
Noname manuscript No.
(will be inserted by the editor)

Optimal Algorithms for Convex Nested Stochastic Composite Optimization

Zhe Zhang · Guanghui Lan

the date of receipt and acceptance should be inserted later

Abstract Recently, convex nested stochastic composite optimization (NSCO) has received considerable attention

for its application in reinforcement learning and risk-averse optimization. However, In the current literature, there

exists a significant gap in the iteration complexities between these NSCO problems and other simpler stochastic

composite optimization problems (e.g., sum of smooth and nonsmooth functions) without the nested structure.

In this paper, we close the gap by reformulating a class of convex NSCO problems as “min max . . .max” saddle

point problems under mild assumptions and proposing two primal-dual type algorithms with the optimal O{1/ε2}
(resp., O{1/ε}) complexity for solving nested (resp., strongly) convex problems. More specifically, for the often-

considered two-layer smooth-nonsmooth problem, we introduce a simple vanilla stochastic sequential dual (SSD)

algorithm which can be implemented purely in the primal form. For the multi-layer problem, we propose a

general stochastic sequential dual framework. The framework consists of modular dual updates for different types

of functions (smooth, smoothable, and non-smooth, etc.), so that it can handle a more general composition of

layer functions. Moreover, we present modular convergence proofs to show that the complexity of the general

SSD is optimal with respect to nearly all the problem parameters.

1 Introduction

1.1 Motivation

During the past few years, composite optimization has attracted considerable interest due to their importance

in applications, e.g., compressed sensing, image processing and machine learning. Many algorithmic studies have

been focused on composite optimization of the form minx∈X f(x) + g(x), where f is a smooth convex func-

tion and g is a nonsmooth function with certain special structures. Optimal first-order methods have been

developed in [18,21,1,10,11] for solving these problems under different assumptions about g. In the stochastic

setting, Lan [8,9] present an accelerated stochastic approximation method that can achieve the optimal itera-

tion/sampling complexity when one only has access to stochastic (sub)gradients of the objective function (see,

e.g., [5,4,3] for extensions). The study of composite optimization has been later expanded to more complex nested

composition problems. Specifically, Lewis and Wright [15] developed a globally convergent algorithm for solving

minx∈X f(g(x)), where the outer layer function f can be non-smooth, non-convex and extended-valued. Lan [12]

also studied the complexity of these problems when f is relatively simple. Wang et. al. [23] are the first to study

nested stochastic composite optimization (NSCO) problems when f and g are given as expectation functions.

NSCO found wide applications in reinforcement learning [23], meta-learning [2], and risk-averse optimization [19],

and thus becomes a more and more important topic in stochastic optimization.

This research was partially supported by the ARO grant W911NF-18-1-0223 and the NSF grant 1953199.

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332.
(email: jimmy zhang@gatech.edu).

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332.
(email: george.lan@isye.gatech.edu).

Address(es) of author(s) should be given

A key challenge in NSCO is the lack of unbiased gradient estimators for its composite objective function.

This issue can be illustrated with a simple two-layer problem:

min
x∈X
{f(x) := f1(f2(x))}, (1.1)

where f1 and f2 are accessible only through stochastic first-order oracles, denoted by SOi, which return unbiased

estimators (fi(yi, ξi), f
′
i(yi, ξi)) for exact first-order information (fi(yi), f

′
i(yi))) upon a query at yi. Here ξi

are the random variables associated with SOi, i = 1 or 2. By the chain rule, we know that the gradient of

f is f ′(x) = f ′1(f2(x))f ′2(x)¬. Because f2 is stochastic, only stochastic estimators for the argument to f ′1(·) is

available. As such, unless f1 is affine, obtaining unbiased estimators for f ′1(f2(x)) is impossible.

One possible way to address this issue is to approximate f2(xt) with some ut and use f ′1(ut, ξt1)f ′2(xt, ξt2) as

a proxy for f ′(xt). Indeed, Wang et. al. [22] proposed to track f2(xt) with a moving average approximation

ut := (1− βt−1)ut−1 + βt−1f2(xt, ξt2), (1.2)

and developed a stochastic compositional gradient descent (SCGD) algorithm which iteratively moves along

the quasi-gradient direction f ′1(ut, ξt1)f ′2(xt, ξt2). By assuming f1 to be smooth, they were able to establish the

sampling complexities of SCGD for finding an ε−optimal solution if f is convex, or finding an ε-stationary point

if f2 is smooth. However these complexities are worse than those for one-layer problem and simpler stochastic

composite optimization without the nested structure (e.g., f1 is affine). Therefore, an interesting research question

is whether we can solve NSCO with the same complexity as if the nested structure does not exist.

On the one hand, the answer appears to be positive for some non-convex NSCO problems. More specifically,

in one-layer problems, we know that it takes O{1/ε2} [6] queries to the stochastic oracle to find an ε-stationary

solution x̄, i.e., E[‖∇f(x̄)‖2] ≤ ε. Recently, by using the same moving average approximation (1.2) and a specially-

designed potential function, Ghadimi et. al. [7] developed an O{1/ε2} algorithm for the two-layer problem and

Ruszczynski [19] extended it further to solve the multi-layer problem with the same O{1/ε2} complexity. More-

over, under some stronger smoothness assumptions, a variance reduction algorithm proposed in [25] can improve

the iteration complexity further to O{1/ε1.5}.
On the other hand, the answer to this question is still unclear for convex NSCO problems. In order to find

an ε-optimal solution (E[f(x̄) − f∗] ≤ ε) for one-layer problems, we know from [16] that the lower complexity

bounds are O{1/ε2} if f is non-smooth or O{1/ε} if f is also strongly convex. However, the results for NSCO in

the literature fail to match them. To the best of our knowledge, only a few finite time convergence bounds have

been developeed for non-smooth convex NSCO problems in [22,24,23]. These works use moving averages similar

to (1.2) to track function values of the inner layers and apply multi-timescale schemes to ensure their faster

convergence. However, as shown in Table 1 and 2, there exists signifiant gaps between these complexity results

and the lower bounds mentioned above. For two-layer problems, if the innermost layer function is non-smooth,

the complexity is O{1/ε4}. Even with an additional smoothness assumption for f2, the O{1/ε2.25} complexity

for convex problems and the O{1/ε1.25} complexity for strongly convex problems still falls short of the one-

layer result [9,5]. For multi-layer problems, the complexities are even worse as they exponentially depend on the

number of layers k. Furthermore, these algorithms all require outer layer functions, i.e., f1 for two-layer problems

and f1, ..., fk−1 for k-layer problems, to be smooth. This assumption may preclude some important applications

of convex NSCO, see the example of risk averse optimization in Section 6.

Table 1: Two-Layer Iteration Complexity

Problem Type In the Literature SSD Framework

Convex
Nonsmooth(1)

Smooth(2)
O{1/ε4} [22]
O{1/ε2.25} [23]

O{1/ε2}[*]

Strongly
Convex

Nonsmooth(1)

Smooth(2)
N.A.

O{1/ε1.25} [23]
O{1/ε} [∗](3)

(1) Results in the literature assume a non-smooth innermost layer and
smooth outer layers. The SSD framework allows the outer layers to
be smooth, smoothable or semi-smooth [*].
(2) All layers are smooth.
(3) We need all outer layers to be smooth to obtain the O{1/ε} com-
plexity.

Table 2: k-Layer Iteration Complexity

In the Literature SSD Framework

O{1/ε2k}[24]

O{1/ε(7+k)/4}[24]
O{k3/ε2}[*]

N.A.

O{1/ε(3+k)/4}[24]
O{k2/ε}[*](3)

¬ We expresss the gradient of fi : Rm → Rn as a Rn×m matrice such that the directional derivative f ′i(x; d) = f ′i(x)d.
Such a representation helps to simplify notations in deriving the gradient of a composed function.

2

1.2 Our Contributions

In this paper, we provide a positive answer to this question for solving a special but broad class of convex NSCO

problems, by closing the gap in sampling complexities between these convex NSCO problems and one-layer

stochastic optimization problems. More specifically, we consider the following multi-layer problem with a simple

(strongly) convex regularization term u(x):

min
x∈X
{f(x) := f1 ◦ f2 ◦ . . . ◦ fk(x) + u(x)}, (1.3)

and make the following two assumptions about its structure.

Assumption 1 Every layer function fi is convex such that it can be reformulated using the Fenchel conjugate

f∗i
­

fi(yi) = max
πi∈Πi

πiyi − f∗i (πi), (1.4)

where Πi is the domain of f∗i .

The composite function f(x) := f1 ◦ f2 ◦ . . . ◦ fk(x) + u(x) satisfies the following compositional monotonicity

assumption.

Assumption 2 For every non-linear layer function (i.e., fi(yi) is not affine with respect to yi), π1:i−1 :=

π1π2 . . . πi−1 is always component-wise non-negative for any π1 ∈ Π1, π2 ∈ Π2, . . .,πi−1 ∈ Πi−1.

Note that these two assumptions together form a sufficient condition for the convexity of f1 ◦ . . . ◦ fk, and hence

are stronger than the overall convexity assumption in [23,22,24].

These stronger assumptions allow us to rewrite every layer function in (1.3) using biconjugation to obtain a

saddle point reformulation:

min
x∈X

max
π1:k∈Π1:k

{L(x;π1:k) := L1(x;π1:k) + u(x)}, (1.5)

where the nested Lagrangian function is defined as

Li(x;πi:k) :=

{
x if i = k + 1,

πiLi+1(x;πi+1:k)− f∗i (πi) if 0 ≤ i ≤ k.
(1.6)

Then by designing algorithms for this reformulated problem, we are able to improve the previous results for

solving NSCO in four aspects.

Firstly, we introduce a simple stochastic sequential dual algorithm, called vanilla SSD, to solve the smooth-

nonsmooth two-layer problem considered in [22] (but with Assumption 1 and 2). Notice that, other than stochas-

ticity, the saddle point reformulation (1.5) for the two-layer problem is similar to the “min max max” problem

considered in [26]. Under the deterministic setting, Zhang et. al. [26] presented an efficient first-order method

which performs proximal updates for π2 and then for π1, before an proximal update for x in each iteration.

In order to handle the stochastic layer functions, we extend the primal-dual interpretation in [14] to show that

unbiased estimators for the dual proximal update πi can be obtained with a single query to SOi. These two

innovations allow us to achieve the O{1/ε2} and O{1/ε} sampling complexities for solving convex and strongly

convex two-layer NSCO problems, respectively.

Secondly, we propose a general stochastic sequential dual (SSD) algorithmic framework to solve multi-layer

NSCO problems. In each iteration, the SSD framework performs proximal updates for all dual variables πk, ..., π1

sequentially before an x proximal update. In contrast to the usual smoothness assumption for all outer layer func-

tions [22,23,24], the SSD framework can handle a rather general composition of different types of layer functions,

including smooth, smoothable and non-smooth functions. We show that SSD can achieve the optimal O{1/ε2}
(resp., O{1/ε}) sampling complexity for solving convex (resp., strongly convex) NSCO problems. Moreover, by

incorporating momentum extrapolations in the dual updates, SSD exhibits optimal iteration complexities for

solving deterministic multilayer problems as well. For example, if all the layer functions are smooth and deter-

ministic, then the iteration complexities are given by O{1/
√
ε} or O{log(1/ε)} depending on whether the problem

is convex or strongly convex.

Thirdly, the SSD framework is modular. By decomposing the optimality criterion of the entire saddle point

problem (1.5) into relatively decoupled individual optimality criterion for each variable π1, ..., πk, x, we are able to

design modular dual proximal updates for each type of layer function (e.g., smooth, smoothable, and non-smooth).

­ Note that the conjugate of the vector function fi(yi) := [fi,1, fi,2, . . . , fi,ni−1] is defined component-wise, i.e, f∗i (πi) :=

[f∗i,1(πi,1), f∗i,2(πi,2), . . . , f∗i,mi−1
(πi,mi−1)] where f∗i,j is the Fenchel conjugate of fi,j .

3

These modular dual updates are almost independent of other composing layer functions, and so deploying the SSD

framework for a new nested composite problem is easy. The user only needs to plug the corresponding modular

dual updates for each layer function into the SSD framework. Moreover, the detailed iteration complexities of

the SSD framework also have an easy modular interpretation. For deterministic problems, the complexities of

the SSD framework are given by the sum of optimal iteration complexities for solving some simplified one-layer

problems,

min
x∈X

b>i fi(Aix+ ci) + u(x)/k, ∀i, (1.7)

where bi and (Ai, ci) are some linearizion of f1:i−1 and fi+1:k
®. For stochastic convex problems, the sampling

complexity nearly matches (other than a factor of k) the sum of sampling complexities for solving simplified

stochastic one-layer problems in (1.7), where (Ai, ci) are accessible only through stochastic oracles. In stochastic

strongly convex setting, the sampling complexity for finding an ε-close solution, i.e., E[‖xN − x∗‖2] ≤ ε, also

admits a similar interpretation.

Fourthly, we illustrate the SSD framework by applying it to two interesting applications; one involving mini-

mizing the mean-upper-semideviation risk of order 1 for a two-stage stochastic linear program and the other one

involving minimizing the maximum loss associated with a system of stochastic composite functions. We show

that the SSD framework is able to achieve the optimal O{1/ε2} iteration complexity for both of them.

The rest of the paper is organized as follows. First, Section 2 introduces the simple vanilla SSD algorithm

for the two-layer problem. Next, Section 3 introduces the full-fledged SSD framework, followed by Sections 4 and

5 which develop the modular dual updates and establishes the convergence properties, respectively. Finally we

provide two applications in Section 6 and make some concluding remarks in Section 7.

1.3 Notations& Terminology

We use the following notations throughout the paper.

– ‖·‖ denotes the l2 (operator) norm unless specified otherwise. The feasible region X is convex and compact

with D2
X = maxx1,x2∈X

1
2‖x1 − x2‖2 < ∞. We use x∗ to denote some optimal solution (its existence is

guaranteed by the compactness of X and the continuity of all layer functions).

– Every layer function fi is defined on Rni+1 and it is closed, proper and convex. We call a layer function

deterministic if there exists a first-order oracle Oi, which, when queried at any yi ∈ Yi, returns (fi(yi), f
′
i(yi))

for some f ′i(yi) ∈ ∂fi(yi). We assume that the selection of subgradient is consistent, that is, f ′i(yi) is a fixed

element of ∂fi(yi). We call it stochastic if there exists a stochastic first-order oracle SOi, which, when queried

at some yi ∈ Yi, returns a pair of stochastic estimates (fi(yi, ξi), f
′
i(yi, ξi)) with

E[fi(yi, ξi)] = fi(yi), E[f ′i(yi, ξi)] = f ′i(yi),Var(fi(yi, ξi)) ≤ σ
2
fi , and Var(f ′i(yi, ξi)) ≤ σ

2
πi .

Moreover, results returned by different queries to SOi are independent, and all {SOi} are independent. Notice

that Oi is a special case of SOi with σfi and σπi being zero, so we use the SOi notation when referring to

both of them.

– The stochastic sub-gradients satisfies E[‖f ′i(yi, ξi)‖
2] ≤ M2

Πi < ∞∀yi. Note that the Jensen’s inequality

implies that every fi is also MΠi -Lipschitz continuous.

– The Fenchel conjugate of a convex function g(x) is defined as g∗(y) := maxx〈x, y〉 − g(x). The Bregman’s

distance (or prox-function) associated with a convex function g is defined as Dg(x, y) = g(y) − g(x) −
〈g′(x), y − x〉. An important relationship for Bregman distance functions of conjugate functions is

Dg(x, y) = D∗g(g′(y), g′(x)). (1.8)

– We say a layer function fi is Lfi -smooth if it satisfies ‖f ′i(y
1
i) − fi(y2

i)‖ ≤ Lfi‖y
1
i − y

2
i ‖, ∀y

1
i , y

2
i ∈ Rni+1 .

