
1

Word-Level Multi-Fix Rectifiability of Finite Field
Arithmetic Circuits

Vikas Rao1, Irina Ilioaea2, Haden Ondricek1, Priyank Kalla1, and Florian Enescu3
1Electrical & Computer Engineering, University of Utah

2Department of Mathematics, Louisiana State University Shreveport
3Mathematics & Statistics, Georgia State University

Abstract—Deciding whether a faulty circuit can be rectified at
a given set of nets to match its intended specification constitutes a
critical problem in post-verification debugging and rectification.
Contemporary approaches which utilize Boolean SAT and Craig
Interpolation techniques are infeasible in proving the rectifiability
of arithmetic circuits. This paper presents a novel approach
using symbolic computer algebra to prove the rectifiability of
a faulty finite field arithmetic circuit at a given set of m
nets. Our approach uses a word-level polynomial model and an
application of a Gröbner basis decision procedure. The finite
fields corresponding to the datapath word-length (n) and the
patch word-length (m) may not be compatible. We make new
mathematical and algorithmic contributions which resolve this
disparity by modeling the problem in an appropriate composite
field. Experiments demonstrate the efficacy of our word-level
approach to ascertain multi-fix rectifiability compared to con-
temporary approaches.

Index Terms—Debug, Rectification, Arithmetic Circuits,
Gröbner Basis, Finite Fields

I. INTRODUCTION

Formal verification checks whether a circuit implementa-
tion (Impl) conforms to its specification (Spec). In cases
where verification detects the presence of bugs, debugging and
rectification are performed. Rectification entails identifying
candidate nets (targets) and determining whether the circuit
can be patched at these targets. If the targets admit recti-
fication, corresponding rectification functions are computed
which make the Impl conform to its Spec. This problem
manifests itself in engineering change orders (ECO) – where
a current Impl needs to be rectified (preferably, with local
modifications) to match the ECO-modified Spec. As a result,
the problem has witnessed renewed interest by the logic
synthesis, testing and verification communities [1]–[3], etc.
These approaches are successful in rectifying random-logic
circuits which are employed in control-dominated applications;
However, they are infeasible for the rectification of arithmetic
circuits.

This paper addresses the problem of ascertaining the rec-
tifiability of buggy finite field arithmetic circuits at a given
set of m targets against a polynomial function (Spec) over
finite fields. Such circuits find application in cryptography and
error-control codes. As arithmetic bugs may lead to security
vulnerabilities [4], their rectification is of utmost importance.
Our approach models the set of m targets as a bit-vector,
enabling word-level reasoning, and utilizes techniques from
Symbolic Computer Algebra (SCA) to determine rectifiability.

The subsequent problem of computing rectification functions
for these m targets is beyond the scope of this paper. Word-
level rectifiability checking for arithmetic circuits is a chal-
lenging problem in its own right, and this manuscript covers
its various facets.

Prior Work: Recent works attempt rectification using SCA
techniques for finite field circuits [5], [6], and for integer arith-
metic circuits [7], [8]. However, these algebraic approaches
address only single-fix rectification – where rectification is
attempted only at a single net. This is too restrictive, and
depending on the nature of the bugs, the circuit may not
admit single-fix rectification. In such cases, the correction has
to be attempted at multiple targets. This is called multi-fix
rectification in literature. The focus of this paper is m-target
multi-fix rectifiability (MFR) of finite field circuits.

Contemporary approaches formulate the rectifiability check-
ing problem inherently as part of a rectification procedure.
They use quantified Boolean formula solving, Craig Interpo-
lation, or iterative SAT solving [1], [2], [9]. The approach [1]
considers multiple targets simultaneously and formulates the
MFR check as a QBF. The QBF is then translated to a
SAT problem and solved iteratively using a cofactor reduction
technique. More recent techniques use this QBF formulation
coupled with heuristics that improve resource awareness in
patch generation [9], and the selection of effective targets [2].
The recent symbolic sampling approach [3] uses simulation to
identify targets and ascertain rectifiability. However, models
based on Boolean functions and SAT solvers are infeasible
to perform rectifiability checking on arithmetic circuits. Our
experiments show that contemporary SAT solvers fail to rectify
finite field circuits beyond 16-bit operands.

Problem Statement: We are given the following: i) as the
Spec, a multivariate polynomial f with coefficients in a finite
field of 2n elements (denoted F2n), for a given n ∈ Z≥1; ii)
a primitive polynomial Pn(X) of degree n with coefficients
in {0, 1} to construct F2n ; iii) an incorrect Impl circuit C,
with no assumptions on the number or the type of bugs
present in C; and iv) a set of m targets from C, provided
beforehand or selected using the heuristics proposed in [2],
[3], [9]. The circuit may or may not be rectifiable at these
m targets. The objective is to check whether the given set of
m targets collectively admit multi-fix rectification. This MFR-
check ascertains whether rectification functions exist that can
patch C at these m-targets.

Approach: The given Impl C, with operand word-length

2

n, is modeled as a polynomial ideal in the multivariate poly-
nomial ring with coefficients in the finite field F2n , denoted
F2n [x1, . . . , xd]. The m targets are collected as an m-bit-
vector word W , which evaluates in F2m . For the rectification
check, the unknown rectification function (U) is modeled as
a (word-level) polynomial function in primary inputs (i.e.
W = U(XPI)), which maps n-bit primary inputs XPI to
an m-bit word W : F|XPI |

2 → F2m . The rectifiability check is
then formulated with algebraic geometry over finite fields and
solved using Gröbner basis (GB) techniques [10].

