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Abstract We present new policy mirror descent (PMD) methods for solving reinforcement learning (RL) prob-

lems with either strongly convex or general convex regularizers. By exploring the structural properties of these

overall highly nonconvex problems we show that the PMD methods exhibit fast linear rate of convergence to the

global optimality. We develop stochastic counterparts of these methods, and establish an O(1/ε) (resp., O(1/ε2))

sampling complexity for solving these RL problems with strongly (resp., general) convex regularizers using differ-

ent sampling schemes, where ε denote the target accuracy. We further show that the complexity for computing

the gradients of these regularizers, if necessary, can be bounded by O{(logγ ε)[(1 − γ)L/µ]1/2 log(1/ε)} (resp.,

O{(logγ ε)(L/ε)
1/2}) for problems with strongly (resp., general) convex regularizers. Here γ denotes the discount-

ing factor. To the best of our knowledge, these complexity bounds, along with our algorithmic developments,

appear to be new in both optimization and RL literature. The introduction of these convex regularizers also

greatly enhances the flexibility and thus expands the applicability of RL models.

1 Introduction

In this paper, we study a general class of reinforcement learning (RL) problems involving either covex or strongly

convex regularizers in their cost functions. Consider the finite Markov decision process M = (S,A,P, c, γ), where

S is a finite state space, A is a finite action space, P : S × S × A → R is transition model, c : S × A → R is the

cost function, and γ ∈ (0, 1) is the discount factor. A policy π : A×S → R determines the probability of selecting

a particular action at a given state.

For a given policy π, we measure its performance by the action-value function (Q-function) Qπ : S × A → R
defined as

Qπ(s, a) := E
[∑∞

t=0 γ
t[c(st, at) + hπ(st)]

| s0 = s, a0 = a, at ∼ π(·|st), st+1 ∼ P(·|st, at)] . (1.1)

Here hπ is a closed convex function w.r.t. the policy π, i.e., there exist some µ ≥ 0 s.t.

hπ(s)− [hπ
′
(s) + 〈(h′)π

′
(s, ·), π(·|s)− π′(·|s)〉] ≥ µDππ′(s), (1.2)

where 〈·, ·〉 denotes the inner product over the action space A, (h′)π
′
(s, ·) denotes a subgradient of h(s) at π′, and

Dππ′(s) is the Bregman’s distance or Kullback–Leibler (KL) divergence between π and π′ (see Subsection 1.1 for

more discussion).

Clearly, if hπ = 0, then Qπ becomes the classic action-value function. If hπ(s) = µDππ0
(s) for some µ > 0,

then Qπ reduces to the so-called entropy regularized action-value function. The incorporation of a more general

convex regularizer hπ allows us to not only unify these two cases, but also to greatly enhance the expression

power and thus the applicability of RL. For example, by using either the indicator function, quadratic penalty or

barrier functions, hπ can model the set of constraints that an optimal policy should satisfy. It can describe the

correlation among different actions for different states. hπ can also model some risk or utility function associated
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with the policy π. Throughout this paper, we say that hπ is a strongly convex regularizer if µ > 0. Otherwise, we

call hπ a general convex regularizer. Clearly the latter class of problems covers the regular case with hπ = 0.

We define the state-value function V π : S → R associated with π as

V π(s) := E
[∑∞

t=0 γ
t[c(st, at) + hπ(st)]

| s0 = s, at ∼ π(·|st), st+1 ∼ P(·|st, at)] . (1.3)

It can be easily seen from the definitions of Qπ and V π that

V π(s) =
∑
a∈A π(a|s)Qπ(s, a) = 〈Qπ(s, ·), π(·|s)〉, (1.4)

Qπ(s, a) = c(s, a) + hπ(s) + γ
∑
s′∈S P(s′|s, a)V π(s′). (1.5)

The main objective in RL is to find an optimal policy π∗ : S ×A → R s.t.

V π
∗
(s) ≤ V π(s), ∀π(·|s) ∈ ∆|A|, ∀s ∈ S. (1.6)

for any s ∈ S. Here ∆|A| denotes the simplex constraint given by

∆|A| := {p ∈ R|A||
∑|A|
i=1 pi = 1, pi ≥ 0}, ∀s ∈ S. (1.7)

By examining Bellman’s optimality condition for dynamic programming ([3] and Chapter 6 of [19]), we can

show the existence of a policy π∗ which satisfies (1.6) simultaneously for all s ∈ S. Hence, we can formulate (1.6)

as an optimization problem with a single objective by taking the weighted sum of V π over s (with weights ρs > 0

and
∑
s∈S ρs = 1):

minπ Es∼ρ[V π(s)]

s.t. π(·|s) ∈ ∆|A|, ∀s ∈ S.
(1.8)

While the weights ρ can be arbitrarily chosen, a reasonable selection of ρ would be the stationary state distribution

induced by the optimal policy π∗, denoted by ν∗ ≡ ν(π∗). As such, problem (1.8) reduces to

minπ {f(π) := Es∼ν∗ [V π(s)]}
s.t. π(·|s) ∈ ∆|A|, ∀s ∈ S.

(1.9)

It has been observed recently (eg., [14]) that one can simplify the analysis of various algorithms by setting ρ to

ν∗. As we will also see later, even though the definition of the objective f in (1.9) depends on ν∗ and hence the

unknown optimal policy π∗, the algorithms for solving (1.6) and (1.9) do not really require the input of π∗.
Recently, there has been considerable interest in the development of first-order methods for solving RL prob-

lems in (1.8) -(1.9). While these methods have been derived under various names (e.g., policy gradient, natural

policy gradient, trust region policy optimization), they all utilize the gradient information of f (i.e., Q function)

in some form to guide the search of optimal policy (e.g., [21,9,7,1,20,5,23,15]). As pointed out by a few authors

recently, many of these algorithms are intrinsically connected to the classic mirror descent method originally pre-

sented by Nemirovski and Yudin [17,2,16], and some analysis techniques in mirror descent method have thus been

adapted to reinforcement learning [20,23,22]. In spite of the popularity of these methods in practice, a few signif-

icant issues remain on their theoretical studies. Firstly, most policy gradient methods converge only sublinearly,

while many other classic algorithms (e.g., policy iteration) can converge at a linear rate due to the contraction

properties of the Bellman operator. Recently, there are some interesting works relating first-order methods with

the Bellman operator to establish their linear convergence [4,5]. However, in a nutshell these developments rely

on the contraction of the Bellman operator, and as a consequence, they either require unrealistic algorithmic as-

sumptions (e.g., exact line search [4]) or apply only for some restricted problem classes (e.g., entropy regularized

problems [5]). Secondly, the convergence of stochastic policy gradient methods has not been well-understood in

spite of intensive research effort. Due to unavoidable bias, stochastic policy gradient methods exhibit much slower

rate of convergence than related methods, e.g., stochastic Q-learning.

Our contributions in this paper mainly exist in the following several aspects. Firstly, we present a policy

mirror descent (PMD) method and show that it can achieve a linear rate of convergence for solving RL problems

with strongly convex regularizers. We then develop a variant of PMD, namely approximate policy mirror descent

(APMD) method, obtained by applying an adaptive perturbation term into PMD, and show that it can achieve

a linear rate of convergence for solving RL problems with general convex regularizers. Even though the overall

problem is highly nonconvex, we exploit the generalized monotonicity [6,13,11] associated with the variational

inequality (VI) reformulation of (1.8)-(1.9) (see [8] for a comprehensive introduction to VI). As a consequence,

our convergence analysis does not rely on the contraction properties of the Bellman operator. This fact not only

enables us to define hπ as a general (strongly) convex function of π and thus expand the problem classes considered

in RL, but also facilitates the study of PMD methods under the stochastic settings.

Secondly, we develop the stochastic policy mirror descent (SPMD) and stochastic approximate policy mirror

descent (SAPMD) method to handle stochastic first-order information. One key idea of SPMD and SAPMD is
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to handle separately the bias and expected error of the stochastic estimation of the action-value functions in our

convergence analysis, since we can usually reduce the bias term much faster than the total expected error. We

establish general convergence results for both SPMD and SAPMD applied to solve RL problems with strongly

convex and general convex regularizers, under different conditions about the bias and expected error associated

with the estimation of value functions.

Thirdly, we establish the overall sampling complexity of these algorithms by employing different schemes

to estimate the action-value function. More specifically, we present an O(|S||A|/µε) and O(|S||A|/ε2) sampling

complexity for solving RL problems with strongly convex and general convex regularizers, when one has access

to multiple independent sampling trajectories. To the best of our knowledge, the former sampling complexity is

new in the RL literature, while the latter one has not been reported before for policy gradient type methods. We

further enhance a recently developed conditional temporal difference (CTD) method [12] so that it can reduce the

bias term faster. We show that with CTD, the aforementioned O(1/µε) and O(1/ε2) sampling complexity bounds

can be achieved in the single trajectory setting with Markovian noise under certain regularity assumptions.

Fourthly, observe that unless hπ is relatively simple (e.g., hπ does not exist or it is given as the KL divergence),

the subproblems in the SPMD and SAPMD methods do not have an explicit solution in general and require

an efficient solution procedure to find some approximate solutions. We establish the general conditions on the

accuracy for solving these subproblems, so that the aforementioned linear rate of convergence and new sampling

complexity bounds can still be maintained. We further show that if hπ is a smooth convex function, by employing

an accelerated gradient descent method for solving these subproblems, the overall gradient computations for hπ

can be bounded by O{(logγ ε)
√

(1− γ)L/µ log(1/ε)} and O{(logγ ε)
√
L/ε}, respectively, for the case when hπ is

a strongly convex and general convex function. To the best of our knowledge, such gradient complexity has not

been considered before in the RL and optimization literature.

This paper is organized as follows. In Section 2, we discuss the optimality conditions and generalized mono-

tonicity about RL with convex regularizers. Sections 3 and 4 are dedicated to the deterministic and stochastic

policy mirror descent methods, respectively. In Section 5 we establish the sampling complexity bounds under dif-

ferent sampling schemes, while the gradient complexity of computing ∇hπ is shown in Section 6. Some concluding

remarks are made in Section 7.

1.1 Notation and terminology

For any two points π(·|s), π′(·|s) ∈ ∆|A|, we measure their Kullback–Leibler (KL) divergence by

KL(π(·|s) ‖ π′(·|s)) =
∑
a∈A π(a|s) log

π(a|s)
π′(a|s) .

Observe that the KL divergence can be viewed as is a special instance of the Bregman’s distance (or prox-function)

widely used in the optimization literature. Let the distance generating function ω(π(·|s)) :=
∑
a∈A π(a|s) log π(a|s) 1.

The Bregman’s distance associated with ω is given by

Dππ′(s) := ω(π(·|s))− [ω(π′(·|s)) + 〈∇ω(π′(·|s)), π(·|s)− π′(·|s)〉]
=
∑
a∈A

[
π(a|s) log π(a|s)− π′(a|s) log π′(a|s)

−(1 + log π′(a|s))(π(a|s)− π′(a|s))
]

=
∑
a∈A π(a|s) log

π(a|s)
π′(a|s) , (1.10)

where the last equation follows from the fact that
∑
a∈A(π(a|s) − π′(a|s)) = 0. Therefore, we will use the KL

divergence KL(π(·|s) ‖ π′(·|s)) and Bregman’s distance Dππ′(s) interchangeably throughout this paper. It should

be noted that our algorithmic framework allows us to use other distance generating functions, such as ‖ · ‖2p for

some p > 1, which, different from the KL divergence, has a bounded prox-function over ∆|A|.

2 Optimality Conditions and Generalized Monotonicity

It is well-known that the value function V π(s) in (1.3) is highly nonconvex w.r.t. π, because the components of

π(·|s) are multiplied by each other in their definitions (see also Lemma 3 of [1] for an instructive counterexample).

However, we will show in this subsection that problem (1.9) can be formulated as a variational inequality (VI)

which satisfies certain generalized monotonicity properties (see [6], Section 3.8.2 of [13] and [11]).

1 It is worth noting that we do not enforce π(a|s) > 0 when defining ω(π(·|s)) as all the search points generated by our
algorithms will satisfy this assumption.
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Let us first compute the gradient of the value function V π(s) in (1.3). For simplicity, we assume for now

that hπ is differentiable and will relax this assumption later. For a given policy π, we define the discounted state

visitation distribution by

dπs0(s) := (1− γ)
∑∞
t=0 γ

tPrπ(st = s|s0), (2.1)

where Prπ(st = s|s0) denotes the state visitation probability of st = s after we follow the policy π starting at state

s0. Let Pπ denote the transition probability matrix associated with policy π, i.e., Pπ(i, j) =
∑
a∈A π(a|i)P(j|i, a),

and ei be the i-th unit vector. Then Prπ(st = s|s0) = eTs0(Pπ)tes and

dπs0(s) = (1− γ)
∑∞
t=0 γ

teTs0(Pπ)tes. (2.2)

Lemma 1 For any (s0, s, a) ∈ S × S ×A, we have

∂V π(s0)
∂π(a|s) = 1

1−γ d
π
s0(s)

[
Qπ(s, a) +∇hπ(s, a)

]
,

where ∇hπ(s, ·) denotes the gradient of hπ(s) w.r.t. π.

Proof. It follows from (1.4) that

∂V π(s0)
∂π(a|s) = ∂

∂π(a′|s)
∑
a′∈A π(a′|s0)Qπ(s0, a

′)

=
∑
a′∈A

[
∂π(a′|s0)
∂π(a|s) Q

π(s0, a
′) + π(a′|s0)

∂Qπ(s0,a
′)

∂π(a|s)

]
.

Also the relation in (1.5) implies that

∂Qπ(s0,a
′)

∂π(a|s) =
∂hπ(s0)
∂π(a|s) + γ

∑
s′∈S P(s′|s0, a′)∂V

π(s′)
∂π(a|s) .

Combining the above two relations, we obtain

∂V π(s0)
∂π(a|s) =

∑
a′∈A

[
∂π(a′|s0)
∂π(a|s) Q

π(s0, a
′) + π(a′|s0)

∂hπ(s0)
∂π(a|s)

]
+ γ

∑
a′∈A π(a′|s0)

∑
s′∈S P(s′|s0, a′)∂V

π(s′)
∂π(a|s)

=
∑
x∈S

∑∞
t=0 γ

tPrπ(st = x|s0)∑
a′∈A

[
∂π(a′|x)
∂π(a|s) Q

π(x, a′) + π(a′|x)
∂hπ(x)
∂π(a|s)

]
= 1

1−γ
∑
x∈S d

π
s0(x)

{∑
a′∈A

[
∂π(a′|x)
∂π(a|s) Q

π(x, a′)
]

+
∂hπ(x)
∂π(a|s)

}
= 1

1−γ d
π
s0(s)

[
Qπ(s, a) +

∂hπ(s)
∂π(a|s)

]
,

where the second equality follows by expanding
∂V π(s′)
∂π(a|s) recursively, and the third equality follows from the

definition of dπs0(s) in (2.1), and the last identity follows from
∂π(a′|x)
∂π(a|s) = 0 for x 6= s or a′ 6= a, and

∂hπ(x)
∂π(a|s) = 0

for x 6= s.

