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Abstract We present new policy mirror descent (PMD) methods for solving reinforcement learning (RL) prob-
lems with either strongly convex or general convex regularizers. By exploring the structural properties of these
overall highly nonconvex problems we show that the PMD methods exhibit fast linear rate of convergence to the
global optimality. We develop stochastic counterparts of these methods, and establish an O(1/e) (resp., O(1/€?))
sampling complexity for solving these RL problems with strongly (resp., general) convex regularizers using differ-
ent sampling schemes, where e¢ denote the target accuracy. We further show that the complexity for computing
the gradients of these regularizers, if necessary, can be bounded by O{(log, €)[(1 — ’y)L/u}l/Q log(1/€)} (resp.,
O{(log, €)(L/ €)'/2}) for problems with strongly (resp., general) convex regularizers. Here y denotes the discount-
ing factor. To the best of our knowledge, these complexity bounds, along with our algorithmic developments,
appear to be new in both optimization and RL literature. The introduction of these convex regularizers also
greatly enhances the flexibility and thus expands the applicability of RL models.

1 Introduction

In this paper, we study a general class of reinforcement learning (RL) problems involving either covex or strongly
convex regularizers in their cost functions. Consider the finite Markov decision process M = (S, A, P, c,7), where
S is a finite state space, A is a finite action space, P : S x S x A — R is transition model, ¢: S x A — R is the
cost function, and v € (0, 1) is the discount factor. A policy 7 : A x S — R determines the probability of selecting
a particular action at a given state.

For a given policy 7, we measure its performance by the action-value function (Q-function) @™ : S x A — R
defined as

Q" (s,a) :=E [3 227 [e(st, ar) + h™ (s1)]
| so = s,a0 = a,ar ~ w(:|st), st41 ~ P(:|st,ar)] . (1.1)

Here h™ is a closed convex function w.r.t. the policy m, i.e., there exist some p > 0 s.t.

BT (5) = [ (5) + () (5,), 7(ls) — 7' (s)] = DT (), (1.2)
where (-, -) denotes the inner product over the action space A, (h/)”/ (s,-) denotes a subgradient of h(s) at 7', and
DT, (s) is the Bregman’s distance or Kullback-Leibler (KL) divergence between 7 and 7’ (see Subsection 1.1 for
more discussion).

Clearly, if h™ = 0, then Q™ becomes the classic action-value function. If A" (s) = pD7, (s) for some p > 0,
then Q™ reduces to the so-called entropy regularized action-value function. The incorporation of a more general
convex regularizer h™ allows us to not only unify these two cases, but also to greatly enhance the expression
power and thus the applicability of RL. For example, by using either the indicator function, quadratic penalty or
barrier functions, h™ can model the set of constraints that an optimal policy should satisfy. It can describe the
correlation among different actions for different states. h™ can also model some risk or utility function associated
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with the policy 7. Throughout this paper, we say that h” is a strongly convex regularizer if u > 0. Otherwise, we
call h™ a general convex regularizer. Clearly the latter class of problems covers the regular case with A™ = 0.
We define the state-value function V™ : § — R associated with 7 as

VT(s):=E [Z:io ~t [e(st,at) + h™ (s¢)]

|50 = 8,1 ~ w(ls0), se41 ~ PClstrar)]. (13)
It can be easily seen from the definitions of Q™ and V™ that

VT(s) = X qeam(als)Q"(s,a) = (Q" (s, ), m(]s)), (1.4)
Q" (s,a) = c(s,a) + h™(s) + 7Y cg P(s]s,a)V7(s). (1.5)

The main objective in RL is to find an optimal policy 7* : S x A — R s.t.

*

VT (s) SV (s),Vr(:|s) € A4, Vs €S. (1.6)

for any s € S. Here A‘ 4| denotes the simplex constraint given by

Ay ={p e RIS pi=1,p > 0} ¥s €8, (17)

By examining Bellman’s optimality condition for dynamic programming ([3] and Chapter 6 of [19]), we can
show the existence of a policy 7* which satisfies (1.6) simultaneously for all s € S. Hence, we can formulate (1.6)
as an optimization problem with a single objective by taking the weighted sum of V™ over s (with weights ps > 0
and ZseSPS =1):

ming Esap[VT(5)]

st w(s) € Ay, Vs €S. (1.8)

While the weights p can be arbitrarily chosen, a reasonable selection of p would be the stationary state distribution
induced by the optimal policy 7*, denoted by v* = v(7*). As such, problem (1.8) reduces to

ming {f(7) := Eguu= [V ()]}

st m(fs) € Aa,Vs €S, (1.9)

It has been observed recently (eg., [14]) that one can simplify the analysis of various algorithms by setting p to
v*. As we will also see later, even though the definition of the objective f in (1.9) depends on v* and hence the
unknown optimal policy 7*, the algorithms for solving (1.6) and (1.9) do not really require the input of 7*.

Recently, there has been considerable interest in the development of first-order methods for solving RL prob-
lems in (1.8) -(1.9). While these methods have been derived under various names (e.g., policy gradient, natural
policy gradient, trust region policy optimization), they all utilize the gradient information of f (i.e., @ function)
in some form to guide the search of optimal policy (e.g., [21,9,7,1,20,5,23,15]). As pointed out by a few authors
recently, many of these algorithms are intrinsically connected to the classic mirror descent method originally pre-
sented by Nemirovski and Yudin [17,2,16], and some analysis techniques in mirror descent method have thus been
adapted to reinforcement learning [20,23,22]. In spite of the popularity of these methods in practice, a few signif-
icant issues remain on their theoretical studies. Firstly, most policy gradient methods converge only sublinearly,
while many other classic algorithms (e.g., policy iteration) can converge at a linear rate due to the contraction
properties of the Bellman operator. Recently, there are some interesting works relating first-order methods with
the Bellman operator to establish their linear convergence [4,5]. However, in a nutshell these developments rely
on the contraction of the Bellman operator, and as a consequence, they either require unrealistic algorithmic as-
sumptions (e.g., exact line search [4]) or apply only for some restricted problem classes (e.g., entropy regularized
problems [5]). Secondly, the convergence of stochastic policy gradient methods has not been well-understood in
spite of intensive research effort. Due to unavoidable bias, stochastic policy gradient methods exhibit much slower
rate of convergence than related methods, e.g., stochastic Q-learning.

Our contributions in this paper mainly exist in the following several aspects. Firstly, we present a policy
mirror descent (PMD) method and show that it can achieve a linear rate of convergence for solving RL problems
with strongly convex regularizers. We then develop a variant of PMD, namely approximate policy mirror descent
(APMD) method, obtained by applying an adaptive perturbation term into PMD, and show that it can achieve
a linear rate of convergence for solving RL problems with general convex regularizers. Even though the overall
problem is highly nonconvex, we exploit the generalized monotonicity [6,13,11] associated with the variational
inequality (VI) reformulation of (1.8)-(1.9) (see [8] for a comprehensive introduction to VI). As a consequence,
our convergence analysis does not rely on the contraction properties of the Bellman operator. This fact not only
enables us to define h™ as a general (strongly) convex function of 7 and thus expand the problem classes considered
in RL, but also facilitates the study of PMD methods under the stochastic settings.

Secondly, we develop the stochastic policy mirror descent (SPMD) and stochastic approximate policy mirror
descent (SAPMD) method to handle stochastic first-order information. One key idea of SPMD and SAPMD is



to handle separately the bias and expected error of the stochastic estimation of the action-value functions in our
convergence analysis, since we can usually reduce the bias term much faster than the total expected error. We
establish general convergence results for both SPMD and SAPMD applied to solve RL problems with strongly
convex and general convex regularizers, under different conditions about the bias and expected error associated
with the estimation of value functions.

Thirdly, we establish the overall sampling complexity of these algorithms by employing different schemes
to estimate the action-value function. More specifically, we present an O(|S||.A|/ue) and O(|S||A|/€?) sampling
complexity for solving RL problems with strongly convex and general convex regularizers, when one has access
to multiple independent sampling trajectories. To the best of our knowledge, the former sampling complexity is
new in the RL literature, while the latter one has not been reported before for policy gradient type methods. We
further enhance a recently developed conditional temporal difference (CTD) method [12] so that it can reduce the
bias term faster. We show that with CTD, the aforementioned O(1/ue) and O(1/€?) sampling complexity bounds
can be achieved in the single trajectory setting with Markovian noise under certain regularity assumptions.

Fourthly, observe that unless h™ is relatively simple (e.g., h™ does not exist or it is given as the KL divergence),
the subproblems in the SPMD and SAPMD methods do not have an explicit solution in general and require
an efficient solution procedure to find some approximate solutions. We establish the general conditions on the
accuracy for solving these subproblems, so that the aforementioned linear rate of convergence and new sampling
complexity bounds can still be maintained. We further show that if A™ is a smooth convex function, by employing
an accelerated gradient descent method for solving these subproblems, the overall gradient computations for h™
can be bounded by O{(log, €)/(1 —v)L/plog(1/e)} and O{(log, €)1/ L/e}, respectively, for the case when h™ is
a strongly convex and general convex function. To the best of our knowledge, such gradient complexity has not
been considered before in the RL and optimization literature.

This paper is organized as follows. In Section 2, we discuss the optimality conditions and generalized mono-
tonicity about RL with convex regularizers. Sections 3 and 4 are dedicated to the deterministic and stochastic
policy mirror descent methods, respectively. In Section 5 we establish the sampling complexity bounds under dif-
ferent sampling schemes, while the gradient complexity of computing VA™ is shown in Section 6. Some concluding
remarks are made in Section 7.

1.1 Notation and terminology

For any two points 7(-|s), 7’ (+|s) € A| 4/, we measure their Kullback-Leibler (KL) divergence by

KL(r(:[s) || 7'(-]s)) = 3 4c 4 7(als) log ZHH.

Observe that the KL divergence can be viewed as is a special instance of the Bregman’s distance (or prox-function)
widely used in the optimization literature. Let the distance generating function w(n(:|s)) := >~ c 4 7(als) log 7(als)
The Bregman’s distance associated with w is given by

D7 (s) = w(n(-]s)) — [w(n(-]s)) + (Vw(n'(-]s)), 7 (-]s) — 7" (]s))]
= Y aea [(als)logm(als) — 7' (als) log 7’ (als)
—(1 +log 7’ (als))(n(als) — w/(a\s))}

= ¥ ,cam(als)log ek, (1.10)

where the last equation follows from the fact that -, 4(w(als) — 7'(a|s)) = 0. Therefore, we will use the KL
divergence KL(7(:|s) || 7'(:|s)) and Bregman’s distance DT, (s) interchangeably throughout this paper. It should
be noted that our algorithmic framework allows us to use other distance generating functions, such as || - H% for
some p > 1, which, different from the KL divergence, has a bounded prox-function over A| Al-

2 Optimality Conditions and Generalized Monotonicity

It is well-known that the value function V™ (s) in (1.3) is highly nonconvex w.r.t. m, because the components of
m(-|s) are multiplied by each other in their definitions (see also Lemma 3 of [1] for an instructive counterexample).
However, we will show in this subsection that problem (1.9) can be formulated as a variational inequality (VI)
which satisfies certain generalized monotonicity properties (see [6], Section 3.8.2 of [13] and [11]).

I Tt is worth noting that we do not enforce m(a|s) > 0 when defining w(7w(:|s)) as all the search points generated by our
algorithms will satisfy this assumption.