Contributions: Our word-level algebraic approach enables
efficient MFR checking of finite field arithmetic circuits. This
word-level formulation poses new mathematical challenges:
the field F2m might not be compatible with the field F2n ,
which prevents us from performing algebraic operations in
a unified domain. We overcome this problem by computing
the smallest single field F2k containing both F2m ,F2n . This
requires the computation of a specific primitive polynomial
Pk(X) for F2k . We present an approach to compute Pk(X)
using polynomial factorization and composite fields. We uti-
lize the unified framework and derive an efficient GB-based
word-level decision procedure for m-target MFR checking.
Experiments conducted on various finite field benchmarks
with different operand and patch word-lengths, n and m,
respectively, corroborate the efficacy of our approach.

Paper Organization: The following section covers prelimi-
nary background. Section III reviews the polynomial modeling
concepts. Section IV describes the setup of a unified computa-
tional framework for MFR checking. Word-level rectification
check is described in Section V. Experimental results are
described in Section VI, and Section VII concludes the paper.

II. PRELIMINARIES: NOTATION AND BACKGROUND

This section reviews some relevant concepts from finite
fields, symbolic computer algebra and associated algorithms
that are utilized in this paper.

Finite Field and Primitive Polynomial: Let F2 = {0, 1}
be the field of 2 elements, and let Fq = F2n denote the
finite field of q = 2n elements, for a given n. F2n is
the n-dimensional extension of F2, and it is constructed as
F2n = F2[X] (mod Pn(X)). Here Pn(X) ∈ F2[X] is a
primitive polynomial, i.e. a degree-n polynomial, irreducible
in F2, with a root γ (Pn(γ) = 0). Consequently, γ is
called a primitive element (PE) of F2n and it generates the
cyclic group: F∗2n = {1 = γ2

n−1, γ, γ2, . . . , γ2
n−2}. Note:

∀γ ∈ F2n , γ
2n−1 = 1, thus γ2

n

= γ.
Minimal Polynomial of γ: If γ ∈ F2n is a root of Pn(X),

then γ2
l

, l ≥ 0, is also a root of Pn(X). Elements γ2
l

are
conjugates of each other. Let e > 0 be the smallest integer
such that γ2

e

= γ. Then Pn(X) =
∏i=e−1
i=0 (X+γ2

i

) is called
the minimal polynomial of γ. If γ is also a PE of F2n , then the
minimal polynomial of γ is also a primitive polynomial, and
has degree = n. Hence, F2n is also called the γ-extension of
F2, also denoted as F2(γ). An element A ∈ F2n can be written
as A = a0+a1·γ+· · ·+an−1·γn−1, where a0, . . . , an−1 ∈ F2.
In Fq , the addition (′′+′′) and multiplication (′′·′′) operations
are performed in the base field F2 and reduced modulo the

corresponding primitive polynomial Pn(X). For n, k ∈ Z>0, if
n divides k (n | k), then F2n ⊂ F2k . Thus, F2 ⊂ F2k , ∀k > 1.
The fields F2n have characteristic 2, and therefore −1 = +1
in F2n .

Example II.1. Consider the fields F24 and F22 . Let F24 be
constructed as F2[X] (mod P4(X) = X4 + X3 + 1), with
P4(γ) = 0. Let F22 = F2[X] (mod P2(X) = X2 +X + 1),
with P2(α) = 0. Since 2 | 4, F22 ⊂ F24 . We demonstrate this
field containment in terms of their PEs.

Compute γ2
l

for l > 0: for l = 1, γ2
l

= γ2; l = 2, γ2
l

=
γ4; l = 3, γ2

l

= γ8; l = 4, γ2
l

= γ16 = γ. Since γ16 = γ (the
elements repeat), we have that {γ, γ2, γ4, γ8} are conjugates.
Thus the minimal polynomial of γ can be reconstructed as
(X + γ)(X + γ2)(X + γ4)(X + γ8), which simplifies to
X4 + X3 + 1 = P4(X) itself. Similarly, {α, α2} ∈ F22 are
conjugates, and (X + α)(X + α2) = P2(X).

Now consider the element γ5 ∈ F24 . Then γ10 is its only
conjugate, and (X+γ5)(X+γ10) = X2+X+1 = P22(X).
In other words, {0, 1, α = γ5, α2 = γ10} are the 4 elements
of F22 , also contained in F24 ; implying that F22 ⊂ F24 .

Let R = Fq[x1, . . . , xd] be the polynomial ring in variables
x1, . . . , xd with coefficients in Fq . A polynomial f ∈ R is
written as a finite sum of terms f = c1M1+· · ·+cpMp, where
ci’s are the coefficients and Mi’s the monomials, and ciMi’s
terms of f . To systematically manipulate the polynomials, a
term order > is imposed on all polynomials of R, such that
subject to >, c1M1 > c2M2 > · · · > cpMp. Then lt(f) =
c1M1 denotes the leading term of f .

Polynomial Reduction: Let F = {f1, . . . , fs} be a set of
polynomials in R and f ∈ R be another polynomial. Then
f

F−→+ r denotes the reduction of f modulo F resulting in
remainder r, which is obtained by iteratively canceling terms
in f by lt(fj), fj ∈ F , via polynomial division (cf. Alg.
1.5.1 [10]). The remainder r is said to be reduced such that
no term in r is divisible by the leading term of any fj ∈ F .

Ideals: A set of polynomials F = {f1, . . . , fs} from R,
generates the ideal J = 〈F 〉 ⊆ R, defined as J = 〈f1, . . . ,
fs〉 = {h1 · f1 + · · ·+ hs · fs : h1, . . . , hs ∈ R}. Polynomials
f1, . . . , fs form the basis or generators of ideal J .