In view of Lemma 1, the gradient of the objective f(π) in (1.9) at the optimal policy π∗ is given by

∂f(π∗)
∂π(a|s) = Es0∼ν∗

[
∂V π

∗
(s0)

∂π(a|s)

]
= 1

1−γEs0∼ν∗
[
dπ
∗

s0 (s)[Qπ
∗
(s, a) +∇hπ

∗
(s, a)]

]
=
∑∞
t=0 γ

t(ν∗)T (Pπ
∗
)tes [Qπ

∗
(s, a) +∇hπ

∗
(s, a)]

= 1
1−γ (ν∗)T es [Qπ

∗
(s, a) +∇hπ

∗
(s, a)]

= 1
1−γ ν

∗(s) [Qπ
∗
(s, a) +∇hπ

∗
(s, a)], (2.3)

where the third identity follows from (2.2) and the last one follows from the fact that (ν∗)T (Pπ
∗
)t = (ν∗)T for

any t ≥ 0 since ν∗ is the steady state distribution of π∗. Therefore, the optimality condition of (1.9) suggests us

to solve the following variational inequality

Es∼ν∗
[
〈Qπ

∗
(s, ·) +∇hπ

∗
(s, ·), π(·|s)− π∗(·|s)〉

]
≥ 0. (2.4)

However, the above VI requires hπ to be differentiable. In order to handle the possible non-smoothness of hπ, we

instead solve the following problem

Es∼ν∗
[
〈Qπ

∗
(s, ·), π(·|s)− π∗(·|s)〉+ hπ(s)− hπ

∗
(s)
]
≥ 0. (2.5)

It turns out this variational inequality satisfies certain generalized monotonicity properties thanks to the following

performance difference lemma obtained by generalizing some previous results (e.g., Lemma 6.1 of [9]).
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Lemma 2 For any two feasible policies π and π′, we have

V π
′
(s)− V π(s) = 1

1−γEs′∼dπ′s
[
〈Aπ(s′, ·), π′(·|s′)〉+ hπ

′
(s′)− hπ(s′)

]
,

where

Aπ(s′, a) := Qπ(s′, a)− V π(s′). (2.6)

Proof. For simplicity, let us denote ξπ
′
(s0) the random process (st, at, st+1), t ≥ 0, generated by following the

policy π′ starting with the initial state s0. It then follows from the definition of V π
′

that

V π
′
(s)− V π(s)

= Eξπ′ (s)
[∑∞

t=0 γ
t[c(st, at) + hπ

′
(st)]

]
− V π(s)

= Eξπ′ (s)
[∑∞

t=0 γ
t[c(st, at) + hπ

′
(st) + V π(st)− V π(st)]

]
− V π(s)

(a)
= Eξπ′ (s)

[∑∞
t=0 γ

t[c(st, at) + hπ
′
(st) + γV π(st+1)− V π(st)]

]
+ Eξπ′ (s)[V

π(s0)]− V π(s)

(b)
= Eξπ′ (s)

[∑∞
t=0 γ

t[c(st, at) + hπ
′
(st) + γV π(st+1)− V π(st)]

]
= Eξπ′ (s)

[∑∞
t=0 γ

t[c(st, at) + hπ(st) + γV π(st+1)− V π(st)

+hπ
′
(st)− hπ(st)]

]
(c)
= Eξπ′ (s)

[∑∞
t=0 γ

t
[
Qπ(st, at)− V π(st) + hπ

′
(st)− hπ(st)

]]
,

where (a) follows by taking the term V π(s0) outside the summation, (b) follows from the fact that Eξπ′ (s)[V
π(s0)] =

V π(s) since the random process starts with s0 = s, and (c) follows from (1.5). The previous conclusion, together

with (2.6) and the definition dπ
′
s in (2.1), then imply that

V π
′
(s)− V π(s)

= 1
1−γ

∑
s′∈S

∑
a′∈A d

π′
s (s′)π′(a′|s′)

[
Aπ(s′, a′) + hπ

′
(s′)− hπ(s′)

]
= 1

1−γ
∑
s′∈S d

π′
s (s′)

[
〈Aπ(s′, ·), π′(·|s′)〉+ hπ

′
(s′)− hπ(s′)

]
,

which immediately implies the result.

We are now ready to prove the generalized monotonicity for the variational inequality in (2.5).

Lemma 3 The VI problem in (2.5) satisfies

Es∼ν∗
[
〈Qπ(s, ·), π(·|s)− π∗(·|s)〉+ hπ(s)− hπ

∗
(s)
]

= Es∼ν∗ [(1− γ)(V π(s)− V π
∗
(s))]. (2.7)

Proof. It follows from Lemma 2 (with π′ = π∗) that

(1− γ)[V π
∗
(s)− V π(s)] = Es′∼dπ∗s

[
〈Aπ(s′, ·), π∗(·|s′)〉+ hπ

∗
(s′)− hπ(s′)

]
.

Let e denote the vector of all 1’s. Then, we have

〈Aπ(s′, ·), π∗(·|s′)〉 = 〈Qπ(s′, ·)− V π(s′)e, π∗(·|s′)〉

= 〈Qπ(s′, ·), π∗(·|s′)〉 − V π(s′)

= 〈Qπ(s′, ·), π∗(·|s′)〉 − 〈Qπ(s′, ·), π(·|s′)

= 〈Qπ(s′, ·), π∗(·|s′)− π(·|s′)〉, (2.8)

where the first identity follows from the definition of Aπ(s′, ·) in (2.6), the second equality follows from the fact

that 〈e, π∗(·|s′)〉 = 1, and the third equality follows from the definition of V π in (1.3). Combining the above two

relations and taking expectation w.r.t. ν∗, we obtain

(1− γ)Es∼ν∗ [V π
∗
(s)− V π(s)]

= Es∼ν∗,s′∼dπ∗s
[
〈Qπ(s′, ·), π∗(·|s′)− π(·|s′)〉+ hπ

∗
(s′)− hπ(s′)

]
= Es∼ν∗

[
〈Qπ(s, ·), π∗(·|s)− π(·|s)〉+ hπ

∗
(s′)− hπ(s′)

]
,
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where the second identity follows similarly to (2.3) since ν∗ is the steady state distribution induced by π∗. The

result then follows by rearranging the terms.

Since V π(s)− V π
∗
(s) ≥ 0 for any feasible policity π, we conclude from Lemma 3 that

Es∼ν∗
[
〈Qπ(s, ·), π(·|s)− π∗(·|s)〉+ hπ(s)− hπ

∗
(s)
]
≥ 0.

Therefore, the VI in (2.5) satisfies the generalized monotonicity. In the next few sections, we will exploit the

generalized monotonicity and some other structural properties to design efficient algorithms for solving the RL

problem.

3 Deterministic Policy Mirror Descent

In this section, we present the basic schemes of policy mirror descent (PMD) and establish their convergence

properties.

3.1 Prox-mapping

In the proposed PMD methods, we will update a given policy π to π+ through the following proximal mapping:

π+(·|s) = arg min
p(·|s)∈∆|A|

η[〈Gπ(s, ·), p(·|s)〉+ hp(s)] +Dpπ(s). (3.1)

Here η > 0 denotes a certain stepsize (or learning rate), and Gπ can be the operator for the VI formulation, e.g.,

Gπ(s, ·) = Qπ(s, ·) or its approximation.

It is well-known that one can solve (3.1) explicitly for some interesting special cases, e.g., when hp(s) = 0 or

hp(s) = τDpπ0(s) for some τ > 0 and given π0. For both these cases, the solution of (3.1) boils down to solving a

problem of the form

p∗ := arg min
p(·|s)∈∆|A|

∑|A|
i=1 (gipi + pi log pi)

for some g ∈ R|A|. It can be easily checked from the Karush-Kuhn-Tucker conditions that its optimal solution is

given by

p∗i = exp(−gi)/[
∑|A|
i=1 exp(−gi)]. (3.2)

For more general convex functions hp, problem (3.1) usually does not have an explicit solution, and one can

only solve it approximately. In fact, we will show in Section 6 that by applying the accelerated gradient descent

method, we only need to compute a small number of updates in the form of (3.2) in order to approximately solve

(3.1) without slowing down the efficiency of the overall PMD algorithms.

3.2 Basic PMD method

As shown in Algorithm 1, each iteration of the PMD method applies the prox-mapping step discussed in Sub-

section 3.1 to update the policy πk. It involves the stepsize parameter ηk and requires the selection of an initial

point π0. For the sake of simplicity, we will assume throughout the paper that

π0(a|s) = 1/|A|, ∀a ∈ A, ∀s ∈ S. (3.3)

In this case, we have

Dππ0
(s) =

∑
a∈A π(a|s) log π(a|s) + log |A| ≤ log |A|, ∀π(·|s) ∈ ∆|A|. (3.4)

Observe also that we can replace Qπk (s, ·) in (3.5) with Aπk (s, a) defined in (2.6) without impacting the updating

of πk+1(s, ·), since this only introduces an extra constant into the objective function of (3.5).

Algorithm 1 The policy mirror descent (PMD) method

Input: initial points π0 and stepsizes ηk ≥ 0.
for k = 0, 1, . . . , do

πk+1(·|s) = arg min
p(·|s)∈∆|A|

{
ηk[〈Qπk (s, ·), p(·|s)〉+ hp(s)] +Dpπk (s)

}
, ∀s ∈ S. (3.5)

end for
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Below we establish some general convergence properties about the PMD method.

The following result characterizes the optimality condition of problem (3.5) (see Lemma 3.5 of [13]). We add

a proof for the sake of completeness.

Lemma 4 For any p(·|s) ∈ ∆|A|, we have

ηk[〈Qπk (s, ·), πk+1(·|s)− p(·|s)〉+ hπk+1(s)− hp(s)] +D
πk+1
πk (s)

≤ Dpπk (s)− (1 + ηkµ)Dpπk+1
(s).

Proof. By the optimality condition of (3.5),

〈ηk[Qπk (s, ·) + (h′)πk+1(s, ·)] +∇Dπk+1
πk (s, ·), p(·|s)− πk+1(·|s)〉 ≥ 0, ∀p(·|s) ∈ ∆|A|,

where (h′)πk+1 denotes the subgradient of h at πk+1 and ∇Dπk+1
πk (s, ·) denotes the gradient of D

πk+1
πk (s) at πk+1.

Using the definition of Bregman’s distance, it is easy to verify that

Dpπk (s) = D
πk+1
πk (s) + 〈∇Dπk+1

πk (s, ·), p(·|s)− πk+1(·|s)〉+Dpπk+1
(s). (3.6)

The result then immediately follows by combining the above two relations together with (1.2).

Lemma 5 For any s ∈ S, we have

V πk+1(s) ≤ V πk (s), (3.7)

〈Qπk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s) ≥ V πk+1(s)− V πk (s). (3.8)

Proof. It follows from Lemma 2 (with π′ = πk+1, π = πk and τ = τk) that

V πk+1(s)− V πk (s)

= 1
1−γEs′∼dπk+1

s

[
〈Aπk (s′, ·), πk+1(·|s′)〉+ hπk+1(s′)− hπk (s′)

]
. (3.9)

Similarly to (2.8), we can show that

〈Aπk (s′, ·), πk+1(·|s′)〉 = 〈Qπk (s′, ·)− V πkτk (s′)e, πk+1(·|s′)〉

= 〈Qπk (s′, ·), πk+1(·|s′)〉 − V πkτk (s′)

= 〈Qπk (s′, ·), πk+1(·|s′)− πk(·|s′)〉.

Combining the above two identities, we then obtain

V πk+1(s)− V πk (s) = 1
1−γEs′∼dπk+1

s

[
〈Qπk (s′, ·), πk+1(·|s′)− πk(·|s′)〉

+hπk+1(s′)− hπk (s′)
]
. (3.10)

Now we conclude from Lemma 4 applied to (3.5) with p(·|s′) = πk(·|s′) that

〈Qπk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

≤ − 1
ηk

[(1 + ηkµ)Dπkπk+1
(s′) +D

πk+1
πk (s′)]. (3.11)

The previous two conclusions then clearly imply the result in (3.7). It also follows from (3.11) that

E
s′∼d

πk+1
s

[
〈Qπk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

]
≤ dπk+1

s (s)
[
〈Qπk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

]
≤ (1− γ)

[
〈Qπk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

]
, (3.12)

where the last inequality follows from the fact that d
πk+1
s (s) ≥ (1− γ) due to the definition of d

πk+1
s in (2.1). The

result in (3.7) then follows immediately from (3.10) and the above inequality.

Now we show that with a constant stepsize rule, the PMD method can achieve a linear rate of convergence

for solving RL problems with strongly convex regularizers (i.e., µ > 0).

Theorem 1 Suppose that ηk = η for any k ≥ 0 in the PMD method with

1 + ηµ ≥ 1
γ . (3.13)

Then we have

f(πk)− f(π∗) + µ
1−γD(πk, π

∗) ≤ γk[f(π0)− f(π∗τ ) + µ
1−γ log |A|]

for any k ≥ 0, where

D(πk, π
∗) := Es∼ν∗ [Dπ

∗

πk (s)]. (3.14)
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Proof. By Lemma 4 applied to (3.5) (with ηk = η and p = π∗), we have

η[〈Qπk (s, ·), πk+1(·|s)− π∗(·|s)〉+ hπk+1(s)− hπ
∗
(s)] +D

πk+1
πk (s)

≤ Dπ
∗

πk (s)− (1 + ηµ)Dπ
∗

πk+1
(s),

which, in view of (3.8), then implies that

η[〈Qπk (s, ·), πk(·|s)− π∗(·|s)〉+ hπk (s)− hπ
∗
(s)]

+ η[V πk+1(s)− V πk (s)] +D
πk+1
πk (s) ≤ Dπ

∗

πk (s)− (1 + ηµ)Dπ
∗

πk+1
(s).

