0.9%
1.2% 85.5% 13.3% R>U

S<N 12.3% 82.9% 3.9%
2.8% 71.0% 24.9% S>N

Table 3: Many domains showing no overall request volume
bias serve script content with distinct VP/BC biases.

execution share (85.9%) than population share (90.1%). The “miss-
ing” execution share appears to be mostly lost to the pro-naive bias
set (9.3% execution share vs. 4.5% population share). This imbal-
anced distribution is consistent with the likely scenario of servers
engaging in selective delivery of a relatively small population of
bot-detection scripts to obviously automated (i.e., headless) clients.

When we correlate script loading biases with overall HTTP
request volume biases, linked by source eTLD+1, we see that even
domains showing no significant request volume bias still show
measurement bias in the script content they serve. Each row of
Table 3 shows the intersection of a given script loading bias set
(e.g., “R<C“, or favoring-cloud-over-residential) with the general
HTTP request volume bias scores of the eTLD+1s from which the
scripts were loaded. In each case, a majority of domains serving
execution-biased scripts do not show significant bias in overall
request volume (i.e., the majority share is always in the “=” column).
A few even exhibit counter-bias (marked in italics in Table 3; e.g.,
script families with pro-stealth bias loading from domains with
pro-naive bias in total requests). The overlap between like-biased
domain sets (marked in bold in Table 3) is significantly larger for
intuitive biases (e.g., favoring more realistic clients) than for their
counter-intuitive complements, suggesting that intuitive biases
reflect intentional, targeted behavior while their counter-intuitive
complements contain more random noise. Most importantly, we
see measurement bias patterns clearly extending beyond high level
request/domain volume statistics and into content itself.

3.3.2 Biases in JS APIs Used. We find examples of behavioral bias at
the JS API usage level even within script families loaded with equal
frequency across different configurations. A case study of appar-
ent server-side anti-cloud bias is provided by a video player script
family served from facebook.com. Two variants of this player are
consistently loaded during crawls from each VP for 29 sites with
some reasonably high Tranco ranks (e.g., #218, ettoday.net). The
code is not obfuscated and makes references to ad-related features,
including "fraud detection," strongly suggesting its purpose is ad-
vertising. Analysis of API traces reveals a subtle but universally
consistent difference in API footprint between trace from cloud
clients and residential/university clients. This cluster of 6 API fea-
tures is invoked only on a path of execution triggered after a video
successfully loads and begins playing. The mismatch implies that
on visits from our cloud VP, the video content consistently fails
to load and play as it does on the university and residential visits.
Location-based content targeting cannot be ruled out as a factor,
but it seems odd that apparently no videos successfully played on

cloud crawls rather than different videos, across 29 distinct sites.
API traces contain no tell-tale indicators of bot-detection or other
environment-sensitive behaviors, implicating server-side logic as
the probable culprit for the discrimination.

An unmistakable case of client-side anti-bot discrimination is
provided by a family of scripts served by crazyegg.com. We found
4 distinct lexical hashes (representing 161 total distinct scripts)
with near-identical code structure and API usage patterns. These
scripts were loaded on 158 distinct sites, including highly-ranked do-
mains like cnet.com, nationalgeographic.com, umich.edu. Ac-
cording to VisibleV8 API traces, a typical variant invoked less than
15 browser API features during naive crawls, but nearly 60 API fea-
tures during stealth crawls. Investigation of the script code and trace
data revealed the cause: a function named uaBot that performs a
battery of increasingly sophisticated and obscure checks for tell-tale
artifacts of bots. Execution traces from naive clients show execution
never getting beyond a simple user-agent string test, which fails
on the presence of the string “eadless”. Stealth client traces show
execution proceeding through the entire range of tests (due largely
to the hardening provided by puppeteer-stealth, see Section 2.5)
and proceeding to invoke other, more application-oriented API
functionality. Note that the majority of API invocations missing
from naive traces are not related to the bot tests themselves but are
a consequence of the short-circuit failure on bot-detection. Unsur-
prisingly, crazyegg.com scores as a somewhat pro-stealth domain,
serving 1.77 times as many requests on stealth crawls than on naive
crawls. At least some of this request volume bias is the direct result
of a client-side decision made in light of user-agent realism or lack
thereof.