Varieties: Let a = (a1, . . . , ad) ∈ Fdq be a point in the affine
space, and f a polynomial in R. If f(a) = 0, we say that f
vanishes on a. We have to analyze the set of all common
zeros of the polynomials of F = {f1, . . . , fs} that lie within
the field Fq – i.e. the set of all points a ∈ Fdq such that
f1(a) = · · · = fs(a) = 0. This zero set is called the variety,
which depends not just on the given set of polynomials in
F , but rather on the ideal generated by them. We denote the
variety as V (J), where: V (J) = VFq

(J) = VFq
(f1, . . . , fs) =

{a ∈ Fdq : ∀f ∈ J, f(a) = 0}.
Given two ideals J1 = 〈f1, . . . , fs〉, J2 = 〈h1, . . . , hr〉, we

denote their sum J1 + J2 = 〈f1, . . . , fs, h1 . . . , hr〉, and their
product J1 · J2 = 〈fi · hj : 1 ≤ i ≤ s, 1 ≤ j ≤ r〉. Ideals and
varieties are dual concepts: V (J1+J2) = V (J1)∩V (J2), and
V (J1 · J2) = V (J1) ∪ V (J2).

Gröbner Bases: An ideal J may have many different sets of
generators/bases. A Gröbner basis (GB) is one such generating

3

d

d

d

d 9

0+ 1

...+ m-1

(0)

m-1XPI

d

d

d

d

d

5

e

e e

e

d5

2

3
4

r
0

1r

rr rr

rr
rr

24

rr

e

e

e

d5

2r 01r rr rr

e

24 22
13

f
8

15

14

19

(a) (b)

x

7

8

7

16

17

16

19

17

d

r
r r

r

r

11

12

10

18

23

18

10

7

r

8

7

d

d

26

27

d

d
11

5

f
8

r

r 12

1322

20

28

29

30

20

23

d

d

r

25

28

25

21

15

14

21

β+...
β (1)

�+

Fig. 1: (a) An incorrect implementation of a circuit C: a 3-bit finite field multiplier (n=3) with bugs introduced at net r3 (AND
gate replaced with an XOR gate and one of the inputs misconnected to d4 instead of b2) and net rr3 (AND gate replaced with
an XOR gate). (b) The patch function is modeled as a 2-bit-vector word (m=2), fW :W + r3 + β · rr3. Here, the rectification
targets are W = {w0, w1}, where w0 = r3, w1 = rr3).

set G = {g1, . . . , gt} with special properties that alow to solve
many polynomial decision problems.

Definition II.1. [Gröbner Basis] [10]: For a monomial or-
dering >, a set of non-zero polynomials G = {g1, · · · , gt}
contained in an ideal J , is called a GB of J ⇐⇒ ∀f ∈ J ,
f

g1,..,gt−−−−→+ 0.

The GB G for an ideal J can be computed using the
Buchberger’s algorithm (cf. Alg. 1.7.1 in [10]), which takes as
input a set of polynomials F = {f1, . . . , fs} and computes its
GB G = {g1, . . . , gt}, such that J = 〈F 〉 = 〈G〉. Moreover,
the polynomials of F and G have the same solution-set, i.e.
V (J) = V (F) = V (G).

Ideal Membership Test: The above definition inherently
provides a decision procedure to test for membership of a
polynomial in an ideal: f is a member of an ideal J if and

only if f
GB(J)−−−−→+ 0. When f /∈ J , then division by GB(J)

results in a non-zero remainder r that is unique/canonical.
For any element ϕ ∈ Fq , ϕq = ϕ holds. Therefore, the

polynomial xq−x vanishes everywhere in Fq , and we call it a
vanishing polynomial. We denote by F0 = {xq1−x1, . . . , x

q
d−

xd} the set of all vanishing polynomials in R, and J0 = 〈F0〉
as the ideal of vanishing polynomials. Further, VFq

(J0) = Fdq ,
and for any ideal J , VFq

(J) = VFq
(J + J0).

III. POLYNOMIAL MODELING OF THE CIRCUIT

A multivariate polynomial f over F2n is given as a specifi-
cation, where n is the operand word-length (datapath size). A

corresponding combinational circuit C is given as its imple-
mentation. The function implemented by C is modeled with a
system of polynomials over R = F2n [Z,A, x1, . . . , xd]. Here
{x1, . . . , xd} correspond to all the bit-level variables (nets) in
the circuit, and Z,A the output and input words, respectively.
The field F2n is constructed as F2n = F2[X] (mod Pn(X)),
where Pn(X) is the given primitive polynomial of degree
n with γ as a root (PE), i.e. Pn(γ) = 0. As C comprises
Boolean logic gates, the gates are represented by polynomials
(mod 2), i.e. over F2(⊂ F2n), as the B 7→ F2 mapping:

z = ¬a 7→ z + a+ 1

z = a ∧ b 7→ z + a · b
z = a ∨ b 7→ z + a+ b+ a · b
z = a⊕ b 7→ z + a+ b

(1)

Similarly, the primary output and input bits zi, ai : i =
0, . . . , n − 1 can be correlated to the corresponding operand
words Z,A as follows:

f1 : Z + z0 + γ · z1 + · · ·+ γn−1 · zn−1
f2 : A+ a0 + γ · a1 + · · ·+ γn−1 · an−1

(2)

Thus, the circuit is represented by a set of polynomials F =
{f1, . . . , fs} ⊂ R. Let J = 〈F 〉 be the ideal generated by this
set. Let F0 = {x2i−xi, Y 2n−Y : xi ∈ bit-level variables, Y ∈
word-level variables} be the set of all vanishing polynomials,
and J0 = 〈F0〉 be the corresponding ideal of all bit- and word-
level vanishing polynomials. Then the ideal J+J0 = 〈F ∪F0〉
models the functionality of Impl C.