Taking expectation w.r.t. ν∗ on both sides of the above inequality and using Lemma 3, we arrive at

Es∼ν∗ [η(1− γ)(V πk (s)− V π
∗
τ (s))] + ηEs∼ν∗ [V πk+1(s)− V πk (s)] + Es∼ν∗ [Dπk+1

πk (s)]

≤ Es∼ν∗ [Dπ
∗

πk (s)− (1 + ηµ)Dπ
∗

πk+1
(s)].

Noting V πk+1(s) − V πk (s) = V πk+1(s) − V π
∗
(s) − [V πk (s) − V π

∗
(s)] and rearranging the terms in the above

inequality, we have

Es∼ν∗ [η(V πk+1(s)− V π
∗
(s)) + (1 + ηµ)Dπ

∗

πk+1
(s)] + Es∼ν∗ [Dπk+1

πk (s)]

≤ γEs∼ν∗ [η(V πk (s)− V π
∗
(s)) + 1

γD
π∗

πk (s)], (3.15)

which, in view of the assumption (3.13) and the definition of f in (1.9)

f(πk+1)− f(π∗) + µ
1−γEs∼ν∗ [D

π∗

πk+1
(s)]

≤ γ
[
(f(πk)− f(π∗)) + µ

1−γEs∼ν∗ [D
π∗

πk (s)]
]
.

Applying this relation recursively and using the bound in (3.4) we then conclude the result.

According to Theorem 1, the PMD method converges linearly in terms of both function value and the distance

to the optimal solution for solving RL problems with strongly convex regularizers. Now we show that a direct

application of the PMD method only achieves a sublinear rate of convergence for the case when µ = 0.

Theorem 2 Suppose that ηk = η in the PMD method. Then we have

f(πk+1)− f(π∗) ≤ ηγ[f(π0)−f(π∗)]+log |A|
η(1−γ)(k+1)

for any k ≥ 0.

Proof. It follows from (3.15) with µ = 0 that

Es∼ν∗ [η(V πk+1(s)− V π
∗
(s)) +Dπ

∗

πk+1
(s)] + Es∼ν∗ [Dπk+1

πk (s)]

≤ ηγEs∼ν∗ [V πk (s)− V π
∗
(s)] + Es∼ν∗ [Dπ

∗

πk (s)].

Taking the telescopic sum of the above inequalities and using the fact that V πk+1(s) ≤ V πk (s) due to (3.7) , we

obtain

(k + 1)η(1− γ)Es∼ν∗ [V πk+1(s)− V π
∗
(s)] ≤ Es∼ν∗ [ηγ(V π0(s)− V π

∗
(s)) +Dπ

∗

π0
(s)],

which clearly implies the result in view of the definition of f in (1.9) and the bound on Dπ
∗
π0

in (3.4).

The result in Theorem 2 shows that the PMD method requires O(1/(1− γ)ε) iterations to find an ε-solution

for general RL problems. This bound already matches, in terms of its dependence on (1−γ) and ε, the previously

best-known complexity for natural policy gradient methods [1]. We will develop a variant of the PMD method

that can achieve a linear rate of convergence for the case when µ = 0 in next subsection.
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3.3 Approximate policy mirror descent method

In this subsection, we propose a novel variant of the PMD method by adding adaptively a perturbation term into

the definition of the value functions.

For some τ ≥ 0 and a given initial policy π0(a|s) > 0, ∀s ∈ S, a ∈ A, we define the perturbed action-value

and state-value functions, respectively, by

Qπτ (s, a) := E
[∑∞

t=0 γ
t [c(st, at) + hπ(st) + τDππ0

(st)]

| s0 = s, a0 = a, at ∼ π(·|st), st+1 ∼ P(·|st, at)] , (3.16)

V πτ (s) := 〈Qπτ (s, ·), π(·|s)〉. (3.17)

Clearly, if τ = 0, then the perturbed value functions reduce to the usual value functions, i.e.,

Qπ0 (s, a) = Qπ(s, a) and V π0 (s) = V π(s).

The following result relates the value functions with different τ .

Lemma 6 For any given τ, τ ′ ≥ 0, we have

V πτ (s)− V πτ ′(s) = τ−τ ′
1−γ Es′∼dπs [Dππ0

(s′)]. (3.18)

As a consequence, if τ ≥ τ ′ ≥ 0 then

V πτ ′(s) ≤ V
π
τ (s) ≤ V πτ ′(s) + τ−τ ′

1−γ log |A|. (3.19)

Proof. By the definitions of V πτ and dπs , we have

V πτ (s)

= E
[∑∞

t=0 γ
t[c(st, at) + hπ(st) + τDππ0

(s)] | s0 = s, at ∼ π(·|st), st+1 ∼ P(·|st, at)
]

= E
[∑∞

t=0 γ
t[c(st, at) + hπ(st) + τ ′Dππ0

(s)] | s0 = s, at ∼ π(·|st), st+1 ∼ P(·|st, at)
]

+ E
[∑∞

t=0 γ
t(τ − τ ′)Dππ0

(s)] | s0 = s, at ∼ π(·|st), st+1 ∼ P(·|st, at)
]

= V πτ ′(s) + τ−τ ′
1−γ Es′∼dπs [Dππ0

(s′)],

which together with the bound on Dππ0
in (3.4) then imply (3.19).

As shown in Algorithm 2, the approximate policy mirror descent (APMD) method is obtained by replacing

Qπk (s, ·) with its approximation Qπkτk (s, ·) and adding the perturbation τkD
π
π0

(st) for the updating of πk+1 in the

basic PMD method. As discussed in Subsection 3.1, the incorporation of the perturbation term does not impact

the difficulty of solving the subproblem in (3.20).

Algorithm 2 The approximate policy mirror descent (APMD) method

Input: initial points π0, stepsizes ηk ≥ 0 and perturbation τk ≥ 0.
for k = 0, 1, . . . , do

πk+1(·|s) = arg min
p(·|s)∈∆|A|

{
ηk[〈Qπkτk (s, ·), p(·|s)〉+ hp(s) + τkD

p
π0

(st)] +Dpπk (s)
}
, ∀s ∈ S. (3.20)

end for

Our goal in the remaining part of this subsection is to show that the APMD method, when employed with

proper selection of τk, can achieve a linear rate of convergence for solving general RL problems. First we observe

that Lemma 3 can still be applied to the perturbed value functions. The difference between the following result

and Lemma 3 exists in that the RHS of (3.21) is no longer nonnegative, i.e., V πτ (s)− V π
∗

τ (s) � 0. However, this

relation will be approximately satisfied if τ is small enough.

Lemma 7 The VI problem in (2.5) satisfies

Es∼ν∗
[
〈Qπτ (s, ·), π(·|s)− π∗(·|s)〉+ hπ(s)− hπ

∗
(s) + τ [Dππ0

(s)−Dπ
∗

π0
(s)]
]

= Es∼ν∗ [(1− γ)(V πτ (s)− V π
∗

τ (s))]. (3.21)
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Proof. The proof is the same as that for Lemma 3 except that we will apply the performance difference lemma

(i.e., Lemma 2) to the perturbed value function V πτ .

Next we establish some general convergence properties about the APMD method. Lemma 8 below characterizes

the optimal solution of (3.20) (see, e.g., Lemma 3.5 of [13]).

Lemma 8 Let πk+1(·|s) be defined in (3.20). For any p(·|s) ∈ ∆|A|, we have

ηk[〈Qπkτk (s, ·), πk+1(·|s)− p(·|s)〉+ hπ
+

(s)− hp(s)]

+ ηkτk[D
πk+1
π0 (st)−Dpπ0

(st)] +D
πk+1
πk (s) ≤ Dpπk (s)− (1 + ητk)Dpπk+1

(s).

Lemma 9 below is similar to Lemma 5 for the PMD method.

Lemma 9 For any s ∈ S, we have

〈Qπkτk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+ τk[D
πk+1
π0 (s)−Dπkπ0

(s)] ≥ V πk+1
τk (s)− V πkτk (s). (3.22)

Proof. By applying Lemma 2 to the perturbed value function V πτ and using an argument similar to (3.10), we

can show that

V
πk+1
τk (s)− V πkτk (s) = 1

1−γEs′∼dπk+1
s

[
〈Qπkτk (s′, ·), πk+1(·|s′)− πk(·|s′)〉

+hπk+1(s′)− hπk (s′) + τk[D
πk+1
π0 (s)−Dπkπ0

(s)]
]
. (3.23)

Now we conclude from Lemma 8 with p(·|s′) = πk(·|s′) that

〈Qπkτk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

+ τk[D
πk+1
π0 (s′)−Dπkπ0

(s′)] ≤ − 1
ηk

[(1 + ηkτk)Dπkπk+1
(s′) +D

πk+1
πk (s′)], (3.24)

which implies that

E
s′∼d

πk+1
s

[
〈Qπkτk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

+τk[D
πk+1
π0 (s′)−Dπkπ0

(s′)]
]

≤ dπk+1
s (s)

[
〈Qπkτk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+τk[D
πk+1
π0 (s)−Dπkπ0

(s)]
]

≤ (1− γ)
[
〈Qπkτk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+τk[D
πk+1
π0 (s)−Dπkπ0

(s)]
]
, (3.25)

where the last inequality follows from the fact that d
πk+1
s (s) ≥ (1− γ) due to the definition of d

πk+1
s in (2.1). The

result in (3.22) then follows immediately from (3.23) and the above inequality.

The following general result holds for different stepsize rules for APMD.

Lemma 10 Suppose 1 + ηkτk = 1/γ and τk ≥ τk+1 in the APMD method. Then for any k ≥ 0, we have

Es∼ν∗ [V πk+1
τk+1 (s)− V π

∗

τk+1
(s) +

τk+1

1−γ D
π∗

πk+1
(s)]

≤ Es∼ν∗ [γ[V πkτk (s)− V π
∗

τk (s) + τk
1−γD

π∗

πk (s)] +
τk−τk+1

1−γ log |A|. (3.26)

Proof. By Lemma 8 with p = π∗, we have

ηk

[
〈Qπkτk (s, ·), πk+1(·|s)− π∗(·|s)〉+ hπk+1(s)− hπ

∗
(s)
]

+ ηkτk[D
πk+1
π0 (st)−Dπ

∗

π0
(st)] +D

πk+1
πk (s)

≤ Dπ
∗

πk (s)− (1 + ηkτk)Dπ
∗

πk+1
(s).

Moreover, by Lemma 9,

〈Qπkτk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s) + τk[D
πk+1
π0 (st)−Dπkπ0

(st)]

≥ V πk+1
τk (s)− V πkτk (s).

Combining the above two relations, we obtain

ηk

[
〈Qπkτk (s, ·), πk(·|s)− π∗(·|s)〉+ hπk (s)− hπ

∗
(s)
]

+ ηkτk[Dπkπ0
(st)−Dπ

∗

π0
(st)]

+ ηk[V
πk+1
τk (s)− V πkτk (s)] +D

πk+1
πk (s) ≤ Dπ

∗

πk (s)− (1 + ηkτk)Dπ
∗

πk+1
(s).
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Taking expectation w.r.t. ν∗ on both sides of the above inequality and using Lemma 7, we arrive at

Es∼ν∗ [ηk(1− γ)(V πkτk (s)− V π
∗

τk (s))] + ηkEs∼ν∗ [V
πk+1
τk (s)− V πkτk (s)]

+ Es∼ν∗ [Dπk+1
πk (s)] ≤ Es∼ν∗ [Dπ

∗

πk (s)− (1 + ηkτk)Dπ
∗

πk+1
(s)].

Noting V
πk+1
τk (s) − V πkτk (s) = V

πk+1
τk (s) − V π

∗
τk (s) − [V πkτk (s) − V π

∗
τk (s)] and rearranging the terms in the above

inequality, we have

Es∼ν∗ [ηk(V
πk+1
τk (s)− V π

∗

τk (s)) + (1 + ηkτk)Dπ
∗

πk+1
(s) +D

πk+1
πk (s)]

≤ ηkγEs∼ν∗ [V πkτk (s)− V π
∗

τk (s)] + Es∼ν∗ [Dπ
∗

πk (s)]. (3.27)

Using the above inequality, the assumption τk ≥ τk+1 and (3.19), we have

Es∼ν∗ [ηk(V
πk+1
τk+1 (s)− V π

∗

τk+1
(s)) + (1 + ηkτk)Dπ

∗

πk+1
(s) +D

πk+1
πk (s)]

≤ Es∼ν∗ [ηkγ(V πkτk (s)− V π
∗

τk (s)) +Dπ
∗

πk (s)] +
ηk(τk−τk+1)

1−γ log |A|, (3.28)

which implies the result by the assumption 1 + ηkτk = 1/γ.

We are now ready to establish the rate of convergence of the APMD method with dynamic stepsize rules to

select ηk and τk for solving general RL problems.

Theorem 3 Suppose that τk = τ0γ
k for some τ0 ≥ 0 and that 1 + ηkτk = 1/γ for any k ≥ 0 in the APMD

method. Then for any k ≥ 0, we have

f(πk)− f(π∗) ≤ γk
[
f(π0)− f(π∗) + τ0

(
2

1−γ + k
γ

)
log |A|

]
. (3.29)

Proof. Applying the result in Lemma 10 recursively, we have

Es∼ν∗ [V πkτk (s)− V π
∗

τk (s)] ≤ γkEs∼ν∗ [V π0
τ0 (s)− V π

∗

τ0 (s) + τ0
1−γD

π∗

π0
(s)]

+
∑k
i=1

(τi−1−τi)γk−i
1−γ log |A|.

Noting that V πkτk (s) ≥ V πk (s), V π
∗

τk (s) ≤ V π
∗
(s) + τk

1−γ log |A|, and V π
∗

τ0 (s) ≥ V π
∗
(s) due to (3.18), and that

V π0
τ0 (s) = V π0(s) due to Dπ0

π0 (s) = 0, we conclude from the previous inequality that

Es∼ν∗ [V πk (s)− V π
∗
(s)] ≤ γkEs∼ν∗ [V π0(s)− V π

∗
(s) + τ0

1−γD
π∗

π0
(s)]

+
[
τk

1−γ +
∑k
i=1

(τi−1−τi)γk−i
1−γ

]
log |A|. (3.30)

The result in (3.29) immediately follows from the above relation, the definition of f in (1.9), and the selection of

τk.

According to (3.29), if τ0 is a constant, then the rate of convergence of the APMD method is O(kγk). If the

total number of iterations k is given a priori, we can improve the rate of convergence to O(γk) by setting τ0 = 1/k.

Below we propose a different way to specify τk for the APMD method so that it can achieve this O(γk) rate of

convergence without fixing k a priori.