We call a function g(y) α-strongly convex with respect to Bregman distance function V if it satisfies g(y1) −
g(y2) − 〈g′(y2), y1 − y2〉 ≥ V (y1, y2), ∀y1, y2 ∈ Y, and simply call it α-strongly convex if the Bregman

distance function is 1
2‖x2 − x1‖2. Moreover, we call a function g(y) simple if the following problem can be

computed efficiently for any π ∈ Rn, ȳ ∈ Y and η ≥ 0: miny∈Y 〈π, y〉+ g(y) + η‖y − ȳ‖2.

® We use the i : j notation as a shorthand for all layer indices from i to j, i.e., {i, i+1, ..., j}, and if j = k, we may simply
write it as i :. Here fi:j means fi ◦ fi+1 ◦ ... ◦ fj .

4

2 Vanilla SSD for Two-layer Problems

We develop in this section a vanilla SSD algorithm for solving two-layer problems. Such a simple set-up provides a

gentle but instructive preview to the general multilayer SSD algorithm without heavy notations and technicalities.

2.1 Saddle-point Reformulation

Consider

min
x∈X
{f(x) := f1(f2(x)) + u(x)}, (2.1)

where {fi} are convex and MΠi -Lipschitz continuous and u(x) is simple and strongly convex with modulus α ≥ 0.

We impose the following outer-layer smoothness assumption similar to [22].

Assumption 3 f1 is Lf1 -Lipschitz smooth with D2
Π1

:= maxπ1,π̄1∈dom(f∗i)Df∗i (π1, π̄1) <∞, i.e., the radius of

the dual variable π1 with respect to Df∗1 is finite.

Note that we only need f2 (f1) to be Lipschitz continous on X (resp. f2 image of X), so the preceding assumptions

can be easily satisfied for a compact X.

Since both f1 and f2 are convex, applying bi-conjugations to them lead to the following composition La-

grangians,

L2(x;π2) = π2x− f∗2 (π2),

L1(x;π1, π2) = π1L2(x;π2)− f∗1 (π1),
(2.2)

where π1 ∈ R1×m1 and π2 ∈ Rm1×n are the dual variables for f1 and f2, and f∗1 and f∗2 are their Fenchel

conjugates. Using L1(x;π1, π2), we can reformulate (2.1) as a saddle point problem given by

min
x∈X

max
π2∈Π2

max
π1∈Π1

{L(x;π1, π2) = L1(x;π1, π2) + u(x)}, (2.3)

where Π1 and Π2 denote the domains of f∗1 and f∗2 , respectively.

Proposition 1 below describes some basic duality relationship between (2.1) and (2.3).

Proposition 1 Let f and L be defined in (2.1) and (2.3). Then the following relations holds for all x ∈ X.

a) Weak duality: f(x) ≥ L(x;π1, π2) ∀(π1, π2) ∈ Π1 ×Π2.

b) Strong duality: f(x) = L(x;π∗1 , π
∗
2) for any π∗2 ∈ ∂f2(x) and π∗1 ∈ ∂f1(f2(x)).

Proof Let x ∈ X be given. For the strong duality, it follows from the definitions of π∗1 and π∗2 that

f2(x) = L2(x;π∗2),

f1(f2(x)) = L1(x;π∗1 , π
∗
2),

thus we get f(x) = L1(x;π∗1 , π
∗
2) + u(x). For the weak duality, the following decomposition holds for any feasible

(π1, π2):

L(x;π∗1 , π
∗
2)− L(x;π1, π2) = L(x;π∗1 , π

∗
2)− L(x;π1, π

∗
2) + L(x;π1, π

∗
2)− L(x;π1, π2)

= L1(x;π∗1 , π
∗
2)− L1(x;π1, π

∗
2)︸ ︷︷ ︸

A

+π1(L2(x;π∗2)− L2(x;π2))︸ ︷︷ ︸
B

.

Then π∗1 ∈ Arg maxπ1∈Π1
{π1f2(x) − f∗1 (π1) ≡ L1(x;π1, π

∗
2)} implies that A ≥ 0. B ≥ 0 because L2(x;π∗2) −

L2(x;π2) ≥ 0 and Π1 is non-negative. Combining these observations, we conclude that f(x) = L(x;π∗1 , π
∗
2) ≥

L(x;π1, π2).

For a given z̄ := (x̄; π̄1, π̄2) ∈ X×Π1×Π2, we define the gap function with respect to some feasible reference

point z := (x;π1, π2) as

Q(z̄, z) := L(x̄;π1, π2)− L(x; π̄1, π̄2). (2.4)

Note that Q(z̄, z) ≤ 0, ∀z ∈ Z, if and only if z̄ is a saddle point of problem (2.3). The above gap function can

also provide an upper bound on the functional optimality gap, i.e., the difference between function value f(x̄)

and the optimal value f(x∗), for problem (2.1).

More specifically, to bound the functional optimality gap at an ergodic solution x̄N , we can focus on only a

few reference points. The following notation will be used to construct these reference points:

π∗2 ∈ ∂f2(x∗), π∗1 ∈ ∂f1(f2(x∗)), π̂2 ∈ ∂f2(x̄N), and π̂1 ∈ ∂f1(f2(x̄N)).

Proposition 2 below shows how to convert a bound on Q to the functional optimality gap.

5

Proposition 2 Let a sequence of feasible solutions {zt ≡ (xt;πt1, π
t
2)} be given and let x̄N denote the ergodic

mean of {xt} given by
∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt with wt > 0. If ẑ = (x∗; π̂1, π̂2) and

∑N−1
t=0 wtQ(zt+1, ẑ) ≤ B,

then

f(x̄N)− f(x∗) ≤ B∑N−1
t=0 wt

. (2.5)

Proof In view of Proposition 1.b) and the convexity of L(π̂2, π̂1, x) with respect to x, we have

(
∑N−1
t=0 wt)f(x̄N) = (

∑N−1
t=0 wt)L(x̄N ; π̂1, π̂2) ≤

∑N−1
t=0 wtL(xt+1; π̂1, π̂2).

Moreover, Proposition 1.a) implies that f(x∗) ≥ L(πt+1
2 , πt+1

1 , x∗) ∀t, so∑N−1
t=0 wtf(x∗) ≥

∑N−1
t=0 wtL(x∗;πt+1

1 , πt+1
2).

Combining the previous two inequalities, we obtain
∑N−1
t=0 wt(f(x̄N)− f(x∗)) ≤

∑N−1
t=0 wtQ(zt+1, ẑ). Then the

desired inequality follows from dividing both sides by
∑N−1
t=0 wt.

The next functional optimality gap conversion method uses both ‖x̄N −x∗‖2 and the Q function. It will help

us to improve the convergence rate for solving strongly convex problems.

Proposition 3 Let a sequence of feasible solutions {zt ≡ (xt;πt1, π
t
2)} be given and let x̄N denote the ergodic

mean of {xt} given by
∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt with wt ≥ 0. If

∑N−1
t=0 wtQ(zt+1, z̃) ≤ B for z̃ = (x∗;π∗1 , π̂2)

and 1
2‖x̄

N − x∗‖2 ≤ C, then

f(x̄N)− f(x∗) ≤ B∑N−1
t=0 wt

+ Lf1M
2
Π2
C. (2.6)

Proof By an argument similar to Proposition 2, we have L(x̄N ;π∗1 , π̂2)− f(x∗) ≤ B∑N−1
t=0 wt

.

The difference between f(x̄N) = L(x̄N ; π̂1, π̂2) and L(x̄N ;π∗1 , π̂2) satisfies

L(x̄N ; π̂1, π̂2)− L(x̄N ;π∗1 , π̂2) = f∗1 (π∗1)− f∗1 (π̂1)− (π∗1 − π̂1)f2(x̄N)

(a)
= Df∗1 (π̂1, π

∗
1)

(b)
= Df1(f2(x∗), f2(x̄N))

(c)
≤ Lf1M

2
Π2

1
2‖x̄

N − x∗‖2,

where (a) follows from the conjugate duality f2(x̄N) ∈ ∂f∗1 (π̂1), (b) follows from the relationship between

Bregman distances generated by conjugate functions (1.8), and (c) follows from the Lf1 -smoothness of f1 in

Assumption 3. Therefore,

f(x̄N)− f(x∗) = L(x̄N ; π̂1, π̂2)− L(x̄N ;π∗1 , π̂2) + L(x̄N ;π∗1 , π̂2)− f(x∗)

≤ B∑N−1
t=0 wt

+ Lf1M
2
Π2
C.

2.2 Stochastic Layer Functions and Implicit Proximal Updates

With the saddle point reformulation in (2.3), we can solve problem (2.1) possibly by applying the sequential dual

(SD) algorithm proposed in [26]. The basic idea of the SD method is to perform proximal updates to the dual

variables π2 and π1 sequentially before the updating of the primal variable x in each iteration. For example, given

(xt;πt1, π
t
2) the SD method updates πt1 by

πt+1
1 := arg max

π1∈Π1

π1L2(xt;πt+1
2)− f∗1 (π1)− τ t1Df∗1 (πt1, π1), (2.7)

after the updating πt2 to πt+1
2 .

However stochastic layer functions pose some new challenges. Specifically, for a deterministic problem with

known and simple f∗1 and f∗2 , the dual iterates {πti} can be computed explicitly through the proximal updates in

the SD algorithm [26]. In contrast, (2.1) provide only access to f1 and f2 through stochastic first-order oracles,

but no direct access to f∗1 or f∗2 . As a consequence, it is impossible to explicitly obtain the arguments, e.g.,

L2(xt;πt2) in (2.7), for the proximal updates, and to evaluate these proximal updates. Fortunately, due to the

conjugate duality relationship we can obtain stochastic estimators for the arguments and evaluate these proximal

updates “implicitly” by calling the stochastic first-order oracles.

6

More specifically, suppose that the dual point πi is associated with some primal point y
i
, i.e., πi = f ′i(yi) ∈

∂fi(yi). Even though the exact value of πi is unknown, the relation

fi(yi) = πiyi − f
∗
i (πi)⇐⇒ πi ∈ ∂fi(yi)⇐⇒ πi ∈ arg max

π̄i∈Πi
π̄iyi − f

∗
i (π̄i) (2.8)

allows us to derive stochastic estimators for πi and f∗i (πi) with a single query to SOi,

πi(ξi) := f ′i(yi, ξi) and f∗i (πi, ξi) := πi(ξi)yi − fi(yi, ξi). (2.9)

In other words, we have access to an implicit dual stochastic oracle, denoted by DSOi, for each stochastic

layer function fi, which upon request at πi = f ′i(yi), returns a pair of unbiased estimators for πi and f∗i (πi).

Furthermore, we can construct from these dual estimators stochastic Lagrangians to approximate the composition

Lagrangians in (2.2),

L2(·;π2(ξ2)) := π2(ξ2) · −f∗2 (π2, ξ2), (2.10)

L1(·;π1(ξ1), π2(ξ2)) := π1(ξ1)L2(·;π2(ξ2))− f∗1 (π1, ξ1), (2.11)

and use them as arguments for proximal updates, e.g., L2(xt;πt+1
2 (ξ2)) in place of L2(xt;πt+1

2) for the proximal

update in (2.7).

In addition, we can compute stochastic estimators for the proximal updates by utilizing the stochastic first-

order oracles. Let us start with a special case of proximal updates with stepsize 0 (e.g., τ t1 = 0 in (2.7)).

Equivalently, we consider the dual iterate πt+1
i generated simply by maximization, πt+1

i ∈ arg maxπiyi−f
∗
i (πi)

¯.

It is clear that πt+1
i = f ′i(yi). Hence, by calling the SOi at the y

i
(or DSOi at the associated πi = f ′i(yi)), we

can compute an unbiased estimator of πt+1
i . In the sequel, we call such a maximization an implicit maximization

because the computation only involves the association of πt+1
i with the primal point y

i
and a call to SOi, rather

than an actual maximization problem.

To compute stochastic estimators for the proximal updates with positive stepsize, we need to generalize the

result in [14,13] about the relationshiop between proximal update and gradient computation. In particular, if

the Bregman’s distance is given by Df∗i , then the dual iterate πt+1
i returned by a proximal update starting from

πti = f ′i(y
t
i
) is also associated with some primal point yt+1

i
as shown in Proposition 4.

Proposition 4 If πti is associated with some primal point yt
i
, i.e., πti = f ′i(y

t
i
) ∈ ∂fi(y

t
i
), then the proximal

update from πti to πt+1
i with argument yt+1

i , i.e.,

πt+1
i ∈ arg min

πi∈Πi
−πiyt+1

i + f∗i (πi) + τ tiDf∗i (πti , πi) (2.12)

satisfies

πt+1
i = f ′i(y

t+1
i

) ∈ ∂fi(yt+1
i

) with yt+1
i

:= (yt+1
i + τ ti y

t
i
)/(1 + τ ti). (2.13)

Proof This is a direct consequence of the conjugate duality relationship (2.8),

πt+1
i ∈ arg min

πi∈Πi
−πiyt+1

i + f∗i (πi) + τ tiDf∗i (πti , πi)

(a)
⇐⇒ πt+1

i ∈ arg min
πi∈Πi

−πiyt+1
i − τ ti πiy

t
i

+ (1 + τ ti)f∗i (πi)

⇐⇒ πt+1
i ∈ arg min

πi∈Πi
−πi (

yt+1
i +τti y

t

i

1+τti
)︸ ︷︷ ︸

yt+1
i

+f∗i (πi)
(b)
⇐⇒ πt+1

i = f ′i(y
t+1
i

) ∈ ∂fi(yt+1
i

),

where (a) follows from yt
i
∈ ∂f∗i (πti) and (b) follows from (2.8).

In view of Proposition 4, we can compute an unbiased estimator of πt+1
i by calling the stochastic oracle SOi

at yt+1
i

(or DSOi at the associated point πt+1
i = f ′i(y

t+1
i

)). In the sequel, we call such a proximal update an

implicit proximal update because the computation involves the calculation of yt+1
i

in (2.13), the association of

(implicit) πt+1
i with it, and the call to the SOi, but does not require explicit access to f∗i .

Therefore, the essential ingredients for designing sequential dual type algorithms are still applicable. We just

need to replace proximal updates with implicit proximal updates and maximization with implicit maximization,

and use appropriate stochastic estimators for the unknown arguments of these operators.

¯ We assume that the selection of maximizer is consistent with the subgradient selection, i.e., πt+1
i = f ′i(yi) ∈ ∂fi(yi).

7

2.3 Vanilla SSD Algorithm

The design of the vanilla SSD algorithm has been motivated by a decomposition of the gap function Q (c.f.,

(2.4)) into

Q(zt+1, z) = Q2(zt+1, z) +Q1(zt+1, z) +Q0(zt+1, z), (2.14)

where Q2, Q1, and Q0 defined below are related to the optimality of πt+1
2 , πt+1

1 and xt+1, respectively,

Q2(zt+1, z) := L(xt+1;π1, π2)− L(xt+1;π1, π
t+1
2)

= π1[π2x
t+1 − f∗2 (π2)] −π1[πt+1

2 xt+1 − f∗2 (πt+1
2)] , (2.15)

Q1(zt+1, z) := L(xt+1;π1, π
t+1
2)− L(xt+1;πt+1

1 , πt+1
2)

= π1L2(xt+1;πt+1
2)− f∗1 (π1) −[πt+1

1 L2(xt+1;πt+1
2)− f∗1 (πt+1

1)] , (2.16)

Q0(zt+1, z) := L(xt+1;πt+1
1 , πt+1

2)− L(x;πt+1
1 , πt+1

2)

= πt+1
1 πt+1

2 xt+1 + u(xt+1) − (πt+1
1 πt+1

2 x+ u(x)). (2.17)

To decrease the gap function Q, we intend to find πt+1
2 , πt+1

1 and xt+1 that can reduce the boxed terms in

their respective gap functions Q2, Q1, and Q0. Accordingly, the proposed vanilla SDD method (see Algorithms 1

and 2) for solving problem (2.1) consists of three steps to compute πt+1
2 , πt+1

1 and xt+1 in each iteration. Note

that we state this algorithm in its dual form and primal form, respectively, in Algorithms 1 and 2. While the

dual form provides us better intuition about the design of the algorithm, the primal form is more convenient for

implementation.