4

In the manuscript, we use the circuit of Fig. 1 as a running
example to demonstrate our algebraic approach for MFR.

Example III.1. The circuit C in Fig. 1 (a) is an incorrect
implementation of a 3-bit (n=3) Mastrovito multiplier. The
field F23 is constructed using P3(X) = X3 +X + 1 and let
γ be a PE of F23 , s.t. P3(γ) = 0. The Spec polynomial is
f : Z+A ·B, where Z is the output word, and A,B the input
words. Impose a lex term order with variable order:
{Z} > {A > B} > {z0 > z1 > z2} > · · · > {d1 > d2 >

d3 > r0 > d5 > rr1} > {r1 > rr3 > rr2} > {r2 > r3 >
rr4} > {r4 > d4} > {a0 > a1 > a2 > b0 > b1 > b2}.

In this term order, the bit-level variables are ordered based
on the topology of the circuit from POs to PIs, i.e. reverse
topologically. Using this term order, the following polynomials
represent C:

f1 : Z + z0 + γ · z1 + γ2 · z2; f22 : rr1 + rr3 + rr2;

f2 : A+ a0 + γ · a1 + γ2 · a2; f23 : r1 + r2 + r3;

f3 : B + b0 + γ · b1 + γ2 · b2; f26 : r3 + r4 + d4;

f4 : z0 + d0 + e1; f27 : rr3 + rr4 + b2;

f5 : z1 + f0 + rr0; . . .

. . . f30 : rr4 + a2 + b2 + a2b2;

Then F = {f1, . . . , f30}, F0 = {a20−a0, . . . , z22 − z2, A8−
A,B8−B,Z8−Z}. So, ideal J + J0 = 〈F ∪F0〉 models C.

Since F2 ⊂ F2n , the polynomials in Eqn. (1) can also
be interpreted as polynomials over F2n . The advantage of
working over F2n is that we can represent and manipulate both
the bit-level and n-bit word-level polynomials in one unified
domain. However, we are given a patch word-length m which
is modeled as an m-bit-vector word over field F2m . Since the
field F2m might not be compatible with the field F2n , i.e. m
may not divide n, not every m-bit-vector can be construed
as an element in F2n . To overcome this incompatibility,
the following section presents techniques which enable the
modeling of polynomial operations in a unified domain.

IV. A UNIFIED FRAMEWORK FOR MFR

Word-level Rectification Patch: Given a set of m-targets, let
W = {w0, w1, . . . , wm−1} denote the m-bit vector word, over
which MFR check is to be performed. Here, w0, . . . , wm−1 ∈
{x1, . . . , xd} are internal nets of C. A rectification patch
corresponds to a function mapping fW : F|XPI |

2 → F2m , and
is represented as a polynomial function U(XPI) ∈ F2m [XPI].
Here, U is an unknown polynomial with variables from
XPI , and coefficients from F2m . MFR then implies that,
algebraically, W = U(XPI) rectifies the circuit.

Such a setup interprets U as a polynomial function which
evaluates to values in the field F2m . To construct F2m , we
select a degree-m primitive polynomial Pm(X) ∈ F2[X],
with β as a root (Pm(β) = 0), such that F2m = F2[X]
(mod Pm(X)). Note that any degree-m primitive polynomial
(Pm(X)) can be selected. This implies that β is a PE of
F2m . Thus, the rectification patch polynomial function can be
represented as: fW :W + U(XPI) =W +

∑m−1
i=0 βiwi.

Composite Field Framework: The circuit C is modeled
over F2n and the rectification patch is modeled over F2m .
However, the Gröbner basis computations for MFR can only
be performed over a ring with coefficients from a single field.
We select the field F2k of 2k elements, where k is the least
common multiple of m and n (k = LCM(m,n)). Thus F2k

corresponds to the smallest field containing both F2m and F2n .
To construct F2k , we must now identify a degree-k primitive

polynomial Pk(X) ∈ F2[X], and a corresponding primitive
element α such that Pk(α) = 0. While there may exist many
degree-k primitive polynomials, the selected Pk(X) needs to
conform to specific conditions imposed by the given Pn(X),
and the selected Pm(X).

Given the primitive elements β, γ of the fields F2m ,F2n ,
respectively, let α be a PE of F2k , such that F2k ⊇ F2m ,F2n .
For the desired unified computational framework, we represent
β, γ in terms of α. As α ∈ F2k , α

2k−1 = 1. Similarly, β ∈
F2m implies that β2m−1 = 1, and γ ∈ F2n makes γ2

n−1 = 1.
Equating β2m−1 = γ2

n−1 = α2k−1 = 1, we obtain:

β = α(2k−1)/(2m−1) = αµ

γ = α(2k−1)/(2n−1) = αλ
(3)

With this setup, we show that the desired primitive polyno-
mial Pk(X) for F2(α) exists as a degree-k common factor
of Pn(Xλ) and Pm(Xµ), and it can be found by performing
univariate polynomial factorizations (UPFs) of Pn(Xλ) and
Pm(Xµ) in the base field F2[X]. Efficient algorithms to
perform UPFs in finite fields are well-known [11], which can
be employed for this purpose.