3.3.3 Summary. The loading and execution of lexically-distinct
families of JS code shows that measurement bias extends beyond
HTTP traffic volumes and into the content served. About 10% of
script families show significant and consistent bias across BC, ac-
counting for about 15% of all script executions. The vast major-
ity (66% to 89%) of the domains serving this client-biased content
showed no significant bias in overall HTTP request volume, leading
us to conclude overall measurement bias effects may be even higher
than suggested by our simple HTTP request volume bias metrics.
Case studies of evasive scripts found in the wild reveal VP and BC
biases in runtime behaviors of the same script loaded by different
clients.

4 DISCUSSION AND FUTUREWORK
4.1 Application to Future Research
We have found that seemingly minor decisions in web measure-
ment methodology can yield significantly different measurements
of privacy and security behaviors. Here we summarize actions other
researchers can take to improve the likelihood that their measure-
ments will generalize to actual user experiences.

4.1.1 Prefer User-Targeted Tools. Researchers should use caution
when applying tools designed for automated testing for research
measurements. Browser automation frameworks often introduce
features that make them look very different from standard browsers
and frequently trigger different code paths than users encounter.
When testing-focused tools provide compelling advantages, as in

10



this work, we recommend using tools3 that reduce differences be-
tween automated and human operated browsers.

4.1.2 Avoid Headless (or Similar) Modes. Firefox and Chromium-
based browsers include a “headless” mode, where pages are ren-
dered and executed, but not displayed to the user. We recommend
researchers not use such modes. Headless modes reduce overhead
to enable more parallelism but also introduce differences in page
execution, both directly (e.g., scripts attempting to detect headless
mode) and indirectly (e.g., execution optimizations and limits used
in headless mode). Instead, we recommend using stock browser
configurations wherever possible, as these ensure that the measure-
ment environment is similar to typical user environments. Tools
like Xvfb facilitate headless-like automation with stock browsers.

4.1.3 Prefer Measurements from Residential VPs. While the paral-
lelism and high-availability of platforms like AWS make them pop-
ular for web measurement, we recommend researchers avoid them
where possible. Instead we recommend performing user-focused
measurements from networks similar to those most web browsing
is done from: residential ISPs and mobile carriers. The results in
Section 3 demonstrate why we recommend measuring from res-
idential VPs. Use of a residential VP does require some specific
precautions. First, we needed to monitor public block lists to make
sure the volume of traffic our experiments generated did not cause
our IP to be flagged for suspicious behavior. And second, measur-
ing from a residential VP required reducing the parallelism of our
measurements, to avoid adding noise (in the form of bandwidth
exhaustion) into our measurements.

4.2 Limitations
Resource constraints restricted our efforts to a single example of
each class of VP (cloud, residential, and research university), too
small to generalize results across all cloud or residential endpoints.
Yet the assumption that traffic coming from residential networks is
more likely to be treated as end-user traffic than traffic coming from
cloud networks is reasonable based on prior experience [14, 26]. The
asymmetric nature of the VP bias we observed minimizes concerns
about geographic ad targeting contaminating our results and im-
plies that cloud VPs are less than ideal for unbiased measurements
of end-user concerns.

Our stealthy BC (Section 2.2) does not perfectly approximate
human visitors. However, the creation and maintenance of the
stealth plugin we use strongly implies that there exists a set of real-
world sites that will treat our stealthy BC crawlers as humans while
tagging our naive BC crawlers as bots. This discrimination gives
us a lower-bound estimate of measurement bias attributable to bot
detection and other related adversarial responses. Our results thus
likely understate the full potential impact of unrealistic crawlers
on measurements.