-



Let us first compute the gradient of the value function V™ (s) in (1.3). For simplicity, we assume for now
that h™ is differentiable and will relax this assumption later. For a given policy 7, we define the discounted state
visitation distribution by

dsy (5) 7= (1 =) 207207 P (se = ss0), (2.1)
where Pr™ (s¢ = s|sg) denotes the state visitation probability of s; = s after we follow the policy 7 starting at state
s0- Let P™ denote the transition probability matrix associated with policy =, i.e., P (4, 5) = >, 4 7(ali)P(jli, a),
and e; be the é-th unit vector. Then Pr” (s; = s|so) = el (P™)tes and

dgo( Zt 07 eao Pw) (2.2)

Lemma 1 For any (so,s,a) € S x S x A, we have

%Yr(éff)) 25d5,(s) [Q7 (s,a) + VA" (s,0)] ,

where VR™ (s,-) denotes the gradient of h™ (s) w.r.t. m.

Proof. Tt follows from (1.4) that

%Zzéfﬁf = aw(gqs) > aream(ds0)Q7 (s0,a’)

= Surea [ BR800, 4 w(a'a0) G457

Also the relation in (1.5) implies that

09 tend!) _ TG0 4 e s P(s']s0,a') Gt
Combining the above two relations, we obtain
s = Tuea | BL2Q7 (50,0) + m(a|50) G
+9 Y wream(@1s0) Lyes P(s's0,0) Gt
=Y pes im0V Pr7 (st = z[s0)
Swea | T Q" @, ) + 7o) 9255 ]
s Taes 450 {Sures [ 20 Q7 @, 0] + 2783
= () [Q7(5,0) + 2]

where the second equality follows by expanding %‘;20.(\2 ,)) recursively, and the third equality follows from the
definition of d3, (s) in (2.1), and the last identity follows from %:(gllf)) 0 for x # s or @’ # a, and 877((1(‘9;)) 0
for z # s. n

In view of Lemma 1, the gradient of the objective f(7) in (1.9) at the optimal policy ©* is given by

oty = Bsorrs [%} = 125 Bt [déf ()[Q™ (s,a) +Vh7r*(s,a)]}
= X207 )T (PT ) es [Q (s,0) + VAT (5,0)]
= () es [Q7 (s.a) + VAT (s,0)]
= L0 (9) [Q7 (s,a) + VAT (s,0)], (2.3)
where the third identity follows from (2.2) and the last one follows from the fact that (u*)T(P”*)t = w")7T for

any t > 0 since v* is the steady state distribution of 7*. Therefore, the optimality condition of (1.9) suggests us
to solve the following variational inequality

Egop* {(Qﬂ* (s,) + Vhw* (s,),7(:|s) — W*(‘s»} > 0. (2.4)

However, the above VI requires h™ to be differentiable. In order to handle the possible non-smoothness of h™, we
instead solve the following problem

Esnp [(Q”* (s,),7(|s) — 7 (:|s)) + A" (s) — h”*(s)} > 0. (2.5)

It turns out this variational inequality satisfies certain generalized monotonicity properties thanks to the following
performance difference lemma obtained by generalizing some previous results (e.g., Lemma 6.1 of [9]).



Lemma 2 For any two feasible policies m and ', we have
VT () = V() = 5By g [(A7( )7 (1) + 87 () = 7 ()]
where
A" (s a) == Q™ (s',a) = V™ (s). (2.6)

Proof. For simplicity, let us denote f”/ (sp) the random process (s¢,at, s¢+1), t > 0, generated by following the
policy 7’ starting with the initial state sg. It then follows from the definition of V™ that

VT (s) = V7 (s)
= Eewr () |22 elst,0) + A7 (s0)]] = V7 (5)

= Berr () [Z{’io Vle(se ar) + ™ (se) + V7 (s¢) - Vﬂ(St)]} —V7(s)

& Eexr () [Zfio vle(st,a) + h™ (s¢) + 7V (s111) V”(St)ﬂ

+Eerr [V (s0)] = V7 (s)

b o0 ! ™ ™
D B4y [0 st 00) + 17 (51) + 4V (s141) = V7 (51)]

= Een () [Zr20 7 [e(st, at) + R (s¢) + 9V (se41) = V7 (st)
17 (st) = " (50)]

DB [0 [@7(sta0) = V¥ (s0) + 07 (51) = h7(s1)] ]

where (a) follows by taking the term V™ (sg) outside the summation, (b) follows from the fact that Epnr (s) VT (s0)] =
V7 (s) since the random process starts with sg = s, and (c) follows from (1.5). The previous conclusion, together
with (2.6) and the definition dg/ in (2.1), then imply that

V™ (s) = V7 (s)
= 5 Yves aeadd ()7 (@) [A7( ) + 07 () b7 (s)]
= 1L Saes T () [(AT(, ), 7 (1) + b7 () = h7()]
which immediately implies the result. n
We are now ready to prove the generalized monotonicity for the variational inequality in (2.5).
Lemma 3 The VI problem in (2.5) satisfies
Eamr [(Q7(5,9),7(1s) = 7 (13)) + 17() = b7 (5)]

= Esnr [(1 =)V () = V" (s))]. (2.7)
Proof. Tt follows from Lemma 2 (with 7’ = 7*) that

*

(=D (5) = V()] = Eyrger [(A7(, )7 (1)) + 07 () = b7 ()] -

Let e denote the vector of all 1’s. Then, we have

(AT(s, ), 7 (1) = (Q"(s', ) = VT (s)e, " (1)
=(Q"(s',), 7" (Is) = V(s
=(Q"(s,), 7" (1)) —(Q7(s', ), m(|s")
=(Q"(s,), 7" (Is) = m(-|s")), (2.8)

where the first identity follows from the definition of A™(s’,-) in (2.6), the second equality follows from the fact
that (e, 7*(:|s’)) = 1, and the third equality follows from the definition of V™ in (1.3). Combining the above two
relations and taking expectation w.r.t. v*, we obtain

(1= )Eanp [V () = V7 (5)
=By [(QT 0w (1) = w1 + 87 () = ()]

= B [(@7 (5,7 (ls) = (1)) + 07 () =07 (s)]



where the second identity follows similarly to (2.3) since v* is the steady state distribution induced by 7*. The
result then follows by rearranging the terms. [

Since V™ (s) — V™ (s) > 0 for any feasible policity 7, we conclude from Lemma 3 that
Eansr [(Q7 (s, m(1s) = 7 (1) + 87 () = b ()] = 0.

Therefore, the VI in (2.5) satisfies the generalized monotonicity. In the next few sections, we will exploit the
generalized monotonicity and some other structural properties to design efficient algorithms for solving the RL
problem.

3 Deterministic Policy Mirror Descent

In this section, we present the basic schemes of policy mirror descent (PMD) and establish their convergence
properties.

3.1 Prox-mapping

In the proposed PMD methods, we will update a given policy 7 to T through the following proximal mapping:

7 (|s) = argmin 7[(G"(s,"),p(|s)) + hP(s)] + DE(s). (3.1)
p(-[s)EA| 4

Here 17 > 0 denotes a certain stepsize (or learning rate), and G™ can be the operator for the VI formulation, e.g.,
G™(s,") = Q7 (s,-) or its approximation.

It is well-known that one can solve (3.1) explicitly for some interesting special cases, e.g., when hP(s) = 0 or
hP(s) = 7D% (s) for some 7 > 0 and given 7. For both these cases, the solution of (3.1) boils down to solving a
problem of the form

. A
p* = argmin S (gips + pslog py)
p(-[s)EA 4
for some g € RMI. Tt can be easily checked from the Karush-Kuhn-Tucker conditions that its optimal solution is
given by
A

P = exp(—g))/ (L) exp(=g,)). (3:2)
For more general convex functions h”, problem (3.1) usually does not have an explicit solution, and one can
only solve it approximately. In fact, we will show in Section 6 that by applying the accelerated gradient descent

method, we only need to compute a small number of updates in the form of (3.2) in order to approximately solve
(3.1) without slowing down the efficiency of the overall PMD algorithms.

3.2 Basic PMD method

As shown in Algorithm 1, each iteration of the PMD method applies the prox-mapping step discussed in Sub-
section 3.1 to update the policy 7. It involves the stepsize parameter 7, and requires the selection of an initial
point 7. For the sake of simplicity, we will assume throughout the paper that

mo(als) = 1/|A|, Va € A,Vs € S. (3.3)
In this case, we have
Dr. (s) = ZaeA m(als) logw(als) + log |A| < log|A|, Vr(:|s) € A4 (3.4)

Observe also that we can replace Q™" (s, -) in (3.5) with A™* (s, a) defined in (2.6) without impacting the updating
of m41(s,-), since this only introduces an extra constant into the objective function of (3.5).

Algorithm 1 The policy mirror descent (PMD) method

Input: initial points mp and stepsizes 1 > 0.
for k=0,1,...,do

mhi1(]s) = argmin {m[@"k (s,-), p(-|s)) + hP(s)] + DE, (s)} Vs€ES. (3.5)
P(:[s)EA| 4

end for




Below we establish some general convergence properties about the PMD method.
The following result characterizes the optimality condition of problem (3.5) (see Lemma 3.5 of [13]). We add
a proof for the sake of completeness.

Lemma 4 For any p(-[s) € 4| 4|, we have
77k[<QTrk( ), 1 (cls) — ('|5)> +RTE (s) = BP(s)] + Dt (s)
Proof. By the optimality condition of (3.5),
(M@ (5,-) + (W)™ (s, )] + VD™ (5,-), p(-[8) = mry1 (-|s)) > 0, Vp(:]s) € Aya,

where (h")™+1 denotes the subgradient of h at 7,1 and VDzf*!(s,-) denotes the gradient of D™ (s) at mjy 1.
Using the definition of Bregman’s distance, it is easy to verify that

Dr,(s) = Dy (s) + (VD (5,), p(|s) = mrg1 (15)) + Dy (5)- (3.6)
The result then immediately follows by combining the above two relations together with (1.2). [
Lemma 5 For any s € S, we have
VR (s) S VT (s), 3.7)
QT (s,), mhg1 (]s) = mp(c]s)) + AT (s) — BT (s) = VT (s) — VT (s).
Proof. Tt follows from Lemma 2 (with 7’ = 741, 7 = 7, and 7 = 73;) that
VThtl(g) — VT (s)
= 55E,, e [(A™(5, ), mrpa (1) + BT () — AT ()] (3.9)
Similarly to (2.8), we can show that
(AT (), i (181) = (@ (8, ) = Vik(s e, mepa (1))
=(Q™ (s, ), mer1 (1)) — VA (s)
=(Q™ (5", ), mr1 (Is) = m (1))
Combining the above two identities, we then obtain
VI (s) = V™ (s) = 5B, jmin [(QT (8, ), a1 (fs") — me(t]s)
+R™H (") — TR (S)] (3.10)
Now we conclude from Lemma 4 applied to (3.5) with p(-|s’) = m(-|s’) that
(@™ (' ), a1 (') = mp(c1s)) + AT (s) — BT (s)
< =5l + ) DIk, (8) + Dy (s (3.11)
The previous two conclusions then clearly imply the result in (3.7). It also follows from (3.11) that
E, gmesr [(Q (8", ), mpa (ls) = me(c|s)) + R (s) — K™ (s")]
< g™ (s) [(QT (s, ), M1 (]s) — i (c]s)) + AT (5) — K™ (s)]

< (1= ) [(Q (5, ), Ty (13) — miCls)) + h™+1 () — K7 (s)] (3.12)
where the last inequality follows from the fact that dg"*(s) > (1 —+) due to the definition of dg*** in (2.1). The
result in (3.7) then follows immediately from (3.10) and the above inequality. L]

Now we show that with a constant stepsize rule, the PMD method can achieve a linear rate of convergence
for solving RL problems with strongly convex regularizers (i.e., u > 0).