Theorem IV.1. Given primitive polynomials Pn(X), Pm(X)
∈ F2[X] of degrees n,m, respectively, along with Pn(γ) =
Pm(β) = 0. Let k = LCM(m,n) and α be a PE of F2k ,
such that β = αµ and γ = αλ, where µ = (2k − 1)/(2m − 1)
and λ = (2k − 1)/(2n − 1). Perform UPF of Pn(Xλ) and
Pm(Xµ) in F2[X]. Then there exists a polynomial Pk(X) ∈
F2[X] as a common factor of Pm(Xµ) and Pn(Xλ), such that
Pk(X) is a degree-k primitive polynomial with Pk(α) = 0.

Proof. Since α is given as a PE of F2k , the minimal poly-
nomial of α is a primitive polynomial. Denote it as Pk(X).
Then Pk(α) = 0, i.e. α is a root of Pk(X). However,
Pm(β) = 0 =⇒ Pm(αµ) = 0. So Pm(Xµ) also has
α as a root. This implies that Pk(X) divides Pm(Xµ):
Pk(X) | Pm(Xµ). Similarly, Pk(X) | Pn(Xλ). So Pk(X)
is a common factor of both Pm(Xµ) and Pn(X

λ). Since
Pm(Xµ), Pn(X

λ) ∈ F2[X], and their UPFs are also per-
formed in F2[X], Pk(X) ∈ F2[X]. Moreover, as α is a
PE of F2k , and Pk(X) is the minimal polynomial of α, we
have that Pk(X) is a primitive polynomial as F2k = F2(α).
Furthermore, by definition, as the minimal polynomial of α,
Pk(X) has degree = k. This completes the proof.

Example IV.1. Continuing with our rectification example of
Fig. 1, assume that we are given m = 2 targets: w0 = r3,
and w1 = rr3. The multi-fix patch is modeled as a 2-bit
operand over F22 = F2[X] (mod P2(X) = X2 + X + 1)
with P2(β) = 0. It is given that the 3-bit circuit (n = 3) is

5

designed over F23 = F2[X] (mod P3(X) = X3 +X + 1). With
k = LCM(m,n) = 6, P6(X) is computed as follows:

Using Eqn. (3), we have γ = α9, β = α21. Perform UPFs:
• P3(X

9)=(X9)3+(X9)+1=(X6+X5+X2+X+1)(X6+X5+1)

(X6+X4+X3+X+1)(X6+X4+X2+X+1)(X3+X+1);

• P2(X
21)=(X21)2+(X21)+1=(X6+X5+X2+X+1)

(X6+X5+1)(X6+X4+X3+X+1)(X6+X5+X3+X2+1)

(X6+X5+X4+X+1)(X6+X+1)(X6+X3+1);

Among the degree-6 common factors of P3(X
9) and P2(X

21),
X6+X5+X2+X+1 is omitted since it is non-primitive. We
choose P6(X)=X6+X5+1 as the required Pk(X).

Note that if we (incorrectly) choose P6(X)=X6+X3+1, then
it implies that for its root α, we have:

α6 + α3 + 1 = 0

(α3)(α6 + α3 + 1) = 0 (multiply by α3)

α9 + α6 + α3 = 0

γ + 1 = 0 (4)

as α9 = γ and (α6 + α3) = 1. However, γ 6= 1, as γ is a
PE of F2n . Therefore, selecting Pk(X) that does not conform
to Thm. IV.1 would lead to erroneous results.

V. WORD-LEVEL RECTIFICATION CHECK

The m-bit target word W is interpreted as an element in
F2m , such that W = w0+β ·w1+ · · ·+βm−1 ·wm−1, where
β is a PE of F2m . As w0, . . . , wm−1 are bit-level variables,
we first represent each wi as a polynomial in terms of the
word W , and then substitute their word-level expressions in
generators of the ideal J + J0.

Lemma V.1 (From [12]). Let θ1, . . . , θt ∈ F2m . Then (θ1 +
θ2 + · · ·+ θt)

2i = θ2
i

1 + θ2
i

2 + · · ·+ θ2
i

t , for i ≥ 1.

By virtue of Lemma V.1 and using the relation W =∑m−1
i=0 βi · wi, we compute W 2j , 0 ≤ j < m:

W = w0 + · · ·+ βm−1 · wm−1
W 2 = w2

0 + · · ·+ β2(m−1) · w2
m−1

W 2 = w0 + · · ·+ β2(m−1) · wm−1 (w2
i = wi)

. . .

W 2m−1

= w0 + · · ·+ β2m−1(m−1) · wm−1

(5)

Considering w0, . . . , wm−1 as m unknowns, and W and
β as constants, we solve (using Gaussian elimination) the m
linear equations of Eqn. (5) to obtain each wi as a polynomial
function in W,β: wi = Fi(W,β). Each occurrence of wi in
the generators of J + J0 can then be replaced with Fi(W,β).

Rectification setup: Using the aforementioned concepts, the
rectification check is setup in F2k as follows:

1) Setup the polynomial ring as: R′ = F2k [x1, .., xd, Z,A
,W], by including the variable W , and constructing F2k

using Pk(X) (From Thm. IV.1), with Pk(α) = 0.
2) Term order: Derive a variable order on the nets of C

such that each variable corresponding to the output of
a gate appears earlier (lower index) than its immediate
inputs. Moreover, include the word-level patch variable
W in the variable order such that W is placed before the

target net wi which has the lowest index. Using such a
variable order, impose a lex order on the monomials. We
call the resulting term order the Word-level Rectification
Term Order (WRTO) >R.

3) Correspondingly update the set of polynomials F (de-
scribing the logic gates of C) to F ′ as follows: i) Begin
by setting F ′ = F . Remove from F ′ the polynomials
with wi’s as leading terms. ii) Substitute for wi’s the
word-level polynomials Fi(W,β) as derived from Eqn.
(5). iii) Add the polynomial fW : W +

∑m−1
i=0 βi · wi

to F ′. iv) Substitute β = αµ, γ = αλ for the constants
(Eqn. (3)). Denote ideal J ′ = 〈F ′〉 ⊂ R′.

