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Abstract—We present a novel conditional Generative Adversarial
Network (cGAN) architecture that is capable of generating 3D
Computed Tomography scans in voxels from noisy and/or
pixelated approximations and with the potential to generate full
synthetic 3D scan volumes. We believe conditional cGAN to be a
tractable approach to generate 3D CT volumes, even though the
problem of generating full resolution deep fakes is presently
impractical due to GPU memory limitations. We present results
for autoencoder, denoising, and depixelating tasks which are
trained and tested on two novel COVID19 CT datasets. Our
evaluation metrics, Peak Signal to Noise ratio (PSNR) range from
12.53 - 46.46 dB, and the Structural Similarity index (SSIM)
range from 0.89 to 1.
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I. INTRODUCTION

Generative Adversarial Networks (GANs) are popular for
many medical imaging informatics tasks involving CT scans.
Yet to the best of our knowledge no GAN algorithms are
capable of generating full-sized full-resolution synthetic CT
scans from white noise. Rather, GANs for CT operate on
either individual axial slices or on small 3D regions of interest
(Rol). This is because most CNN generators require roughly
~10 GB of GPU memory in order to generate a single
512x512 axial slice. Naively scaling a GAN to generate a
coherent full resolution CT scan with 100-200 axial slices
would take two orders of magnitude more memory than is
available in present day GPU hardware, making this problem
impractical for the foreseeable future.

There are many potential use cases for generating
full-resolution CT scan images, but one notable use case is to
fabricate deep-fakes i.e. highly realistic images of non-existent
patients presenting a condition. There are many large clinical
datasets that cannot be easily shared due to privacy concerns.
If deep-fakes were possible, then realistic images could be
fabricated of patients that do not exist, thereby eliminating
privacy concerns and providing more needed data.

Coronavirus is a widespread virus that has caused a global
pandemic [2,3,8,11], and Deep learning algorithms have
shown an ability to detect pneumonia symptoms even in
patients with early stages of disease [7,13]. Yet the
performance of these algorithms is severely limited by training
data volumes of publicly available datasets [1, 9, 14 - 19].
Furthermore, recent works have shown that COVID19 images
can benefit from the introduction of synthetic GAN imagery,
even if these images are not of diagnostic quality [1, 19]. We
have IRB approval to work with 1049 CT scans for the
purposes of developing synthetic data that can be made
publicly available. If successful, our dataset would be the
largest publicly available COVID19 imaging dataset even
though none of the patients in the public version would be
actual people.

We present a conditional GAN (cGAN) approach to
improve the resolution of 3D volume blocks and demonstrate
the ability to autoencode full-resolution COVID19 CT scans,
as well as contiguously depixelate / denoise the lung region of
the image. At present the cGAN architecture can synthesize
full resolution imagery from an approximate image condition.
In future work we intend to employ this architecture iteratively
in order to fabricate full resolution CT scans from white noise.

1I. BACKGROUND AND RELATED WORK

A GAN network consists of a Generator G and a
Discriminator D. Generator G(Z) generates images from
random noise Z, whereas Discriminator D(X), estimates the
probability that an image comes from the real dataset as

opposed to generated[2]. The minimax loss equation (1) is as
follows [8],

mingmin,V(D,G) = E,[In D(X)] +E,[In(1-D(GZ)] (1)

cGAN is a conditional GAN model in when both the
Generator as well as Discriminator are conditioned on
auxiliary information Y. Y is therefore an additional input
layer, and the conditional minimax loss is as follows (2) [8],

mingmin,V (D, G) = E[ln DIX|Y)] +E,[in (1 - D(G(Z|Y)))] (2)



c¢GAN models are often image-to-image translation problems
[1, 4]. GAN models have been heavily used in medical
imaging applications [19]. But patient CT scans can have
resolution from 512x512x600 to 1024x1024x600 or larger
leading to hundreds of millions of voxel radiodensities in
Hounsfield units (HU). CNN architectures for generating a
single 512x512 slice typically require ~10GB of GPU
memory, and thus generating an entire 3D CT scan volume by
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Fig. 1. Training workflow cGAN framework including
architectural diagram

GAN is presently impractical, even though it is possible to
generate either low-resolution CT scans, or high resolution
(Regions of Interest). Mirsky et al have shown that it is
possible for an attacker using deep learning to generate
realistic nodules for injecting into 3D CT-scans or removing
nodules from 3D CT scans using a cGAN [1]. We have used a
similar approach of using 3D high resolution sub voxels as
training samples for condition GAN models. We divide full
3D CT scans into non overlapping high resolution sub voxels
and use all of them for training. Khalifa et al. presented a
fine-tuned deep transfer learning for a limited dataset by a
pneumonia chest x-ray detection based on generative
adversarial networks (GAN) at low resolution [2]. Menon et
al. have shown that GANs with mean teacher can generate
realistic fake X-rays to improve the accuracy of COVID-19
screening classification, although X-rays have far lower
memory requirements than CT-scans [6]. Shan et al
developed a deep learning based segmentation system for
assessing the COVID-19 quantitatively [12].