More specifically, Algorithm 1 can be interpreted as follows. In Line 2, we aim to reduce Q2(zt+1, z) by

choosing an associated πt+1
2 with the smallest value of −π1[πt+1

2 xt+1 − f∗i (πt+1
2)]. Since π1 is non-negative and

Π2 is row separable, it is equivalent to finding the component-wise smallest vector −[πt+1
2 xt+1−f∗2 (πt+1

1)]. Then

using xt in place of the to-be-evaluated xt+1, we define πt+1
2 through implicit-maximization arg maxπ2∈Π2

π2x
t−

f∗2 (π2), and call the stochastic oracle to compute the unbiased estimators of πt+1
2 . Observe that we label the

unbiased estimators returned from calls to DSOi with a superscript j, i.e., ξji , to emphasize that they will be

used as part of arguments for the proximal update at the j-th layer.

Next, Line 3 of Algorithm 1 tends to reduce Q1(zt+1, z) by specifying an associated πt+1
1 with a small value of

−[πt+1
1 L2(xt+1;πt+1

2)− f∗1 (πt+1
1)]. Since xt+1 is still unavailable and only a stochastic estimator L2(·;πt+1

2 (ξ1
2))

is accessible, it uses the stochastic estimator L2(xt;πt+1
2 (ξ1

2)) in place of L2(xt+1;πt+1
2) to define πt+1

1 as

πt+1
1 ∈ arg max

π1∈Π1

π1L2(xt;πt+1
2 (ξ1

2))− f∗1 (π1)− τ t1Df∗1 (πt1, π1),

and then computes an unbiased estimator of πt+1
1 by calling the DSO1 to perform the implicit proximal update.

Finally, Line 4 needs to choose an xt+1 with a small value of πt+1
1 πt+1

2 xt+1 + u(xt+1) in Q0(zt+1, z). Here

we use stochastic estimator πt+1
1 (ξ0

1) πt+1
2 (ξ0

2) in place of πt+1
1 πt+1

2 to arrive at

xt+1 = arg min
x∈X

πt+1
1 (ξ0

1)πt+1
2 (ξ0

2)x+ u(x) + ηt

2 ‖x− x
t‖2. (2.18)

Notice that πt+1
2 (ξ0

2) is computed from a call to DSO2 different from the one used to compute

(πt+1
2 (ξ1

2), f∗2 (πt+1
2 , ξ1

2))). This extra call to DSO2 is needed to construct an unbiased estimator for πt+1
1 πt+1

2 .

Algorithm 1 Vanilla Stochastic Sequential Dual (SSD) Algorithm for Two-Layer Problems

Input: x0 ∈ X, y0
1
∈ Y1, π0

1 = f ′1(y0
1
) ∈ ∂f1(y0

1
).

1: for t = 0, 1, 2, 3...T − 1 do

2: Call DSO2 at πt+1
2 twice to obtain {(πt+1

2 (ξj2), f∗2 (πt+1
2 , ξj2))}j∈{0,1}, where πt+1

2 = f ′2(xt) is defined by the

implicit maximization arg maxπ2∈Π2
π2xt − f∗2 (π2).

3: Call DSO1 at πt+1
1 to obtain πt+1

1 (ξ01), where πt+1
1 = f ′1(yt+1

1
) is defined by the implicit-proximal update

arg maxπ1∈Π1
π1L2(xt;πt+1

2 (ξ12))− f∗1 (π1)− τ t1Df∗1 (πt1, π1).

4: Set xt+1 = arg minx∈X πt+1
1 (ξ01)πt+1

2 (ξ02)x+ u(x) + ηt

2
‖x− xt‖2.

5: end for
6: Return x̄N =

∑N−1
t=0 wtxt+1/(

∑N−1
t=0 wt).

8

Algorithm 2 Primal Form of the Vanilla Stochastic Sequential Dual (SSD) Algorithm

Input: x0 ∈ X, y0
1
∈ Y1.

1: for t = 0, 1, 2, 3...T − 1 do

2: Call SO2 twice at xt to obtain {(f2(xt, ξj2), f ′2(xt, ξj2)}j∈{0,1}.
3: Set yt+1

1
:= [f2(xt, ξ12) + τ t1y

t
i
]/(1 + τ t1) and call SO1 at yt+1

1
to obtain f ′1(yt+1

1
, ξ01).

4: Set xt+1 = arg minx∈X f ′1(yt+1
1

, ξ01)f ′2(xt, ξ02)x+ u(x) + ηt

2
‖x− xt‖2.

5: end for
6: Return x̄N =

∑N−1
t=0 wtxt+1/(

∑N−1
t=0 wt).

Moreover, by unpacking the implicit proximal update, implicit maximization, and queries to DSOi in Algo-

rithm 1, we can obtain an equivalent primal form in Algorithm 2. Clearly, in this primal form, we do not need to

access any conjugate dual information of f1 and f2.

We now clarify the relations between the vanilla SSD method and a few other existing algorithms in the

literature. Firstly, suppose that there is no stochastic noise. Then Algorithm 1 is related to the sequential dual

(SD) method in [26]. However, the SD method in [26] uses proximal update (rather than maximization) to

compute πt+1
2 for the inner layer. Moreover, it incorporates a few extrapolation steps to achieve the accelerated

rate of convergence for solving deterministic problems. This explains why we call Algorithm 1 vanilla SSD since it

does not have these acceleration steps. We will show later in this section that this simplified algorithm can already

achieve nearly optimal rates of convergence for solving convex and strongly convex two-layer NSCO problems. In

next section, we will develop a fully-fledged stochastic sequential dual method that can achieve optimal rates of

convergence in terms of their dependence not only on target accuracy, but also on other problem parameters.

Secondly, even though the vanilla SSD method was mainly inspired by the SD method in [26] for solving

trilinear saddle point problems, its primal form in Algorithm 2 appears to be quite close to the SCGD in [22].

More specifically, Line 4 of Algorithm 2 also performs a descent step along a subgradient-like direction composed

of f ′2(xt, ξ0
2) and f ′1(yt+1

1
, ξ0

1), returned by SO1 queried at some averaged yt+1
1

. However, SCGD in [22] employed

with the two-time-scale stepsizes can only achieve the suboptimal O(1/ε4) (resp., O(1/ε1.25)°) rate of convergence

for solving convex (resp., strongly convex) problems. On the other hand, with a simple stepsize policy the

vanilla SSD method can achieve the O(1/ε2) (resp. O(1/ε)) rate of convergence, which is optimal in terms of its

dependence on ε for solving convex (resp., strongly convex) stochastic optimization problems.

2.4 Convergence Analysis for General Convex Problems

In this subsection, we establish the convergence of Algorithm 1 for solving general convex problems by assuming

that the strong convexity modulus α of u(x) in problem (2.1) is 0. For the sake of simplicity, we fix the weight

wt used in Algorithm 1 to compute the ergodic output solution x̄N to be 1. Throughout this section, we use

zt ≡ (xt;πt1, π
t
2) to denote the iterates generated by Algorithm 1 and set the reference point z in the gap function

Q(·, z) to be (x∗;π1, π2), where π1 and π2 can depend on the stochastic iterates {zt}. The analysis consists of the

following parts. We first develop upper bounds for the decomposed gap functions Q2 and Q1 defined in (2.15)

and (2.16), respectively. Then we suggest a stepsize selection for ηt to bound the decomposed gap function Q0

defined in (2.17), and hence the overall gap function Q. After that, the convergence in terms of function values

is derived from Proposition 2.

We start by providing an upper bound on the decomposed gap function Q2.

Proposition 5 Let {zt} be generated by Algorithm 1 and let M̃Π = Mπ1Mπ2 . Then

E[
∑N−1
t=0 Q2(zt+1, z)] ≤

√
2NM̃ΠDX + E[

∑N−1
t=0

√
2NM̃Π
2DX ‖xt − xt+1‖2].

Proof The dual iterate πt+1
2 generated by Line 2 in Algorithm 1 satisfies

At2 := π1((π2 − πt+1
2)xt − (f∗2 (π2)− f∗2 (πt+1

2))) ≤ 0.

Comparing At2 with Q2(zt+1, z), we can see that the only difference exists in that xt+1 in Q2(zt+1, z) is replaced

by xt in At2, and hence that

Q2(zt+1, z) = At2 + Bt2 with Bt2 := π1(π2 − πt+1
2)(xt+1 − xt). (2.19)

° This iteration complexity needs to assume that f2 is also smooth. The convergence rate for solving non-smooth and
strongly convex two-layer problem has not been established in the literature.

9

Moreover, Young’s inequality implies that

E[
∑N−1
t=0 B

t
2 −

√
2NM̃Π
2DX ‖xt − xt+1‖2] ≤ 4NM̃2

Π
1
2
DX√

2NM̃Π
=
√

2NM̃ΠDX .

Therefore, we have

E[
∑N−1
t=0 Q2(zt+1, z)]

≤ E[
∑N−1
t=0 A

t
2] + E[

∑N−1
t=0 (Bt2 −

√
2NM̃Π
2DX ‖xt+1 − xt‖2)] + E[

∑N−1
t=0

√
2NM̃Π
2DX ‖xt+1 − xt‖2]

≤
√

2NM̃ΠDX + E[
∑N−1
t=0

√
2NM̃Π
2DX ‖xt − xt+1‖2].

Next we move on to provide an upper bound on Q1. The following three point inequality lemma (Lemma 3.8

[13]) is important for our development.

Lemma 1 Assume that the function g : Y → R is µ-strongly convex with respect to some Bregman’s distance

function V , i.e., g(y) − g(ȳ) − 〈g′(ȳ), y − ȳ〉 ≥ µV (ȳ, y) ∀y, ȳ ∈ Y . If ŷ ∈ arg miny∈Y {〈π, y〉 + g(y) + τV (ȳ, y)}
for some π and τ ≥ 0, then

〈ŷ − y, π〉+ g(ŷ)− g(y) ≤ τV (ȳ, y)− (τ + µ)V (ŷ, y)− τV (ȳ, ŷ) ∀y ∈ Y. (2.20)

We also need a technical lemma (similar to Lemma 4.10 [13]) to bound the error resulted from using the

stochastic argument L2(xt;πt+1
2 (ξ1

2)).

Lemma 2 Let δt be some martingale noise with E[δt|t] = 0 and E[‖δt‖|t] ≤ σ2 ∀t. If variable π̂ ∈ Π is correlated

with {δt} with Mπ := maxπ∈Π‖π‖, then

E[
∑N−1
t=0 〈π̂, δ

t〉] ≤
√
NMπσ. (2.21)

Proof We need an auxiliary sequence {π̂t} which is conditionally uncorrelated with {δt}. More specifically, let

π̂t =

{
0 if t = 0,

arg minπ∈Π −〈δt−1, π〉+ τ 1
2‖π̂

t−1 − π‖2 if t ≥ 1,

where τ > 0 is some positive stepsize. Then we have E[〈π̂t, δt〉|t] = 0 and

−〈π̂t+1 − π̂, δt〉 ≤ τ 1
2‖π̂

t − π̂‖2 − τ 1
2‖π̂

t+1 − π̂‖2 − τ 1
2‖π̂

t − π̂t+1‖2,

i.e.,

−〈π̂t − π̂, δt〉 ≤ τ [1
2‖π̂

t − π̂‖2 − 1
2‖π̂

t+1 − π̂‖2] + 1
2τ ‖δ

t‖2.

Next summing up the above relations from 0 to N − 1 and taking expectation on both sides, we should get

E[
∑N−1
t=0 〈δ

t, π̂〉]
(a)
≤ τ 1

2E[‖π̂‖2] +
∑N−1
t=0

1
2τ σ

2

≤ τ
2M

2
π + 1

2τNσ
2,

where (a) follows from E[〈π̂t, δt〉|t] = 0. So the desired bound (2.21) follows from picking τ :=
√
Nσ
Mπ

.

We are now ready to state an upper bound on the decomposed gap function Q2. For the sake of simplicity,

we assume here that a constant stepsize policy is used in Algorithm 1. It should be noted that similar results can

also be proved for variable stepsize policies, e.g., τ t1 = O(
√
t).

Proposition 6 Let {zt} be generated by Algorithm 1 with τ t1 = τ1 =
√
N
√
Lf1σf2/(

√
2DΠ1

), D2
Π1

:=

Df∗1 (π0
1 , π
∗
i), M̃Π := MΠ1

MΠ2
. Then

E[
∑N−1
t=0 Q1(zt+1, z)] ≤

√
NMΠ1

σf2 +
√

2N
√
Lf1DΠ1

σf2 +
√

2NM̃ΠDX + E[
∑N−1
t=0

√
2NM̃Π
2DX ‖xt − xt+1‖2].

10

Proof The πt+1
1 generated by the implicit proximal update in Line 3 of Algorithm 1 satisfies

At1 := (π1 − πt+1
1)L2(xt;πt+1

2 (ξ1
2))− (f∗1 (π1)− f∗1 (πt+1

1))

≤ τ t1Df∗1 (πt1, π1)− τ t1Df∗1 (πt1, π
t+1
1)− (τ t1 + 1)Df∗1 (πt+1

1 , π1).
(2.22)

Comparing At1 with Q1, we see that

Q1(zt+1, z) = At1 + (π1 − πt+1
1)

[
L2(xt+1;πt+1

2)− L2(xt;πt+1
2 (ξ1

2))
]

= At1 + (π1 − πt+1
1)

[
(L2(xt+1;πt+1

2)− L2(xt;πt+1
2)) + (L2(xt;πt+1

2)− L2(xt;πt+1
2 (ξ1

2))
]

= At1 + Bt1 +∆t1, (2.23)

where

Bt1 := (π1 − πt+1
1)πt+1

2 (xt+1 − xt),

∆t1 := (π1 − πt+1
1)

[
L2(xt;πt+1

2)− L2(xt;πt+1
2 (ξ1

2))
]
.

So, Similar to Proposition 5, we have

E[
∑N−1
t=0 B

t
1] ≤

√
2NM̃ΠDX + E[

∑N−1
t=0

√
2NM̃Π
2DX ‖xt − xt+1‖2]. (2.24)

Moreover, the stochastic error ∆t1 can be split further into

∆t1 = ∆tπ1
+ δt1, (2.25)

with

∆tπ1
:= (πt1 − πt+1

1)
[
L2(xt;πt+1

2)− L2(xt;πt+1
2 (ξ1

2))
]
,

δt1 := (π1 − πt1)
[
L2(xt;πt+1

2)− L2(xt;πt+1
2 (ξ1

2))
]
.

Because L2(xt;πt+1
2) = f2(xt) and L2(xt;πt+1

2 (ξ1
2)) = f2(xt, ξ1

2) (according to (2.9) and (2.10)) , we have

E[‖L2(xt;πt+1
2)− L2(xt;πt+1

2 (ξ1
2))‖2] = E[‖f2(xt)− f2(xt, ξ1

2)‖2] ≤ σ2
f2 .