4) Update the set of vanishing polynomials F0 to F ′0 to in-
clude the vanishing polynomial W 2m −W . This restricts
W to take values from F2m ⊆ F2k . Let J ′0 = 〈F ′0〉.

The rectification check is then formulated by operating on
the ideal J ′ + J ′0 = 〈F ′ ∪ F ′0〉 ⊆ R′.

Example V.1. Continuing with the running example of Fig.
1(b), let the target nets be W = {r3, rr3}, represented by the
polynomial fW : W + r3 + β · rr3. We begin with the set
F ′ = F , and derive WRTO to be lex with variable order:
{Z} > {A > B} > {z0 > z1 > z2} > · · · > {d1 > d2 >

d3 > r0 > d5 > rr1} > {r1} > {W} > {rr3 > rr2} >
{r2 > r3 > rr4} > {r4 > d4} > {a0 > a1 > a2 > b0 >
b1 > b2}.

The polynomials f26, f27 are removed from F ′, as they
correspond to the target net. Polynomials f22, f23 are updated
to f ′22, f

′
23 to represent rr3, r3 in terms of W . We use Eqn. (5)

to represent these bit-level targets in terms of W : rr3 =
W 2 + W , and r3 = βW 2 + β2W . These polynomials are
updated as given below:

f ′22 : rr1 + (W 2 +W) + rr2

f ′23 : r1 + r2 + (βW 2 + β2W)

fW :W + r3 + β · rr3
β = α21 and γ = α9

F ′ = {f1, . . . , f21, f ′22, f ′23, fW , . . . , f30} − {f26, f27}

We now state the multi-fix rectification theorem that checks
for the existence of W = U(XPI) as a MFR function.

Theorem V.1. [Multi-fix Rectification Theorem] Given the
specification polynomial f , and the implementation C rep-
resented using the ideal J ′ = 〈F ′〉 ⊂ R′, where F ′ =

{f1, . . . ,fW :W +
∑∑∑m−1

i=0 βi ·wi, . . . , fs}, and J ′0 = 〈F ′0〉
is the corresponding ideal of vanishing polynomials in R′.
Impose WRTO >R on R′. Construct the following ideals:
• J ′

l = 〈F ′
l 〉 = 〈f1, . . . , f ′

W = W + δ[l], . . . , fs〉, 1 ≤ l ≤ 2m,
where F ′l is obtained from F ′ by replacing fW ∈ F ′

with f ′W :W + δ[l], 1 ≤ l ≤ 2m, and (δ[1], . . . , δ[2m]) =
(0, 1, β, . . . , β2m−2).

Reduce f by F ′l ∪ F ′0 to obtain the remainders reml:

f
F ′l∪F

′
0−−−−→+ reml, for 1 ≤ l ≤ 2m. Then, there exists a

polynomial function U(XPI) : F|XPI |
2 → F2m , which, when

implemented at the target W , rectifies C to match f if and

only if
2m⋃
l=1

V (reml) = F|XPI |
2 .

6

TABLE I: Time is in seconds; I = Index, n = Datapath Size, m = target word size, k = composite field size (degree of
Pk(X)), AM = Maximum resident memory utilization in Mega Bytes, #G = Number of gates ×103, #BO = Number of faulty
outputs, PBS = Required time for PolyBori setup (ring declaration/poly collection/spec collection), VMS = Required time
for verification, polynomial factorization and computing Pk(X), and MFR setup, RC = Required time for MFR check, TE =
Required time for total execution

Mastrovito Montgomery Point Addition
I n m k AM #G #BO PBS VMS RC TE #G #BO PBS VMS RC TE #G #BO PBS VMS RC TE
1 16 5 80 100 0.8 6 0.04 0.06 0.12 0.22 0.9 16 0.04 0.56 35.6 36 0.9 7 0.06 0.11 1.73 1.9
2 32 5 160 120 2.8 8 0.13 0.12 0.4 0.65 2.8 32 0.13 0.57 27.6 28.3 2.9 13 0.18 0.8 134 135
3 64 3 192 160 11.2 5 0.57 0.45 227 228 9.6 47 0.52 0.32 1.79 2.63 10.6 64 0.84 0.56 58.1 59.5
4 96 2 96 240 24.5 5 1.47 0.26 0.83 2.56 21 96 1.36 1.27 13.3 16 24.8 96 2.46 0.64 14.9 18
5 128 2 128 370 43.2 5 3.23 0.5 2.03 5.76 35.8 128 2.8 1.4 64.2 68.4 43.2 128 6.45 1.55 73 81
6 163 5 815 550 69.8 6 6.04 3.36 11.9 21.3 57.5 128 5.2 6.8 262 274 71.6 22 15.7 4.7 15 35.4
7 233 2 466 750 119 3 13 1.2 0.01 14.2 112 233 11.5 3.5 360 375 122 233 19.2 2.15 0.15 21.5
8 283 2 566 1300 190 2 38 4.2 0.1 42.3 171 283 35 11 1503 1549 208 4 80.4 6.1 0.1 86.6
9 409 2 818 2400 384 2 190 5 0.1 195 340 409 134 10 4920* 5064 368 409 220 10 2007 2237