5 RELATED WORK
5.1 Generalizability
Zeber et al. [28] presented a recent, systematic treatment of how
well automated web crawls generalize to web human browsing.
3e.g., https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-
extra-plugin-stealth

Their methodology compared results from multiple automated
crawls, varied by VP and client operating system in a manner quite
similar to ours, both with each other and with anonymized data
collected from 50,000 human volunteers. Our work is scoped more
narrowly and deeply: we seek to quantify any gaps in coverage
attributable to differential treatment of automated crawls based on
VP or BC by performing fine-grained comparisons of HTTP request
volume and JavaScript behavior across configurations. Ahmad et
al. [9] surveyed web security, privacy, and measurement research
literature to quantify both the popularity of different web crawling
tools and frameworks and the reproducibility of studies using them.
They performed comparative crawls using a representative sample
of tools ranging from the primitive (e.g., cURL) to the sophisticated
(e.g., OpenWPM) and documented significantly different results
tool-by-tool across three example sets of result metrics. Our work
is similar in that we compare crawl-to-crawl rather than attempt-
ing to quantify crawl-to-human differences. It differs significantly,
however, in that we use a much smaller set of realistic tools along
with varied network VPs to dig into fine-grained content exclusion
practices across these control variables.

5.2 Cloaking and Bot Detection
Invernizzi et al. [14] investigated websites attempting to hide their
malicious activities. The authors found a large number of websites
using IP lists to show benign content to visitors coming from well
known measurement IPs, while showing malicious content to other
(assumed to be human) traffic. Vadrevu and Perdisci documented
examples of social engineering advertisement campaigns that ap-
peared to serve their payloads only to visitors coming from residen-
tial networks [26]. Oest et al. created PhishFarm [22], a framework
for deploying fake phishing sites to evaluate the impact of various
cloaking techniques harvested from real-world phishing kits on
the crawlers used to maintain various anti-phishing blacklists (e.g.,
Google SafeBrowsing). Van Goethem, Le Pochat, and Joosen [27]
employed a multi-BC approach to identify dedicated mobile ver-
sions of sites served on custom sub-domains and to compare their
security practices against their desktop counterparts. While they
encountered some instances of malicious cloaking on compromised
websites, their focus was on gaining insight into developer security
practices over time rather than in deliberate discrimination. Doran
and Gokhale [11] surveyed, taxonomized, and compared state of
the art web robot detection techniques circa 2010.

5.3 Network Endpoint Discrimination
Bajpai et al. [10] summarized much prior work on systems that
detect service discrimination based on visitor attributes, including
the strengths, differences, and lineages of existing proposals. Our
study measures how the web reacts when visited from different end-
points using both naive and more realistic clients. PacketLab [19]
proposed a universal measurement endpoint system by decoupling
the measurement logic from the actual system and adopting an
access control system for the physical endpoints. In contrast, our
architecture is not concerned with endpoint network infrastruc-
ture as a packet source/sink but with measuring the impact on web
content metrics across multiple endpoints and user agent configura-
tions. Some researchers have focused on understanding when, why

11

https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth
https://github.com/berstend/puppeteer-extra/tree/master/packages/puppeteer-extra-plugin-stealth


and how websites block IP addresses for security reasons. Khattak
et al. [17] explored how websites treat requests coming from the
Tor network differently than “standard” internet traffic. The work
visited the 1k most popular websites and compared how websites
respond differently to Tor and non-Tor requests. Afroz et al. [8]
found that a significant amount of IP-based blacklisting is likely
unintended, and the result of overly-general security policies on
networks. Tschantz et al. [25] looked into a variety of motivations
for IP based blocking and found that security was a major motiva-
tion, along with political (i.e., GDPR) reasons. Additional research
has explored benign motivations for websites presenting different
content to users based on their IP addresses, e.g., regulatory com-
pliance or marketing. Fruchter et al. [13] found that websites track
users differently, and to varying degrees, based on the regulations
of the country the visitor’s IP is based in. Iordanou et al. [15] de-
scribed a system for measuring mechanisms by which e-commerce
websites discriminate between users, including geography, prior
browsing behavior of the user, and site A/B testing.