So the 1/Lf1 -strong convexity of Df∗1 and Young’s inequality implies that

E[∆tπ1
− τ t1Df∗i (πt1, π

t+1
1)] ≤ 1

2τt1
Lf1σ

2
f2 , (2.26)

hence

E[
∑N−1
t=0 ∆tπ1

] ≤
√

N
2

√
Lf1DΠ1

σf2 + E[
∑N−1
t=0 τ t1Df∗1 (πt1, π

t+1
1)]. (2.27)

Moreover the following bound can be derived from Lemma 2,

E[
∑N−1
t=0 δt1] = E

[∑N−1
t=0 −π

t
1[L2(xt;πt+1

2)− L2(xt;πt+1
2 (ξ1

2))]
]

+ E
[∑N−1

t=0 π1[L2(xt;πt+1
2)− L2(xt;πt+1

2 (ξ1
2))]
]

≤
√
NMΠ1

σf2 .

(2.28)

Thus substituting the above bounds on Bt1 in (2.24), ∆tπ1
in (2.27), At1 in (2.22), and δt1 in (2.28) into the

decomposed gap function Q1 in (2.23), we obtain

E[
∑N−1
t=0 Q1(zt+1, z)]

≤ τ0
1Df∗1 (π0

1 , π1) +

√
N
2

√
Lf1DΠ1

σf2 +
√
NMΠ1

σf2 +
√

2NM̃ΠDX + E[
∑N−1
t=0

√
2NM̃Π
2DX ‖xt − xt+1‖2]

≤
√
NMΠ1

σf2 +
√

2N
√
Lf1DΠ1

σf2 +
√

2NM̃ΠDX + E[
∑N−1
t=0

√
2NM̃Π
2DX ‖xt − xt+1‖2].

11

πt+1
2

f2(x
t, ξ1

2)

πt+1
2 (ξ0

2)

πt+1
1 πt+1

1 (ξ0
1)

Fig. 1: Illustration of Stochastic Dependency: πt+1
2 (ξ0

2) is d-separated from πt+1
1 (ξ0

1) conditioned on (πt+1
1 , πt+1

2)

and πt+1
2 (ξ0

2) is d-separated from πt+1
1 conditioned on πt+1

2 .

Next, We turn our attention to the upper bound on the decomposed gap function Q0. According to Lemma

1, the x-proximal update in Line 4 of Algorithm 1 satisfies

At0 := πt+1
1 (ξ0

1)πt+1
2 (ξ0

2)(xt+1 − x∗) + u(xt+1)− u(x∗)

≤ ηt

2 ‖x
t − x∗‖2 − ηt

2 ‖x
t − xt+1‖2 − ηt

2 ‖x
t − x∗‖2. (2.29)

Observe that At0 differs from Q0 only in stochastic error, i.e.,

Q0(zt+1, z) = At0 +∆t0, (2.30)

where ∆t0 := (πt+1
1 πt+1

2 − πt+1
1 (ξ0

1)πt+1
2 (ξ0

2))(xt+1 − x∗).
Moreover, since πt+1

2 (ξ0
2) comes from a separate query to DSO2 (SO2), it is independent of f2(xt, ξ1

2) and

hence its descendant πt+1
1 (ξ0

1) conditioned on πt+1
2 (see Figure 1). Therefore, the following expectation and

variance of πt+1
1 (ξ0

1)πt+1
2 (ξ0

2) can be derived:

E[πt+1
1 (ξ0

1)πt+1
2 (ξ0

2)|πt+1
1 , πt+1

2] = E[πt+1
1 (ξ0

1)|πt+1
1 , πt+1

2]E[πt+1
2 (ξ0

2)|πt+1
1 , πt+1

2]

= πt+1
1 E[πt+1

2 (ξ0
2)|πt+1

1]

= πt+1
1 πt+1

2 .

E[‖πt+1
1 (ξ0

1)πt+1
2 (ξ0

2)− πt+1
1 πt+1

2 ‖2|πt+1
1 , πt+1

2]

≤ E[‖πt+1
1 (ξ0

1)− πt+1
1 ‖2|πt+1

1 , πt+1
2]E[‖πt+1

2 (ξ0
2)‖2|πt+1

1 , πt+1
2] + E[‖πt+1

1 (πt+1
2 (ξ0

2)− πt+1
2)‖2|πt+1

1 , πt+1
2]

≤ σ2
π1
M2
Π2

+M2
Π1
σ2
π2

:= σ̃2
π1:
.

So we can split the stochastic error term further:

∆t0 = ∆tx,0 + δt0, (2.31)

with

∆tx,0 := (πt+1
1 πt+1

2 − πt+1
1 (ξ0

1)πt+1
2 (ξ0

2))(xt+1 − xt),

δt0 := (πt+1
1 πt+1

2 − πt+1
1 (ξ0

1)πt+1
2 (ξ0

2))(xt − x∗).

Notice that unbiasedness of πt+1
1 (ξ0

1)πt+1
2 (ξ0

2) implies E[δt0] = 0, ∀t.
Now we are ready to bound the decomposed gap function Q0 and hence the overall gap function Q, and to

establish the convergence of Algorithm 1.

12

Theorem 1 Let M̃Π := MΠ1
MΠ2

and σ̃2
π1:

:= σ2
π1
M2
Π2

+ M2
Π1
σ2
π2

. Let {zt} be generated by Algorithm 1 with

ηt =
√

2NM̃Π/DX +
√
Nσ̃π1:/(

√
2Dx) and τ t1 =

√
N
√
Lf1σf2/(

√
2DΠ1

). Then

E[
∑N−1
t=0 Q(zt+1, z)] ≤

√
2Nσ̃π1:DX + 4

√
2NM̃ΠDX +

√
2N
√
Lf1DΠ1

σf2 +
√
NMΠ1

σf2 .

Moreover, the ergodic solution x̄N =
∑N−1
t=0 xt+1/N satisfies

E[f(x̄N)− f(x∗)] ≤ 1√
N

(
√

2σ̃π1: + 4
√

2M̃ΠDX +
√

2
√
Lf1DΠ1

σf2 +MΠ1
σf2). (2.32)

Proof Using (2.29), (2.30) and (2.31), and the fact

E[
∑N−1
t=0 (∆tx,0 −

√
Nσ̃π1:

2
√

2DX
‖xt+1 − xt‖2)] ≤

√
N
2 DX σ̃π1: ,

we can obtain the following bound for Q0:

E[
∑N−1
t=0 Q0(zt+1, z)] ≤ η0 1

2‖x
0 − x∗‖2 +

√
N
2 DX σ̃π1: −

∑N−1
t=0

√
Nσ̃π1:

2
√

2DX
‖xt − xt+1‖2. (2.33)

Then combining (2.33) with the bounds for Q2 and Q1 in Proposition 5 and 6, we get

E[
∑N−1
t=0 Q(zt+1, z)] ≤

√
2Nσ̃π1:DX + 4

√
2NM̃ΠDX +

√
2N
√
Lf1DΠ1

σf2 +
√
NMΠ1

σf2 .

Therefore, by setting the reference point z in the above inequality to ẑ := (x∗; π̂1, π̂2), (2.32) follows immediately

from Proposition 2.

2.5 Convergence Analysis for Strongly Convex Problems

In this subsection, we establish the convergence of Algorithm 1 for solving two-layer NSCO problems with strong

convexity modulus α > 0. We set the weight wt to be (t+1)/2 for defining the ergodic output solution, and focus

on reference points of the form z = (x∗;π∗1 , π2), where π2 can depend on the stochastic iterates {zt}. Other than

increasing ηts for the x-updates and using Proposition 3 for functional optimality gap conversion, the analysis is

similar to the preceding subsection; we first develop upper bounds on gap functions Q2, Q1, Q0, and hence Q,

and then show the convergence in function value.

First, we develop a convergence bound for the decomposed gap function Q2 in the following proposition.

Notice that the coefficients for ‖xt − xt+1‖2 is increasing proportionally to α(t+ 1) in the bound.

Proposition 7 Let {zt} be generated by Algorithm 1 and let M̃Π = Mπ1Mπ2 . Then

E[
∑N−1
t=0 wtQ2(zt+1, z)] ≤ 9N

α M̃2
Π + E[

∑N−1
t=0

(t+1)αwt

18 ‖xt − xt+1‖2].

Proof It is clear that the decomposition of Q2 in (2.19) still holds:

Q2(zt+1, z) = At2 + Bt2, (2.34)

where Bt2 := π∗1(π2 − πt+1
2)(xt+1 − xt) and At2 := π∗1((π2 − πt+1

2)xt − (f∗2 (π2) − f∗2 (πt+1
2))) ≤ 0. By Young’s

inequality, we have

E[
∑N−1
t=0 wt(Bt2 −

(t+1)αwt

18 ‖xt+1 − xt‖2)] ≤
∑N−1
t=0 wt

4M̃2
Π

4
18

(t+1)α
= 9N

α M̃2
Π .

So we can obtain the desired bound by summing up (2.34):

E[
∑N−1
t=0 wtQ2(zt+1, z)]

≤ E[
∑N−1
t=0 wtAt2] + E[

∑N−1
t=0 wt(Bt2 −

(t+1)α
18 ‖xt+1 − xt‖2))] + E[

(t+1)αwt

18 ‖xt+1 − xt‖2)]

≤ 9N
α M̃2

Π + E[
∑N−1
t=0

(t+1)αwt

18 ‖xt+1 − xt‖2].

Next, we show a convergence bound for the decomposed gap function Q1. Compared to Proposition 6, the

more restricted reference point z = (x∗;π∗1 , π2) in this subsection allows for an improved bound.

13

Proposition 8 Let {zt} be generated by Algorithm 1 with τ t1 := t+1
3 , ∀t, M̃Π := MΠ1

MΠ2
and D2

Π1
:=

Df∗1 (π0
1 , π
∗
i). Then

E[
∑N−1
t=0 wtQ1(zt+1, z)] ≤ 3N

4 Lf1σ
2
f2

+ 1
6D

2
Π1

+ 9N
α M̃2

Π + E[
∑N−1
t=0

(t+1)αwt

18 ‖xt − xt+1‖2].

Proof The decomposition formulas in (2.23) and (2.25) still hold:

Q1(zt+1, z) = At1 + Bt1 + δt1 +∆tπ1
, (2.35)

where

At1 := (π∗1 − πt+1
1)L2(xt;πt+1

2 (ξ1
2))− (f∗1 (π∗1)− f∗1 (πt+1

1)),

∆tπ1
:= (πt1 − πt+1

1)(L2(xt;πt+1
2)− L2(xt;πt+1

2 (ξ1
2))),

δt1 := (π∗1 − πt1)(L2(xt;πt+1
2)− L2(xt;πt+1

2 (ξ1
2))),

Bt1 := (π∗1 − πt+1
1)πt+1

2 (xt+1 − xt).

Since π∗1 is independent of the stochastic iterates {zt} and E[L2(xt;πt+1
2 (ξ1

2))|πt+1
2] = E[f2(xt, ξj2)|πt+1

2] =

f2(xt) = L2(xt;πt+1
2), we have E[δt1] = 0, ∀t. Moreover, Line 3 of Algorithm 1 implies that

At1 ≤ τ t1Df∗1 (πt1, π1)− τ t1Df∗1 (πt1, π
t+1
1)− (τ t1 + 1)Df∗1 (πt+1

1 , π1). (2.36)

Thus with τ t1 = t+1
3 , the terms Df∗1 (πt1, π

∗
1) and Df∗1 (πt+1

1 , π∗1) in the above inequality admits telescoping

cancellation through a wt-weighted sum,

E[
∑N−1
t=0 wtAt1] ≤ w0τ0

1Df∗1 (π0
1 , π
∗
i)− wN−1τN−1

1 Df∗1 (πN1 , π
∗
1)−

∑N−1
t=0 wtτ t1Df∗1 (πt1, π

t+1
1)

≤ 1
6D

2
Π1
−
∑N−1
t=0 wtτ t1Df∗1 (πt1, π

t+1
1).

(2.37)

The 1/Lf1 -strong convexity of Df∗i implies that

E[
∑N−1
t=0 wt(∆tπ1

− τ t1Df∗1 (πt1, π
t+1
1))] ≤ E

[∑N−1
t=0 wt 3

t+1
Lf1

2 ‖L2(xt;πt+1
2)− L(xt;πt+1

2 (ξ1
2))‖2

]
≤
∑N−1
t=0 wt 3

t+1
Lf1

2 σ2
f2

= 3
4NLf1σ

2
f2
.

(2.38)

Similar to Proposition 7, the following bound of the weighted sum of Bt1 holds,

E[
∑N−1
t=0 wtBt1] ≤ 9N

α M̃2
Π + E[

∑N−1
t=0

(t+1)αwt

18 ‖xt − xt+1‖2]. (2.39)

Thus in view of the Q1 decomposition (2.35), substituting (2.38), (2.37) and (2.39) into E[
∑N−1
t=0 wtQ1(zt+1, z)]

leads to the desired bound.

Now we move on to bound Q0. Obviously, the decomposition formulas (2.30) and (2.31) from the last sub-

section are still valid:

Q0(zt+1, z) = At0 +∆tx,0 + δt0, (2.40)

where

At0 := πt+1
1 (ξ0

1)πt+1
2 (ξ0

2)(xt+1 − x∗) + u(xt+1)− u(x∗),

∆tx,0 := (πt+1
1 πt+1

2 − πt+1
1 (ξ0

1)πt+1
2 (ξ0

2))(xt+1 − xt),

δt0 := (πt+1
1 πt+1

2 − πt+1
1 (ξ0

1)πt+1
2 (ξ0

2))(xt − x∗).

Moreover, since the stochastic estimators πt+1
1 (ξ0

1) and πt+1
2 (ξ0

2) are generated in the same way as the last

subsection, we conclude

E[πt+1
1 (ξ0

1)πt+1
2 (ξ0

2)|πt+1
1 , πt+1

2] = πt+1
1 πt+1

2 ,

E[‖πt+1
1 (ξ0

1)πt+1
2 (ξ0

2)− πt+1
1 πt+1

2 ‖2|πt+1
1 , πt+1

2] ≤ σ̃2
π1:

:= σ2
π1
M2
Π2

+M2
Π1
σ2
π2
,

and

E[δt0] = 0 ∀t.

So the following bound on Q0 convergence follows from setting ηt := (t+ 1)α/3.

14

Proposition 9 Let {zt} be generated by Algorithm 1 with ηt = t+1
3 α, then

E[
∑N−1
t=0 wtQ0(zt+1, z)] +

N(N+3)α
12 E[‖xN − x∗‖2]

≤ α
12‖x

0 − x∗‖2 + 9N
4α σ̃

2
π1:
− E

[∑N−1
t=0

(t+1)αwt

9 ‖xt+1 − xt‖2
]
.

(2.41)

Proof The strong convexity modulus of u(x), i.e. α > 0, and Lemma 1 imply that

At0 ≤ ηt 1
2‖x

t − x∗‖2 − ηt 1
2‖x

t − xt+1‖2 − (ηt + α) 1
2‖x

t+1 − x∗‖2.

Then the wt-weighted sum satisfies

E[
∑N−1
t=0 wtAt0] ≤ α

12‖x
0 − x∗‖2 − N(N+3)α

12 E[‖xN − x∗‖2]− E[
∑N−1
t=0

(t+1)αwt

6 ‖xt+1 − xt‖2]. (2.42)

Moreover a bound for ∆tx,0 is

E[
∑N−1
t=0 wt(∆tx,0 −

(t+1)α
18 ‖xt − xt+1‖2)] ≤ E[

∑N−1
t=0

9wt

2(t+1)α
‖πt+1

1 πt+1
2 − πt+1

1 (ξ0
1)πt+1

2 (ξ0
2)‖2]

≤ 9N
4α σ̃

2
π1:
.