We first establish a technical result that will also be used later for the analysis of stochastic PMD methods.

Lemma 11 Assume that the nonnegative sequences {Xk}k≥0, {Yk}k≥0 and {Zk}k≥0 satisfy

Xk+1 ≤ γXk + (Yk − Yk+1) + Zk. (3.31)

Let us denote l =
⌈
logγ

1
4

⌉
. If Yk = Y · 2−(bk/lc+1) and Zk = Z · 2−(bk/lc+2) for some Y ≥ 0 and Z ≥ 0, then

Xk ≤ 2−bk/lc(X0 + Y + 5Z
4(1−γ)

). (3.32)

Proof. Let us group the indices {0, . . . , k} into p̄ ≡ bk/lc+1 epochs with each of the first p̄−1 epochs consisting

of l iterations. Let p = 0, . . . , p̄ be the epoch indices. We first show that for any p = 0, . . . , p̄− 1,

Xpl ≤ 2−p(X0 + Y + Z
1−γ ). (3.33)
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This relation holds obviously for p = 0. Let us assume that (3.33) holds at the beginning of epoch p ad examine

the progress made in epoch p. Note that for any indices k = pl, . . . , (p+1)l−1 in epoch p, we have Yk = Y ·2−(p+1)

and Z = Z · 2−(p+2). By applying (3.31) recursively, we have

X(p+1)l ≤ γ
lXpl + Ypl − Y(p+1)l + Zpl

∑l−1
i=0 γ

i

= γlXpl + Y(p+1)l + Zpl
1−γl
1−γ

≤ γlXpl + Y · 2−(p+2) + Z·2−(p+2)

1−γ

≤ 1
4Xpl + Y · 2−(p+2) + Z·2−(p+2)

1−γ

≤ 1
42−p(X0 + Y + Z

1−γ ) + Y · 2−(p+2) + Z·2−(p+2)

1−γ

≤ 2−(p+1)(X0 + Y + Z
1−γ ),

where the second inequality follows from the definition of Zpl and γl ≥ 0, the third one follows from γl ≤ 1/4, the

fourth one follows by induction hypothesis, and the last one follows by regrouping the terms. Since k = (p̄−1)l+k

(mod l), we have

Xk ≤ γk (mod l)A(p̄−1)l + Z(p̄−1)

∑k (mod l)−1
i=0

≤ 2−(p̄−1)(X0 + Y + Z
1−γ ) + Z·2−(p̄+1)

1−γ

= 2−(p̄−1)(X0 + Y + 5Z
4(1−γ)

),

which implies the result.

We are now ready to present a more convenient selection of τk and ηk for the APMD method.

Theorem 4 Let us denote l :=
⌈
logγ

1
4

⌉
. If τk = 2−(bk/lc+1) and 1 + ηkτk = 1/γ, then

f(πk)− f(π∗) ≤ 2−bk/lc[f(π0)− f(π∗) +
2 log |A|

1−γ ].

Proof. By using Lemma 10 and Lemma 11 (with Xk = Es∼ν∗ [V πkτk (s) − V π
∗

τk (s) + τk
1−γD

π∗
πk (s)] and Yk =

τk
1−γ log |A|), we have

Es∼ν∗ [V πkτk (s)− V π
∗

τk (s) + τk
1−γD

π∗

πk (s)]

≤ 2−bk/lc
{
Es∼ν∗ [V πkτ0 (s)− V π

∗

τ0 (s) + τ0
1−γD

π∗

π0
(s)] +

log |A|
1−γ

}
.

Noting that V πkτk (s) ≥ V πk (s), V π
∗

τk (s) ≤ V π
∗
(s)+ τk

1−γ log |A|, V π
∗

τ0 (s) ≥ V π
∗
(s) due to (3.18), and that V π0

τ0 (s) =

V π0(s) due to Dπ0
π0 (s) = 0, we conclude from the previous inequality and the definition of τk that

Es∼ν∗ [V πk (s)− V π
∗
(s) + τk

1−γD
π∗

πk (s)]

≤ 2−bk/lc
{
Es∼ν∗ [V πk (s)− V π

∗

τ0 (s) + τ0
1−γD

π∗

π0
(s)] +

log |A|
1−γ

}
+
τk log |A|

1−γ

≤ 2−bk/lc
{
Es∼ν∗ [V π0(s)− V π

∗

τ0 (s) +
2 log |A|

1−γ

}
.

In view of Theorem 4, a policy π̄ s.t. f(π̄)−f(π∗) ≤ ε will be found in at most O(log(1/ε)) epochs and hence at

most O(l log(1/ε)) = O(logγ(ε)) iterations, which matches the one for solving RL problems with strongly convex

regularizers. The difference exists in that for general RL problems, we cannot guarantee the linear convergence of

Dπ
∗
πk+1

(s) since its coefficient τk will become very small eventually.

4 Stochastic Policy Mirror Descent

The policy mirror descent methods described in the previous section require the input of the exact action-value

functions Qπk . This requirement can hardly be satisfied in practice even for the case when P is given explicitly,

since Qπk is defined as an infinite sum. In addition, in RL one does not know the transition dynamics P and thus

only stochastic estimators of action-value functions are available. In this section, we propose stochastic versions

for the PMD and APMD methods to address these issues.
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4.1 Basic stochastic policy mirror descent

In this subsection, we assume that for a given policy πk, there exists a stochastic estimator Qπk,ξk s.t.

Eξk [Qπk,ξk ] = Q̄πk , (4.1)

Eξk [‖Qπk,ξk −Qπk‖2∞] ≤ σ2
k, (4.2)

‖Q̄πk −Qπk‖∞ ≤ ςk, (4.3)

for some σk ≥ and ςk ≥ 0, where ξk denotes the random vector used to generate the stochastic estimator Qπk,ξk .

Clearly, if σk = 0, then we have exact information about Qπk . One key insight we have for the stochastic PMD

methods is to handle separately the bias term ςk from the overall expected error term σk, because one can reduce

the bias term much faster than the total error. While in this section we focus on the convergence analysis of

the algorithms, we will show in next section that such separate treatment of bias and total error enables us to

substantially improve the sampling complexity for solving RL problems by using policy gradient type methods.

The stochastic policy mirror descent (SPMD) is obtained by replacing Qπk in (3.5) with its stochastic estimator

Qπk,ξk , i.e.,

πk+1(·|s) = arg min
p(·|s)∈∆|A|

{
Φk(p) := ηk[〈Qπk,ξk (s, ·), p(·|s)〉+ hp(s)] +Dpπk (s)

}
. (4.4)

In the sequel, we denote ξdke the sequence of random vectors ξ0, . . . , ξk and define

δk := Qπk,ξk −Qπk . (4.5)

By using the assumptions in (4.1) and (4.3) and the decomposition

〈Qπk,ξk (s, ·), πk(·|s)− π∗(·|s)〉 = 〈Qπk (s, ·), πk(·|s)− π∗(·|s)〉
+ 〈Q̄πk (s, ·)−Qπk (s, ·), πk(·|s)− π∗(·|s)〉

+ 〈Qπk,ξk (s, ·)− Q̄πk (s, ·), πk(·|s)− π∗(·|s)〉,

we can see that

Eξk [〈Qπk,ξk (s, ·), πk(·|s)− π∗(·|s)〉 | ξdξk−1e]

≥ 〈Qπk (s, ·), πk(·|s)− π∗(·|s)〉 − 2ςk. (4.6)

Similar to Lemma 5, below we show some general convergence properties about the SPMD method. Unlike

PMD, SPMD does not guarantee the non-increasing property of V πk (s) anymore.

Lemma 12 For any s ∈ S, we have

V πk+1(s)− V πk (s) ≤ 〈Qπk,ξk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+ 1
ηk
D
πk+1
πk (s) +

ηk‖δk‖2∞
2(1−γ)

. (4.7)

Proof. Observe that (3.10) still holds, and hence that

V πk+1(s)− V πk (s)

= 1
1−γEs′∼dπk+1

s

[
〈Qπk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

]
= 1

1−γEs′∼dπk+1
s

[
〈Qπk,ξk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

−〈δk, πk+1(·|s′)− πk(·|s′)〉
]

≤ 1
1−γEs′∼dπk+1

s

[
〈Qπk,ξk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

+ 1
2ηk
‖πk+1(·|s′)− πk(·|s′)‖21 +

ηk‖δk‖2∞
2

]
≤ 1

1−γEs′∼dπk+1
s

[
〈Qπk,ξk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

+ 1
ηk
D
πk+1
πk (s′) +

ηk‖δk‖2∞
2

]
, (4.8)

where the first inequality follows from Young’s inequality and the second one follows from the strong convexity

of Dπkπk+1 w.r.t. to ‖ · ‖1. Moreover, we conclude from Lemma 4 applied to (4.4) with Qπk replaced by Qπk,ξk and

p(·|s′) = πk(·|s′) that

〈Qπk,ξk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′) + 1
ηk
D
πk+1
πk (s′)

≤ − 1
ηk

[(1 + ηkµ)Dπkπk+1
(s′)] ≤ 0,
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which implies that

E
s′∼d

πk+1
s

[
〈Qπk,ξk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′) + 1

ηk
Dπkπk+1

(s′)
]

≤ dπk+1
s (s)

[
〈Qπk,ξk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s) + 1

ηk
D
πk+1
πk (s)

]
≤ (1− γ)

[
〈Qπk,ξk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s) + 1

ηk
D
πk+1
πk (s)

]
,

where the last inequality follows from the fact that d
πk+1
s (s) ≥ 1− γ due to the definition of d

πk+1
s in (2.1). The

result in (4.7) then follows immediately from (4.8) and the above inequality.

We now establish an important recursion about the SPMD method.

Lemma 13 For any k ≥ 0, we have

Eξdke [f(πk+1)− f(π∗) + ( 1
ηk

+ µ)D(πk+1, π
∗)]

≤ Eξdk−1e [γ(f(πk)− f(π∗)) + 1
ηk
D(πk, π

∗)] + 2ςk +
ηkσ

2
k

2(1−γ)
.

Proof. By applying Lemma 4 to (3.5) (with Qπk replaced by Qπk,ξk and p = π∗), we have

ηk[〈Qπk,ξk (s, ·), πk+1(·|s)− π∗(·|s)〉+ hπk+1(s)− hπ
∗
(s)] +D

πk+1
πk (s)

≤ Dπ
∗

πk (s)− (1 + ηkµ)Dπ
∗

πk+1
(s),

which, in view of (4.7), then implies that

〈Qπk,ξk (s, ·), πk(·|s)− π∗(·|s)〉+ hπk (s)− hπ
∗
(s) + V πk+1(s)− V πk (s)

≤ 1
ηk
Dπ
∗

πk (s)− ( 1
ηk

+ µ)Dπ
∗

πk+1
(s) +

ηk‖δk‖2∞
2(1−γ)

.

Taking expectation w.r.t. ξdke and ν∗ on both sides of the above inequality, and using Lemma 3 and the relation

in (4.6), we arrive at

Es∼ν∗,ξdke
[
(1− γ)(V πk (s)− V π

∗
τ (s)) + V πk+1(s)− V πk (s)

]
≤ Es∼ν∗,ξdke [

1
ηk
Dπ
∗

πk (s)− ( 1
ηk

+ µ)Dπ
∗

πk+1
(s)] + 2ςk +

ηkσ
2
k

2(1−γ)
.

Noting V πk+1(s)−V πk (s) = V πk+1(s)−V π
∗
(s)−[V πk (s)−V π

∗
(s)], rearranging the terms in the above inequality,

and using the definition of f in (1.9), we arrive at the result.

We are now ready to establish the convergence rate of the SPMD method. We start with the case when µ > 0

and state a constant stepsize rule which requires both ςk and σk, k ≥ 0, to be small enough to guarantee the

convergence of the SPMD method.

Theorem 5 Suppose that ηk = η = 1−γ
γµ in the SPMD method. If ςk = 2−(bk/lc+2) and σ2

k = 2−(bk/lc+2) for

any k ≥ 0 with l :=
⌈
logγ(1/4)

⌉
, then

Eξdk−1e [f(πk)− f(π∗) + µ
1−γD(πk, π

∗)]

≤ 2−bk/lc
[
f(π0)− f(π∗) + 1

1−γ (µ log |A|+ 5
2 + 5

8γµ )
]
. (4.9)

Proof. By Lemma 13 and the selection of η, we have

Eξdke [f(πk+1)− f(π∗) + µ
1−γD(πk+1, π

∗)]

≤ γ[Eξdk−1e [f(πk)− f(π∗) + µ
1−γD(πk, π

∗)] + 2ςk +
σ2
k

2γµ ,

which, in view of Lemma 11 with Xk = Eξdk−1e [f(πk)− f(π∗) + µ
1−γD(πk, π

∗) and Zk = 2ςk +
σ2
k

2γµ , then implies

that

Eξdk−1e [f(πk)− f(π∗) + µ
1−γD(πk, π

∗)

≤ γbk/lc
[
f(π0)− f(π∗) +

µD(π0,π
∗)

1−γ + 5
4 ( 2

1−γ + 1
2γ(1−γ)µ

)
]

≤ γbk/lc
[
f(π0)− f(π∗) + 1

1−γ (µ log |A|+ 5
2 + 5

8γµ )
]
.

We now turn our attention to the convergence properties of the SPMD method for the case when µ = 0.



15

Theorem 6 Suppose that ηk = η for any k ≥ 0 in the SPMD method. If ςk ≤ ς and σk ≤ σ for any k ≥ 0, then

we have

Eξdke,R[f(πR)− f(π∗)] ≤ γ[f(π0)−f(π∗)]
(1−γ)k

+
log |A|
η(1−γ)k

+ 2ς
1−γ + ησ2

2(1−γ)2 , (4.10)

where R denotes a random number uniformly distributed between 1 and k. In particular, if the number of iterations

k is given a priori and η = (
2(1−γ) log |A|

kσ2 )1/2, then

Eξdke,R[f(πR)− f(π∗)] ≤ γ[f(π0)−f(π∗)]
(1−γ)k

+ 2ς
1−γ +

σ
√

2 log |A|
(1−γ)3/2

√
k
. (4.11)

Proof. By Lemma 13 and the fact that µ = 0, we have

Eξdke [f(πk+1)− f(π∗) + 1
ηD(πk+1, π

∗)]

≤ Eξdk−1e [γ(f(πk)− f(π∗)) + 1
ηD(πk, π

∗)] + 2ςk +
ησ2
k

2(1−γ)
.