Theorem 1 Suppose that ng, = n for any k > 0 in the PMD method with
Lnu> 1. (3.13)
Then we have
F(me) = £(7*) + 2 D, 7*) < A¥[f(m0) — f(mF) + 1 log | Al

for any k > 0, where i
D(rg, ") := Egnn= Dy, (8)]. (3.14)



Proof. By Lemma 4 applied to (3.5) (with n; = n and p = 7*), we have

nl(Q™ (5,-), m1 (ls) — 7 (s)) + A7+ () — ™ ()] + DL+ (s)
< DF(s) — (L +nu)DE, ,, (s),

which, in view of (3.8), then implies that

Q™ (s,), mk () — 7 (-|s)) + B (s) = A" (s)]
+ [V (s) = VT (s)] + Drs* (s) < D, (s) = (14 np)DF, . (5)-

Taking expectation w.r.t. * on both sides of the above inequality and using Lemma 3, we arrive at

Esmw [1(1 = 7) (V™ (s) = V™ (5))] + nEsp [V (5) — V()] + Egeop [DRE* (s)]
< Egr-[DI, (s) — (14 nu) Dy, (5))-

Noting V™ +1(s) — VTk(s) = V™+1(s) — V™ (s) — [V™(s) — V™ (s)] and rearranging the terms in the above
inequality, we have

Eamu [0V (3) = V™ (8)) + (1 + 1) Dy, ()] + B [DRE ()]
<AEsmn (VT (s) = VT (5)) + L DT, (5)], (3.15)

which, in view of the assumption (3.13) and the definition of f in (1.9)

F(mg1) = F(*) + 2 Banne (D, (9)]

<7 [(F(m) = (7)) + 125 Bomas [DF, (5)]] -

Applying this relation recursively and using the bound in (3.4) we then conclude the result. u
According to Theorem 1, the PMD method converges linearly in terms of both function value and the distance

to the optimal solution for solving RL problems with strongly convex regularizers. Now we show that a direct

application of the PMD method only achieves a sublinear rate of convergence for the case when p = 0.

Theorem 2 Suppose that ny, = n in the PMD method. Then we have

* o) —f(m* og |A
f(ﬂ_k—‘,-l) _ f(’ﬂ' ) S 7I’Y[f( 7]0()17{;()(]@14{)1 gl ‘

for any k > 0.

Proof. Tt follows from (3.15) with x = 0 that

B [n(V™(5) = V™ () + DEy,y (8)] + Esmue [DRE (5)]

Tk+4+1

< Esms [V (5) = V™ (5)] + Egm [D, (5)].

Taking the telescopic sum of the above inequalities and using the fact that V™ +! (s) < V7*(s) due to (3.7) , we
obtain

(k + )01 — ) Esmpr [V (5) = VT (8)] < Egmie [py(V™(s) = V™ (s)) + DE, (5)],
which clearly implies the result in view of the definition of f in (1.9) and the bound on Dg; in (3.4). L]

The result in Theorem 2 shows that the PMD method requires O(1/(1 — ~)e) iterations to find an e-solution
for general RL problems. This bound already matches, in terms of its dependence on (1 —+) and e, the previously
best-known complexity for natural policy gradient methods [1]. We will develop a variant of the PMD method
that can achieve a linear rate of convergence for the case when p = 0 in next subsection.



3.3 Approximate policy mirror descent method

In this subsection, we propose a novel variant of the PMD method by adding adaptively a perturbation term into
the definition of the value functions.

For some 7 > 0 and a given initial policy m(als) > 0, Vs € S,a € A, we define the perturbed action-value
and state-value functions, respectively, by

QF(s,a) :=FE [Zfio 'yt le(st, at) + R (s¢) + 7D, (s¢)]
| so = s,a0 = a,ar ~ 7(:|st), s¢41 ~ P(:|st,at)], (3.16)
VE(s) = (QE (5, ), m(ls). (3.17)

Clearly, if 7 = 0, then the perturbed value functions reduce to the usual value functions, i.e.,
Qg(s7a) = Q”(s,a) and VOTr(S) = Vﬂ—(s)'
The following result relates the value functions with different 7.

Lemma 6 For any given 7,7 > 0, we have

VI (s) = V() = T2 Byrngr [Dry (5)]- (3.18)

As a consequence, if T > 7' > 0 then

V7i(s) < VI (s) < Vi (s) + T=2 log | A|. (3.19)
Proof. By the definitions of V; and d}, we have
V7 (s)
=E [Yr2 " [e(st, ar) + B (s¢) + 7DF,(5)] | s0 = s,a0 ~ 7(-|st), se41 ~ P(-[st, )]
(> 2o le(st, az) + B (st) + 7' DE, ()] | s0 = s, a1 ~ 7w(-[st), st41 ~ P(-]st, ar)]
+E [Z?io ’yt(T — 7'/)D.7,,T0 (8)] | so =s,at ~7(-|st), se+1 ~ P(:|st, at)}
= V7 (5) + TE By s D7, (57)),

E
E

which together with the bound on D7, in (3.4) then imply (3.19). L]

As shown in Algorithm 2, the approximate policy mirror descent (APMD) method is obtained by replacing
Q™ (s,-) with its approximation Q7} (s, -) and adding the perturbation 74, DT, (s¢) for the updating of 71 in the
basic PMD method. As discussed in Subsection 3.1, the incorporation of the perturbation term does not impact

the difficulty of solving the subproblem in (3.20).

Algorithm 2 The approximate policy mirror descent (APMD) method

Input: initial points 7, stepsizes n; > 0 and perturbation 7, > 0.
for k=0,1,..., do

T (ls) = argmin {m(QFE (5,9, p(1s)) + hP(s) + 7 D%y (s0)] + D3, () } Vs €. (3.20)
p(:[s)EA| 4

end for

Our goal in the remaining part of this subsection is to show that the APMD method, when employed with
proper selection of 7, can achieve a linear rate of convergence for solving general RL problems. First we observe
that Lemma 3 can still be applied to the perturbed value functions. The difference between the following result
and Lemma 3 exists in that the RHS of (3.21) is no longer nonnegative, i.e., V/ (s) — v (s) # 0. However, this
relation will be approximately satisfied if 7 is small enough.

Lemma 7 The VI problem in (2.5) satisfies

Eau [(QF(5,1),w(ls) = 7" (1)) + () = ™" () + 7[DF, (5) = D, ()]

= Eorue [(1 =) (V7 (s) = VI (5))]. (3.21)
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Proof. The proof is the same as that for Lemma 3 except that we will apply the performance difference lemma
(i.e., Lemma 2) to the perturbed value function V. L]

Next we establish some general convergence properties about the APMD method. Lemma 8 below characterizes
the optimal solution of (3.20) (see, e.g., Lemma 3.5 of [13]).

Lemma 8 Let my11(-[s) be defined in (3.20). For any p(:|s) € A| 4, we have
+
Me[(Q7% (8, ), M1 (+18) — p(-]8)) + AT (s) — WP (s)]
+ Tk Drg ™ (st) — Dy (st)] + Dy ™ (s) < Diy (s) = (L +nm,) Dy, (5).
Lemma 9 below is similar to Lemma 5 for the PMD method.
Lemma 9 For any s € S, we have
Q7% (557), 1 (t]s) — mi(c]s)) + ™1 (s) — h™(s)
+7x[Dry " (s) = Dg ()] 2 VAT (s) = VEE (). (3:22)

Proof. By applying Lemma 2 to the perturbed value function V;© and using an argument similar to (3.10), we
can show that

Vot (s) = Vik(s) = 25 B, _gren [(QFE (s ), ma (1s") — me(t]s))
R (sT) = TR () i [Drg T (s) — D ()] - (3.23)
Now we conclude from Lemma 8 with p(:|s") = m(+|s") that
QT (s, ) mrga (1) = i ([s")) + W™ (sT) = BT (s)
+7[Drg ™ (s") = Db ()] < =5 [(L+mpmi) DRk, (8) + D™ ()], (3.24)
which implies that
E, _gren [(Q7E (") mega (1s") = mi (1)) + R (s") — BT (s")
+71,[Drg T (s") — D7 ()]
< d5 T (s) [(QFE (5, Thpa (ls) — mi(c]8)) + AT (s) — ™ (s)
+7,[Drg ' (5) — Drg (5)]]
< (1=7) [(QF (5, )y g1 () — mi(c]s)) + ATH (s) — h™* (s)
+7,[Drg ' (s) — Drj (s)]] (3.25)

where the last inequality follows from the fact that dg***(s) > (1 —+) due to the definition of dg*** in (2.1). The
result in (3.22) then follows immediately from (3.23) and the above inequality. L]

The following general result holds for different stepsize rules for APMD.
Lemma 10 Suppose 1+ ni1, = 1/ and 7, > Tp41 in the APMD method. Then for any k > 0, we have
Esv= [szlﬁl (s) = VTZH (s) + ;Hl D;kﬂ (s)]

< Baur WIVEE () = VA (5) + 125 DR ()] + ™77 log |4, (3.26)

Proof. By Lemma 8 with p = 7*, we have

e [(QFE (5, mg1 (1s) = 7 (1)) + B () = 0™ (s)]
T (DR (s1) = D, (s)] + DRE™ (5)
< Dy (s) — (L+ mem) Dy, (5):

Moreover, by Lemma 9,

(QTE (5, ), i1 (1) = m(-15)) + B™ (5) = h™ (5) + T [DFA* (s¢) — DEE (s1)]
> VI (s) = VEE (s).

Combining the above two relations, we obtain
b (@ (). mCls) = 7 () + 17 () = B ()] + e [DFE (50) — Dy (50)]

4 [VIE (s) — Ve (s)] + DRkt (s) < D (s) — (1 + mmi) Dy, (5)-
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Taking expectation w.r.t. * on both sides of the above inequality and using Lemma 7, we arrive at

B (1 = 1) (VA (5) = VE ()] + miBasm [VEF ! (5) = VA (s)]
+ ]ESNV* [-Dﬂ-k+1( )] S ]ESNV* [D7ﬂr—; (3) - (1 + nka)D7711:+1 (8)]

Noting Vi*+ (s) — Vi (s) = ViF+ (s) — VI (s) — [V (s) — V& (s)] and rearranging the terms in the above
inequality, we have

ESNV [nk(VWk+1( ) - V‘:;;* (S)) + (1 + nka)D?frrk+1( ) + Dmﬁ—l( )]
< A Eama [VE () = VE ()] 4 Borae [DF, (). (3.27)

Using the above inequality, the assumption 74, > 73,41 and (3.19), we have
ESNV* [nk’( 7'71‘;]?:11( ) VTT;+1( )) + (1 + nka)ng“( ) + Dﬂ—k+l( )}
< Bau Iy (VA () = Viy (5)) + Dr, ()] + 25200 log | Al (3.28)

which implies the result by the assumption 1 + ng7 = 1/7. [

We are now ready to establish the rate of convergence of the APMD method with dynamic stepsize rules to
select m; and 73 for solving general RL problems.