II1. METHODOLOGY

A. Conditional GAN models

We employ a conditional GAN (cGAN) model to generate
synthetic data from an approximation of 3D full CT scans as
subdivided into 32x32x32 voxel blocks [4][5]. The description
of cGAN is shown in equation (2) where input X are the non
overlapping subdivided 32x32x32 blocks, and condition Y can
be either the original, noisy, or pixelated voxels. For the

autoencoder, the condition is identical to the original voxels.
The condition for the noisy voxels is created by introducing
Poisson noise to the original voxels. The pixelated voxels are
created by downsampling voxels in X by half of its resolution
with a nearest neighbor filter. The pixelated condition can be
considered as a simulation of low resolution or blur input. A
random noise vector Z is also drawn from a uniform
distribution feeding to the generator initially. The
Discriminator is supplied with a condition Y, fake G(Z|Y) as
well as target X. The proposed cGAN architecture employs a
3D U-net as the Generator architecture and also includes a
pixel wise L1 loss. A training workflow diagram showing the
c¢GAN architecture is seen in Fig 1. Each of the steps in the
Fig.1. is briefly explained in the following sections.

B. Description of input datasets

We make use of 1049 de-identified CT scan Covid-19
infected cases from two novel data sources. Dataset]l has CT
49 exams of COVIDI19 infected patients each with multiple
series. We use series 3 which presents 70 to 90 slices per scan
with slice thickness ranging from 3.75mm to Smm at 512x512
resolution. Dataset2 has 1000 exams of COVID-19 infected
patients each also with 6 different series. The number of slices
ranges approximately from 20 to 300. The slice thickness
varies from 3.5mm to 7.5mm and resolution is 512x512
pixels. Due to limited computational time, we make use of 37
patients CT scans from these 2 Datasets, splitting 80% for
training (31 patients) and 20% for testing (6 patients). These
37 exams consist of ~3000 512x512 axial slices in total.

C. Preprocessing and Training

Each CT-scan image is preprocessed by a) dividing the
image into 32x32x32 voxel , b) equalization / normalization,
and c) augmentation. Dividing into voxels of 32x32x32
resolution is necessary for the Generator’s feature vectors to
reasonably fit into GPU memory. Histogram equalization and
intensity normalization convert radiodensities to a [-1, -1]
range increasing contrast of textural features. Histogram and
normalization parameters are recorded to enable results to be
converted back to original scale in postprocess. We employ
an augmentation factor of 34, by incorporating translation,
mirroring, and rotations. This yields a total training volume of
170,748 voxels (162 voxels/ scan x 31 scans x 34
augmentations) and similarly a testing volume of 33,048
voxels.

D. Training cGAN model

The cGAN model was trained for 100 epochs with a batch
size of 50 samples. We evaluate this model using two
experiments to ensure the ability of cGAN to replicate realistic
imagery. The first experiment is a deep autoencoder in which
the ¢cGAN was tasked to generate synthetic images that
replicate the original images voxel by voxel. Training of
cGAN for this experiment required 8 days and 7 hours to
complete using a 32-Core AMD with 32GB RAM and 2
Geforce 2080 Ti 11GB GPUs. Our validation accuracy
achieved 99-100% upon completion of training. In our second



experiment we performed pulmonary depixelization,
denoising, and autoencoding. To reconstruct full scans we
perform reverse preprocessing and then image-stitching to
combine the predicted voxels to a full CT scan image with
resolution of 512x512xZ where Z is the number of axial slices.

IV. EXPERIMENTAL RESULTS

We perform two sets of experiments, the first is a full size
CT autoencoder task, and the second is a comparison of the
autoencoder versus depixelator versus denoising task over the
pulmonary regions. The Autoencoder achieved accurate
results with slices presented in Fig 2. The cGAN generated
(Fig 2.c) CT scans and original contrast enhanced (Fig 2.b) CT
scans show very little difference as seen in the subtraction
image (Fig 2.d). There is some noise inside the lung showing
minor differences. Most of the noticeable differences are in
the soft tissue and bone areas outside of the lung. Most
importantly there are no obvious artifacts as seen in the cGAN
generated images.

Figures 3, 4, and 5 show the resulting images of a 32x32
region for the autoencoder, denoising, and depixelating tasks
respectively. We see in Fig 3 that the autoencoder produces
very realistic images, although there is reduced contrast over a
bone feature in (Fig 3 mid) and minor blurring of textural
details in the lung region (Fig 3 right). Fig 4 shows that the
denoising task is able to improve the image quality and reduce
noise although some blurring of contrast is also apparent. The
depixelating results (Fig 5) show that the generated images
improve textural detail over the pixelated condition.
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Fig. 2. Original vs cGAN generated and its differences.
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Fig 3. Close up comparison of condition (top) generated (mid) and original
(bottom) 32x32 regions for Autoencoder task.
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Fig 4. Close up comparison of condition (top) generated (mid) and original
(bottom) 32x32 regions for Denoising task.
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Fig 5. Close up comparison of condition (top) generated (mid) and original
(bottom) 32x32 regions for Depixelating task.