6 CONCLUSION
Where ground truth is drawn from measurement, observations
define reality. Our results show that realism in vantage point (VP)
and browser configuration (BC) have direct, even dramatic impact
on web crawl observations. We found VP bias against our cloud
endpoint too asymmetric to be ruled out as geo-targeting. We found
BC bias to be especially pronounced in blacklisted ad and tracker
traffic, with up to 19% of domains showing significant shifts in
traffic volume based on BC. We hope that our contributions, from
the systematic approach to controlled and synchronized web crawls
to the guidance offered to those performing future measurements,
will be of service to those advancing along this important research
front.
Availability: Our experiment code (open source) and data
are available at https://github.com/wspr-ncsu/reprocrawl-code-
release.

ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their in-
sightful feedback and comments. This work was supported by the
National Science Foundation (NSF) under grant CNS-1703375 and
the NSF Center for Accelerated Real Time Analytics (CARTA).

REFERENCES
[1] [n.d.]. catapult - Git at Google. https://chromium.googlesource.com/catapult/.

Accessed: 2019-5-12.
[2] [n.d.]. Historical trends in the usage statistics of dns server providers. https:

//w3techs.com/technologies/history_overview/dns_server. Accessed: 2020-5-29.
[3] [n.d.]. New Industry Benchmarks for Mobile Page Speed - Think

With Google. https://www.thinkwithgoogle.com/marketing-resources/data-
measurement/mobile-page-speed-new-industry-benchmarks/. Accessed: 2020-
5-6.

[4] [n.d.]. Puppeteer. https://pptr.dev/. Accessed: 2019-5-12.
[5] 2015. GO Simple Tunnel - a simple tunnel written in golang. https://github.com/

ginuerzh/gost. Accessed: 2020-06-02.
[6] 2018. . https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-

headless-v2.html. Accessed: 2020-10-16.
[7] Eytan Adar, Jaime Teevan, Susan T. Dumais, and Jonathan L. Elsas. 2009. The

Web Changes Everything: Understanding the Dynamics of Web Content. In
Proceedings of the Second ACM International Conference on Web Search and Data
Mining (Barcelona, Spain) (WSDM ’09). Association for Computing Machinery,
New York, NY, USA, 282–291. https://doi.org/10.1145/1498759.1498837

[8] Sadia Afroz, Michael Carl Tschantz, Shaarif Sajid, Shoaib Asif Qazi, Mobin Javed,
and Vern Paxson. 2018. Exploring server-side blocking of regions. arXiv preprint
arXiv:1805.11606 (2018).

[9] Syed Suleman Ahmad, Muhammad Daniyal Dar, Muhammad Fareed Zaffar,
Narseo Vallina-Rodriguez, and Rishab Nithyanand. 2020. Apophanies or Epipha-
nies? How Crawlers Impact Our Understanding of the Web. In The Web Confer-
ence.

[10] Vaibhav Bajpai and Jürgen Schönwälder. 2015. A survey on internet performance
measurement platforms and related standardization efforts. IEEE Communications
Surveys & Tutorials 17, 3 (2015), 1313–1341.

[11] Derek Doran and Swapna S Gokhale. 2011. Web Robot Detection Techniques:
Overview and Limitations. Data Mining and Knowledge Discovery 22, 1-2 (2011),
183–210.

[12] Steven Englehardt andArvind Narayanan. 2016. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS). ACM. https://doi.org/10.1145/2976749.
2978313

[13] Nathaniel Fruchter, Hsin Miao, Scott Stevenson, and Rebecca Balebako. 2015.
Variations in tracking in relation to geographic location. arXiv preprint
arXiv:1506.04103 (2015).

[14] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu, Jean-
Michel Picod, and Elie Bursztein. 2016. Cloak of visibility: Detecting when
machines browse a different web. In Proceedings of the IEEE Symposium on Security
and Privacy. IEEE.

[15] Costas Iordanou, Claudio Soriente, Michael Sirivianos, and Nikolaos Laoutaris.
2017. Who is fiddling with prices?: Building and deploying a watchdog service
for e-commerce. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication. ACM, 376–389.

[16] Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-browser
Monitoring of JavaScript in the Wild. /projects/vv8/. In Proceedings of the ACM
Internet Measurement Conference (IMC).

[17] Sheharbano Khattak, David Fifield, Sadia Afroz, Mobin Javed, Srikanth Sundare-
san, Vern Paxson, Steven J Murdoch, and Damon McCoy. 2016. Do you see what I
see? differential treatment of anonymous users. In Proceedings of the Symposium
on Network and Distributed System Security (NDSS). Internet Society.