Theorem 3 Suppose that 1), = To’yk for some 19 > 0 and that 1 + i1, = 1/~ for any k > 0 in the APMD
method. Then for any k > 0, we have

Jm) = 157 <9 [£(r0) = 1) + 70 (125 + £ ) log 4 (3.20)

Proof. Applying the result in Lemma 10 recursively, we have

B [V (5) = Vi ()] < Y* B [V () = V& (5) + (2% Do (5)]
T S ki B )

Noting that VZ*(s) > V™ (s), Vﬁ,r: (s) < V™ (s) + 72 log |A], and Vﬁg* (s) > V™ (s) due to (3.18), and that
Vi (s) = V™ (s) due to D7J(s) = 0, we conclude from the previous inequality that

B [V (5) = V™ ()] < vklEsw*[v’“’(s) — V™ (s) + 12 DF, (5)]
25+ 2k, T g 4. (3.30)
The result in (3.29) immediately follows from the above relation, the definition of f in (1.9), and the selection of
Tk - .

According to (3.29), if 79 is a constant, then the rate of convergence of the APMD method is O(ky"). If the
total number of iterations k is given a priori, we can improve the rate of convergence to O(’yk) by setting 7o = 1/k.
Below we propose a different way to specify 75, for the APMD method so that it can achieve this O('yk) rate of
convergence without fixing k a priori.

We first establish a technical result that will also be used later for the analysis of stochastic PMD methods.

Lemma 11 Assume that the nonnegative sequences { Xy} x>0, {Yi} k>0 and {Z} >0 satisfy
Xpt1 <y Xg + (Vi = Yig1) + Zy (3.31)
Let us denote | = [log,y H IfY,=Y- o~ (LF/U+D) gng Zy =12 - 2~ (Lk/U+2) for some Y >0 and Z > 0, then

X <27 (Xg+Y 4 4 (3.32)

)

Proof. Let us group the indices {0, ..., k} into p = | k/l] +1 epochs with each of the first p—1 epochs consisting
of [ iterations. Let p = 0,...,p be the epoch indices. We first show that for any p=0,...,p — 1,

Xp <27P(Xo+Y + %) (3.33)
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This relation holds obviously for p = 0. Let us assume that (3.33) holds at the beginning of epoch p ad examine
the progress made in epoch p. Note that for any indices k = pl, ..., (p+1)I—1 in epoch p, we have Y}, = y.2~-(@+h)
and Z = Z -2~ (P12 By applying (3.31) recursively, we have

l .
Xy 7 X+ Ypr = Yoprny + Zpt Yz’

1—4!
Y Xp + Yipan + Zp T

<A Xy Y 2T g 22 0
_ 2 9—(p+2)
S* Y2 (P+)+Z21_7
(p+2)
<IeP(Xo+Y 4 L) +y 2 PP 2200

<2 (X0 +Y + £,

where the second inequality follows from the definition of Z,; and 'yl > 0, the third one follows from vl < 1/4, the
fourth one follows by induction hypothesis, and the last one follows by regrouping the terms. Since k = (p—1)I+k
(mod 1), we have

k di)-—
X <9* U AG 1+ 2oy D™
<2_(p_1)(X0+Y+L)—|— Z<211<i+1)

which implies the result. [
We are now ready to present a more convenient selection of 7, and 7 for the APMD method.

Theorem 4 Let us denote | := [logw ﬂ Cf T = 2~ (LF/U+D) gnd 1 + NeTrk = 1/, then
flmg) = Fr*) < 27 W (o) — f(r™) + 22,

Proof. By using Lemma 10 and Lemma 11 (with X} = Esup=[V5*(s) — Vﬁ;f (s) + %Dg:(s)] and Y, =
177 log |A|), we have
B [VE* (5) = VA, (5) + 125 D7, (5)]

< 2 WU B e [V (5) = VI (5) + 1225 DRy ()] + S}

Noting that V5% (s) > V™ (s), VTT;: (5) < V™ (s)+ 12 log | A[, Vfg (s) > V™ (s) due to (3.18), and that V7 (s) =
V70 (s) due to Dz8(s) = 0, we conclude from the previous inequality and the definition of 73 that

B [V (s) = VT () + =5 D7, (s)]
T e [V (5) = VI (5) + 125 DR, (9)] + Sl o Teposl

-
< o= Lk/1] {Eswy* V™ (s) — VTT(;* (s) + 2log | Al } '

1—y
n

In view of Theorem 4, a policy 7 s.t. f(7)— f(7*) < e will be found in at most O(log(1/¢)) epochs and hence at
most O(llog(1/e)) = O(log, (¢)) iterations, which matches the one for solving RL problems with strongly convex
regularlzers. The difference exists in that for general RL problems, we cannot guarantee the linear convergence of

Dﬁk .1 () since its coefficient 73, will become very small eventually.

4 Stochastic Policy Mirror Descent

The policy mirror descent methods described in the previous section require the input of the exact action-value
functions Q™*. This requirement can hardly be satisfied in practice even for the case when P is given explicitly,
since Q™% is defined as an infinite sum. In addition, in RL one does not know the transition dynamics P and thus
only stochastic estimators of action-value functions are available. In this section, we propose stochastic versions
for the PMD and APMD methods to address these issues.
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4.1 Basic stochastic policy mirror descent

In this subsection, we assume that for a given policy 7y, there exists a stochastic estimator QmkEk gt
Ee, [Q™ %] = @™, (4.1

Ee, [|Q™% — Q™ |1%] < o, (4.2
1Q™ — Q™ Jloo < <k,

w
= —

for some o, > and ¢, > 0, where £, denotes the random vector used to generate the stochastic estimator QkEk
Clearly, if o}, = 0, then we have exact information about Q™. One key insight we have for the stochastic PMD
methods is to handle separately the bias term ¢; from the overall expected error term o}, because one can reduce
the bias term much faster than the total error. While in this section we focus on the convergence analysis of
the algorithms, we will show in next section that such separate treatment of bias and total error enables us to
substantially improve the sampling complexity for solving RL problems by using policy gradient type methods.

’Iéhe stochastic policy mirror descent (SPMD) is obtained by replacing Q™* in (3.5) with its stochastic estimator
QTR Sk e,

miaa(ls) = argmin {@(p) = me[(Q7 % (5,), p(18)) + ()] + DB, (5) (44)
p(-[s)EA| 4
In the sequel, we denote fm the sequence of random vectors &, ..., &, and define
5y = QTR _ T, (4.5)

By using the assumptions in (4.1) and (4.3) and the decomposition
(Q% (s,), mi (+[s) — 7 (1)) = (@ (s, ), m () — 7" ([s))
+(Q™(s,) = Q™ (s,-), Mk (+]s) — 77 (-]s))
+(QTE (5,) = Q™ (5, ), i () = 7 (-]s)),
we can see that
Ee, [(Q™ % (s,), mi(:]s) — 7 (1)) | &1, 1]
> (Q™ (5,7), Mk (:|s) — 7 (+]s)) — 2. (4.6)

Similar to Lemma 5, below we show some general convergence properties about the SPMD method. Unlike
PMD, SPMD does not guarantee the non-increasing property of V"*(s) anymore.

Lemma 12 For any s € S, we have
VIR (5) = VT (5) < (Q% (s, ), g1 () — i (-]s)) + A4 (s) — ™ (s)
+ LD (s) + el (4.7)
Proof. Observe that (3.10) still holds, and hence that
VTl (g) — VT (s)
= 15K, e (@S, ), g1 (1)) — mi(1s)) + AT (") — B (s7)]
= 2B, e [(QE (!, ), mpa () — mi(ls')) + AT () — 7 (s)
— Ok mp1 (15") = m(-]s))]
B e [(Q75 (), mua (1) = miC1s) + 702 (1) — 7 ()

IN

2 ll?
b i (") = (sl + 221l
- IA’ES T [<Qﬂk’£k ('), g1 (-|s") — e (ls)) + RTEF(s") — RTH ()
2
+on D7Tk+1( l) + %} 7 -

where the first inequality follows from Young’s inequality and the second one follows from the strong convexity
of DF*_ w.r.t. to || - ||1. Moreover, we conclude from Lemma 4 applied to (4.4) with Q™ replaced by Q™*¢* and

7Tk+1

p(-|s") = m(:|s") that
<Qﬂk7§k (s/, -),7Tk+1(-‘s/) _ Wk(-‘s/» hﬂ—k+1( ) hﬂ'k( ) + nLkD:’;Jrl (3/)
< — - [+ mep) DIy ()] <0,
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which implies that
B, gt [(Q7 ()i (1) = i) + W™ () = W78 () + DT, ()]
< 7 () [(Q (5, w1 () — Ty (1) + B () = K™ (5) + & DRt (9)]
< (=) [(@ % (5, ), mag 1 (1s) = me(ls)) + h™41 (s) = ™ (5) + - DAL (s)]

where the last inequality follows from the fact that dg"**(s) > 1 —  due to the definition of dg*** in (2.1). The
result in (4.7) then follows immediately from (4.8) and the above inequality. (]

We now establish an important recursion about the SPMD method.
Lemma 13 For any k > 0, we have
Ee o [f(mri1) = F(7) + (o + 1) D(mpg1, 7))

0_2
< Bepy g Y(F () = F(01) + 5 Dl 7)) + 2 + i

Proof. By applying Lemma 4 to (3.5) (with Q™* replaced by Q™ ¢ and p = 7*), we have
nel(Q7F % (s5,), g1 () — 7 (-[3)) + K™ (s) — b (s)] + D7e* (s)
< ng (S) - (1 + nkH)ngH (8)7
which, in view of (4.7), then implies that
(QW’“’E'“ (5,), e (5) = 7 (1)) + A7 (5) = BT (5) + VT (5) = Vr(s)
)
< DI (s) ~ G+ m) DR (s) + Bl

Taking expectation w.r.t. {7 and v* on both sides of the above inequality, and using Lemma 3 and the relation
n (4.6), we arrive at

Ear gy [(1= DV (5) = V5 (3)) 4 V4 (5) = V™ <s>]

<E5NV* 5,—k][ ! D ( ) ( +:LL)D7Tk+1( )] +2§k + 2?k k)

Noting V™41 (s) = V™ (s) = V™41 (s)= V7™ (s)—[V™(s)— V7™ (s)], rearranging the terms in the above inequality,
and using the definition of f in (1.9), we arrive at the result. u

We are now ready to establish the convergence rate of the SPMD method. We start with the case when p > 0
and state a constant stepsize rule which requires both ¢; and og, £ > 0, to be small enough to guarantee the
convergence of the SPMD method.