A. Quantitative Evaluation Metrics

We employ the Peak signal-to-noise ratio (PSNR) and
Structural Similarity Index (SSIM) as evaluation metrics [10]
with equations as follows,

PSNR = 10 log,( sz ) ®

(2uepy + €1)(204y + c2)
(2 +py +a)(of +oy+c2)

SSIM =

TABLE I PsSNR AND SSIM FOR AUTOENCODER TASK

PATIEN PSNR (units = dB) SSIM
T
1 31.02 0.91
2 31.92 0.97
3 15.08 0.95
4 24.84 0.97
5 31.53 0.98
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Table 1 shows the PSNR and SSIM performance for the
cGAN autoencoder task. SSIM is a metric that estimates the
perceived quality of images and videos by measuring the
similarity between the original and the recovered images [10].
The range of SSIM is -1 to +1 where +1 occurs only when the
two images are identical [21]. The peak signal-to-noise ratio
(PSNR) although imperfect is designed to approximate human
perception of the image reconstruction quality [10]. The PSNR
values vary from 30-50 db for a 8-bit data representation and
60-80 db for a 16-bit data representation [10].

In Table I, the PSNR and SSIM are calculated by averaging
over all slices of the full CT image generated from cGAN vs
original full CT images. PSNR ranged from 12.53 to 46.46 dB
for patients 1-6, and SSIM ranged from 0.89 to 0.97. The
autoencoder achieves above 0.95 SSIM over 4 of 6 patients,
and achieves above 31 dB PSNR in 3 of the 6 patients
observed. These results show that the cGAN achieves good
performance in preserving image quality although there is
some variation with patients 3 and 6 in a lower range of 12.53
- 15.08 dB. This variance can be explained because we
observe that the autoencoder occasionally produces artifact
blocks which can lead to increased variance in PSNR on a
patient basis when dealing with differences in patients CT
scans (slice thickness, contrast levels and acquired conditions).
For example, we observed CT scans with inclined images.

TaBLE I PSNR AND SSIM FOR AUTOENCODER DENOISING AND DEPIXELATING
OVER PULMONARY REGION

ConditionGAN PSNR (Units= dB) SSIM
c¢GAN Autoencoder 46.46 1
c¢GAN Denoised 46.34 1
poisson noise Image 27.29 0.99
c¢GAN Depixelated 37.26 0.99
pixelated Image 39.5 0.99

Table II shows a comparison of 3 tasks (Autoencoder,
Denoising, and Depixelating) using the same set of 31 patients
for training 6 patients for testing but limited to 4 voxel
(32x32x32 each) over pulmonary area in order to reduce the
computation burden. Table II shows that our cGAN can
predict a high PSNR for denoising of 46.34 dB which is
comparable to the autoencoder task with PSNR of 46.46 dB.
For comparison, the image with Poisson noise added has much
lower PSNR of 27.29 dB than the cGAN Denoised of 46.34
dB. We observe however that the cGAN depixelated image
achieves a slightly lower PSNR of 37.26 dB as compared with
the pixelated image of 39.5 dB.

B.  Qualitative Evaluation Metrics

Three human volunteers were asked to identify 20 pairs of
Real/Generated image slices from the Autoencoder task at the
full size of 512x512 pixels. The generated images were
identified 50% correctly which is indistinguishable from
random guessing. Of the images identified correctly the most

noticeable artifacts were due to very small size differences in
structures outside of the lung region. Contrast differences were
also observed even though explicit normalization was
removed. Nevertheless, the cGAN generated images were
visually observed to reproduce variations in slice thickness,
and reconstruction kernels without apparent artifacts in the
lung area.

V. CONCLUSION

We present a novel conditional Generative Adversarial
Network (cGAN) architecture that is capable of generating 3D
Computed Tomography scan blocks from noisy and/or
pixelated approximations and with the potential to generate
full synthetic 3D scan volumes in future work. Generated
image quality evaluation shows Peak Signal to Noise Ratio
(PSNR) ranging from 15.08 - 46.46 dB, and the Structural
SIMilarity index (SSIM) range from 0.89 to 1 for different
patients' whole images and over lung areas. Our model is
trained and tested using two novel COVID19 datasets that
combined consist of 1049 COVID-19 positive cases.

VI. FuturRE WoORK

We show that it is possible for GANs to refine full
resolution CT scan images based on conditional
approximations, but ongoing future work is necessary before
full-resolution synthetic 3D CT scan volumes can be
generated from random noise. We propose an iterative
upsampling approach of first generating a low resolution
(pixelated) image with GAN and iterative depixelating the
image with cGAN until we arrive at a full resolution 3D scan
volume. We anticipate that this approach will enable the first
full resolution CT scan volumes to be generated synthetically.
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