(2.43)

Therefore, in view of the decomposition of Q0 in (2.40), we can conclude (2.41) by substituting the bound

on At0 in (2.42) and the bound on ∆tx,0 in (2.43) into E[
∑N−1
t=0 wtQ0(zt+1, z)].

Now we put all the pieces together to establish the convergence of Algorithm 1 for the strongly convex NSCO

problem.

Theorem 2 Let {zt} be generated by Algorithm 1 with ηt =
(t+1)α

3 and τ t1 = t+1
3 . Let M̃Π := MΠ1

MΠ2
and

σ̃2
π1:

:= σ2
π1
M2
Π2

+M2
Π1
σ2
π2

. Then we have

E[1
2‖x

N − x∗‖2] ≤ 3
NαC1 + 3

N(N+1)α
C2,

E[f(x̄N)− f(x∗)] ≤ 1
N (2 + 6

αLf1M
2
Π2

)C1 + 1
N(N+1)

(2 +
6 log(N+1)

α Lf1M
2
Π2

)C2,

where C1 := 36
α M̃

2
Π + 3

2Lf1σ
2
f2

+ 9
2α σ̃

2
π1:

and C2 := 1
3D

2
Π1

+ α
6 ‖x

0 − x∗‖2.

Proof Adding up the bounds on the decomposed gap functions Q2, Q1 and Q0 bounds from Proposition 7, 8 and

9, we obtain

E[
∑N−1
t=0 wtQ(zt+1, z)] +

N(N+3)α
6 E[1

2‖x
N − x∗‖2] ≤ N

2 C1 + 1
2C2. (2.44)

Then choosing the reference point z to be z∗ := (x∗;π∗1 , π
∗
2), noticing that Q(zt+1, z∗) ≥ 0 ∀t and dividing both

sides by
N(N+3)α

6 , we get

E[1
2‖x

N − x∗‖2] ≤ 3
(N+3)α

C1 + 3
N(N+3)α

C2 ≤ 3
NαC1 + 3

N(N+1)α
C2.

Moreover, since x̄N is the wt/
∑N−1
t=0 wt weighted sum of xt+1, we conclude from the Jensen’s inequality that

E[1
2‖x̄

N − x∗‖2] ≤ 6
NαC1 +

6 log(N+1)
N(N+1)α

C2.

Next, to show convergence in function value, we pick the reference point z in (2.44) to be z̃ := (x∗;π∗1 , π̂2) such

that E[
∑N−1
t=0 wtQ(zt+1, z̃)] ≤ N

2 C1 + 1
2C2. Then in view of Proposition 3, we have

E[f(x̄N)− f(x∗)] ≤ E

[∑N−1
t=0 wtQ(zt+1, z̃)∑N−1

t=0 wt
+ 1

2Lf1M
2
Π2
‖x̄N − x∗‖2

]
≤ 1

N (2 + 6
αLf1M

2
Π2

)C1 + 1
N(N+1)

(2 +
6 log(N+1)

α Lf1M
2
Π2

)C2.

We conclude this section by raising two issues about the vanilla SSD Algorithm. Firstly, Algorithm 1 is limited

in its application. It can only solve the smooth-nonsmooth two-layer NSCO problem. Secondly, Algorithm 1’s

iteration complexity is optimal only for ε, but not other problem parameters like Lf1 . Over the next few sections,

we will address these issues by developing a nearly optimal modular algorithmic framework for solving general

multilayer NSCO problems.

15

3 SSD Framework

In this section, we propose a general Stochastic Sequential Dual (SSD) algorithmic framework to solve the

multilayer NSCO problem (1.3), i.e., minx∈X{f(x) := f1 ◦ f2 ◦ . . . ◦ fk(x) + u(x)}. Focusing on the general

algorithmic framework in this section, we impose minimal structural assumptions on the layer functions. More

specifically, we assume that every fi is convex and MΠi
±-Lipschitz continuous, equipped with a DSOi for the

dual iterates generated by some dual proximal updates (c.f. Subsection 2.2). The finer details about fi, such

as their smoothness properties (smooth, smoothable or non-smooth), the exact dual proximal updates, and the

restrictions on composition, will be presented in later sections.

3.1 Saddle Point Reformulation

As illustrated in Section 1, Assumptions 1 and 2 allow us to reformulate problem (1.3) as

min
x∈X

max
π1:∈Π1:

{L(x;π1:) := L1(x;π1:) + u(x)}. (3.1)

where π1: and Π1: are the shorthand notations for π1:k and Π1:k
², and

Li(x;πi:) :=

{
x if i = k + 1,

πiLi+1(x;πi+1:)− f∗i (πi) if 0 ≤ i ≤ k.
(3.2)

Then it is straightforward to extend Proposition 1 to describe a basic duality relationship between (1.3) and

(3.1) as in the following proposition.

Proposition 10 Let f and L be defined in (1.3) and (3.1), respectively. Then the following relations hold for all

x ∈ X.

a) Weak Duality: f(x) ≥ L(x;π1:) ∀π1: ∈ Π1:.

b) Strong Duality: f(x) = L(x;π∗1:), for some π∗1: ∈ Π1:.

Proof The proof is similar to Proposition 1. Let x ∈ X and π1: ∈ Π1: be given. The strong duality result follows

from choosing π∗i ∈ ∂fi(fi+1:(x)) such that

Li(x;π∗i , π
∗
i+1:) = fi:(x) for i = k, k − 1, . . . , 1.

For the weak duality, first note that for any feasible (π1, π2, . . . , πk), we have

f(x)− L(x;π1:) =
∑k
j=1[L(x;π1:j−1, π

∗
j , π
∗
j+1:)− L(x;π1:j−1, πj , π

∗
j+1:)]

=
∑k
j=1 π1:j−1[(π∗j fj+1:(x)− f∗j (π∗j))− (πjfj+1:(x)− f∗j (πj))]︸ ︷︷ ︸

Aj

.

Moreover, Aj = 0 if fj is linear since Πj is a set of singleton and π∗j = πj . If fj is not linear, we have Aj ≥ 0 since

π∗j is the maximizer of πjfj+1:(x)− f∗j (πj) and π1:j−1 is non-negative. Thus we always have f(x) ≥ L(x;π1:).

Accordingly, for a feasible z̄ := (x̄; π̄1:), we define the multilayer gap function with respect to some reference

point z := (x;π1:) as

Q(z̄, z) := L(x̄;π1:)− L(x; π̄1:). (3.3)

For an ergodic average solution x̄N , the value of the gap function with respect to a few reference points provides

an upper bound for the functional optimality gap of problem (1.3). Such reference points are usually constructed

from the following dual points:

π∗i ∈ ∂fi(fi+1:(x
∗)) and π̂i ∈ ∂fi(fi+1:(x̄

N)).

For example, the next proposition shows an upper bound derived by using the reference point ẑ := (x∗; π̂1:).

± MΠi is defined in Subsection 1.3.
² We use Πi:j to represent Πi ×Πi+1 × ...×Πj , and πi:j to represent either (πi, πi+1, ..., πj) or πiπi+1...πj depending

on the context.

16

Proposition 11 Let feasible solutions {zt := (xt;πt1:)} be given and let x̄N denote the wt-weighted ergodic

average of {xt}, given by
∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt. If ẑ := (x∗; π̂1:) and

∑N−1
t=0 wtQ(zt+1, ẑ) ≤ B, then

f(x̄N)− f(x∗) ≤ B∑N−1
t=0 wt

.

Proof The proof is similar to that of Proposition 2. The only difference exists in that we need to use the multilayer

duality result, i.e., Proposition 10 instead of Proposition 2.

In addition, just like Proposition 3, when the outer layer functions {f1, f2, . . . , fi−1} are all smooth, another

upper bound can be derived using both Q and 1
2‖x̄

N − x∗‖2. This alternative bound will help us improve the

convergence rate for solving strongly convex NSCO problems.

Proposition 12 Let f1, . . . , fi−1 be Lipschitz-smooth with constants Lf1 , Lf2 , . . . , Lfi−1
. Let feasible so-

lutions {zt := (xt;πt1:)} be given and let x̄N denote the wt-weighted ergodic average of {xt}, given by∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt. If z̃ := (x∗;π∗1:i−1, π̂i:),

∑N−1
t=0 wtQ(zt+1, z̃) ≤ B and 1

2‖x̄
N − x∗‖2 ≤ C, then

f(x̄N)− f(x∗) ≤ B∑N−1
t=0 wt

+ L̃fC,

where L̃f :=
∑i−1
l=1 MΠ1:l−1

LflM
2
Πl+1:

.

Proof Clearly, by using the argument in Proposition 2 with the multi-layer duality properties in Proposition 10,

we have

L(x̄N ;π∗1:i−1, π̂i:)− f(x∗) ≤ 1∑N−1
t=0 wt

∑N−1
t=0 wtQ(zt+1, z̃).

But the difference between f(x̄N) and L(x̄N ;π∗1:i−1, π̂i:) satisfies

f(x̄N)− L(x̄N ;π∗1:i−1, π̂i:) = L(x̄N ; π̂1:i−1, π̂i:)− L(x̄N ;π∗1:i−1, π̂i:)

=
∑i−1
l=1 [L(x̄N ;π∗1:l−1, π̂l, π̂l+1:)− L(x̄N ;π∗1:l−1, π

∗
l , π̂l+1:)]

=
∑i−1
l=1 π

∗
1:l−1[f∗l (π∗l)− f∗l (π̂l)− (π∗l − π̂l)fl+1:(x̄

N)]

(a)
=
∑i−1
l=1 π

∗
1:l−1Df∗l (π̂l, π

∗
l)

(b)
=
∑i−1
l=1 π

∗
1:l−1Dfl(fl+1:(x

∗), fl+1:(x̄
N)) ≤ 1

2 L̃f‖x̄
N − x∗‖2 = L̃fC,

where (a) follows from fl+1:(x̄
N) ∈ ∂f∗l (π̂l) (the definition of π̂l) and (b) follows from the relationship between

conjugate Bregman distances (1.8). So we get the desired bound for f(x̄N)− f(x∗).
Moreover, we can utilize stochastic estimators {πi(ξi), f∗i (πi, ξi)} returned from {DSOi} to construct the

stochastic composition Lagrangians for multilayer NSCO as follows:

Li(x;πi:(ξi:)) :=

{
x if i = k + 1,

πi(ξi)Li+1(x;πi+1:(ξi+1:))− f
∗
i (πi, ξi) if 0 ≤ i ≤ k,

(3.4)

where πi:(ξi:) is the shorthand for (πi(ξi), πi+1(ξi+1), . . . , πk(ξk)), and use them as arguments for the dual

proximal updates. This leads us to the SSD framework.

3.2 SSD Framework

The SSD framework is again inspired by a decomposition of the gap function in (3.3) into

Q(zt+1, z) = Q0(zt+1, z) +
∑k
i=1Qi(z

t+1, z), (3.5)

where Q0 measures the optimality of xt+1 and Qi measures the optimality of πt+1
i :

Q0(zt+1, z) := L(xt+1;πt+1
1:)− L(x;πt+1

1:)

= πt+1
1: xt+1 + u(xt+1) − πt+1

1: x− u(x),
(3.6)

17

Qi(z
t+1, z) := L(xt+1;π1:i−1, πi, π

t+1
i+1:)− L(xt+1;π1:i−1, π

t+1
i , πt+1

i+1:)

= π1:i−1

(
πiLi+1(xt+1;πt+1

i+1:)− f
∗
i (πi) −[πt+1

i Li+1(xt+1;πt+1
i+1:)− f

∗
i (πt+1

i)]

)
.

(3.7)

To decrease the Q function, we can find πt+1
k , πt+1

k−1, . . . , π
t+1
1 and xt+1 to reduce the boxed items in

Qk, Qk−1, . . . , Q0, respectively. Accordingly, each iteration of the SSD framework (Algorithm 3) performs se-

quential proximal updates to the dual variables πk, . . . , π1 before updating x. Notice that new πi proximal

update is a natural generalization of the π2 and π1 updates in Algorithm 1. Similar to the π2 update, find-

ing a πt+1
i with a small value of −π1:i−1[πt+1

i Li+1(xt+1;πt+1
i+1:) − f

∗
i (πt+1

i)] is equivalent to finding one with

component-wise small values, −[πt+1
i Li+1(xt+1;πt+1

i+1:)− f
∗
i (πt+1

i)], due to the non-negativity of π1:i−1 and the

row-separability of proximal penalty Vi
³ and domain Πi. In addition, similar to the π1 update in Algorithm 1, the

argument Li+1(xt+1;πt+1
i+1:) is not available because xt+1 is yet to be computed and only a stochastic estimator

Li+1(·;πt+1
i+1:(ξ

i
i+1:)) is accessible. So we employ an momentum-based guess, i.e.,

ȳt+1
i := Li+1(xt;πt+1

i+1:(ξ
i
i+1:)) + θtπti+1:(ξ

i
i+1:)(x

t − xt−1) (3.8)

and define the proximal update to generate πt+1
i by

πt+1
i ∈ arg min

πi∈Πi
−πiȳt+1

i + f∗i (πi) + τ ti Vi(π
t
i , πi).

Next, the new x-proximal update in Line 9 of Algorithm 3 is a straightforward extension of the Line 4 in Algorithm

1, obtained by replacing πt+1
1 (ξ0

1)πt+1
2 (ξ0

2) with its multilayer counterpart πt+1
1: (ξ0

1:).

Moreover, if all the layer functions are either smooth or non-smooth, we can rewrite Algorithm 3 in a purely

primal form, shown in Algorithm 4.

Algorithm 3 Stochastic Sequential Dual(SSD) Framework

Input: x−1 = x0 ∈ X, feasible {π0
i }ki=1.

1: for i = k, k − 1, . . . , 1 do

2: Call DSOi i times at π0
i to obtain estimates {[π0

i (ξji), f∗i (π0
i , ξ

j
i)]}i−1

j=0.

3: end for
4: for t = 0, 1, 2, 3...N − 1 do
5: for i = k, k − 1, . . . , 1 do
6: Set ȳt+1

i := Li+1(xt;πt+1
i+1:(ξ

i
i+1:)) + θtπti+1:(ξ

i
i+1:)(x

t − xt−1).

7: Call DSOi i times at πt+1
i to obtain estimates {[πt+1

i (ξji), f∗i (πt+1
i , ξji)]}i−1

j=0, where πt+1
i comes from the (im-

plicit) proximal update, πt+1
i ∈ arg minπi∈Πi −πiȳ

t+1
i + f∗i (πi) + τ ti Vi(π

t
i , πi).

8: end for
9: Set xt+1 := arg minx∈X πt+1

1: (ξ01:)x+ u(x) + ηt 1
2
‖x− xt‖2.

10: end for
11: Return x̄N :=

∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt.

Algorithm 4 Primal Form of the SSD Framework

Input: y0
1

= x−1 = x0 ∈ X, {y0
i
}ki=1.

1: for i = k, k − 1, . . . , 1 do

2: Call SOi i times at y0
i

to obtain estimates {[f ′i(y0i , ξ
j
i), f∗i (f ′i(y

0
i
), ξji)]}i−1

j=0.

3: end for
4: for t = 0, 1, 2, 3...N − 1 do
5: for i = k, k − 1, . . . , 1 do
6: Set ȳt+1

i := Li+1(xt; f ′i:(y
t+1
i+1:

, ξii+1:)) + θtf ′i+1(yt+1
i+1

, ξii+1)...f ′k(yt+1
k

, ξik)(xt − xt−1)

and yt+1
i

:= (ȳt+1
i + τ ti y

t
i
)/(1 + τ ti).