Theorem 5 Suppose that n, = n = 1,;77 in the SPMD method. If ¢ = 2~ (Lk/U+2) gnq a,% = 2~ (lk/1J+2) for
any k > 0 with | := [log,y(l/él)], then

Eer,  [f(mx) = £(57) + 2Dl n*)
< 27 [ f(mo) = £() + s (ulog 4] + § + 52)] (49)
Proof. By Lemma 13 and the selection of 7, we have
B [f(mhg1) = f(7°) + 125D (g1, 7))

S’y[]ngk—l][f(ﬂ-k)_f( )+1“ D(mp, )]"‘2%"'%,

2
which, in view of Lemma 11 with X}, = E¢, . [f(7g) — f(@*) + %’D(ﬂ'}mﬂ*) and Zy = 2¢; + %, then implies
that

Ee, oy [f(m) = f(n7) + 25 D(mp, )
< YLk/” [f(WO) —f(m*) + % + %(ﬁ + m)}

< ,YUC/U [f(ﬂo) — f(=®) + ﬁ(plog | Al + % + %)] -

We now turn our attention to the convergence properties of the SPMD method for the case when p = 0.
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Theorem 6 Suppose that n, =n for any k > 0 in the SPMD method. If . < ¢ and o, < o for any k > 0, then
we have

* wo)—f(m* log |A
Ee . mlf () — f(x") < WL=L] y Josld] o 2e o (4.10)

where R denotes a random number uniformly distributed between 1 and k. In particular, if the number of iterations

k is given a priori and n = (%)1/2, then

T T o log | A
Eg;, v/ (nr) — /(x)] < WLl | ey eV2oe il (4.11)

Proof. By Lemma 13 and the fact that 1 = 0, we have
Eep, [f(mis1) = £(r*) + 1D (mpy1, 7))
2
S ]EEUC,H [’Y(.f(ﬂ-k) - f(ﬂ-*)) + %D(ﬂ’ka )] + 2§k + 2(1 'Y)

Taking the telescopic sum of the above relations, we have

)T By £ () — F(x)] < (o) — F(x)) + 2D(wo, )] + 2k + ot

Dividing both sides by (1 — v)k and using the definition of R, we obtain the result in (4.10). L]

We add some remarks about the results in Theorem 6. In comparison with the convergence results of SPMD
for the case p > 0, there exist some possible shortcomings for the case when p = 0. Firstly, one needs to output a
randomly selected mg from the trajectory. Secondly, since the first term in (4.11) converges sublinearly, one has
to update 741 at least O(1/€) times, which may also impact the gradient complexity of computing VA™ if 741
cannot be computed explicitly. We will address these issues by developing the stochastic APMD method in next
subsection.

4.2 Stochastic approximate policy mirror descent

The stochastic approximate policy mirror descent (SAPMD) method is obtained by replacing Q7 in (3.20) with

its stochastic estimator ka’g’“ As such, its updating formula is given by
mp () = argmin {(QFFS (5,1, p(19)) + W (s) + 1D, ()] + DEy ()} (112)
p(-[s)€A 4
With a little abuse of notation, we still denote J;, := Q::’g"' — @Q7F and assume that
Eﬁk[ k7§k] - Q‘I’k I (413)
Ee, Q7 < — QFfI1%] < o, (4.14)
o7 - Q?r;’fl\oo < Sk, (4.15)

for some o} > and ¢; > 0. Similarly to (4.6) we have
Ee, [(QTE (s, ), mi(t]s) — 7 (1s)) | €1e, 1)
> (Q7f (5,), mi(c]s) = 7 (:|s)) — 2. (4.16)
Lemma 14 and Lemma 15 below show the improvement for each SAPMD iteration.
Lemma 14 For any k > 0, we have
VIS (s) = VR (s) < QR (5,), a1 (1) — mi(:[s)) + AT (s) — A7 (s)

4 7 [DIE (5) = DRy ()] 4 DI (5) + 2l (417)

Proof. The proof is similar to the one for Lemma 12 except that we will apply Lemma 2 to the perturbed
value functions V7 instead of V7. u

Lemma 15 If 1+ ng1 = 1/7v and 17, > Ti4+1 in the SAPMD method, then for any k > 0,
E V7T,k+1 (S) _ Vﬂ'*

SND*vEUC][ Tht1 Tk+1(s) S Dzk{»l( s)]
< Eooe ey 1 DIV () = VI () + 12 Dy (5)]

+ T log |A| + 2 +

2
o
o, (4.18)
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Proof. By Lemma 8 with p = 7" and Q7 replaced by Q”k’fk we have
(QFF S (5,), Mg (]s) — T ([s)) + B (s) — BT (s)
+ Tk[Dﬂk“( ) = DRy ()] + 7= Drr (s)
> D;rrk( ) - (ﬂik + Tk:)D;rrk+1 (5)7
which, in view of (4.17), implies that
(QTL % (s, ), mk(s) = 7" ([s)) + ™ (s) = A" (s) + 7[DFE (s) = D7, (3))
B ) 6 2
+ V() = VAR (5) < L DR, () = (G + m) DE () + TPl

Taking expectation w.r.t. {7 and v* on both sides of the above inequality, and using Lemma 7 and the relation
n (4.16), we arrive at

Eswvr gri [(L=7)(VRE(8) = VL ()] + Egmm gy VA" (5) = VAE(5)]

* 2
< Eswu*,ﬁm] [ ng( ) ( 1k + Tk)D;Frk+1 (S)} + 2<k + Q?fflfy)

Noting V5 1 (s) — VIZF(s) = Vi (s) — Vﬁ,r: (s) — [VEE(s) — Vﬂlz* (s)] and rearranging the terms in the above
inequality, we have

e g VA (5) = VI (5) + (= + ) Dy (5)]
s €y V() = VIR ()] B o [ DB ()] + 2G5 + gt
which, in view of the assumption 7, > 7541 and (3.19), then implies that
VEEFL(s) = VEF(s) < (QFFS* (s, ), Ty (fs) — mi(]5)) + h™F (s) — h™ (s)
+ Tk [DFET (5) — Dy ()] + 7k DFE T (s) + Tellels (4.19)

The result then immediately follows from the assumption that 1+ np7 = 1/7. n

<HE

We are now ready to establish the convergence of the SAPMD method.

Theorem 7 Suppose that np = 17_7: in the SAPMD method. If 1, = ﬁZﬁQk/lJ+l), S = 27(Lk/lj+2),
7 log

and o2 = 4= (LR/U+2) ith 1= ’—log,y(l/élﬂ, then

. _ . Tog | A
Eep,_y Lf(me) = ()] <27 W/ f(mo) — f(n%) + B 4 o8 (4.20)
Proof. By Lemma 15 and the selection of 7, ¢, and o, we have
]ESNU*{(M [V‘lzl‘;lril (S) - VTk+1( ) + 1Tk D;\'Tk+1( )]
< Egmrr ey VS (5) = Vib (5) + 22 D3 (3)]

- TEETEE log ] 4 (2-+ VRERAp(/11+2) (421)

Using the above inequality and Lemma 11 (with Xy = Egp- ¢, [Y[VEE(s) — V-ﬁ,z* (s) + %Dﬁ;(s)]}, Y, =
12 log | Al and Zj, = (2 + 7¥log\f|A‘)2 (Lk/U+2)y e conclude

ESNV*éUwu [VTT;Ck (s) — Vfi (s) + 17zcy D;rrk ()]

i ) " oA oz 1A log |A|

< 9Lk (B [V (s) = VI (s) + 2\({_%\}] + (\1/_5)[} + 2(1 T 8(1 j)lf}
B - log | A

= o WULR, e VI (s) = VI (s)] + 8 1 (;%r\lf‘ *aa- “/)}

Noting that VI (s) > V™ (s), V.,-T,Z* (s) V™ (s)+ 72 log |Al, V.,Tg (s) > V™ (s) due to (3.18), and that VaEo(s) =
V™ (s) due to D79 (s) = 0, we conclude from the previous inequality and the definition of 7 that

T T — T P log |A
B rp g V() =V ()] < 27 B [V () - v () + 2By sy

+ A

from which the result immediately follows. u
In view of Theorem 7, the SAPMD method does not need to randomly output a solution as most existing

nonconvex stochastic gradient descent methods did. Instead, the linear rate of convergence in (4.20) has been

established for the last iterate 7, generated by this algorithm.
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5 Stochastic Estimation for Action-value Functions

In this section, we discuss the estimation of the action-value functions Q™ or Q7 through two different approaches.
In Subsection 5.1, we assume the existence of a generative model for the Markov Chains so that we can estimate
value functions by generating multiple independent trajectories starting from an arbitrary pair of state and action.
In Subsection 5.2, we consider a more challenging setting where we only have access to a single trajectory observed
when the dynamic system runs online. In this case, we employ and enhance the conditional temporal difference
(CTD) method recently developed in [12] to estimate value functions. Throughout the section we assume that

o(s,0) < &,Y(s,a) € S x A, (5.1)
hﬂ()SFLVSESﬂ'GA‘Al

5.1 Multiple independent trajectories

In the multiple trajectory setting, starting from state-action pair (s,a) and following policy 7%, we can generate
M), independent trajectories of length T}, denoted by

Clzc = CI’LC(SNJ‘) = {(36 = 5,(16 = (1); (Sllaa,i)a- R (Ssz—lva'lfk—l)hi = 17' . '7Mk-

Let &, := {C,i(s, a),i=1,...,Mp,s € S,a € A} denote all these random variables. We can estimate Q™ in the
SPMD method by

Q% (s, a) = g 004 iy o' [elshy ab) + BT (s1)-
It is easy to see that Q™*%* satisfy (4.1)-(4.3) with

(e+h)yTk
1—y

— 1 T\2 = 1L7\2
o = 2(¢+h)?  _ 2(¢+h) (72Tk +ﬁk)‘ (5.3)

2 2
and o} =26 + G ophn T )2

By choosing T}, and M}, properly, we can show the convergence of the SPMD method employed with different
stepsize rules as stated in Theorems 5 and 6.

Proposition 1 Suppose that ng = 1{—/] in the SPMD method. If Ty, and My, are chosen such that

T, > S(|k/1) +logy EEL +2) and My > EC""h;ngc/l J+4

with | := ﬂog,y(l/élﬂ, then the relation in (4.9) holds. As a consequence, an e-solution of (1.9), i.e., a solution
7 st E[f(7) — f(7*) + £ D(7,7%)] < €, can be found in at most O(log, €) SPMD iterations. In addition, the
total number of samples for (s¢,at) pairs can be bounded by

[S11A] log |A] log., ¢

o( p(1—)3e

). (5.4)

Proof. Using the fact that 4! < 1/4, we can easily check from (5.3) and the selection of T} and My that
(4.1)-(4.3) hold with ¢ = 2~ (LF/1+2) and a,% =2~ (lF/U+2) "Suppose that an e-solution 7 will be found at the k
iteration. By (4.9), we have

k/1] <logaf{[f(m0) — F(m*) + 12 (nlog Al + 5 + g2 '},

which implies that the number of iterations is bounded by O(I|k/l]) = O(log., €). Moreover by the definition of
Ty, and M, the total number of samples is bounded by

SIAI S Tty = SIS 14 (b + logy S + 2) (2R, o0

c 2
= O{|S||AlI([k/1] +1og, c+h)g1+f3 2l#/Uy — o

|S]] Al log |A| log., 6)
n(l—y)3e ‘
n
To the best of our knowledge, this is the first time in the literature that an O(log(1/¢€)/e) sampling complexity,
after disregarding all constant factors, has been obtained for solving RL problems with strongly convex regularizers,
even though problem (1.9) is still nonconvex. The previously best-known sampling complexity for RL problems
with entropy regularizer was O(|S||.A|?/€®) [20], and the author was not aware of an O(1/€) sampling complexity
results for any RL problems.