10 571 2 1042 5000 827 5 2150 12 0.1 2162 663 12 1313 82 0.2† 1395 813 5 2583 27 880 3490
11 16 7 112 100 0.8 11 0.04 0.17 4.96 5.14 0.9 13 0.05 2 228 230 0.9 12 0.05 0.55 33 33.6
12 32 5 160 120 2.8 8 0.13 0.09 0.81 1.03 2.8 32 0.13 0.9 100 101 2.9 13 0.18 0.8 244 245
13 64 3 192 160 11.2 5 0.58 0.23 1.64 2.45 9.6 47 0.51 0.6 10.4 11.4 10.6 5 0.8 0.2 4 5
14 96 2 96 240 24.5 5 1.48 0.25 0.04 1.77 21 96 1.34 2.16 87.5 91 24.8 96 2.44 0.66 35.5 38.6
15 128 2 128 370 43.2 5 3.21 0.53 0.1 3.84 35.8 128 2.7 1.3 66 70 43.2 128 6 2 73 81
16 163 5 815 550 69.8 6 6.3 3.4 12 21.7 57.5 128 5.3 7.7 524 537 71.6 22 16 4.6 37 57.6
17 409 2 818 2400 384 2 208 4 0.03 212 340 13 127 7.9 0.13 135 368 3 210 8 928 1146
18 571 2 1042 5000 827 5 2246 10 0.11 2256 663 427 1358 63.8 2.24 1424 813 5 2433 19 5 2457

A detailed proof of the above theorem can be devised using
the Nullstellensatz, the circuit structure, and the ideal-variety
correspondences. However, the proof is omitted for brevity.
Instead, we explain the intuition behind Thm. V.1, and show
how it can be applied for MFR check.

Due to WRTO >R, each reml comprises only XPI vari-
ables. This is because under WRTO >R, each gate output
becomes a leading term of some polynomial in F ′. How-
ever, as primary inputs cannot be gate outputs, they do not
appear as a leading term of any polynomial. As a result, the

computation f
F ′l∪F

′
0−−−−→+ reml cancels all non primary input

variables during polyomial division, and results in remainders
composed of only primary inputs as their support. Hence,
V (reml) ⊆ F|XPI |

2 . The variety of reml corresponds to the
set of assignments to primary inputs XPI (minterms) where
the specification f agrees with the implementation C. Thus,
the condition of Thm. V.1 implies that the union of individual
varieties of reml’s comprises the entire input test set. Thus,
for every minterm from the input test space, there exists an
assignment δ[l] to W where f and C match. Consequently,
there exists a function U(XPI) that can be computed to rectify
every error minterm.

Let JXPI
0 = 〈x2−x : x ∈ XPI〉. Then V (JXPI

0) = F|XPI |
2 .

As the union of varieties corresponds to the variety of the
product of corresponding ideals (cf. Section II), we have

that:
2m⋃
l=1

V (reml) = VF2
(〈
∏2m

l=1 reml〉 + JXPI
0). Therefore,

to check for MFR at target W , the test “Is
2m⋃
l=1

V (reml)=F|XPI |
2 ”

can be performed by checking if
∏2m

l=1 reml
JPI
0−−→+ 0.

Example V.2. Continuing on with the example from Ex. V.1,
we demonstrate the rectification check at W = {r3, rr3}.

Constructing the J ′l ideals:
• J ′

1 = 〈F ′
1〉, where F ′

1[f
′
W] =W + δ[1] =W

• J ′
2 = 〈F ′

2〉, where F ′
2[f

′
W] =W + δ[2] =W + 1

• J ′
3 = 〈F ′

3〉, where F ′
3[f

′
W] =W + δ[3] =W + β =W + α21

• J ′
4 = 〈F ′

4〉, where F ′
4[f

′
W] =W + δ[4] =W +β2 =W +α42

Reducing the Spec f : Z+A ·B modulo these ideals, we get:

• rem1 = f
F ′1∪F

′
0−−−−→+ α27(a2b1b2) + α36(a2b2)

• rem2 = f
F ′2∪F

′
0−−−−→+ α27(a2b1b2 + a2b1) + α36(a2b2)

• rem3 = f
F ′3∪F

′
0−−−−→+ α27(a2b1b2)

• rem4 = f
F ′4∪F

′
0−−−−→+ α27(a2b1b2 + a2b1)

When we compute the product
∏4
l=1 reml, and reduce it by

JXPI
0 in F26 with P6(α) = 0, we obtain the remainder 0, thus

confirming that the target W = {w0 = r3, w1 = rr3} indeed
admits correction. Even though it is beyond the scope of this
paper, W = a2b1b2 + β · a2b2 is a polynomial which can be
computed to rectify the circuit.

VI. EXPERIMENTAL RESULTS

We implement our approach as a custom software by inte-
grating PolyBori [13] libraries, SINGULAR [14] libraries, and a
custom high level finite field engine. We utilize PolyBori’s re-

duction procedure to implement the division f
F ′l∪F

′
0−−−−→+ reml,

1 ≤ l ≤ 2m. The libraries from SINGULAR are used to
compute Pk(X) and to model composite field characteristics.
The custom finite field engine is employed in modeling bit-
vector and coefficient computations, and is utilized in the
overall decision procedure. The experiments are performed on
a 3.5GHz Intel(R) CoreTM i7-4770K Quad-Core CPU with 32
GB RAM.

Table I presents the results of our approach when perform-
ing the MFR check on two modular multipliers (Mastrovito
and Montgomery), and circuits that perform Point Addition
over elliptic curves. The MFR check is performed against their
respective polynomial specifications. These designs form the
core components for performing encryption, decryption and
authentication in Elliptic Curve Cryptography (ECC). These
Benchmarks are taken from [15] and synthesized using the
abc tool [16] with a two input gate library. We introduce
bugs in the synthesized netlists by means of gate and wiring
modifications at various topological levels: some closer to
PIs, some in the middle of the circuit, and some near POs.