7: Call SOi i times at yt+1
i

to obtain estimates [f ′i(y
t+1
i

, ξji), f∗i (f ′i(y
t+1
i

), ξji)]}i−1
j=0.

8: end for
9: Set xt+1 := arg minx∈X f ′1(yt+1

1
, ξ01)...f ′k(yt+1

k
, ξ0k)x+ u(x) + ηt 1

2
‖x− xt‖2.

10: end for
11: Return x̄N :=

∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt.

³ A generic row-separable Bregman distance function Vi is used to denote the proximity-penalty term because different
types of layer functions require different kinds of Bregman’s distances.

18

3.3 Qi Decomposition

The effects of Algorithm 3 in reducing the component gap functions Qi can be illustrated more clearly by

comparing each Qi with the three-point inequality (2.20) of the corresponding proximal update. More specifically,

for a fixed i ≥ 1, Qi can be written more compactly as

Qi(z
t+1, z) := πp

(
(πi − πt+1

i)Lq(xt+1;πt+1
q)− (f∗i (πi)− f∗i (πt+1

i))
)
, (3.9)

where the subscript p denotes the indices of all layers outside layer i, i.e., p ≡ 1 : i− 1, and the subscript q

denotes the indices of all layers inside layer i, i.e., q ≡ i + 1 :. In this compact form, the left-hand-side of the

corresponding three-point inequality (2.20) associated with the proximal update in Line 7 of Algorithm 3 is given

by

Ati := πp

(
(πi − πt+1

i)[Lq(xt;πt+1
q (ξiq)) + θtπtq(ξ

i
q)(x

t − xt−1)]− [f∗i (πi)− f∗i (πt+1
i)]

)
. (3.10)

The differences between them are:

Qi(z
t+1, z)−Ati =

πp(πi − πt+1
i)(Lq(xt+1;πt+1

q)− Lq(xt+1;πt+1
q (ξiq))) (3.11)

+ πp(πi − πt+1
i)

(
Lq(xt+1;πt+1

q (ξiq))− [Lq(xt;πt+1
q (ξiq)) + θtπtq(ξ

i
q)(x

t − xt−1)]
)
, (3.12)

where (3.11) and (3.12) capture the errors resulted from using stochastic estimators and from using momentum

guesses respectively.

Now, let us take a closer look at (3.12):

(3.12) = πp(πi − πt+1
i)

(
[Lq(xt+1;πt+1

q (ξiq))− Lq(xt;πt+1
q (ξiq))]− θtπtq(ξiq)(xt − xt−1)

)
= πp

(
(πi − πt+1

i)πt+1
q (ξiq)(x

t+1 − xt)− θt[(πi − πti)π
t
q(ξ

i
q)(x

t − xt−1)]
)

+ θtπp(πt+1
i − πti)π

t
q(ξ

i
q)(x

t − xt−1).

In other words, (3.12) = T ti + Cti with

T ti := πp

(
(πi − πt+1

i)πt+1
q (ξiq)(x

t+1 − xt)− θt[(πi − πti)π
t
q(ξ

i
q)(x

t − xt−1)]
)
,

Cti := θtπp(πt+1
i − πti)π

t
q(ξ

i
q)(x

t − xt−1).

It is clear that with appropriately chosen θt, T ti admits telescopic cancellations and Cti can be canceled with

Vi(π
t
i , π

t+1
i) and 1

2‖x
t − xt−1‖2. We remark here that this decomposition is due to the stochastic momentum

guess (3.8). Such a guess is inspired by the novel momentum guess proposed in [26], so similar to how the

consequent decomposition in [26] accelerates the SD algorithm, the above decomposition helps Algorithm 3 to

achieve improved rates of convergence for NSCO.

Next, we move on to analyzing (3.11). The following decomposition of the stochastic error holds:

(3.11) =πp(πi − πt+1
i)[Lq(xt+1;πt+1

q)− Lq(xt+1;πt+1
q (ξiq))]

=πp(πi − πt+1
i)[Lq(xt;πt+1

q)− Lq(xt;πt+1
q (ξiq))] + πp(πi − πt+1

i)(πt+1
q − πt+1

q (ξiq))(x
t+1 − xt)

=πp(πi − πti)[Lq(x
t;πt+1

q)− Lq(xt;πt+1
q (ξiq))] + πp(πti − π

t+1
i)[Lq(xt;πt+1

q)− Lq(xt;πt+1
q (ξiq))] +∆tx,i

=δti +∆tπi +∆tx,i,

where

δti := πp(πi − πti)[Lq(x
t;πt+1

q)− Lq(xt;πt+1
q (ξiq))],

∆tπi := πp(πti − π
t+1
i)[Lq(xt;πt+1

q)− Lq(xt;πt+1
q (ξiq))],

∆tx,i := πp(πi − πt+1
i)(πt+1

q − πt+1
q (ξiq))(x

t+1 − xt).

Notice that ∆tπi can be canceled using Vi(π
t
i , π

t+1
i) and that ∆tx,i can be handled with 1

2‖x
t+1−xt‖2. In addition,

we will show in the next subsection that Lq(xt;πt+1
q (ξiq)) is an unbiased estimator for Lq(xt;πt+1

q) in δti . In other

words, we have developed a unified decomposition for each Qi,

Qi(z
t+1, z) = Ati + T ti + Cti + δti +∆tπi +∆tx,i, (3.13)

19

and grouped the terms into components according to how they could possibly be handled. Such a unified decom-

position is the key to the forthcoming modular convergence analysis for Algorithm 3.

In addition, we note that for Q0, it is straightforward to extend (2.30) to obtain

Q0(zt+1, z) = At0 +∆tx,0 + δt0, (3.14)

where

At0 := πt+1
1: (ξ0

1:)(x
t+1 − x) + u(xt+1)− u(x),

∆tx,0 := (πt+1
1: − π

t+1
1: (ξ0

1:))(x
t+1 − xt),

δt0 := (πt+1
1: − π

t+1
1: (ξ0

1:))(x
t − x).

At0 is the left-hand-side of the three-point inequality (2.20) implied by Line 9 of Algorithm 3, ∆tx,0 can be handled

with 1
2‖x

t+1 − xt‖2, and πt+1
1: (ξ0

1:) is an unbiased estimator for πt+1
1: in δt0.

3.4 Repeated Calls to DSOi

Fig. 2: Illustration of Stochastic Dependency. The stochastic estimators πt+1
i (ξji) in the πt+1

i row are independent estima-

tors of πt+1
i . πt+1

i is generated by a proximal update with an argument ȳt+1
i , consisting of all stochastic estimators in the

(k+ 1− i)th column, {πt+1
r (ξir)}r>i. So every πt+1

i (ξji) depends on the entire “triangle” of estimators, {πt+1
l (ξrl)}l>i,r≥i.

Now to obtain an unbiased estimator for πt+1
i: , it is necessary to call all {DSOj}j>i again to obtain estimators outside the

”triangle”, i.e., {πt+1
j (ξlj)}j>i,l<i, which are conditionally independent of πt+1

i .

We explain the repeated calls to DSOi in Algorithm 3. Algorithm 3 appears to be wasteful in its use of stochastic

estimators in that it calls all inner oracles {DSOj}j>i to draw fresh estimators for every πt+1
i update. But as

explained in Figure 2, these fresh estimators are essential for obtaining unbiased estimators for {πt+1
i: }. More

formally, the following lemma shows that πt+1
i+1:(ξ

i
i+1:) and Li:(xt;πt+1

i+1:(ξ
i
i+1:)) are indeed the desired unbiased

estimators for πt+1
i: and Li(xt;πt+1

i:), respectively.

Proposition 13 Let the stochastic estimators {πt+1
i (ξji)}0≤j<i≤k be generated in Algorithm 3. If j < i, then

E[πt+1
i: (ξji:)|π

t+1
i:] = πt+1

i: and E[Li(xt;πt+1
i: (ξji:))|π

t+1
i:] = Li(xt;πt+1

i:). (3.15)

Moreover, if M2
Li: := maxx∈X,πi:∈Πi:

{
E[‖Li(x;πi:(ξi:))‖2]

}
then their variances satisfy

E
[
‖πt+1
i: (ξji:)− π

t+1
i: ‖

2|πt+1
i:

]
≤ σ2

πi: :=
∑k
r=iM

2
Πi:r−1

σ2
πrM

2
Πr+1:

,

E
[
‖Li(xt;πt+1

i: (ξji:))− Li(x
t;πt+1

i:)‖2|πt+1
i:

]
≤ σ2
Li :=

∑k
r=iM

2
Πi:r−1

(6σ2
πrM

2
Lr+1:

+ 4σ2
fr

).

Proof Firstly, we use backward induction on layer indices to show the expectation result. Let P (i) denote the

following statement about unbiasedness for layer i:

E[πt+1
i: (ξji:)|π

t+1
i:] = πt+1

i: , and E[Li(xt;πt+1
i: (ξji:))|π

t+1
i:] = Li(xt;πt+1

i:), ∀j < i.

20

Clearly, the definition of DSOi implies that P (k) holds. Now assume that P (i+1) is true for some 1 ≤ i ≤ k−1.

Because πt+1
i (ξi) depends only on πt+1

i , πt+1
i (ξi) is d-separated from {πt+1

l (ξjl), f∗l (πt+1
l , ξjl)}l>i conditioned on

πt+1
i . So,

E[πt+1
i: (ξji:)|π

t+1
i:] = E[πt+1

i (ξji)|πt+1
i:]E[πt+1

i+1:(ξ
j
i+1:)|π

t+1
i:] = πt+1

i E[πt+1
i+1:(ξ

j
i+1:)|π

t+1
i:],

and

E[Li(xt;πt+1
i: (ξji:))|π

t+1
i:] = πt+1

i E[Li+1(xt;πt+1
i+1:(ξ

j
i+1:))|π

t+1
i:]− f∗i (πt+1

i).

Moreover, since j < i, the estimators {πt+1
l (ξjl), f∗l (πt+1

l , ξjl)}l>i are used neither directly nor indirectly in

generating πt+1
i . So πt+1

i is independent of both πt+1
i+1:(ξ

j
i+1:) and Li+1(xt;πt+1

i+1:(ξ
j
i+1:)) conditioned on πt+1

i+1:.

Thus

E[πt+1
i+1:(ξ

j
i+1:)|π

t+1
i:] = E[πt+1

i+1:(ξ
j
i+1:)|π

t+1
i+1:] = πt+1

i+1:,

E[Li+1(xt;πt+1
i+1:(ξ

j
i+1:))|π

t+1
i:] = E[Li+1(xt;πt+1

i+1:(ξ
j
i+1:))|π

t+1
i+1:] = Li+1(xt;πt+1

i+1:),

where the second equalities in both relations follow from the induction hypothesis, P (i+ 1). In view of the above

two observations, we can conclude that P (i) is true if P (i+ 1) is true. Thus P (j) holds for all 1 ≤ j ≤ k.

Now we turn our attention to the variance bounds. The next decomposition follows from the definition of

nested Lagrangian:

Li(xt;πt+1
i: (ξji:))− Li(x

t;πt+1
i:)

= Li(xt;πt+1
i (ξi), π

t+1
i+1:(ξi+1:))− [πt+1

i Li+1(xt;πt+1
i+1:(ξ

j
i+1:))− f

∗
i (πt+1

i)]

+ πt+1
i [Li+1(xt;πt+1

i+1:(ξ
j
i+1:))− Li+1(xt;πt+1

i+1:)]

= (πt+1
i (ξi)− π

t+1
i)Li+1(xt;πt+1

i+1:(ξ
j
i+1:))− (f∗i (πt+1

i , ξji)− f∗i (πt+1
i))

+ πt+1
i [Li+1(xt;πt+1

i+1:(ξ
j
i+1:))− Li+1(xt;πt+1

i+1:)].

Moreover, since both πt+1
i (ξi) − π

t+1
i and f∗i (πt+1

i , ξji) − f∗i (πt+1
i) are uncorrelated with Li+1(xt;πt+1

i+1:(ξ
j
i+1:))

conditioned on πt+1
i , we have

E[‖Li(xt;πt+1
i: (ξji:))− Li(x

t;πt+1
i:)‖2|πt+1

i:] (3.16)

= E[‖(πt+1
i (ξi)− π

t+1
i)Li+1(xt;πt+1

i+1:(ξ
j
i+1:))− (f∗i (πt+1

i , ξji)− f∗i (πt+1
i))‖2|πt+1

i:] (3.17)

+ E[‖πt+1
i [Li+1(xt;πt+1

i+1:(ξ
j
i+1:))− Li+1(xt;πt+1

i+1:)]‖
2|πt+1

i:]. (3.18)

The variance assumption for SOi and the conditional independence relationships imply that

E[‖(πt+1
i (ξi)− π

t+1
i)Li+1(xt;πt+1

i+1:(ξ
j
i+1:))‖

2||πt+1
i:] ≤ σ2

πiM
2
Li+1:

.

Because f∗i (πt+1
i , ξji) := f ′i(y

t
i
, ξji)yt

i
− fi(yti, ξ

j
i) for some yt

i
with E[‖yt

i
‖2] ≤M2

Li+1:
, we have

E[‖f∗i (πt+1
i , ξji)− f∗i (πt+1

i)‖2|πt+1
i:]

= E[‖(πt+1
i (ξji)− πt+1

i)yt+1
i
− (fi(y

t+1
i

, ξji)− fi(yt+1
i

))‖2|πt+1
i:]

≤ 2σ2
πiM

2
Li+1:

+ 2σ2
fi .

So it follows from the algebraic identity ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 that

(3.17) ≤ 4σ2
fi + 6σ2

πiM
2
Li+1:

. (3.19)

In addition, since j < i, πt+1
i is independent of Li+1(xt;πt+1

i+1:(ξ
j
i+1:)) conditional on πt+1

i+1:, (3.18) can be simplified

to

(3.18) ≤M2
ΠiE[‖Li+1(xt;πt+1

i+1:(ξ
j
i+1:))− Li+1(xt;πt+1

i+1:)‖
2|πt+1

i , πt+1
i+1:]

≤M2
ΠiE[‖Li+1(xt;πt+1

i+1:(ξ
j
i+1:))− Li+1(xt;πt+1

i+1:)‖
2|πt+1

i+1:].
(3.20)

So we can substitute (3.19) and (3.20) into (3.16) to obtain

E[‖Li(xt;πt+1
i: (ξji:))− Li(x

t;πt+1
i:)‖2|πt+1

i:] ≤

21

4σ2
fi + 6σ2

πiM
2
Li+1:

+M2
Πi E[‖Li+1(xt;πt+1

i+1:(ξ
j
i+1:))− Li+1(xt;πt+1

i+1:)‖
2|πt+1

i+1:︸ ︷︷ ︸
A

].

Notice that A is the same as right-hand-side of the above inequality except for changing the index from i to i+1.

So the desired bound on E[‖Li(xt;πt+1
i: (ξji:)) − Li(x

t;πt+1
i:)‖2|πt+1

i:] follows from applying the above inequality

recursively.

Finally, the bound for E[‖πt+1
i: (ξji:)− π

t+1
i: ‖

2|πt+1
i:] can be derived in a similar fashion.

4 Modular πi-Updates and Qi-Bounds

In this section, we provide the πi-updates for Algorithm 3 in more details and develop the associated Qi con-

vergence bounds. Obviously, for a given fi, the update depends on its function class (affine, smooth, smoothable

or non-smooth), its oracle type (deterministic or stochastic) and other composing layers. But the dependence on

other layer functions is quite weak. In particular, the πi-update only needs to know whether the argument ȳt+1
i

is exact, i.e., no stochastic estimators are involved in its construction (e.g., xt in the π2-update of Algorithm 1)

or noisy, i.e., stochastic estimators are involved (e.g., L2(xt;πt+1
2 (ξ1

2)) in the π1-update of Algorithm 1). Thus

it suffices to propose a modular πi-update for every type of function, oracle and argument. Moreover, since the

Qi convergence analysis focuses only on the (implicit) dual iterates {πti} rather than their stochastic estimators,

a stochastic fi should have the same Qi bound as the deterministic fi. So we develop a separate Qi-bound only

for every function class and every argument type.