Below we discuss the sampling complexities of SPMD and SAPMD for solving RL problems with general
convex regularizers.
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Proposition 2 Consider the general RL problems with p = 0. Suppose that the number of iterations k is given a

priori and ny = (w)l/2 If Ty > T = log, :())1(;3}%; and My, = 1, then an e-solution of problem of (1.9),

i.e., a solution @ s.t. E[f(7) — f(x*)] < €, can be found in at most O(log|A|/[(1 —~)°€?]) SPMD iterations. In
addition, the total number of state-action samples can be bounded by

S| Al log | A] 1
O(SIAlls LAl < (5.5)

Proof. We can easily check from (5.3) and the selection of T} and Mj, that (4.1)-(4.3) holds with ¢, = ¢/3 and

1 7N\2
o = 2( 4 2etR)

W) Using these bounds in (4.10), we conclude that an e-solution will be found in at most

b = Ae/3)%+(e+h)?/(1—y)*)] log | A| 4+ A (mo) = f(m™)]
(1—=7)3(e/3)? (1=)(/3) °

Moreover, the total number of samples is bounded by |S||.A|Tk and hence by (5.5). L]

We can further improve the above iteration and sampling complexities by using the SAPMD method, in which
we estimate Q7F by

QRrt (s,a) = 5= Soith ST IRyt [e(st, af) + W™ (s)) + T DRS (s1)]-

Since 79 > 14, we can easily see that Q™ * satisfy (4.13)-(4.15) with

-\ T T,
= (C+h+7'011f’gy|A|)’Y k and Uk 2(C+h(-g7'0’yli)3€|v4\) (v 2T}, + 1k)' (5.6)
_ 1 1 o—(|k/lJ+1)
Proposition 3 Suppose that n, = o and T, = 710g|A 2- in the SAPMD method. If Ty, and My,

are chosen such that

iy > 5([k/1] +logy %W +4) and M > %4%/%3

with | := [logy(l/ll)-‘, then the relation in (4.20) holds. As a consequence, an e-solution of (1.9), i.e., a solution
7 s.t. B[f(7) — f(77)] <€, can be found in at most O(log, €) SAPMD iterations. In addition, the total number of
samples for (st,at) pairs can be bounded by

S||A| L Al
o(—' ! '(1°ng 08y €. (5.7)

Proof. Using the fact that ’yl < 1/4, we can easily check from (5.6) and the selection of T} and M} that
(4.13)-(4.15) hold with ¢ = 2~ (Lk/U+2) and of = 4= (*/1+2) "Suppose that an e-solution 7 will be found at the
k iteration. By (4.20), we have

[F/1] < Toga{[f(m0) — F(m") + HEBLL + 251,

which implies that the number of iterations is bounded by O(I|k/l]) = O(log,, €). Moreover by the definition of
Ty and M., the number of samples is bounded by

h Eth 2
|S|IA| ZLk/lJH (p + logy C+h+731°g‘“4| +4) (C+h-é-T310)%IA\) 43

|S[|A] log® | Al log,, € ).
(1—7)%e

_ O{"SHA“(U%/” + log, c+h+Tg’lyog|A\ ) (c+h—(i—7'g lo)g|A|)24|_l_f/lJ} _ O(

u
To the best of our knowledge, the results in Propositions 2 and 3 appear to be new for policy gradient

type methods. The previously best-known sampling complexity for policy gradient methods for RL problems was
O(|S||AI?/€*) (e.g., [20]) although some improvements have been made under certain specific settings (e.g., [24]).
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5.2 Conditional temporal difference

In this subsection, we enhance a recently developed temporal different (TD) type method, i.e., conditional temporal
difference (CTD) method, and use it to estimate the action-value functions in an online manner. We focus on
estimating Q™ in SPMD since the estimation of QT in SAPMD is similar.

For a given policy 7, we denote the Bellman operator

T"Q(s,a) := c(s,a) + h™(s) + 7 ES’GS P(s'|s,a) Za’eA 7(a'|s)Q(s’, a). (5.8)
The action value function Q™ corresponding to policy 7 satisfies the Bellman equation
Q" (s,a) = T"Q" (s, ). (5.9)

We also need to define a positive-definite weighting matrix M™ € R™*"™ to define the sampling scheme to
evaluate policies using TD-type methods. A natural weighting matrix is the diagonal matrix M" = Diag(v(r7)) ®
Diag (), where v(7) is the steady state distribution induced by 7 and ® denotes the Kronecker product. A widely
used assumption in the RL literature is that M™ > 0. This assumption requires: (a) the policy w is sufficiently
random, i.e., w(s,a) > m for some = > 0, which can be enforced, for example, by adding some corresponding
constraints through A™; and (b) v(7)(s) > v for some v > 0, which holds when the Markov chain employed with
policy 7 has a single ergodic class with unique stationary distribution, i.e., v(7) = v(7)P". With the weighting
matrix M™, we define the operator F'™ as

FT(0) :=M"(6—T"0),

where T7 is the Bellman operator defined in (5.8). Our goal is to find the root 6* = Q™ of F(0), i.e., F(6*) = 0.
We can show that F' is strongly monotone with strong monotonicity modulus bounded from below by A, =
(1=9)Amin (MT™). Here Amin (A) denotes the smallest eigenvalue of A. It can also be easily seen that F'™ is Lipschitz
continuous with Lipschitz constant bounded by Amax := (1 — ) (Amax(M7”), where Amax(A) denotes the largest
eigenvalue of A.

Remark 1 If v(m)(s) - w(s,a) = 0 for some (s,a) € S x A, one may define the weighting matrix M™ = (1 —
A)Diag(v (7)) ® Diag(m) + %I for some sufficiently small A € (0,1) which depends on the target accuracy for
solving the RL problem, where n = |S| X |A|]. Obviously, the selection of A will impact the efficiency estimte for
policy evaluation. However, the algorithmic frameworks of CTD and SPMD, and their convergence analysis are
still applicable to this more general setting. In this paper we focus on the more restrictive assumption M™ > 0 in
order to compare our results with the existing ones in the literature. n

Remark 2 For problems of high dimension (i.e., n = |S| x | A] is large), one often resorts to a parametric approx-
imation of the value function. It is possible to define a more general operator F'™ (6) := T M (450 - T”@H) for
some feature matrix @ (see Section 4 of [12] for a discussion about CTD with function approximation). n

At time instant ¢ € Z4, we define the stochastic operator of F™ as

F™(01,G) = ((e(st, at), 00) — (s, ar) — h™ (st) = y{e(set1,a141),00)) e(st, ar),

where (t = (st, at, St+1,at+1) denotes the state transition steps following policy 7 and e(s¢, a¢) denotes the unit
vector. The CTD method uses the stochastic operator F™ (0%, ¢;) to update the parameters 0y iteratively as shown
in Algorithm 3. It involves two algorithmic parameters: « > 0 determines how often 6; is updated and By > 0
defines the learning rate. Observe that if a = 0, then CTD reduces to the classic TD learning method.

Algorithm 3 Conditional Temporal Difference (CTD) for evaluating policy 7

Let 61, the nonnegative parameters a and {8:} be given.
fort=1,...,7 do
Collect « state transition steps without updating {0;}, denoted as {¢},¢?,...,¢2}.
Set
01 = 0 — BeF™ (01, CF). (5.10)

end for

When applying the general convergence results of CTD to our setting, we need to handle the following possible
pitfalls. Firstly, current analysis of TD-type methods only provides bounds on E[||6; — 0x||3], which gives an upper
bound on E[||0; — Q™||%] and thus the bound on the total expected error (c.f., (4.2)). One needs to develop a tight
enough bound on the bias ||E[f;] — 0«||co (c.f., (4.3)) to derive the overall best rate of convergence for the SPMD
method. Secondly, the selection of o and {;} that gives the best rate of convergence in terms of E[||6; — 6x|3]
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does not necessarily result in the best rate of convergence for SPMD, since we need to deal with the bias term
explicitly.
The following result can be shown similarly to Lemma 4.1 of [12].

Lemma 16 Given the single ergodic class Markov chain Cll, con CE (%, .., ¢S ..., there emists a constant C > 0
and p € [0,1) such that for every t,a € Z with probability 1,

IF™ (6¢) — ELEFT (82, ¢E)ICr—1]ll2 < Cp (|6 — 7|2
We can also show that the variance of F™ is bounded as follows.
E[|F™ (0, G) — ELF (02, ¢)[¢re—11 2]
< 2(1+)’E[|6:]13] + 2(c + k)
< 4(1+7)?E[[10: — 6*(13] + 16713 + 2(c + R)*. (5.11)
The following result has been shown in Proposition 6.2 of [12].

Lemma 17 If the algorithmic parameters in CTD are chosen such that

log (1/Amin)+log(9C) o 9
a > Tog (1/p) and ﬁt = m (512)

with tg = 8max{/112naX7 8(1+ 7)2}//12 then

min>

*112 2(to+1)(to+2) 101 —0" |2 12to2
Efllor+1 —07[12] < o) (E+to+D) A;in(t+to)(§+to+1)’

_ * (12 =1 h\2
where 0% = 4(1 + v)?R? + ||0*||3 + 2(¢ + h)? and R? := 8[|6; — 64|13 + %ﬁfjh)]. Moreover, we have
E[||6: — 6*|13] < R? for any t > 1.

We now enhance the above result with a bound on the bias term given by ||E[f:+1] — 6*||2. The proof of this
result is put in the appendix since it is more technical.

Lemma 18 Suppose that the algorithmic parameters in CTD are set according to Lemma 17. Then we have

12« (lo=D)(to=2)(to=3)|I01=6"||5 | SCR?p> |, C*R?p**
[E[Bz41] — 0712 < (t+to—1)(t+to—2)(t+to—3) + S3Am. T a2 :

min

We are now ready to establish the convergence of the SMPD method by using the CTD method to estimate
the action-value functions. We focus on the case when p > 0, and the case for ;1 = 0 can be shown similarly.

Proposition 4 Suppose that n, = 17_—: in the SPMD method. If the initial point of CTD is set to 01 = 0 and the
number of iterations T and the parameter o in CTD are set to

Ty, = to(3021F/1+2)2/3 1 (44302 R/ UF2)1/2 4 9462 4=2 olk/LI+2 (5.13)
ap = max{Z(L%J +2)log, 1+ log,, 24/187}32’ (L%J +2)log, 3+ log,, SAC%}, (5.14)

where | := {log,y(l/4)-| and 0 := \/ﬁftz, then the relation in (4.9) holds. As a consequence, an e-solution of (1.9),
i.e., a solution T s.t. E[f(7) — f(=") + %D(ﬁ,w*)] <, can be found in at most O(log, €) SPMD iterations. In
addition, the total number of samples for (s¢,at) pairs can be bounded by

1 1 Amin t00%/° t00 o3
O{(log,), §)(lOg2 Z)(lng CR2 ) (u(li'y)e)Zm + \/#(T*V)e + l‘(l_'YfA?ninE)}' (5.15)

Proof. Using the fact that ’yl < 1/4, we can easily check from Lemma 17, Lemma 18, and the selection of T
and a that (4.1)-(4.3) hold with ¢, = 2~ (Lk/U+2) and U% = 2~ (lK/U+2) Suppose that an e-solution 7 will be
found at the k iteration. By (4.9), we have

R/1] < loga{[f(m0) — () + = (nlog | A| + 3 + g22)]e 1,

which implies that the number of iterations is bounded by O(I|k/l]) = O(log, €). Moreover by the definition of
Ty and oy, the number of samples is bounded by

S 10y Ty, = Oflog, 3 M (plog, L+ log, Amiz) (t062/322/% 1 1062¢/2 + oA 2 27)}

— Oflog,, $(|k/1) log, & + log,, Amig) (1962322 F/U/3 14,2l F/1/2 4 52 A2 olk/U )y

1 1 1 Amin t00%/3 t0 7
= (’){log7 Q(IOgQ < logp 2 + logp CR2 )( (;L(lo—’y)e)2/3 + \/M(i—’y)e + H(I*:;Ai.;ne)}

The following result shows the convergence properties of the SAMPD method when the action-value function
is estimated by using the CTD method.
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iti - 1= — 1 o—=(lK/l+1) initi
Proposition 5 Suppose that ny STr and Ty mZ in the SAPMD method. If the initial
point of CTD is set to 61 = 0, the number of iterations T is set to
Ty, = to(30218/U+2)2/3 | (442024 B/UA2Y1/2 | 9g52 =2 4LB/1+2, (5.16)

and the parameter o in CTD is set to (5.14), where | := (logv(l/élﬂ and 0 = w, then the relation in
(4.20) holds. As a consequence, an e-solution of (1.9), i.e., a solution & s.t. E[f(7) — f(7*)] <€, can be found in
at most O(log., €) SPMD iterations. In addition, the total number of samples for (st,at) pairs can be bounded by

2

O{(log,, 3)(logz 1) (log,, 2) (L5 + —ot—a2)}- (5.17)

min

Proof. The proof is similar to that of Proposition 4 except that we will show that (4.1)-(4.3) hold with
o = 27 (WR/UF2) ang = 4= (k/U+2) Moreover, we will use (4.20) instead of (4.9) to bound the number of
iterations. -

To the best of our knowledge, the complexity result in (5.15) is new in the RL literature, while the one in
(5.17) is new for policy gradient type methods. It seems that this bound significantly improves the previously
best-known O(1/€?) sampling complexity result for stochastic policy gradient methods (see [24] and Appendix C
of [10] for more explanation).