Taking the telescopic sum of the above relations, we have

(1− γ)
∑k
i=1 Eξdke [f(πi)− f(π∗)] ≤ [γ(f(π0)− f(π∗)) + 1

ηD(π0, π
∗)] + 2kς + kησ2

2(1−γ)
.

Dividing both sides by (1− γ)k and using the definition of R, we obtain the result in (4.10).

We add some remarks about the results in Theorem 6. In comparison with the convergence results of SPMD

for the case µ > 0, there exist some possible shortcomings for the case when µ = 0. Firstly, one needs to output a

randomly selected πR from the trajectory. Secondly, since the first term in (4.11) converges sublinearly, one has

to update πk+1 at least O(1/ε) times, which may also impact the gradient complexity of computing ∇hπ if πk+1

cannot be computed explicitly. We will address these issues by developing the stochastic APMD method in next

subsection.

4.2 Stochastic approximate policy mirror descent

The stochastic approximate policy mirror descent (SAPMD) method is obtained by replacing Qπkτk in (3.20) with

its stochastic estimator Qπk,ξkτk . As such, its updating formula is given by

πk+1(·|s) = arg min
p(·|s)∈∆|A|

{
ηk[〈Qπk,ξkτk (s, ·), p(·|s)〉+ hp(s) + τkD

π
π0

(st)] +Dpπk (s)
}
. (4.12)

With a little abuse of notation, we still denote δk := Qπk,ξkτk −Qπkτk and assume that

Eξk [Qπk,ξkτk ] = Q̄πkτk , (4.13)

Eξk [‖Qπk,ξkτk −Qπkτk ‖
2
∞] ≤ σ2

k, (4.14)

‖Q̄πkτk −Q
πk
τk ‖∞ ≤ ςk, (4.15)

for some σk ≥ and ςk ≥ 0. Similarly to (4.6) we have

Eξk [〈Qπk,ξkτk (s, ·), πk(·|s)− π∗(·|s)〉 | ξdξk−1e]

≥ 〈Qπkτk (s, ·), πk(·|s)− π∗(·|s)〉 − 2ςk. (4.16)

Lemma 14 and Lemma 15 below show the improvement for each SAPMD iteration.

Lemma 14 For any k ≥ 0, we have

V
πk+1
τk (s)− V πkτk (s) ≤ 〈Qπk,ξkτk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+ τk[D
πk+1
π0 (s)−Dπ

∗

π0
(s)] + 1

ηk
D
πk+1
πk (s) +

ηk‖δk‖2∞
2(1−γ)

. (4.17)

Proof. The proof is similar to the one for Lemma 12 except that we will apply Lemma 2 to the perturbed

value functions V πτk instead of V π.

Lemma 15 If 1 + ηkτk = 1/γ and τk ≥ τk+1 in the SAPMD method, then for any k ≥ 0,

Es∼ν∗,ξdke [V
πk+1
τk+1 (s)− V π

∗

τk+1
(s) + τk

1−γD
π∗

πk+1
(s)]

≤ Es∼ν∗,ξdk−1e [γ[V πkτk (s)− V π
∗

τk (s) + τk
1−γD

π∗

πk (s)]

+
τk−τk+1

1−γ log |A|+ 2ςk +
σ2
k

2γτk
. (4.18)
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Proof. By Lemma 8 with p = π∗ and Qπkτk replaced by Qπk,ξkτk , we have

〈Qπk,ξkτk (s, ·), πk+1(·|s)− π∗(·|s)〉+ hπk+1(s)− hπ
∗
(s)

+ τk[D
πk+1
π0 (s)−Dπ

∗

π0
(s)] + 1

ηk
D
πk+1
πk (s)

≤ 1
ηk
Dπ
∗

πk (s)− ( 1
ηk

+ τk)Dπ
∗

πk+1
(s),

which, in view of (4.17), implies that

〈Qπk,ξkτk (s, ·), πk(·|s)− π∗(·|s)〉+ hπk (s)− hπ
∗
(s) + τk[Dπkπ0

(s)−Dπ
∗

π0
(s)]

+ V
πk+1
τk (s)− V πkτk (s) ≤ 1

ηk
Dπ
∗

πk (s)− ( 1
ηk

+ τk)Dπ
∗

πk+1
(s) +

ηk‖δk‖2∞
2(1−γ)

.

Taking expectation w.r.t. ξdke and ν∗ on both sides of the above inequality, and using Lemma 7 and the relation

in (4.16), we arrive at

Es∼ν∗,ξdke [(1− γ)(V πkτk (s)− V π
∗

τk (s))] + Es∼ν∗,ξdke [V
πk+1
τk (s)− V πkτk (s)]

≤ Es∼ν∗,ξdke [
1
ηk
Dπ
∗

πk (s)− ( 1
ηk

+ τk)Dπ
∗

πk+1
(s)] + 2ςk +

ηkσ
2
k

2(1−γ)
.

Noting V
πk+1
τk (s) − V πkτk (s) = V

πk+1
τk (s) − V π

∗
τk (s) − [V πkτk (s) − V π

∗
τk (s)] and rearranging the terms in the above

inequality, we have

Es∼ν∗,ξdke [V
πk+1
τk (s)− V π

∗

τk (s) + ( 1
ηk

+ τk)Dπ
∗

πk+1
(s)]

≤ γEs∼ν∗,ξdk−1e [V
πk
τk (s)− V π

∗

τk (s)] + Es∼ν∗,ξdk−1e [
1
ηk
Dπ
∗

πk (s)] + 2ζk +
ηkσ

2
k

2(1−γ)
,

which, in view of the assumption τk ≥ τk+1 and (3.19), then implies that

V
πk+1
τk (s)− V πkτk (s) ≤ 〈Qπk,ξkτk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+ τk[D
πk+1
π0 (s)−Dπ

∗

π0
(s)] + 1

ηk
D
πk+1
πk (s) +

ηk‖δk‖2∞
2(1−γ)

. (4.19)

The result then immediately follows from the assumption that 1 + ηkτk = 1/γ.

We are now ready to establish the convergence of the SAPMD method.

Theorem 7 Suppose that ηk = 1−γ
γτk

in the SAPMD method. If τk = 1√
γ log |A|

2−(bk/lc+1), ςk = 2−(bk/lc+2),

and σ2
k = 4−(bk/lc+2) with l :=

⌈
logγ(1/4)

⌉
, then

Eξdk−1e [f(πk)− f(π∗)] ≤ 2−bk/lc[f(π0)− f(π∗) +
3
√

log |A|
(1−γ)

√
γ

+ 5
2(1−γ)

]. (4.20)

Proof. By Lemma 15 and the selection of τk, ςk and σk, we have

Es∼ν∗,ξdke [V
πk+1
τk+1 (s)− V π

∗

τk+1
(s) + τk

1−γD
π∗

πk+1
(s)]

≤ Es∼ν∗,ξdk−1e [γ[V πkτk (s)− V π
∗

τk (s) + τk
1−γD

π∗

πk (s)]]

+
τk−τk+1

1−γ log |A|+ (2 +

√
log |A|
2
√
γ )2−(bk/lc+2). (4.21)

Using the above inequality and Lemma 11 (with Xk = Es∼ν∗,ξdk−1e [γ[V πkτk (s) − V π
∗

τk (s) + τk
1−γD

π∗
πk (s)]], Yk =

τk
1−γ log |A| and Zk = (2 +

√
log |A|
2
√
γ )2−(bk/lc+2)), we conclude

Es∼ν∗,ξdk−1e [V
πk
τk (s)− V π

∗

τk (s) + τk
1−γD

π∗

πk (s)]

≤ 2−bk/lc{Es∼ν∗ [V πkτ0 (s)− V π
∗

τ0 (s) +

√
log |A|

2(1−γ)
√
γ

] +

√
log |A|

(1−γ)
√
γ

+ 5
2(1−γ)

+
5
√

log |A|
8(1−γ)

√
γ
}

= 2−bk/lc{Es∼ν∗ [V πkτ0 (s)− V π
∗

τ0 (s)] +
17
√

log |A|
8(1−γ)

√
γ

+ 5
2(1−γ)

}.

Noting that V πkτk (s) ≥ V πk (s), V π
∗

τk (s) ≤ V π
∗
(s)+ τk

1−γ log |A|, V π
∗

τ0 (s) ≥ V π
∗
(s) due to (3.18), and that V π0

τ0 (s) =

V π0(s) due to Dπ0
π0 (s) = 0, we conclude from the previous inequality and the definition of τk that

Es∼ν∗,ξdk−1e [V
πk (s)− V π

∗
(s)] ≤ 2−bk/lc{Es∼ν∗ [V π0(s)− V π

∗
(s) +

3
√

log |A|
(1−γ)

√
γ

+ 5
2(1−γ)

},

from which the result immediately follows.

In view of Theorem 7, the SAPMD method does not need to randomly output a solution as most existing

nonconvex stochastic gradient descent methods did. Instead, the linear rate of convergence in (4.20) has been

established for the last iterate πk generated by this algorithm.
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5 Stochastic Estimation for Action-value Functions

In this section, we discuss the estimation of the action-value functions Qπ or Qπτ through two different approaches.

In Subsection 5.1, we assume the existence of a generative model for the Markov Chains so that we can estimate

value functions by generating multiple independent trajectories starting from an arbitrary pair of state and action.

In Subsection 5.2, we consider a more challenging setting where we only have access to a single trajectory observed

when the dynamic system runs online. In this case, we employ and enhance the conditional temporal difference

(CTD) method recently developed in [12] to estimate value functions. Throughout the section we assume that

c(s, a) ≤ c̄, ∀(s, a) ∈ S ×A, (5.1)

hπ(s) ≤ h̄, ∀s ∈ S, π ∈ ∆|A|. (5.2)

5.1 Multiple independent trajectories

In the multiple trajectory setting, starting from state-action pair (s, a) and following policy πk, we can generate

Mk independent trajectories of length Tk, denoted by

ζik ≡ ζ
i
k(s, a) := {(si0 = s, ai0 = a); (si1, a

i
1), . . . , (siTk−1, a

i
Tk−1)}, i = 1, . . . ,Mk.

Let ξk := {ζik(s, a), i = 1, . . . ,Mk, s ∈ S, a ∈ A} denote all these random variables. We can estimate Qπk in the

SPMD method by

Qπk,ξk (s, a) = 1
Mk

∑Mk

i=1

∑Tk−1
t=0 γt[c(sit, a

i
t) + hπk (sit)].

It is easy to see that Qπk,ξk satisfy (4.1)-(4.3) with

ςk =
(c̄+h̄)γTk

1−γ and σ2
k = 2ς2k +

2(c̄+h̄)2

(1−γ)2Mk
=

2(c̄+h̄)2

(1−γ)2 (γ2Tk + 1
Mk

). (5.3)

By choosing Tk and Mk properly, we can show the convergence of the SPMD method employed with different

stepsize rules as stated in Theorems 5 and 6.

Proposition 1 Suppose that ηk = 1−γ
γµ in the SPMD method. If Tk and Mk are chosen such that

Tk ≥ l
2 (bk/lc+ log2

c̄+h̄
1−γ + 2) and Mk ≥

(c̄+h̄)2

(1−γ)2 2bk/lc+4

with l :=
⌈
logγ(1/4)

⌉
, then the relation in (4.9) holds. As a consequence, an ε-solution of (1.9), i.e., a solution

π̄ s.t. E[f(π̄) − f(π∗) + µ
1−γD(π̄, π∗)] ≤ ε, can be found in at most O(logγ ε) SPMD iterations. In addition, the

total number of samples for (st, at) pairs can be bounded by

O(
|S||A| log |A| logγ ε

µ(1−γ)3ε
). (5.4)

Proof. Using the fact that γl ≤ 1/4, we can easily check from (5.3) and the selection of Tk and Mk that

(4.1)-(4.3) hold with ςk = 2−(bk/lc+2) and σ2
k = 2−(bk/lc+2). Suppose that an ε-solution π̄ will be found at the k̄

iteration. By (4.9), we have

bk̄/lc ≤ log2{[f(π0)− f(π∗) + 1
1−γ (µ log |A|+ 5

2 + 5
8γµ )]ε−1},

which implies that the number of iterations is bounded by O(lbk̄/lc) = O(logγ ε). Moreover by the definition of

Tk and Mk, the total number of samples is bounded by

|S||A|
∑bk̄/lc
p=0 TkMk = |S||A|

∑bk̄/lc
p=0 [ l2 (p+ log2

c̄+h̄
1−γ + 2)

(c̄+h̄)2

(1−γ)2 2p+4]

= O{|S||A|l(bk̄/lc+ log2
c̄+h̄
1−γ )

(c̄+h̄)2

(1−γ)2 2bk̄/lc} = O(
|S||A| log |A| logγ ε

µ(1−γ)3ε
).

To the best of our knowledge, this is the first time in the literature that an O(log(1/ε)/ε) sampling complexity,

after disregarding all constant factors, has been obtained for solving RL problems with strongly convex regularizers,

even though problem (1.9) is still nonconvex. The previously best-known sampling complexity for RL problems

with entropy regularizer was Õ(|S||A|2/ε3) [20], and the author was not aware of an Õ(1/ε) sampling complexity

results for any RL problems.

Below we discuss the sampling complexities of SPMD and SAPMD for solving RL problems with general

convex regularizers.
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Proposition 2 Consider the general RL problems with µ = 0. Suppose that the number of iterations k is given a

priori and ηk = (
2(1−γ) log |A|

kσ2 )1/2. If Tk ≥ T ≡ logγ
(1−γ)ε

3(c̄+h̄)
and Mk = 1, then an ε-solution of problem of (1.9),

i.e., a solution π̄ s.t. E[f(π̄) − f(π∗)] ≤ ε, can be found in at most O(log |A|/[(1 − γ)5ε2]) SPMD iterations. In

addition, the total number of state-action samples can be bounded by

O(
|S||A| log |A| logγ ε

(1−γ)5ε2
). (5.5)

Proof. We can easily check from (5.3) and the selection of Tk and Mk that (4.1)-(4.3) holds with ςk = ε/3 and

σ2
k = 2( ε

2

32 +
2(c̄+h̄)2

(1−γ)2 ). Using these bounds in (4.10), we conclude that an ε-solution will be found in at most

k̄ =
4[(ε/3)2+(c̄+h̄)2/(1−γ)2)] log |A|

(1−γ)3(ε/3)2 +
γ[f(π0)−f(π∗)]

(1−γ)(ε/3)
.

Moreover, the total number of samples is bounded by |S||A|T k̄ and hence by (5.5).