The convergence bounds on Qi is based on the decomposition in (c.f. (3.13)),

Qi(z
t+1, z) = Ati + T ti + Cti + δti +∆tπi +∆tx,i,

and the three point inequality (2.20),

Ati ≤ τ
t
i πpVi(π

t
i , πi)− τ

t
i πpVi(π

t
i , π

t+1
i)− (τ ti + αf∗i)πpVi(π

t+1
i , πi), (4.1)

where αf∗i is the strong convexity modulus of f∗i with respect to Vi. Essentially, we will fix wt := (t + 1)/2

and θt := (t)/(t + 1) and use the terms from (4.1) to cancel all but ∆tx,i and δti in Qi to obtain bounds for

E[
∑N−1
t=0 wtQi(z

t+1, z)] for all z := (x∗;π1, π2, . . . , πk) where (π1, π2, . . . , πk) can depend on {zt}.
Now we define a few constants that will become handy. Recall the compact notation (3.9) for Qi:

Qi(z
t+1, z) := πp

(
(πi − πt+1

i)Lq(xt+1;πt+1
q)− (f∗i (πi)− f∗i (πt+1

i))
)
. (4.2)

We let Mp
´ denote an upper bound for ‖πp‖ for all possible reference points, let M2

q := M2
Πi+1

M2
Πi+2

. . .M2
Πk
≥

E[‖πt+1
q (ξiq)‖2] and let σ2

Lq := σ2
Li+1

≥ E[‖L(xt;πt+1
i+1:[i]−Li+1(xt;πt+1

i+1:)‖
2) (derived in Proposition 13). More-

over, we will group the stochastic terms that depend on x-prox update into STCi := E[
∑N−1
t=0 wt∆tx,i + δti] and

leave their discussion to Section 5.

4.1 Affine Layer Function

In this subsection, we consider the easiest affine layer function, fi(yi) := Aiyi + bi. Clearly, Πi is a singleton set,

{Ai}, and the subgradient (resp., estimator) returned by the (stochastic) oracle is Ai (resp., Ai(ξi)). So regardless

of the Bregman’s distance Vi, the stepsize τ ti and the argument ȳt+1
i , the proximal update

πt+1
i ∈ arg min

πi∈Πi
−πiȳt+1

i + f∗i (πi) + τ ti Vi(π
t
i , πi)

always returns Ai. More specifically, given a ȳt+1
i , the jth element of {[πt+1

i (ξji), f∗i (πt+1
i , ξji)]}, returned by Line

7 in Algorithm 3, is:

1. [Ai(ξ
j
i), fi(ȳ

t+1
i , ξji)−Ai(ξji)ȳt+1

i] if fi has a stochastic oracle,

2. [Ai, fi(ȳ
t+1
i)−Aiȳt+1

i] if fi has a deterministic oracle.

As for the bound on Qi, notice that πt+1
i − πi = 0 for any feasible πi, thus Qi(z

t+1, z) is always zero. This

observation leads to the following Qi convergence bound.

Proposition 14 If fi is affine, then the solution sequence {zt := (xt;πt1, π
t
2, . . . , π

t
k)} generated by Algorithm 3

satisfies

E[
∑N−1
t=0 wtQi(z

t+1, z)] = 0. (4.3)

´ While MΠ1MΠ2 . . .MΠi−1
gives such an upper bound, Mp is usually much smaller, especially when we have some

rough idea about the location of the reference point.

22

4.2 Smooth Layer Function

In this subsection, we consider the smooth layer function fi such that ‖f ′i(yi)− f
′
i(ȳi)‖

µ ≤ Lfi‖yi− ȳi‖, ∀yi, ȳi ∈
Rmi . A direct computation of the corresponding πi-proximal update is not always possible because f∗i may not

be known or simple. So we use Df∗i as the proximity penalty function to implement an implicit proximal update

from an associated πti :

πt+1
i ∈ arg min

πi∈Πi
−πiȳt+1

i + f∗i (πi) + τ tiDf∗i (πti , πi).

More specifically, given a πti = f ′i(y
t
i
) and a proximal update argument ȳt+1

i , πt+1
i is associated with yt+1

i
:=

(τ ti y
t
i

+ ȳt+1
i)/(1 + τ ti) and the j-th element of {[πt+1

i (ξji), f∗i (πt+1
i , ξji)]}, returned by Line 7 in Algorithm 3, is

1. [f ′i(y
t+1
i

, ξji), fi(y
t+1
i

, ξji)− f ′i(y
t+1
i

, ξji)ȳt+1
i] if fi has a stochastic oracle,

2. [f ′i(y
t+1
i

), fi(ȳ
t+1
i)− f ′i(y

t+1
i

)ȳt+1
i] if fi has a deterministic oracle.

In order to develop the Qi convergence bound, we need to show a technical result for the strong convexity

modulus of the multi-dimensional Bregman’s distance function Df∗i .

Proposition 15 Let an m-dimensional vector function g be Lg-smooth , i.e., ‖g′(y) − g′(ȳ)‖¶ ≤ Lg‖y − ȳ‖
and let g∗ and Dg∗ denote its (component-wise) conjugate function and (component-wise) conjugate Bregman’s

distance function. Then given an m-dimensional non-negative weight vector w, we have

‖w‖w>Dg∗(π̄, π) ≥ ‖w
>(π̄ − π)‖2

2Lg
(4.4)

for any associated π̄ and π. In particular, if fi is Lfi -smooth, then the dual solutions {πti} generated by Algorithm 3

satisfy

‖πp‖πpVi(πti , π
t+1
i) ≥

‖πp(πt+1
i − πti)‖

2

2Lfi
. (4.5)

Proof First, if w = 0, (4.4) is clearly true. Now, assume w 6= 0. The definition of operator norm implies

‖u>(g′(y)− g′(ȳ))‖ ≤ Lg‖y − ȳ‖ ∀u with ‖u‖ = 1.

So the one-dimensional guw (y) := u>wg(y) with uw := w
‖w‖ is Lg-Lipschitz smooth and its Fenchel conjugate g∗uw

is 1/Lg strongly convex. More specifically, since g′uw (y) = u>wg
′(y), we have

g∗uw (u>wπ)− g∗uw (u>w π̄)− u>w(π − π̄)ȳ ≥ 1

2Lg
‖u>w(π − π̄)‖2, if π̄ = g′(ȳ) , i.e., u>w π̄ = g′uw (ȳ).

Thus the key to showing (4.4) is to relate g∗uw (u>wπ) with u>wg
∗(π) on associated π’s.

Those two quantities are quite different in general. In g∗uw (u>w π̄) := maxy u
>
w π̄y− guw (y), we can choose only

one overall maximizer, y∗, but in u>wg
∗(π) =

∑
j uw,j maxyj π̄jyj−gj(yj), multiple maximizers y∗j can be selected

for every π̄j . So we always have g∗uw (u>wπ) ≤ u>wg
∗(π). However, for associated π, all those y∗j s are the same.

More specifically, let π = g′(y∗), i.e., πj = g′j(y
∗). Then the conjugate duality implies that g∗(π) = πy∗ − g(y∗),

so

g∗uw (u>wπ) := max
ȳ

u>wπȳ − guw (ȳ) ≥ u>w(πy∗ − g(y∗)) = u>wg
∗(π).

Therefore, g∗uw (u>wπ) = u>wg
∗(π) holds for all associated π’s. If π̄ = g′(ȳ) and π = g′(y), we have

u>wDg∗(π̄, π) = u>wg
∗(π)− u>wg∗(π̄)− u>w(π − π̄)ȳ

= g∗uw (uwπ)− g∗uw (uwπ̄)− u>w(π − π̄)ȳ ≥ 1

2Lg
‖u>w(π − π̄)‖2.

Then (4.4) follows from multiplying both sides of the above inequality by ‖w‖2. In addition, for smooth functions

fi, the dual solutions {πti} are always associated with yt
i
, since they are produced by implicit proximal updates.

So (4.5) follows immediately.

Now we are ready for the convergence bounds on Qi. First, we consider the general case with noisy arguments.

µ l2 operator norm.
¶ l2 operator norm.

23

Proposition 16 Let fi be Lfi -smooth with a noisy argument. If solutions {zt := (xt;πt1, . . . , π
t
k)} are generated

by Algorithm 3 with τ ti = t+1
6 + t

4 , then

E[
∑N−1
t=0 wtQi(z

t+1, z)] ≤ 1
6MpD2

Πi + 3N
2 MpLfiσ

2
Lq + E[

∑N−1
t=0

2wt

t+1 L̃fi‖x
t+1 − xt‖2]

+ STCi,
(4.6)

where D2
Πi := E[‖Df∗i (π0

i , πi)‖], L̃fi := MpLfiM
2
q and STCi := E[

∑N−1
t=0 wtδti +∆tx,i].

Proof Since f∗i is 1-strongly convex with respect to Df∗i , πt+1
i satisfies the following three point inequality (2.20):

Ati ≤ τ
t
i πpDf∗i (πti , πi)− τ

t
i πpDf∗i (πti , π

t+1
i)− (τ ti + 1)πpDf∗i (πt+1

i , πi). (4.7)

So the wt-weighted sum of Ati admits a telescopic cancellation:

E[
∑N−1
t=0 wtAti] ≤ w0τ

0
i (πpDf∗i (π0

i , πi)︸ ︷︷ ︸
≤MpD2

Πi

−wN−1(τN−1
i + 1)E[πpDf∗i (πNi , πi)]− E[

∑N−1
t=0 wtτ ti πpDf∗i (πti , π

t+1
i)].

(4.8)

We are going to use the negative terms in the above inequality to cancel T ti , Cti and ∆tπi in Qi (see (3.13)).

Firstly, observe that
∑N−1
t=0 wtT ti admits a telescopic cancellation and the remaining terms can be handled

by Df∗i (πNi , πi):

E[
∑N−1
t=0 wtT ti − w

N−1(τN−1
i + 1)Df∗i (πNi , πi)]

≤ E[−wN−1πp(πNi − πi)π
N
q (ξiq)(x

N − xN−1)− NwN−1

4 πpDf∗i (πNi , πi)]

(a)
≤ 2wN−1

N MpLfiE[‖πNq (ξiq)(x
N − xN−1)‖2]

(b)
= 2wN−1

N MpLfiE
[
E[‖πNq (ξiq)‖2|πNq]E[‖xN − xN−1‖2|πNq]

]
(c)
≤ 2wN−1

N E[MpLfiM
2
q ‖xN − xN−1‖2] = E[2wN−1

N L̃fi‖x
N − xN−1‖2],

(4.9)

where (a) follows from MpLfiπpDf∗i (πNi , πi) ≥ 1
2‖πp(πi − πNi)‖2 by Proposition 15 and the Young’s inequality,

(b) follows from the conditional independence between πNq (ξiq) and xN , and (c) follows from the definition of Mq.

Secondly, Cti can be canceled by
∑N−1
t=0

twt

4 Df∗i (πti , π
t+1
i) in similar fashion:

E[
∑N−1
t=0 wt

(
Cti − t

4πpDf∗i (πti , π
t+1
i)

)
]

= E[
∑N−1
t=0 wt(θtπp(πt+1

i − πti)π
t
q(ξ

i
q)(x

t − xt−1)− twt

4 πpDf∗i (πti , π
t+1
i))]

(b)
≤ E[

∑N−1
t=1

twt(θt)2

2 MpLfiM
2
q ‖xt − xt−1‖2) ≤ E[

∑N−1
t=1

2wt−1

t L̃fi‖x
t − xt−1‖2],

(4.10)

where (b) follows from x0 = x−1.

Furthermore the stochastic error ∆tπi due to noisy arguments can be canceled by the remaining term∑N−1
t=0 wt t+1

6 πpDf∗i (πti , π
t+1
i):

E[
∑N−1
t=0 wt(∆tπi −

t+1
6 Df∗i (πti , π

t+1
i))]

= E[
∑N−1
t=0 wt((πp(πt+1

i − πti)(L(πt+1
q (ξiq), x

t)− L(πt+1
q , xt))− t+1

6 πpDf∗i (πti , π
t+1
i))]

≤
∑N−1
t=0 wt 6

t+1
1
2MpLfiσ

2
Lq = 3N

2 MpLfiσ
2
Lq .

(4.11)

The desired convergence bound (4.6) then follows from substituting (4.8), (4.9), (4.10) and (4.11) into

E[
∑N−1
t=0 wtQi(z

t+1, z)].

Clearly, in the easier case with exact arguments, only a slight modification to the above analysis is needed to

develop the Qi bound. In fact, since ∆tπi = 0, we can set τ ti = t/2 to obtain a simpler bound, as illustrated in

the next corollary.

Corollary 1 Let fi be Lfi -smooth with an exact argument. If solutions {zt := (xt;πt1, . . . , π
t
k)} are generated by

Algorithm 3 with τ ti = t
2 , then

E[
∑N−1
t=0 wtQi(z

t+1, z)] ≤ E[
∑N−1
t=0

wt

t+1 L̃fi‖x
t+1 − xt‖2], (4.12)

where D2
Πi := E[‖Df∗i (π0

i , πi)‖] and L̃fi := MpLfiM
2
q .

24

4.3 Smoothable Layer Function

Now we move on to smoothable layer functions. Nesterov [17] shows that a one-dimensional function g is smooth-

able if it can be expressed as g(y) ≡ maxπ∈Π πy− g∗(y) for some known and simple g∗, i.e., the proximal update

π+ ∈ arg maxπ∈Π πy − g∗(y) − τ
2 ‖π − π

−‖2 can be computed efficiently for any y, π− ∈ Π and τ ≥ 0. We

call the multi-dimensional layer function fi smoothable if all its components, fi,j , are smoothable. Note that

such a structural assumption is stronger than the first-order oracle assumption because both the value and the

subgradient of fi at any given ȳi can be computed by solving

arg max
πi,j∈Πi,j

πi,jyi − f∗i,j(πi,j)− (0)‖πi,j − π̄i,j‖2.

More specifically, to implement the proximal update in Line 7 of Algorithm 3,

πt+1
i ∈ arg min

πi∈Πi
−πiȳt+1

i + f∗i (πi) + τ ti Vi(π
t
i , πi),

we set Vi(π̄i, πi) :=
√
mi−1/2

[
‖πi,1 − π̄i,1‖2, ‖πi,2 − π̄i,2‖2 . . . , ‖πi,mi−1

− π̄i,mi−1
‖2
]

such that each row of πt+1
i

is computed by

πt+1
i,j ∈ arg min

πi,j∈Πi,j
−πi,j ȳt+1

i + f∗i,j(πi,j) +
τti
2 ‖π

t
i,j − πi,j‖

2.

Then the l-th element of the estimate {[πt+1
i (ξli), f

∗
i (πt+1

i , ξli)]}
i−1
l=0 is given by the exact value [πt+1

i , f∗i (πt+1
i)].

Similar to the preceding subsection, we need to determine the strong convexity modulus of πpVi(·, ·) to derive

the convergence bound on Qi. The next proposition finds such a constant.

Proposition 17 If fi : Rmi → Rmi−1 is smoothable and Vi,j(πi,j , π̄i,j) = 1
2‖πi,j − π̄i,j‖

2, then

‖πp‖πpVi(πti , π
t+1
i) ≥

‖πp(πt+1
i − πti)‖

2

2
.