6 Efficient Solution for General Subproblems

In this section, we study the convergence properties of the PMD methods for the situation where we do not have
exact solutions for prox-mapping subprobems. Throughout this section, we assume that h”™ is differentiable and its
gradients are Lipschitz continuous with Lipschitz constant L. We will first review Nesterov’s accelerated gradient
descent (AGD) method [18], and then discuss the overall gradient complexity of using this method for solving
prox-mapping in the PMD methods. We will focus on the stochastic PMD methods since they cover deterministic
methods as certain special cases.

6.1 Review of accelerated gradient descent

Let us denote X = A| 4 and consider the problem of
min{&(z) := ¢(z) + x(2)}, (6.1)
z€X

where ¢ : X — R is a smooth convex function such that
Ho D < 6(z) — [6(a') + (Vo(a'),z — )] < %l — 2’|l
Moreover, we assume that y : X — R satisfies
xX(@) = [x(@') + (X (@), 2 = 2")] = D

for some py > 0. Given (x¢—1,y:—1) € X X X, the accelerated gradient method performs the following updates:

2y = (1 —qt)ye—1 + qewe—1, (6.2)

= axgmin{ri{(V9(a,),7) + gD, + x(@)) + DE,_, ), (63)
Te

yt = (L= pt)ye—1 + prae, (6.4)

for some ¢+ € [0,1], r+ > 0, and p; € [0,1] .

Below we slightly generalize the convergence results for the AGD method so that they depend on the distance
D3, rather than @(yo) —P(x) for any x € X. This result better fits our need to analyze the convergence of inexact
SPMD and SAPMD methods in the next two subsections.

Lemma 19 Let us denote pg = pug + py and to := |24/Lg/pe — 1]. If

2 L
t — s dt — IL<I>/L¢_IL<I>/L¢ y Tt — 1 5
ue/Ly  o0.w. S errys el opyTr—— 0.w.
then for any x € X,
P(yt) — D() + pe Dz, < e(t)Di,, (6.5)

where

e(t) = 2L¢min{(1— \/M¢/L¢>t_17ﬁ}. (6.6)
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Proof. Using the discussions in Corollary 3.5 of [13] (and the possible strong convexity of x), we can check
that the conclusions in Theorems 3.6 and 3.7 of [13] hold for the AGD method applied to problem (6.1). It then
follows from Theorem 3.6 of [13] that

Ly
B(ye) — D(w) + LD, < gy Dig V=1, o, (6.7)

Moreover, it follows from Theorem 3.7 of [13] that for any ¢ > to,
t—to
B(ye) = 0(@) +uoD%, < (L= /no/Ls)  [@(un) = P(@) + no D5, |

t—1
<2 (1 - \/MqS/qu) LgD3y,

where the last inequality follows from (6.7) (with ¢t = tg) and the facts that

P t t—1
Ptt > T:O > ug and t(t+1) Hi:2(1 Z+1) (1 — \/,U«;p/Lqﬁ)

for any 2 <t < tg. The result then follows by combining these observations. u

6.2 Convergence of inexact SPMD

In this subsection, we study the convergence properties of the SPMD method when its subproblems are solved
inexactly by using the AGD method (see Algorithm 4). Observe that we use the same initial point w9 whenever
calling the AGD method. To use a dynamic initial point (e.g., vi) will make the analysis more complicated since
we do not have a uniform bound on the KL divergence D7, for an arbitrary vi. To do so probably will require us
to use other distance generating functions than the entropy function.

Algorithm 4 The SPMD method with inexact subproblem solutions
Input: initial points mg = vg and stepsizes ng > 0.
for k=0,1,...,do
Apply Ty AGD iterations (with initial points z¢ = yo = 7o) to

meri(fs) = argmin {@u(p) i nel(Q % (s, p1s) + H7(9)] + DE ()} (6.8)
(19)€A| 4

Set (Tr41,Vk41) = (YTp+1, Ty, +1)-
end for

In the sequel, we will denote e, = €(T}) to simplify notations. The following result will take place of Lemma 4
in our convergence analysis.

Lemma 20 For any 7(-|s) € X, we have
E[(QT™ % (s,), i1 (-]s) = 7(-|s)) + A1 (s) — K (s)]
+ Dy () + (14 k) Dy (5) < D5, (s) + e log | A]. (6.9)
Moreover, we have
Me[{Q7% (s, ), mrp1 (-|5) = mr(c[s)) + AT (s) — B (s)]
+ Dyt (s) + (1 + pg) Doy (s) < (ep + m)l‘)g Al (6.10)
Proof. It follows from Lemma 19 (with pg = 1+ puny, and Ly = L) that
P (Tpt1) — Pe(m) + (14 ) D3, (8) < €, D7y () < e log | Al
Using the definition of @, we have
l{QT (5, ), w1 (]s) = w(]s)) + AT (5) = A7 (5)]
+ Dyt (s) = Dy, (8) + (L+ pg) Dy, (5) < exlog A,
which proves (6.9). Setting m = 7 and ™ = 71 respectively, in the above conclusion, we obtain
ME[(Q™ % (s, ), mhp1 (-]s) — me(-]s)) + BT (s) — B (s)]
+ Dy () + (L+ pmk) D3k, (5) < D (s) + e log | Al
(1+ i) Dyt (s) < e log Al

Then (6.10) follows by combining these two inequalities. [
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Proposition 6 For any s € S, we have

VT (5) = VT (5) < (QT™ % (s, ), w1 (-|s) = mh(-]s)) + ™2 (s) — K™ (s)

+ D7Tk+1( )+ nkl“sk‘lio (5 + Ek—1 1 |.A|
2(I—y) T (- 'Y)le b+ T, ) 108

- 11711*35, g [0, vk (187 = mp([s)). (6.11)

Proof. Similar to (4.8), we have

VL (5) — VT (s)

= T B, ke [(QUS (5, ), miga () = mCls) BT () = BT ()
{01 C15') = (1)) = (G ok C1s") = meC15')]
PB e [(Q7 (), mga () = (1) + A7 () — h74 ()
)= onCIIE + 20 — (5, 0n(ls) - miCls)]

)
< LB, e (@785 m (1) = mi () + 741 () = A (o)

DI () + 2L (5 (1) = ()] (6.12)
It follows from (6.10) that

(QT(s,), g () — i (19)) + A7 (5) = ™ (s)

ok DI (3) + (4 pm) DS (5) = (o + mhiis) og JAT] <0, (6.13)

which implies that

E,, g [(Q”’é’“(s )y a1 (187) = mi([s))) + AT (") = AT (ST)

s’ ~ds
+ib (DR ) — ek + Tty ) og ) |

< dT(s) |:<Q7Tkvfk( Vs g1 (1) — TR (-]8)) + AT (s) — B7E(s)
+77ik (D;r:-H (s) = (e + 1+,1”7k 1 ) log | A]

)
<=7 [(Q”"’g’“( ) Th1([8) = 7k (c]s)) + AT (s) = BT (s)
)|

ok (DI (5) = (en + i) log A

where the last inequality follows from the fact that dg"* (s) > (1 —~) due to the definition of dg*** in (2.1). The
result in (6.11) then follows immediately from (6.12) and the above inequality. L]

We now establish an important recursion about the inexact SPMD method in Algorithm 4.
Lemma 21 Suppose that n, =n = 1,;—: and ey, < €p_1 for any k > 0 in the inexact SPMD method, we have

Efrk" [f(ﬂ-k?-i-l) - f(ﬂ'*) + %D(T(k-ﬁ—lvﬂ-*)]

< B,y [F(m) — F@™) + g Dl m*)] + 23705 ¢ gy i Qb logfAlewas

Proof. By (6.9) (with p = 1), we have
<Q’”“5k<s 9w (ls) =7 (1)) + BT () — BT (s) + A DI (s)
< 1D, (s) = (L +w)Diy,, (s) + £ log |A],
which, in view of (4.7), then implies that
<Q’Tk’5’v (51,7 (3) = 7 (15) + W™ (3) = B () 4 V741 (5) = VT (s)
< ADT(s) — G+ p)Dh (s) + Bl (o e log|A|

(1 ’Y)nk
— 1B, e [0 vk Cls) — (1),
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Taking expectation w.r.t. £ (k] and v* on both sides of the above inequality, and using Lemma 3 and the relation
n (4.6), we arrive at

B € [(1= (V™ (5) = V7 () 4+ VT () = V7 s)]

SEsop “ &1k [Wk ng (s) — (% + N’)ng+1( )] +2¢ + 21(7{601;)

+ = (&6 + ) 108 |l + 25

Noting V™41 (s) = V™ (s) = V™41 (s)—V™ (s)—[V™(s)— VT (s)], rearranging the terms in the above inequality,
and using the definition of f in (1.9), we arrive at

Ee . [f(mh1) = F7°) + (& + @)D (o1, 7)) < Ee,,, (F(m) = F(5°) + 2 D(vg, 7))

2
*k 0l El—
(== + CE=orm (er + 1+Mk171)10g|A\.

The result then follows immediately by the selection of 17 and the assumption e < e_1. u
We now are now ready to state the convergence rate of the SPMD method with inexact prox-mapping. We
focus on the case when p > 0.