We can further improve the above iteration and sampling complexities by using the SAPMD method, in which

we estimate Qπkτk by

Qπk,ξkπk (s, a) = 1
Mk

∑Mk

i=1

∑Tk−1
t=0 γt[c(sit, a

i
t) + hπk (sit) + τkD

πk
π0 (sit)].

Since τ0 ≥ τk, we can easily see that Qπk,ξk satisfy (4.13)-(4.15) with

ςk =
(c̄+h̄+τ0 log |A|)γTk

1−γ and σ2
k =

2(c̄+h̄+τ0 log |A|)2

(1−γ)2 (γ2Tk + 1
Mk

). (5.6)

Proposition 3 Suppose that ηk = 1−γ
γτk

and τk = 1√
γ log |A|

2−(bk/lc+1) in the SAPMD method. If Tk and Mk

are chosen such that

Tk ≥ l
2 (bk/lc+ log2

c̄+h̄+τ0 log |A|
1−γ + 4) and Mk ≥

(c̄+h̄+τ0 log |A|)2

(1−γ)2 4bk/lc+3

with l :=
⌈
logγ(1/4)

⌉
, then the relation in (4.20) holds. As a consequence, an ε-solution of (1.9), i.e., a solution

π̄ s.t. E[f(π̄)− f(π∗)] ≤ ε, can be found in at most O(logγ ε) SAPMD iterations. In addition, the total number of

samples for (st, at) pairs can be bounded by

O(
|S||A| log2 |A| logγ ε

(1−γ)4ε2
). (5.7)

Proof. Using the fact that γl ≤ 1/4, we can easily check from (5.6) and the selection of Tk and Mk that

(4.13)-(4.15) hold with ςk = 2−(bk/lc+2) and σ2
k = 4−(bk/lc+2). Suppose that an ε-solution π̄ will be found at the

k̄ iteration. By (4.20), we have

bk̄/lc ≤ log2{[f(π0)− f(π∗) +
3
√

log |A|
(1−γ)

√
γ

+ 5
2(1−γ)

]ε−1},

which implies that the number of iterations is bounded by O(lbk̄/lc) = O(logγ ε). Moreover by the definition of

Tk and Mk, the number of samples is bounded by

|S||A|
∑bk̄/lc+1
p=1 [ l2 (p+ log2

c̄+h̄+τ0 log |A|
1−γ + 4)

(c̄+h̄+τ0 log |A|)2

(1−γ)2 4p+3]

= O{|S||A|l(bk̄/lc+ log2
c̄+h̄+τ0 log |A|

1−γ )
(c̄+h̄+τ0 log |A|)2

(1−γ)2 4bk̄/lc} = O(
|S||A| log2 |A| logγ ε

(1−γ)4ε
).

To the best of our knowledge, the results in Propositions 2 and 3 appear to be new for policy gradient

type methods. The previously best-known sampling complexity for policy gradient methods for RL problems was

Õ(|S||A|2/ε4) (e.g., [20]) although some improvements have been made under certain specific settings (e.g., [24]).
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5.2 Conditional temporal difference

In this subsection, we enhance a recently developed temporal different (TD) type method, i.e., conditional temporal

difference (CTD) method, and use it to estimate the action-value functions in an online manner. We focus on

estimating Qπ in SPMD since the estimation of Qπτ in SAPMD is similar.

For a given policy π, we denote the Bellman operator

TπQ(s, a) := c(s, a) + hπ(s) + γ
∑
s′∈S P(s′|s, a)

∑
a′∈A π(a′|s)Q(s′, a′). (5.8)

The action value function Qπ corresponding to policy π satisfies the Bellman equation

Qπ(s, a) = TπQπ(s, a). (5.9)

We also need to define a positive-definite weighting matrix Mπ ∈ Rn×n to define the sampling scheme to

evaluate policies using TD-type methods. A natural weighting matrix is the diagonal matrix Mπ = Diag(ν(π))⊗
Diag(π), where ν(π) is the steady state distribution induced by π and ⊗ denotes the Kronecker product. A widely

used assumption in the RL literature is that Mπ � 0. This assumption requires: (a) the policy π is sufficiently

random, i.e., π(s, a) ≥ π for some π > 0, which can be enforced, for example, by adding some corresponding

constraints through hπ; and (b) ν(π)(s) ≥ ν for some ν > 0, which holds when the Markov chain employed with

policy π has a single ergodic class with unique stationary distribution, i.e., ν(π) = ν(π)Pπ. With the weighting

matrix Mπ, we define the operator Fπ as

Fπ(θ) := Mπ(θ − Tπθ),
where Tπ is the Bellman operator defined in (5.8). Our goal is to find the root θ∗ ≡ Qπ of F (θ), i.e., F (θ∗) = 0.

We can show that F is strongly monotone with strong monotonicity modulus bounded from below by Λmin :=

(1−γ)λmin(Mπ). Here λmin(A) denotes the smallest eigenvalue of A. It can also be easily seen that Fπ is Lipschitz

continuous with Lipschitz constant bounded by Λmax := (1 − γ)(λmax(Mπ), where λmax(A) denotes the largest

eigenvalue of A.

Remark 1 If ν(π)(s) · π(s, a) = 0 for some (s, a) ∈ S × A, one may define the weighting matrix Mπ = (1 −
λ)Diag(ν(π)) ⊗ Diag(π) + λ

nI for some sufficiently small λ ∈ (0, 1) which depends on the target accuracy for

solving the RL problem, where n = |S| × |A|. Obviously, the selection of λ will impact the efficiency estimte for

policy evaluation. However, the algorithmic frameworks of CTD and SPMD, and their convergence analysis are

still applicable to this more general setting. In this paper we focus on the more restrictive assumption Mπ � 0 in

order to compare our results with the existing ones in the literature.

Remark 2 For problems of high dimension (i.e., n ≡ |S| × |A| is large), one often resorts to a parametric approx-

imation of the value function. It is possible to define a more general operator Fπ(θ) := ΦTMπ
(
Φθ − TπΦθ

)
for

some feature matrix Φ (see Section 4 of [12] for a discussion about CTD with function approximation).

At time instant t ∈ Z+, we define the stochastic operator of Fπ as

F̃π(θt, ζt) =
(
〈e(st, at), θt〉 − c(st, at)− hπ(st)− γ〈e(st+1, at+1), θt〉

)
e(st, at),

where ζt = (st, at, st+1, at+1) denotes the state transition steps following policy π and e(st, at) denotes the unit

vector. The CTD method uses the stochastic operator F̃π(θt, ζt) to update the parameters θt iteratively as shown

in Algorithm 3. It involves two algorithmic parameters: α ≥ 0 determines how often θt is updated and βt ≥ 0

defines the learning rate. Observe that if α = 0, then CTD reduces to the classic TD learning method.

Algorithm 3 Conditional Temporal Difference (CTD) for evaluating policy π

Let θ1, the nonnegative parameters α and {βt} be given.
for t = 1, . . . , T do

Collect α state transition steps without updating {θt}, denoted as {ζ1t , ζ2t , . . . , ζαt }.
Set

θt+1 = θt − βtF̃π(θt, ζ
α
t ). (5.10)

end for

When applying the general convergence results of CTD to our setting, we need to handle the following possible

pitfalls. Firstly, current analysis of TD-type methods only provides bounds on E[‖θt−θ∗‖22], which gives an upper

bound on E[‖θt−Qπ‖2∞] and thus the bound on the total expected error (c.f., (4.2)). One needs to develop a tight

enough bound on the bias ‖E[θt]− θ∗‖∞ (c.f., (4.3)) to derive the overall best rate of convergence for the SPMD

method. Secondly, the selection of α and {βt} that gives the best rate of convergence in terms of E[‖θt − θ∗‖22]
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does not necessarily result in the best rate of convergence for SPMD, since we need to deal with the bias term

explicitly.

The following result can be shown similarly to Lemma 4.1 of [12].

Lemma 16 Given the single ergodic class Markov chain ζ1
1 , . . . , ζ

α
1 , ζ

2
2 , . . . , ζ

α
2 , . . ., there exists a constant C > 0

and ρ ∈ [0, 1) such that for every t, α ∈ Z+ with probability 1,

‖Fπ(θt)− E[F̃π(θt, ζ
α
t )|ζdt−1e]‖2 ≤ Cρ

α‖θt − θ∗‖2.

We can also show that the variance of F̃π is bounded as follows.

E[‖F̃π(θt, ζ
α
t )− E[F̃π(θt, ζ

α
t )|ζdt−1e‖

2
2]

≤ 2(1 + γ)2E[‖θt‖22] + 2(c̄+ h̄)2

≤ 4(1 + γ)2E[‖θt − θ∗‖22] + ‖θ∗‖22 + 2(c̄+ h̄)2. (5.11)

The following result has been shown in Proposition 6.2 of [12].

Lemma 17 If the algorithmic parameters in CTD are chosen such that

α ≥ log (1/Λmin)+log(9C)
log (1/ρ)

and βt = 2
Λmin(t+t0−1)

(5.12)

with t0 = 8 max{Λ2
max, 8(1 + γ)2}/Λ2

min, then

E[‖θt+1 − θ∗‖22] ≤ 2(t0+1)(t0+2)‖θ1−θ∗‖2
(t+t0)(t+t0+1)

+
12tσ2

F

Λ2
min(t+t0)(t+t0+1)

,

where σ2
F := 4(1 + γ)2R2 + ‖θ∗‖22 + 2(c̄ + h̄)2 and R2 := 8‖θ1 − θ∗‖22 +

3[‖θ∗‖22+2(c̄+h̄)2]
4(1+γ)2 . Moreover, we have

E[‖θt − θ∗‖22] ≤ R2 for any t ≥ 1.

We now enhance the above result with a bound on the bias term given by ‖E[θt+1]− θ∗‖2. The proof of this

result is put in the appendix since it is more technical.

Lemma 18 Suppose that the algorithmic parameters in CTD are set according to Lemma 17. Then we have

‖E[θt+1]− θ∗‖22 ≤
(t0−1)(t0−2)(t0−3)‖θ1−θ∗‖22
(t+t0−1)(t+t0−2)(t+t0−3)

+ 8CR2ρα

3Λmin
+ C2R2ρ2α

Λ2
min

.

We are now ready to establish the convergence of the SMPD method by using the CTD method to estimate

the action-value functions. We focus on the case when µ > 0, and the case for µ = 0 can be shown similarly.

Proposition 4 Suppose that ηk = 1−γ
γµ in the SPMD method. If the initial point of CTD is set to θ1 = 0 and the

number of iterations T and the parameter α in CTD are set to

Tk = t0(3θ̄2bk/lc+2)2/3 + (4t20θ̄
22bk/lc+2)1/2 + 24σ2

FΛ
−2
min2bk/lc+2, (5.13)

αk = max{2(bkl c+ 2) logρ
1
2 + logρ

Λmin

24CR2 , (bkl c+ 2) logρ
1
2 + logρ

Λmin

3CR2 }, (5.14)

where l :=
⌈
logγ(1/4)

⌉
and θ̄ :=

√
n c̄+h̄1−γ , then the relation in (4.9) holds. As a consequence, an ε-solution of (1.9),

i.e., a solution π̄ s.t. E[f(π̄)− f(π∗) + µ
1−γD(π̄, π∗)] ≤ ε, can be found in at most O(logγ ε) SPMD iterations. In

addition, the total number of samples for (st, at) pairs can be bounded by

O{(logγ
1
2 )(log2

1
ε )(logρ

Λmin

CR2 )( t0θ̄
2/3

(µ(1−γ)ε)2/3 + t0θ̄√
µ(1−γ)ε

+
σ2
F

µ(1−γ)Λ2
minε

)}. (5.15)

Proof. Using the fact that γl ≤ 1/4, we can easily check from Lemma 17, Lemma 18, and the selection of T

and α that (4.1)-(4.3) hold with ςk = 2−(bk/lc+2) and σ2
k = 2−(bk/lc+2). Suppose that an ε-solution π̄ will be

found at the k̄ iteration. By (4.9), we have

bk̄/lc ≤ log2{[f(π0)− f(π∗) + 1
1−γ (µ log |A|+ 5

2 + 5
8γµ )]ε−1},

which implies that the number of iterations is bounded by O(lbk̄/lc) = O(logγ ε). Moreover by the definition of

Tk and αk, the number of samples is bounded by∑bk̄/lc
p=0 lαkTk = O{logγ

1
2

∑bk̄/lc
p=0 (p logρ

1
2 + logρ

Λmin

CR2 )(t0θ̄
2/322p/3 + t0θ̄2

p/2 + σ2
FΛ
−2
min2p)}

= O{logγ
1
2 (bk̄/lc logρ

1
2 + logρ

Λmin

CR2 )(t0θ̄
2/322bk̄/lc/3 + t0θ̄2

bk̄/lc/2 + σ2
FΛ
−2
min2bk̄/lc)}

= O{logγ
1
2 (log2

1
ε logρ

1
2 + logρ

Λmin

CR2 )( t0θ̄
2/3

(µ(1−γ)ε)2/3 + t0θ̄√
µ(1−γ)ε

+
σ2
F

µ(1−γ)Λ2
minε

)}.

The following result shows the convergence properties of the SAMPD method when the action-value function

is estimated by using the CTD method.
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Proposition 5 Suppose that ηk = 1−γ
γτk

and τk = 1√
γ log |A|

2−(bk/lc+1) in the SAPMD method. If the initial

point of CTD is set to θ1 = 0, the number of iterations T is set to

Tk = t0(3θ̄2bk/lc+2)2/3 + (4t20θ̄
24bk/lc+2)1/2 + 24σ2

FΛ
−2
min4bk/lc+2, (5.16)

and the parameter α in CTD is set to (5.14), where l :=
⌈
logγ(1/4)

⌉
and θ̄ :=

c̄+h̄+τ0 log |A|
1−γ , then the relation in

(4.20) holds. As a consequence, an ε-solution of (1.9), i.e., a solution π̄ s.t. E[f(π̄)− f(π∗)] ≤ ε, can be found in

at most O(logγ ε) SPMD iterations. In addition, the total number of samples for (st, at) pairs can be bounded by

O{(logγ
1
2 )(log2

1
ε )(logρ

Λmin

CR2 )( t0θ̄
(1−γ)ε

+
σ2
F

(1−γ)2Λ2
minε

2 )}. (5.17)

Proof. The proof is similar to that of Proposition 4 except that we will show that (4.1)-(4.3) hold with

ςk = 2−(bk/lc+2) and σ2
k = 4−(bk/lc+2). Moreover, we will use (4.20) instead of (4.9) to bound the number of

iterations.