[18] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Rank-
ing Hardened Against Manipulation. In Proceedings of the Symposium on Network
and Distributed System Security (NDSS). https://doi.org/10.14722/ndss.2019.23386

[19] Kirill Levchenko, Amogh Dhamdhere, Bradley Huffaker, Kc Claffy, Mark Allman,
and Vern Paxson. 2017. Packetlab: a universal measurement endpoint interface.
In Proceedings of the 2017 Internet Measurement Conference. ACM, 254–260.

[20] J. R. Mayer and J. C. Mitchell. 2012. Third-Party Web Tracking: Policy and
Technology. In Proceedings of the IEEE Symposium on Security and Privacy.

[21] Fiona Fui-Hoon Nah. 2004. A study on tolerable waiting time: how long are web
users willing to wait? Behaviour & Information Technology 23, 3 (2004), 153–163.

[22] A. Oest, Y. Safaei, A. Doupé, G. Ahn, B. Wardman, and K. Tyers. 2019. PhishFarm:
A Scalable Framework for Measuring the Effectiveness of Evasion Techniques
against Browser Phishing Blacklists. In Proceedings of the IEEE Symposium on
Security and Privacy. 1344–1361.

[23] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and
defending against third-party tracking on the web. In Proceedings of the USENIX
symposium on Networked Systems Design and Implementation (NSDI). USENIX
Association.

[24] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser Fea-
ture Usage on the Modern Web. In Proceedings of the ACM SIGCOMM conference
on Internet measurement conference (IMC). ACM.

[25] Michael Carl Tschantz, Sadia Afroz, Shaarif Sajid, Shoaib Asif Qazi, Mobin Javed,
and Vern Paxson. 2018. A bestiary of blocking: The motivations and modes
behind website unavailability. In 8th {USENIX} Workshop on Free and Open
Communications on the Internet ({FOCI} 18).

[26] Phani Vadrevu and Roberto Perdisci. 2019. What You See is NOT What You Get:
Discovering and Tracking Social Engineering Attack Campaigns. In Proceedings
of the ACM Internet Measurement Conference (IMC).

[27] Tom Van Goethem, Victor Le Pochat, and Wouter Joosen. 2019. Mobile Friendly
or Attacker Friendly? A Large-Scale Security Evaluation of Mobile-First Websites.
In Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security (Auckland, New Zealand) (Asia CCS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 206–213. https://doi.org/10.1145/3321705.3329855

[28] David Zeber, Sarah Bird, Camila Oliveira,Walter Rudametkin, Ilana Segall, Fredrik
Wollsén, and Martin Lopatka. 2020. The Representativeness of Automated Web
Crawls as a Surrogate for Human Browsing. In The Web Conference.

12

https://github.com/wspr-ncsu/reprocrawl-code-release
https://github.com/wspr-ncsu/reprocrawl-code-release
https://chromium.googlesource.com/catapult/
https://w3techs.com/technologies/history_overview/dns_server
https://w3techs.com/technologies/history_overview/dns_server
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://pptr.dev/
https://github.com/ginuerzh/gost
https://github.com/ginuerzh/gost
https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-headless-v2.html
https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-headless-v2.html
https://doi.org/10.1145/1498759.1498837
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1145/3321705.3329855

	Abstract
	1 Introduction
	2 Methodology
	2.1 Approach to Realism
	2.2 Realism Variables
	2.3 Control Constants
	2.4 Web Site Selection
	2.5 Implementation Details
	2.6 Precautions & Pilot Experiments
	2.7 Quantifying Measurement Bias

	3 Results
	3.1 Refusenik Sites
	3.2 Volume Biases in HTTP Traffic
	3.3 Content-Level Biases in JavaScript

	4 Discussion and Future Work
	4.1 Application to Future Research
	4.2 Limitations

	5 Related Work
	5.1 Generalizability
	5.2 Cloaking and Bot Detection
	5.3 Network Endpoint Discrimination

	6 Conclusion
	References