Theorem 8 Suppose that n, = n = 17_—#7 in the inexact SPMD method. If ¢, = (1 — 7)2_(%/”"'2), O']% =
—(R/U+2) gpd f, = (1—~)22 ~(LRAD/UR2) for any k > 0 with | := ﬂog,y(l/ﬁl)-‘, then
Eeo 1 [f(me) = F(7°) + 2D, )]
A (o) — £) + s (ulog 4] + 252 4 B 4 BeatCEpleslAl) | (6.14)
Proof. The result follows as an immediate consequence of Proposition 21 and Lemma 11. u

In view of Theorem 8, the inexact solutions of the subproblems barely affect the iteration and sampling com-
plexities of the SPMD method as long as g, < (1 77)227(L(k+1)/”+2), Notice that an e-solution of problem (1.9),
i.e., a solution 7 s.t. E[f(7) — f(7*)] < ¢, can be found at the k-th iteration with

[k/1] <loga{e™![f(m0) — F(m*) + 12 (4plog Al + 5+ 2]}
Also observe that the condition number of the subproblem is given by

_Lmi _ L(=7)
e +1 H

Combining these observations with Lemma 19, we conclude that the total number of gradient computations of A
can be bounded by

il - - .
I st/ = L o S
= O{ULR/)? E ) t0g 5k
= 0{ g, 310062 1) 20 g )}

6.3 Convergence of inexact SAPMD

In this subsection, we study the convergence properties of the SAPMD method when its subproblems are solved
inexactly by using the AGD method (see Algorithm 5).

Algorithm 5 The Inexact SAPMD method
Input: initial points 7o = wvo, stepsizes 1, > 0, and regularization parameters 75 > 0.
for k=0,1,...,do
Apply Ty AGD iterations (with initial points z¢o = yo = 7o) to

meri(ls) = argmin {Bu(p) s nel(QFE (s, ):p(18)) + K7() + D ()] + DI, ()} (6.15)
p(-[s)EA| 4

Set (Tr41,Vk41) = (YTp 41, BTy, +1)-
end for

In the sequel, we will still denote g5, = (T} ) to simplify notations. The following result has the same role as
Lemma 20 in our convergence analysis.
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Lemma 22 For any ©(-|s) € X, we have
e[(QFE* (5,), a1 (s) = m(-|s)) + K™ () = h7 () + 7i(D7g ™ (5) — DFy(s))]
+ D”’““( )+ (Lt 7mi) D5, 4, (5) < D5, (s) + e log | Al (6.16)
Moreover, we have
e[(QTE % (s, ), i1 () = mk (-]s)) + BT (s) — K™ () + 7 (D7 (s) — DF5 (s))]
+ Dot (s) 4+ (1 + mhni) Doty (5) < (ek + mmmi—) log |A]. (6.17)

Proof. The proof is the same as that for Lemma 20 except that Lemma 19 will be applied to problem (6.15)
(with pg = 14 7my, and Ly = L). n

Lemma 23 For any s € S, we have
VIR (5) = VIR (5) < (QTE % (5, )y g1 () — m(1s) + b7 () = 174 (5)
+7k(Drg ™t (s) — D7 (5))
DT () + Bl (o 4 el log A
— 125E,, e [0k, o (ls) = m (1)) (6.18)

Proof. The proof is similar to that for Lemma 6 with the following two exceptions: (a) we will apply Lemma 2
(i.e., the performance difference lemma) to the perturbed value functions V7, instead of V™ to obtain a result
similar to (6.12); and (b) we will use use (6.17) in place of (6.10) to derive a bound similar to (6.13). L]

Lemma 24 Suppose that 1 + np1, = 1/ and e, < €1 in the SAPMD method. Then for any k > 0, we have

B g Varint (8) = Vi, (8) + 125 ng“( s)]
< Egnps WErk—1] [V[VTﬂk (5) - V (5) TikD;rrk (5)}
(The—Thk+1) 2(2—7)s o2
+ T log |Al + == 4+ o

+ % log | Al. (6.19)

Proof. By (6.16) (with p = 7*), we have
(QFF % (5,), w1 ([s) = 7 ([s)) + ™1 (s) = A7 (s)
+ T [DRE (1) — Dy (51)] + e Dt (s)
> 771 D ( ) (nik"'_’rk) vk+1(s)+%log|~’4|z
which, in view of (6.18), implies that

(QFESr (s,-), i (s) — 7% (-|s)) + h™ (5) — ™ (5) + Tk [DFE (5¢) — Do (s¢)]
+VEEL(s) — VIR (s)

k

1y 1 . 16k |13
< Doy (8) = (5 + ) Dy (5) + 5(‘13) + o= ’y)nk (e + W)log A
S LB, e [(Gh okl — Tl

Taking expectation w.r.t. {13 and v* on both sides of the above inequality, and using Lemma 3 (with A™ replaced
by h™ + 7, D%, (s¢) and Q™ replaced by QF) and the relation in (4.6), we arrive at

B g (1= 1) (VEE(s) = VL ()] 4 Egopr g, VA (5) = VR (5)]
2
< ESNV*,QH [ ng( ) ( 1 + Tk)D;rrk+1( )} + 26, + e

2(1—7)
2.
+ (1—- v)m (ex + 1+Txck 1;7k 1)10g | Al 1 gk

Noting ViF 4 (s) — Vi (s) = Vik 1 (s) — VI (s) — [V (s) — V& (s)] and rearranging the terms in the above
inequality, we have
ESN”*75F1€T [VTT’Zk+1 (s) — V;:; (s) + (L + Tk)ngJrl( s)]
2 2
VB gy VA () = VI (3)] B g, 25 DIy ()] + 25228 4 et
+ (1- ’Y)nk (ex + 1+Tkk 1;7k 1 ) log [A]. (6.20)

The result then follows from 1+ n7 = 1/7, the assumptions 7, > 741, € < €x—1 and (3.19). [
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Theorem 9 Suppose that np = 17_7: in the SAPMD method. If 1, = WZ4M/ZJ+1), S = 27(Lk/”+2),
2
op = 4= WR/U+2) and gf, = % with [ := [log,y(l/él)], then
]Eﬁ[k_ﬂ [f(ﬂ-k) - f(ﬂ-*)]
<27 f(mg) — f(r*) + s (BLEHAL 4 5C )y Svioe Al (6.21)

Proof. The result follows as an immediate consequence of Lemma 24, Lemma 11, and an argument similar to
the one to prove Theorem 7. [

In view of Theorem 9, the inexact solution of the subproblem barely affect the iteration and sampling com-

2
plexities of the SAPMD method as long as g < %
solution 7 s.t. E[f(7) — f(7*)] < ¢, can be found at the k-th iteration with

Notice that an e-solution of problem (1.9), i.e., a

[F/1) < loga{e ™" [f(mo) — f(r™) + 125 (LA 1)y,

Also observe that the condition number of the subproblem is given by

L L(1— k/l]+1
iy = 200 — (1 - 9)Ly/ylog A2/,

Combining these observations with Lemma 19, we conclude that the total number of gradient computations of h
can be bounded by

i k _3
ZZZL’k:/OlJ 757211 log(Lny/ex) = lzgi/ou \/%lOg 2’)'L2((11+7Y))Tk
= O{I[R/1)[(1 — 7) L]/ 22lF/1/210g LU=y

vy
=0 {tog, 0 /0 2052}

7 Concluding Remarks

In this paper, we present the policy mirror descent (PMD) method and show that it can achieve the linear and
sublinear rate of convergence for RL problems with strongly convex or general convex regularizers, respectively. We
then present an approximate policy mirror descent (APMD) method obtained by adding adaptive perturbations to
the action-value functions and show that it can achieve the linear convergence rate for RL problems with general
convex regularizers. We develop the stochastic PMD and APMD methods and derive general conditions on the
bias and overall expected error to guarantee the convergence of these methods. Using these conditions, we establish
new sampling complexity bounds of RL problems by using two different sampling schemes, i.e., either using a
straightforward generative model or a more involved conditional temporal different method. The latter setting
requires us to establish a bound on the bias for estimating action-value functions, which might be of independent
interest. Finally, we establish the conditions on the accuracy required for the prox-mapping subproblems in these
PMD type methods, as well as the overall complexity of computing the gradients of the regularizers.
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Appendix: Bounding Bias for the Conditional Temporal Difference Methods

Proof of Lemma 18.
Proof. For simplicity, let us denote §; = E[0:], & = ((:tl, .., ¢) and Crey = (C1y---,Ct). Also let us denote
oF == F™(0;) — IE[IE"T(G,:,C?)KH,H] and 6f = Eer [6]. Tt follows from Jensen’s ienquality and Lemma 17
that
10t — 0% ll2 = [E¢p,_,[0e] — 0" ll2 < By, [16¢ — 07]|2] < R. (7.1)

Also by Jensen’s inequality, Lemma 16 and Lemma 17, we have
158 N2 = I, [6F 12 < B,y (167 [l2]
< CpEep,_ [0 — 0712] < CRp™. (7.2)
Notice that
011 =0t — BeF" (01, G)
=0 — BeF™ (0r) + Be[F7 (0:) — F™ (61, ¢)).
Now conditional on ([;_17, taking expectation w.r.t. ¢¢ on (5.10), we have E[0;41|C[y—17] = 0 — B+ F" (0¢) + Bof.
Taking further expectation w.r.t. ¢r¢—1) and using the linearity of F, we have 011 = 0; — Bt F™ () +5t5tF7 which
implies
1041 = 0"(13 = [10: — 0" — BeF™ (0) + B3t II3
= 116 — 07113 — 28:(F™ (Br) — 31, 6 — ") + BE||F™(Br) — 57 |3
<10 — 0%(13 — 28:(F™(8:) — 6( .01 — 0%) + 267 [I|IF™ (80) |15 + |16 113]-
The above inequality, together with (7.1), (7.2) and the facts that
(F™(04),0; — 0%) = (F™(8) — F™(0%),0 — 0) > Auin]|0: — 073
IF(00)ll2 = |F7(0¢) = F™(0")ll2 < Amax]|0¢ — 07]|2,
then imply that
16e+1 = 67113 < (1 = 261 Amin + 267 Amas) |16 — 0713 + 26:CRp™ + 267 C* R p*
< (1= 2=0)l8e — 67113 + 28,0R*p™ + 2687 C*R*p**, (7.3)
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where the last inequality follows from

202\ _ 2\ _ 247 o
2(BtAmin - Bt Amax) - Qﬁt (Amin - 5t/1max) = 2/Bt(/1min - m)

242

max 3 _ 3
> 2/Bt (Amin - AmintO) > jﬂt/lmin = TFto—1

1
due to the selection of B¢ in (5.12). Now let us denote I} := 3 " or equivalently, I} :=
(1 - t+t071)[‘t71 t > 1»
(t+t((]t—01_)1(2$20_—2%§fg;i,)—3))' Dividing both sides of (7.3) by I} and taking the telescopic sum, we have

_ _ ) 2
2081 — 0713 < 101 — 03 + 20R%p* Y1 B 4207 RPN B

i

Noting that

S B2yt (g Do) 20 i+t — 2)°
=1 T} Amin =1 (to0—1)(to0—2)(to—3) — Amin(to—1)(to—2)(to—3)

< 2(t+to—1)>
= 3Amin(to—1)(t0—2)(t0o—3)’
st B a3, (i+to—3) 2(t+t0—2)>
i=1 I3 = AZ; (to—1)(t0—2)(t0—3) — AZ;,(to—1)(to—2)(to—3)’
we conclude
3 *112 (to—1)(to—2)(to—3) A *12 2 2(t+to—1)>
16241 — 6072 < (t+t0071)(t+0t()72)(0t+t073) 61 = 67[|2 + 2CR"p 3Amin(t+tog2)(t+t073)
252 2a 2(t+to—2)
MR o (e Cxere)
(to—1)(to—2)(to—3) J %12 , 8CR?*p™ | C?R?p>*
< o Ditrto- (e to—3y 101 = Oll2 + 5540 + =32

from which the result holds since 8; = 6;. ]
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