To the best of our knowledge, the complexity result in (5.15) is new in the RL literature, while the one in

(5.17) is new for policy gradient type methods. It seems that this bound significantly improves the previously

best-known O(1/ε3) sampling complexity result for stochastic policy gradient methods (see [24] and Appendix C

of [10] for more explanation).

6 Efficient Solution for General Subproblems

In this section, we study the convergence properties of the PMD methods for the situation where we do not have

exact solutions for prox-mapping subprobems. Throughout this section, we assume that hπ is differentiable and its

gradients are Lipschitz continuous with Lipschitz constant L. We will first review Nesterov’s accelerated gradient

descent (AGD) method [18], and then discuss the overall gradient complexity of using this method for solving

prox-mapping in the PMD methods. We will focus on the stochastic PMD methods since they cover deterministic

methods as certain special cases.

6.1 Review of accelerated gradient descent

Let us denote X ≡ ∆|A| and consider the problem of

min
x∈X
{Φ(x) := φ(x) + χ(x)}, (6.1)

where φ : X → R is a smooth convex function such that

µφD
x
x′ ≤ φ(x)− [φ(x′) + 〈∇φ(x′), x− x′〉] ≤ Lφ

2 ‖x− x
′‖1.

Moreover, we assume that χ : X → R satisfies

χ(x)− [χ(x′) + 〈χ′(x′), x− x′〉] ≥ µχDxx′

for some µχ ≥ 0. Given (xt−1, yt−1) ∈ X ×X, the accelerated gradient method performs the following updates:

xt = (1− qt)yt−1 + qtxt−1, (6.2)

xt = arg min
x∈X

{rt[〈∇φ(xt), x〉+ µφD
x
xt

+ χ(x)] +Dxxt−1
}, (6.3)

yt = (1− ρt)yt−1 + ρtxt, (6.4)

for some qt ∈ [0, 1], rt ≥ 0, and ρt ∈ [0, 1] .

Below we slightly generalize the convergence results for the AGD method so that they depend on the distance

Dxx0
rather than Φ(y0)−Φ(x) for any x ∈ X. This result better fits our need to analyze the convergence of inexact

SPMD and SAPMD methods in the next two subsections.

Lemma 19 Let us denote µΦ := µφ + µχ and t0 := b2
√
Lφ/µΦ − 1c. If

ρt =

{
2
t+1 t ≤ t0√
µΦ/Lφ o.w.

, qt =

{
2
t+1 t ≤ t0√
µΦ/Lφ−µΦ/Lφ

1−µΦ/Lφ o.w.
, rt =


t

2Lφ
t ≤ t0

1√
LφµΦ−µΦ

o.w.
,

then for any x ∈ X,

Φ(yt)− Φ(x) + µΦD
x
xt ≤ ε(t)D

x
x0
, (6.5)

where

ε(t) := 2Lφ min

{(
1−

√
µΦ/Lφ

)t−1

, 2
t(t+1)

}
. (6.6)
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Proof. Using the discussions in Corollary 3.5 of [13] (and the possible strong convexity of χ), we can check

that the conclusions in Theorems 3.6 and 3.7 of [13] hold for the AGD method applied to problem (6.1). It then

follows from Theorem 3.6 of [13] that

Φ(yt)− Φ(x) + ρt
rt
Dx
∗

xk ≤
4Lφ
t(t+1)

Dxx0
, ∀t = 1, . . . , t0. (6.7)

Moreover, it follows from Theorem 3.7 of [13] that for any t ≥ t0,

Φ(yt)− Φ(x) + µΦD
x
xk ≤

(
1−

√
µΦ/Lφ

)t−t0
[Φ(yt0)− Φ(x) + µΦD

x
xt0

]

≤ 2
(

1−
√
µΦ/Lφ

)t−1

LφD
x
x0
,

where the last inequality follows from (6.7) (with t = t0) and the facts that

ρt
rt
≥ ρt0

rt0
≥ µΦ and 2

t(t+1)
=
∏t
i=2(1− 2

i+1 ) ≤ (1−
√
µΦ/Lφ)t−1

for any 2 ≤ t ≤ t0. The result then follows by combining these observations.

6.2 Convergence of inexact SPMD

In this subsection, we study the convergence properties of the SPMD method when its subproblems are solved

inexactly by using the AGD method (see Algorithm 4). Observe that we use the same initial point π0 whenever

calling the AGD method. To use a dynamic initial point (e.g., vk) will make the analysis more complicated since

we do not have a uniform bound on the KL divergence Dπvk for an arbitrary vk. To do so probably will require us

to use other distance generating functions than the entropy function.

Algorithm 4 The SPMD method with inexact subproblem solutions

Input: initial points π0 = v0 and stepsizes ηk ≥ 0.
for k = 0, 1, . . . , do

Apply Tk AGD iterations (with initial points x0 = y0 = π0) to

πk+1(·|s) = arg min
p(·|s)∈∆|A|

{
Φk(p) := ηk[〈Qπk,ξk (s, ·), p(·|s)〉+ hp(s)] +Dpvk (s)

}
. (6.8)

Set (πk+1, vk+1) = (yTk+1, xTk+1).
end for

In the sequel, we will denote εk ≡ ε(Tk) to simplify notations. The following result will take place of Lemma 4

in our convergence analysis.

Lemma 20 For any π(·|s) ∈ X, we have

ηk[〈Qπk,ξk (s, ·), πk+1(·|s)− π(·|s)〉+ hπk+1(s)− hπ(s)]

+D
πk+1
vk (s) + (1 + µηk)Dπvk+1

(s) ≤ Dπvk (s) + εk log |A|. (6.9)

Moreover, we have

ηk[〈Qπk,ξk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)]

+D
πk+1
vk (s) + (1 + µηk)D

πk+1
vk+1 (s) ≤ (εk +

εk−1

1+µηk−1
) log |A|. (6.10)

Proof. It follows from Lemma 19 (with µΦ = 1 + µηk and Lφ = L) that

Φk(πk+1)− Φk(π) + (1 + µηk)Dπvk+1
(s) ≤ εkDππ0

(s) ≤ εk log |A|.

Using the definition of Φk, we have

ηk[〈Qπk,ξk (s, ·), πk+1(·|s)− π(·|s)〉+ hπk+1(s)− hπ(s)]

+D
πk+1
vk (s)−Dπvk (s) + (1 + µηk)Dπvk+1

(s) ≤ εk log |A|,

which proves (6.9). Setting π = πk and π = πk+1 respectively, in the above conclusion, we obtain

ηk[〈Qπk,ξk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)]

+D
πk+1
vk (s) + (1 + µηk)Dπkvk+1

(s) ≤ Dπkvk (s) + εk log |A|,

(1 + µηk)D
πk+1
vk+1 (s) ≤ εk log |A|.

Then (6.10) follows by combining these two inequalities.
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Proposition 6 For any s ∈ S, we have

V πk+1(s)− V πk (s) ≤ 〈Qπk,ξk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+ 1
ηk
D
πk+1
πk (s) +

ηk‖δk‖2∞
2(1−γ)

+ γ
(1−γ)ηk

(εk +
εk−1

1+µηk−1
) log |A|

− 1
1−γEs′∼dπk+1

s
[〈δk, vk(·|s′)− πk(·|s′)〉]. (6.11)

Proof. Similar to (4.8), we have

V πk+1(s)− V πk (s)

= 1
1−γEs′∼dπk+1

s

[
〈Qπk,ξk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

−〈δk, πk+1(·|s′)− vk(·|s′)〉 − 〈δk, vk(·|s′)− πk(·|s′)〉
]

≤ 1
1−γEs′∼dπk+1

s

[
〈Qπk,ξk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

+ 1
2ηk
‖πk+1(·|s′)− vk(·|s′)‖21 +

ηk‖δk‖2∞
2 − 〈δk, vk(·|s′)− πk(·|s′)〉

]
≤ 1

1−γEs′∼dπk+1
s

[
〈Qπk,ξk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

+ 1
ηk
D
πk+1
vk (s′) +

ηk‖δk‖2∞
2 − 〈δk, vk(·|s′)− πk(·|s′)〉

]
. (6.12)

It follows from (6.10) that

〈Qπk,ξk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+ 1
ηk

[
D
πk+1
vk (s) + (1 + µηk)D

πk+1
vk+1 (s)− (εk +

εk−1

1+µηk−1
) log |A|

]
≤ 0, (6.13)

which implies that

E
s′∼d

πk+1
s

[
〈Qπk,ξk (s′, ·), πk+1(·|s′)− πk(·|s′)〉+ hπk+1(s′)− hπk (s′)

+ 1
ηk

(
Dπkπk+1

(s′)− (εk +
εk−1

1+µηk−1
) log |A|

)]
≤ dπk+1

s (s)
[
〈Qπk,ξk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+ 1
ηk

(
D
πk+1
πk (s)− (εk +

εk−1

1+µηk−1
) log |A|

)]
≤ (1− γ)

[
〈Qπk,ξk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+ 1
ηk

(
D
πk+1
πk (s)− (εk +

εk−1

1+µηk−1
) log |A|

)]
,

where the last inequality follows from the fact that d
πk+1
s (s) ≥ (1− γ) due to the definition of d

πk+1
s in (2.1). The

result in (6.11) then follows immediately from (6.12) and the above inequality.

We now establish an important recursion about the inexact SPMD method in Algorithm 4.

Lemma 21 Suppose that ηk = η = 1−γ
γµ and εk ≤ εk−1 for any k ≥ 0 in the inexact SPMD method, we have

Eξdke [f(πk+1)− f(π∗) + µ
1−γD(πk+1, π

∗)]

≤ γ[Eξdk−1e [f(πk)− f(π∗) + µ
1−γD(πk, π

∗)] +
2(2−γ)ςk

1−γ +
σ2
k

2γµ +
µγ2(1+γ) log |A|εk−1

(1−γ)2 .

Proof. By (6.9) (with p = π∗), we have

〈Qπk,ξk (s, ·), πk+1(·|s)− π∗(·|s)〉+ hπk+1(s)− hπ
∗
(s) + 1

ηk
D
πk+1
vk (s)

≤ 1
ηk
Dπ
∗

vk (s)− ( 1
ηk

+ µ)Dπ
∗

vk+1
(s) + εk

ηk
log |A|,

which, in view of (4.7), then implies that

〈Qπk,ξk (s, ·), πk(·|s)− π∗(·|s)〉+ hπk (s)− hπ
∗
(s) + V πk+1(s)− V πk (s)

≤ 1
ηk
Dπ
∗

vk (s)− ( 1
ηk

+ µ)Dπ
∗

vk+1
(s) +

ηk‖δk‖2∞
2(1−γ)

+ γ
(1−γ)ηk

(εk +
εk−1

1+µηk−1
) log |A|

− 1
1−γEs′∼dπk+1

s
[〈δk, vk(·|s′)− πk(·|s′)〉].
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Taking expectation w.r.t. ξdke and ν∗ on both sides of the above inequality, and using Lemma 3 and the relation

in (4.6), we arrive at

Es∼ν∗,ξdke
[
(1− γ)(V πk (s)− V π

∗
τ (s)) + V πk+1(s)− V πk (s)

]
≤ Es∼ν∗,ξdke [

1
ηk
Dπ
∗

vk (s)− ( 1
ηk

+ µ)Dπ
∗

vk+1
(s)] + 2ςk +

ηkσ
2
k

2(1−γ)

+ γ
(1−γ)ηk

(εk +
εk−1

1+µηk−1
) log |A|+ 2

1−γ ςk.

Noting V πk+1(s)−V πk (s) = V πk+1(s)−V π
∗
(s)−[V πk (s)−V π

∗
(s)], rearranging the terms in the above inequality,

and using the definition of f in (1.9), we arrive at

Eξdke [f(πk+1)− f(π∗) + ( 1
ηk

+ µ)D(vk+1, π
∗)] ≤ Eξdk−1e [γ(f(πk)− f(π∗)) + 1

ηk
D(vk, π

∗)]

+
2(2−γ)ςk

1−γ +
ηkσ

2
k

2(1−γ)
+ γ

(1−γ)ηk
(εk +

εk−1

1+µηk−1
) log |A|.

The result then follows immediately by the selection of η and the assumption εk ≤ εk−1.

We now are now ready to state the convergence rate of the SPMD method with inexact prox-mapping. We

focus on the case when µ > 0.

Theorem 8 Suppose that ηk = η = 1−γ
γµ in the inexact SPMD method. If ςk = (1 − γ)2−(bk/lc+2), σ2

k =

2−(bk/lc+2) and εk = (1− γ)22−(b(k+1)/lc+2) for any k ≥ 0 with l :=
⌈
logγ(1/4)

⌉
, then

Eξdk−1e [f(πk)− f(π∗) + µ
1−γD(πk, π

∗)]

≤ 2−bk/lc
[
f(π0)− f(π∗) + 1

1−γ (µ log |A|+ 5(2−γ)
2 + 5

8γµ +
5µγ2(1+γ) log |A|

4 )
]
. (6.14)

Proof. The result follows as an immediate consequence of Proposition 21 and Lemma 11.

In view of Theorem 8, the inexact solutions of the subproblems barely affect the iteration and sampling com-

plexities of the SPMD method as long as εk ≤ (1−γ)22−(b(k+1)/lc+2). Notice that an ε-solution of problem (1.9),

i.e., a solution π̄ s.t. E[f(π̄)− f(π∗)] ≤ ε, can be found at the k̄-th iteration with

bk̄/lc ≤ log2{ε
−1[f(π0)− f(π∗) + 1

1−γ (4µ log |A|+ 5 + 5
8γµ )]}.

Also observe that the condition number of the subproblem is given by

Lηk
µηk+1 =

L(1−γ)
µ .

Combining these observations with Lemma 19, we conclude that the total number of gradient computations of h

can be bounded by

l
∑bk̄/lc
p=0

√
Lη
µη+1 log(Lη/εk) = l

∑bk̄/lc
p=0

√
L(1−γ)

µ log 4L2p+1

γ(1−γ)µ

= O{l(bk̄/lc)2
√

L(1−γ)
µ log L

γ(1−γ)µ
}

= O
{

(logγ
1
4 )(log2 1

ε )

√
L(1−γ)

µ (log L
γ(1−γ)µ

)

}
.

6.3 Convergence of inexact SAPMD

In this subsection, we study the convergence properties of the SAPMD method when its subproblems are solved

inexactly by using the AGD method (see Algorithm 5).