7

The column BO for each benchmark corresponds to the total
number of POs affected by the gate and wiring modifications.

In the results table, column 2 (n) denotes the datapath size
for the corresponding benchmark, and the columns marked G
denote the total number of gates for the respective synthe-
sized netlists. In our experiments, we check the rectifiability
of circuits, where the number of targets is chosen from
m = {2, 3, 5, 7}. However, our approach doesn’t constrain the
number of targets to check for rectifiability. For cases where
the targets admit rectification (Rows 1-10), the m targets are
chosen to lie very close to the gate outputs where the bugs
were introduced, while for the cases where the targets do not
admit rectification (Rows 11-18), the m targets are chosen
away from the cone of influence where bugs were introduced.

PBS denotes the time taken to build the ZDD models for
the implementation and the specification of the corresponding
benchmarks using the Polybori engine. Column AM denotes
the maximum resident memory size recorded for these models,
averaged across benchmarks for a given datapath size n.
VMS denotes the time taken to perform verification, compute
Pk(X), and setup MFR check. The execution time required
for RC (Thm. V.1) depends on the number (m) and selection
of the targets in W , as well as the computed Pk(X). These
parameters result in different sizes of reml. The larger the size,
the longer it takes to perform the rectification check. This is
depicted in the table for Montgomery multipliers, where the
rectification check for the 409-bit* circuit takes significantly
longer than for the 571-bit† circuit.

We compare our approach against the cofactor reduction
algorithm (Alg. 1) presented in [1]. We implemented the Alg.
1 of [1] using abc/MiniSAT. Empirical data shows that the
rectification check for circuits beyond 16-bits timed out (3
hours). Specifically, the final UNSAT check on line 4 of the
Alg. 1 is infeasible for the benchmarks presented in our results
table, and hence the comparision is omitted.

VII. CONCLUSION

This paper presents an automated approach using techniques
from symbolic computer algebra to determine multi-fix recti-
fiability of faulty finite field arithmetic circuits at a given set
of targets. The underlying theory and algorithms are based on
Gröbner basis reductions, the Strong Nullstellensatz principle,
ideal membership testing, and finite fields. The efficiency of
our approach is derived by interpreting the targets as a bit-
vector and enabling word-level reasoning. We propose new
mathematical insights to overcome the challenges associated
with formulating the problem over a composite field. As future
work, we are investigating subsequent computation of multi-
fix rectification functions, also at the word-level. Further, we
are also exploring techniques to improve the efficiency of
rectification check implementation.

REFERENCES

[1] K. F. Tang, P. K. Huang, C. N. Chou, and C. Y. Huang, “Multi-patch
Generation for Multi-error Logic Rectification by Interpolation with
Cofactor Reduction,” in DATE, 2012, pp. 1567–1572.

[2] Y. Kimura, A. M. Gharehbaghi, and M. Fujita, “Signal Selection
Methods for Efficient Multi-Target Correction,” in ISCAS, 2019, pp. 1–5.

[3] V. N. Kravets, N. Lee, and J. R. Jiang, “Comprehensive Search for ECO
Rectification Using Symbolic Sampling,” in DAC, 2019, pp. 1–6.

[4] E. Biham, Y. Carmeli, and A. Shamir, “Bug Attacks,” in Proceedings
on Advances in Cryptology, 2008, pp. 221–240.

[5] U. Gupta, I. Ilioaea, V. Rao, A. Srinath, P. Kalla, and F. Enescu, “On the
Rectifiability of Arithmetic Circuits using Craig Interpolants in Finite
Fields,” in VLSI-SoC, Oct 2018, pp. 49–54.

[6] V. Rao, U. Gupta, A. Srinath, I. Ilioaea, P. Kalla, and F. Enescu, “Post-
Verification Debugging and Rectification of Finite Field Arithmetic
Circuits using Computer Algebra Techniques,” in FMCAD, 2018.

[7] F. Farahmandi and P. Mishra, “Automated Debugging of Arithmetic
Circuits Using Incremental Gröbner Basis Reduction,” in ICCD, 2017.

[8] A. Mahzoon, D. Große, and R. Drechsler, “Combining Symbolic Com-
puter Algebra and Boolean Satisfiability for Automatic Debugging and
Fixing of Complex Multipliers,” in ISVLSI, 2018, pp. 351–356.

[9] A. Q. Dao, N.-Z. Lee, L.-C. Chen, M. P.-H. Lin, J.-H. R. Jiang,
A. Mishchenko, and R. Brayton, “Efficient Computation of ECO Patch
Functions,” in DAC, 2018, pp. 51:1–51:6.

[10] W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases.
American Mathematical Society, 1994.

[11] J. von zur Gathen and D. Panario, “Factoring Polynomials over Finite
Fields: A Survey,” J. Symbolic Computation, vol. 31, pp. 3–17, 2001.

[12] R. J. McEliece, Finite Fields for Computer Scientists and Engineers.
Kluwer Academic Publishers, 1987.

[13] M. Brickenstein and A. Dreyer, “Polybori: A framework for gröbner-
basis computations with boolean polynomials,” J. Symb. Comput., 2009.

[14] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGULAR
4-1-0 — A computer algebra system for polynomial computations,”
http://www.singular.uni-kl.de, 2016.

[15] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner Basis Reductions for
Formal Verification of Galois Field Arithmetic Circuits,” in IEEE Trans.
on CAD, vol. 32, no. 9, 2013, pp. 1409–1420.

[16] R. Brayton and A. Mishchenko, “Abc: An Academic Industrial-strength
Verification Tool,” in Computer Aided Verification, 2010.