Algorithm 5 The Inexact SAPMD method

Input: initial points π0 = v0, stepsizes ηk ≥ 0, and regularization parameters τk ≥ 0.
for k = 0, 1, . . . , do

Apply Tk AGD iterations (with initial points x0 = y0 = π0) to

πk+1(·|s) = arg min
p(·|s)∈∆|A|

{
Φ̃k(p) := ηk[〈Qπk,ξkτk (s, ·), p(·|s)〉+ hp(s) + τkD

p
π0

(s)] +Dpvk (s)
}
. (6.15)

Set (πk+1, vk+1) = (yTk+1, xTk+1).
end for

In the sequel, we will still denote εk ≡ ε(Tk) to simplify notations. The following result has the same role as

Lemma 20 in our convergence analysis.
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Lemma 22 For any π(·|s) ∈ X, we have

ηk[〈Qπk,ξkτk (s, ·), πk+1(·|s)− π(·|s)〉+ hπk+1(s)− hπ(s) + τk(D
πk+1
π0 (s)−Dππ0

(s))]

+D
πk+1
vk (s) + (1 + τkηk)Dπvk+1

(s) ≤ Dπvk (s) + εk log |A|. (6.16)

Moreover, we have

ηk[〈Qπk,ξkτk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s) + τk(D
πk+1
π0 (s)−Dπkπ0

(s))]

+D
πk+1
vk (s) + (1 + τkηk)D

πk+1
vk+1 (s) ≤ (εk +

εk−1

1+τk−1ηk−1
) log |A|. (6.17)

Proof. The proof is the same as that for Lemma 20 except that Lemma 19 will be applied to problem (6.15)

(with µΦ = 1 + τkηk and Lφ = L).

Lemma 23 For any s ∈ S, we have

V
πk+1
τk (s)− V πkτk (s) ≤ 〈Qπk,ξkτk (s, ·), πk+1(·|s)− πk(·|s)〉+ hπk+1(s)− hπk (s)

+ τk(D
πk+1
π0 (s)−Dππk (s))

+ 1
ηk
D
πk+1
πk (s) +

ηk‖δk‖2∞
2(1−γ)

+ γ
(1−γ)ηk

(εk +
εk−1

1+τk−1ηk−1
) log |A|

− 1
1−γEs′∼dπk+1

s
[〈δk, vk(·|s′)− πk(·|s′)〉]. (6.18)

Proof. The proof is similar to that for Lemma 6 with the following two exceptions: (a) we will apply Lemma 2

(i.e., the performance difference lemma) to the perturbed value functions V πτk instead of V π to obtain a result

similar to (6.12); and (b) we will use use (6.17) in place of (6.10) to derive a bound similar to (6.13).

Lemma 24 Suppose that 1 + ηkτk = 1/γ and εk ≤ εk−1 in the SAPMD method. Then for any k ≥ 0, we have

Es∼ν∗,ξdke [V
πk+1
τk+1 (s)− V π

∗

τk+1
(s) + τk

1−γD
π∗

πk+1
(s)]

≤ Es∼ν∗,ξdk−1e [γ[V πkτk (s)− V π
∗

τk (s) + τk
1−γD

π∗

πk (s)]

+
(τk−τk+1)

1−γ log |A|+ 2(2−γ)ςk
1−γ +

σ2
k

2γτk

+
γ2(1+γ)εk−1τk

(1−γ)2 log |A|. (6.19)

Proof. By (6.16) (with p = π∗), we have

〈Qπk,ξkτk (s, ·), πk+1(·|s)− π∗(·|s)〉+ hπk+1(s)− hπ
∗
(s)

+ τk[D
πk+1
π0 (st)−Dπ

∗

π0
(st)] + 1

ηk
D
πk+1
πk (s)

≤ 1
ηk
Dπ
∗

vk (s)− ( 1
ηk

+ τk)Dπ
∗

vk+1
(s) + εk

ηk
log |A|,

which, in view of (6.18), implies that

〈Qπk,ξkτk (s, ·), πk(·|s)− π∗(·|s)〉+ hπk (s)− hπ
∗
(s) + τk[Dπkπ0

(st)−Dπ
∗

π0
(st)]

+ V
πk+1
τk (s)− V πkτk (s)

≤ 1
ηk
Dπ
∗

vk (s)− ( 1
ηk

+ τk)Dπ
∗

vk+1
(s) +

ηk‖δk‖2∞
2(1−γ)

+ γ
(1−γ)ηk

(εk +
εk−1

1+τk−1ηk−1
) log |A|

− 1
1−γEs′∼dπk+1

s
[〈δk, vk(·|s′)− πk(·|s′)〉].

Taking expectation w.r.t. ξdke and ν∗ on both sides of the above inequality, and using Lemma 3 (with hπ replaced

by hπ + τkD
π
π0

(st) and Qπ replaced by Qπτ ) and the relation in (4.6), we arrive at

Es∼ν∗,ξdke [(1− γ)(V πkτk (s)− V π
∗

τk (s))] + Es∼ν∗,ξdke [V
πk+1
τk (s)− V πkτk (s)]

≤ Es∼ν∗,ξdke [
1
ηk
Dπ
∗

πk (s)− ( 1
ηk

+ τk)Dπ
∗

πk+1
(s)] + 2ςk +

ηkσ
2
k

2(1−γ)

+ γ
(1−γ)ηk

(εk +
εk−1

1+τk−1ηk−1
) log |A|+ 2ςk

1−γ .

Noting V
πk+1
τk (s) − V πkτk (s) = V

πk+1
τk (s) − V π

∗
τk (s) − [V πkτk (s) − V π

∗
τk (s)] and rearranging the terms in the above

inequality, we have

Es∼ν∗,ξdke [V
πk+1
τk (s)− V π

∗

τk (s) + ( 1
ηk

+ τk)Dπ
∗

vk+1
(s)]

≤ γEs∼ν∗,ξdk−1e [V
πk
τk (s)− V π

∗

τk (s)] + Es∼ν∗,ξdk−1e [
1
ηk
Dπ
∗

vk (s)] +
2(2−γ)ζk

1−γ +
ηkσ

2
k

2(1−γ)

+ γ
(1−γ)ηk

(εk +
εk−1

1+τk−1ηk−1
) log |A|. (6.20)

The result then follows from 1 + ηkτk = 1/γ, the assumptions τk ≥ τk+1, εk ≤ εk−1 and (3.19).
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Theorem 9 Suppose that ηk = 1−γ
γτk

in the SAPMD method. If τk = 1√
γ log |A|

2−(bk/lc+1), ςk = 2−(bk/lc+2),

σ2
k = 4−(bk/lc+2), and εk =

(1−γ)2

2γ2(1+γ)
with l :=

⌈
logγ(1/4)

⌉
, then

Eξdk−1e [f(πk)− f(π∗)]

≤ 2−bk/lc[f(π0)− f(π∗) + 1
1−γ (

3
√

log |A|√
γ +

5(2−γ)
2 +

5
√

log |A|
4
√
γ )]. (6.21)

Proof. The result follows as an immediate consequence of Lemma 24, Lemma 11, and an argument similar to

the one to prove Theorem 7.

In view of Theorem 9, the inexact solution of the subproblem barely affect the iteration and sampling com-

plexities of the SAPMD method as long as εk ≤
(1−γ)2

2γ2(1+γ)
. Notice that an ε-solution of problem (1.9), i.e., a

solution π̄ s.t. E[f(π̄)− f(π∗)] ≤ ε, can be found at the k̄-th iteration with

bk̄/lc ≤ log2{ε
−1[f(π0)− f(π∗) + 5

1−γ (

√
log |A|√
γ + 1)]}.

Also observe that the condition number of the subproblem is given by

Lηk
τkηk+1 =

L(1−γ)
τk

= (1− γ)L
√
γ log |A|2bk/lc+1.

Combining these observations with Lemma 19, we conclude that the total number of gradient computations of h

can be bounded by

l
∑bk̄/lc
p=0

√
Lηk

τkηk+1 log(Lηk/εk) = l
∑bk̄/lc
p=0

√
Lηk

τkηk+1 log
L(1−γ)3

2γ2(1+γ)τk

= O{lbk̄/lc[(1− γ)L]1/22bk̄/lc/2 log
L(1−γ)

γ }

= O
{

(logγ ε)

√
L
ε (log

L(1−γ)
γ )

}
.

7 Concluding Remarks

In this paper, we present the policy mirror descent (PMD) method and show that it can achieve the linear and

sublinear rate of convergence for RL problems with strongly convex or general convex regularizers, respectively. We

then present an approximate policy mirror descent (APMD) method obtained by adding adaptive perturbations to

the action-value functions and show that it can achieve the linear convergence rate for RL problems with general

convex regularizers. We develop the stochastic PMD and APMD methods and derive general conditions on the

bias and overall expected error to guarantee the convergence of these methods. Using these conditions, we establish

new sampling complexity bounds of RL problems by using two different sampling schemes, i.e., either using a

straightforward generative model or a more involved conditional temporal different method. The latter setting

requires us to establish a bound on the bias for estimating action-value functions, which might be of independent

interest. Finally, we establish the conditions on the accuracy required for the prox-mapping subproblems in these

PMD type methods, as well as the overall complexity of computing the gradients of the regularizers.
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Appendix: Bounding Bias for the Conditional Temporal Difference Methods

Proof of Lemma 18.

Proof. For simplicity, let us denote θ̄t ≡ E[θt], ζt ≡ (ζ1
t , . . . , ζ

α
t ) and ζdte = (ζ1, . . . , ζt). Also let us denote

δFt := Fπ(θt) − E[F̃π(θt, ζ
α
t )|ζdt−1e] and δ̄Ft = Eζdt−1e [δ

F
t ]. It follows from Jensen’s ienquality and Lemma 17

that

‖θ̄t − θ∗‖2 = ‖Eζdt−1e [θt]− θ
∗‖2 ≤ Eζdt−1e [‖θt − θ

∗‖2] ≤ R. (7.1)

Also by Jensen’s inequality, Lemma 16 and Lemma 17, we have

‖δ̄Ft ‖2 = ‖Eζdt−1e [δ
F
t ]‖2 ≤ Eζdt−1e [‖δ

F
t ‖2]

≤ CραEζdt−1e [‖θt − θ
∗‖2] ≤ CRρα. (7.2)

Notice that

θt+1 = θt − βtF̃π(θt, ζ
α
t )

= θt − βtFπ(θt) + βt[F
π(θt)− F̃π(θt, ζ

α
t )].

Now conditional on ζdt−1e, taking expectation w.r.t. ζt on (5.10), we have E[θt+1|ζdt−1e] = θt−βtFπ(θt) +βtδ
F
t .

Taking further expectation w.r.t. ζdt−1e and using the linearity of F , we have θ̄t+1 = θ̄t−βtFπ(θ̄t) +βtδ̄
F
t , which

implies

‖θ̄t+1 − θ∗‖22 = ‖θ̄t − θ∗ − βtFπ(θ̄t) + βtδ̄
F
t ‖22

= ‖θ̄t − θ∗‖22 − 2βt〈Fπ(θ̄t)− δ̄Ft , θ̄t − θ∗〉+ β2
t ‖Fπ(θ̄t)− δ̄Ft ‖22

≤ ‖θ̄t − θ∗‖22 − 2βt〈Fπ(θ̄t)− δ̄Ft , θ̄t − θ∗〉+ 2β2
t [‖Fπ(θ̄t)‖22 + ‖δ̄Ft ‖22].

The above inequality, together with (7.1), (7.2) and the facts that

〈Fπ(θ̄t), θ̄t − θ∗〉 = 〈Fπ(θ̄t)− Fπ(θ∗), θ̄t − θ∗〉 ≥ Λmin‖θ̄t − θ∗‖22
‖Fπ(θ̄t)‖2 = ‖Fπ(θ̄t)− Fπ(θ∗)‖2 ≤ Λmax‖θ̄t − θ∗‖2,

then imply that

‖θ̄t+1 − θ∗‖22 ≤ (1− 2βtΛmin + 2β2
t Λ

2
max)‖θ̄t − θ∗‖22 + 2βtCR

2ρα + 2β2
tC

2R2ρ2α

≤ (1− 3
t+t0−1 )‖θ̄t − θ∗‖22 + 2βtCR

2ρα + 2β2
tC

2R2ρ2α, (7.3)
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where the last inequality follows from

2(βtΛmin − β2
t Λ

2
max) = 2βt(Λmin − βtΛ2

max) = 2βt(Λmin −
2Λ2

max

Λmin(t+t0−1)
)

≥ 2βt(Λmin −
2Λ2

max
Λmint0

) ≥ 3
2βtΛmin = 3

t+t0−1

due to the selection of βt in (5.12). Now let us denote Γt :=

{
1 t = 0,

(1− 3
t+t0−1 )Γt−1 t ≥ 1,

or equivalently, Γt :=

(t0−1)(t0−2)(t0−3)
(t+t0−1)(t+t0−2)(t+t0−3))

. Dividing both sides of (7.3) by Γt and taking the telescopic sum, we have

1
Γt
‖θ̄t+1 − θ∗‖22 ≤ ‖θ̄1 − θ∗‖22 + 2CR2ρα

∑t
i=1

βi
Γi

+ 2C2R2ρ2α∑t
i=1

β2
i
Γi
.

Noting that

∑t
i=1

βi
Γi

= 2
Λmin

∑t
i=1

(i+t0−2)(i+t0−3)
(t0−1)(t0−2)(t0−3)

≤ 2
∑t
i=1(i+ t0 − 2)2

Λmin(t0−1)(t0−2)(t0−3)

≤ 2(t+t0−1)3

3Λmin(t0−1)(t0−2)(t0−3)
,∑t

i=1
β2
i
Γi
≤ 4

∑t
i=1(i+ t0 − 3)

Λ2
min(t0−1)(t0−2)(t0−3)

≤ 2(t+t0−2)2

Λ2
min(t0−1)(t0−2)(t0−3)

,

we conclude

‖θ̄t+1 − θ∗‖22 ≤
(t0−1)(t0−2)(t0−3)

(t+t0−1)(t+t0−2)(t+t0−3)
‖θ̄1 − θ∗‖22 + 2CR2ρα

2(t+t0−1)2

3Λmin(t+t0−2)(t+t0−3)

+ 2C2R2ρ2α 2(t+t0−2)
Λ2

min(t+t0−1)(t+t0−3)

≤ (t0−1)(t0−2)(t0−3)
(t+t0−1)(t+t0−2)(t+t0−3)

‖θ̄1 − θ∗‖22 + 8CR2ρα

3Λmin
+ C2R2ρ2α

Λ2
min

,

from which the result holds since θ̄1 = θ1.
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