Proof If πp is zero, then the desired inequality clearly holds. Now assume that πp 6= 0 and let uw :=
πp
‖πp‖1 .

Assumption 2 implies that uw is a non-negative weight vector that sums up to one. Therefore we conclude from

Jensen’s inequality that

uwVi(πi, π̄i)/
√
mi−1 =

ni∑
j=1

uw,i
1
2‖πi,j − π̄i,j‖

2 ≥ 1
2‖

ni∑
j=1

uw,j(πi,j − π̄i,j)‖2 =
‖uw(πt+1

i − πti)‖
2

2
.

The desired inequality then follows from multiplying both sides with ‖πp‖21 and noticing ‖πp‖1 ≤
√
mi−1‖πp‖2.

Now we are ready to show the convergence bounds on Qi. One difference from the smooth layer exists in

that f∗i is no longer strongly convex with respect to Vi, so these bounds have worse dependencies on N . In

the following proposition, two separate Qi bounds are proposed for the general convex NSCO problem and the

strongly convex NSCO problem respectively.

Proposition 18 Let fi be smoothable and let its argument be noisy. If STCi := E[
∑N−1
t=0 wt(δti + ∆tx,i)] ,

D2
Πi := maxπi,π̄i∈Πi‖Vi(πi, π̄i)‖ and D̃Πi := MpDΠiMq, then the solution sequence {zt := (xt;πt1, π

t
2, . . . , π

t
k)}

generated by Algorithm 3 satisfies the following bounds.

a) If τ ti =
σLq
√
N+1

2DΠi
+
DXMq

DΠi
, then

E[
∑N−1
t=0 wtQ(zt+1, z)] ≤ N

√
N+1
2 MpDΠiσLq + N

2 D̃ΠiDX +
∑N−1
t=0

wt

2
D̃Πi
DX ‖x

t+1 − xt‖2 + STCi. (4.13)

b) If τ ti =
σLq
√
N+1

2DΠi
+ 2

(t+1)c
MpM

2
q for some c > 0, then

E[
∑N−1
t=0 wtQ(zt+1, z)] ≤ N

√
N+1
2 MpDΠiσLq + 2

c D̃
2
Πi +

∑N−1
t=0

c(t+1)wt

4 ‖xt+1 − xt‖2 + STCi. (4.14)

25

Proof The three point inequality (2.20) becomes

wtAti ≤ w
tτ ti πpVi(π

t
i , πi)− w

tτ ti πpVi(π
t
i , π

t+1
i)− wtτ ti πpVi(π

t+1
i , πi). (4.15)

Compared with the increasing stepsizes τ ti used in Proposition 16, we have to keep τ ti almost constant, leading to

a faster accumulation of errors. Moreover, we use different weighted temporal sums of {‖xt− xt+1‖2} to develop

bounds; in a) each ‖xt − xt+1‖2 is multiplied by wt, while in b) each ‖xt − xt+1‖2 is multiplied by a rapidly

increasing wt(t + 1)/2. But the resulting
∑N−1
t=0 wt(t + 1)/2‖xt − xt+1‖2 can be compensated by an increasing

ηt, so b) is useful for improving convergence rates in strongly convex problems.

Now we show a). Since wtτ ti is monotonically non-decreasing, the telescoping sum of (4.15) satisfies∑N−1
t=0 wtAti

≤
[
w0τ

0
i MpVi(π

0
i , πi) +

∑N−1
t=1 (wtτ ti − w

t−1τ t−1
i)πpVi(π

t
i , πi)

]
− wN−1τN−1

i πpVi(π
N
i , πi)

−
∑N−1
t=0 wtτ ti πpVi(π

t
i , π

t+1
i)

≤wN−1τN−1
i MpD2

Πi − w
N−1τN−1

i πpVi(π
N
i , πi)−

∑N−1
t=0 wtτ ti πpVi(π

t
i , π

t+1
i)

=N
√
N+1
4 MpDΠiσLq + N

2 D̃ΠiDX −
∑N−1
t=0 wtτ ti πpVi(π

t
i , π

t+1
i)− wN−1τN−1

i πpVi(π
N
i , πi).

(4.16)

The negative terms in concluding inequality above will be used to cancel out Cti , ∆
t
πi and T ti . In particular, we

split τ ti into components according to their roles in handling Cti and ∆tπi :

τ ti,σ =
σLq
√
N+1

2DΠi
, τ ti,π =

DXMq

DΠi
.

First, T ti admits a telescopic cancellation and the remainder can be canceled by wN−1τN−1
i,π πpVi(π

N
i , πi):

E[
∑N−1
t=0 wtT ti − w

N−1τN−1
i,π πpVi(π

N
i , πi)]

= E[−wN−1πp(πNi − πi)π
N
q (ξiq)(x

N − xN−1)− wN−1τN−1
i,π πpVi(π

N
i , πi)]

(a)
≤ wN−1

2
MpDΠiMq

DX E[‖xN − xN−1‖2] = wN−1

2
D̃Πi
DX E[‖xN − xN−1‖2],

(4.17)

where (a) follows from −πp(πNi − πi)π
N
q (ξiq)(x

N − xN−1) ≤ ‖πp(πNi − πi)‖‖πNq (ξiq)‖‖xN − xN−1‖,
MpπpVi(π

N
i , πi) ≥ 1

2‖πp(πi − πNi)‖2 in Proposition 17, the Young’s inequality and the conditional indepen-

dence between xN and πNq (ξiq). As for Cti , we have

E[
∑N−1
t=0 wt(Cti − τ

t
i,πVi(π

t
i , π

t+1
i))] ≤

∑N−1
t=0 wt(θt)2 D̃Πi

DX E[1
2‖x

t − xt−1‖2]

(b)
≤
∑N−2
t=0

wt

2
D̃Πi
DX E[‖xt − xt+1‖2],

(4.18)

where (b) follows from the relation wtθt = wt−1 and θt−1 ≤ 1.

Furthermore, since E[‖L(πt+1
q (ξi), x

t)− L(πt+1
q , xt)‖2] ≤ σ2

Lq , we obtain

E[
∑N−1
t=0 ∆tπi − w

tτ ti,σπpVi(π
t
i , π

t+1
i)]

≤
∑N−1
t=0 wtE[‖πp(πt+1

i − πti)‖‖L(πt+1
q (ξi), x

t)− L(πt+1
q , xt)‖ − wtτ ti,σ 1

Mp

1
2‖πp(πt+1

i − πti)‖
2]

≤
∑N−1
t=0 wt

MpDΠiσLq√
N+1

= N
√
N+1
4 MpDΠiσLq .

(4.19)

Thus the desired inequality (4.13) follows from substituting (4.15), (4.16), (4.17), (4.18) and (4.19) into

E[
∑N−1
t=0 wtQi(z

t+1, z)) ≤ E[
∑N−1
t=0 wt(Ati + T ti + Cti +∆tπi +∆tx,i + δti)].

In addition, the bound in (4.14) can be derived similarly, but with τ ti,π = 2
(t+1)c

MpM
2
q .

For the simpler exact arguments case, the next result is an immediate corollary.

Corollary 2 Let fi be smoothable with exact arguments. If D2
Πi := maxπi,π̄i∈Πi‖Vi(πi, π̄i)‖ and D̃Πi :=

MpDΠiMq, then the solution sequence {zt := (xt;πt1, π
t
2, . . . , π

t
k)} generated by Algorithm 3 satisfies the fol-

lowing bounds.

26

a) If τ ti =
DXMq

DΠi
, then

E[
∑N−1
t=0 wtQi(z

t+1, z)] ≤ N
2 D̃ΠiDX +

∑N−1
t=0

wt

4
D̃Πi
DX E[‖xt+1 − xt‖2]. (4.20)

b) If τ ti = 2
(t+1)c

MpM
2
q for some c > 0, then

E[
∑N−1
t=0 wtQi(z

t+1, z)] ≤ 2
c D̃

2
Πi +

∑N−1
t=0

(t+1)c
4 wtE[‖xt+1 − xt‖2]. (4.21)

4.4 Non-smooth Layer Function

Now we study the non-smooth layer function fi. Since f∗i is not accessible explicitly, we choose Df∗i as the

proximity penalty function to implement the implicit proximal update from an associated πti . So other than

different stepsizes τ ti , the πt+1
i update rule is exactly the same as that for smooth layer functions.

The non-smooth layer function is nearly the most general convex function in that it only needs to be Lipschitz

continuous. So it is tempting to treat every layer function as non-smooth for simplicity. However, this does not

work because we need a rather strong assumption for the non-smooth layer function to ensure the convergence

of Algorithm 3.

Assumption 4 If fi is non-smooth, then its argument is exact, i.e., the inner layer functions fi+1, fi+2, . . . , fk
are all deterministic functions.

This assumption can be explained in view of the decomposition of Qi in (3.13). Just like the smooth layer function,

the proximal update πt+1
i satisfies

Ati ≤ τ
t
i πpDf∗i (πti , πi)− τ

t
i πpDf∗i (πti , π

t+1
i)− (τ ti + 1)πpDf∗i (πt+1

i , πi). (4.22)

But the Bregman’s distance Df∗i associated with the non-smooth fi is not necessarily strongly convex, so the

stochastic error ∆tπi from a noisy argument can not be canceled in our framework. Indeed, it appears that such

an assumption is often implicitly used in the literature. For example, in [22] and [24], the authors only consider

problems where the innermost layer function fk can be non-smooth. Since the argument x to fk is always exact,

those problems satisfy Assumption 4 automatically.

Since Df∗i cannot help us to cancel any terms, we might as well set the penalty parameter τ ti to zero. This

way of specifying stepsizes leads us to the following convergence result.

Proposition 19 Let fi be MΠi -Lipschitz continuous with exact argument. If M̃Πi := MpMΠiMq, then the

solution sequence {zt := (xt;πt1, π
t
2, . . . , π

t
k)} generated by Algorithm 3 with τ ti = 0 satisfies the following bounds.∑N−1

t=0 wtQi(z
t+1, z) ≤ N

√
N+1
2 M̃ΠiDX +

∑N−1
t=0

wt
√
N+1
2

M̃Πi
DX ‖x

t+1 − xt‖2, (4.23)∑N−1
t=0 wtQi(z

t+1, z) ≤ 2N
c M̃

2
Πi +

∑N−1
t=0

c(t+1)wt

4 ‖xt+1 − xt‖2, ∀c > 0. (4.24)

Proof Notice that τ ti := 0 and (4.22) imply

Ati ≤ 0 ∀t, and E[
∑N−1
t=0 wtAti] ≤ 0. (4.25)

We now derive (4.23) by using
∑N−1
t=0

wt
√
N+1
2

M̃Πi
DX ‖x

t+1− xt‖2 to cancel out Cti and T ti in (3.13). For T ti , after

the telescopic cancellation, the remaining term can be canceled by wN−1√N+1
2

M̃Πi
DX ‖x

N − xN−1‖2:∑N−1
t=0 wtT ti − wN−1√N+1

2
M̃Πi
DX ‖x

N − xN−1‖2

= −wN−1πp(πNi − πi)π
N
q (xN − xN−1)− wN−1√N+1

2
M̃Πi
DX ‖x

N − xN−1‖2

≤ wN−1 DX√
N+1M̃Πi

4M̃2
Πi

2 = 2wN−1
√
N+1

DXM̃Πi .

(4.26)

Then Cti can be handled by the unused
∑N−2
t=0

wt
√
N+1
2

M̃Πi
DX ‖x

t+1 − xt‖2 :∑N−1
t=0 wtCti −

∑N−2
t=0

wt
√
N+1
2

M̃Πi
DX ‖x

t+1 − xt‖2

=
∑N−1
t=1 wt−1(πp(πt+1

i − πti)π
t+1
q (xt − xt−1)− wt

√
N+1
2

M̃Πi
DX ‖x

t − xt−1‖2)

≤
∑N−2
t=0

2wt√
N+1
DXM̃Πi .

(4.27)

27

Substituting (4.25), (4.26) and (4.27) into
∑N−1
t=0 wtQi(z

t+1, z) and noting that
∑N−1
t=0

2wt√
N+1
DXM̃Πi =

1
2N
√
N + 1DXM̃Πi , we have (4.23). The derivation of bound (4.24) follows similarly except that∑N−1

t=0 wtT ti − cN
2 wN−1 1

2‖x
N − xN−1‖2 ≤ 2wN−1

cN

4M̃2
Πi

2 = 2
c M̃

2
Πi ,∑N−1

t=0 wtCti −
∑N−2
t=0

c(t+1)
2

wt

2 ‖x
t+1 − xt‖2 ≤ 2(N−1)

c M̃2
Πi .

4.5 Separable Mixture Layer Function

Starting from this subsection, we move on to layer functions constructed from other functions of different types,

referred to as sub-functions. Of course, one could ignore the mixture structure, assign the weakest type to the entire

function, and design an algorithm accordingly. But our SSD framework can exploit certain mixture structures to

obtain better convergence results. Two such structures will be analyzed over this and the next subsection.

In this subsection, we focus on separable mixture function fi where parts of the dual variable πi can be updated

independently according to the type of associated sub-functions. First, we consider the most straightforward

structure, output mixing, where the vector function fi can decomposed into sub-vector functions of different types.

In other words, the function fi, the dual variable πi and the conjugate function f∗i admit a row partitioning:

fi(yi) :=


fi,p1(yi)

fi,p2(yi)
...

fi,pL(yi)

·, πi :=


πi,p1
πi,p2

...

πi,pL

 , f∗i (πi) :=


f∗i,p1(πi,p1)

f∗i,p2(πi,p2)
...

f∗i,pL(πi,pL)

 .
So we can update each πi,pl using one of the update rules developed in the preceding subsections according to

the type of fi,pl . Now we develop the Qi convergence bound. If we separate the outer layers’ reference vector πp
accordingly, i.e., πp := [πp1 |πp2 | . . . |πpL], then the gap function Qi becomes separable,

Qi(z
t+1, z) =

L∑
l=1

Qi,l(z
t+1, z),

where

Qi,l(z
t+1, z) := πpl

(
(πi,pl − π

t+1
i,pl

)Lq(xt+1;πt+1
q)− [f∗pl(πi,pl)− f

∗
pl(π

t+1
i,pl

)]
)
.

As a consequence, the bounds for E[
∑N−1
t=0 wtQi,l(z

t+1, z)] are the same as those developed before; we just

have to replace the layer function constants, Mp, MΠi , Lfi , and DΠi , with the corresponding sub-function

constants, Mpl , MΠi,l , Lfi,l , andDΠi,l . Moreover, if there are affine sub-functions, we can relax the compositional

monotonicity in Assumption 2, πp ≥ 0, to requiring πi,pl ≥ 0 only for non-affine fi,pl .

Next, we consider the so-called separable input mixing, which means there exists some partitioning yi :=

[yi,q1 |yi,q2 | . . . |yi,qL] such that

fi(yi) =

L∑
l=1

fi,ql(yi,ql).

It is clear that both πi and f∗i allow decomposition as follows:

πi := [πi,q1 |πi,q2 | . . . |πi,qL], f∗i (πi) :=

L∑
l=1

f∗i,ql(πi,ql).

Thus the gap function Qi is also separable, Qi(z
t+1, z) =

∑L
l=1Qi,j(z

t+1, z), where

Qi,l(z
t+1, z) := πi

[
(πi,ql − π

t+1
i,ql

)Lql(x
t+1;πt+1

q)− [f∗ql(πi,pl)− f
∗
ql(π

t+1
i,pl

)]
]
.

Therefore, we can also update each πi,ql separately using the previous update rules according to the type of fi,ql .

Moreover, the bound on Qi is just the sum of individual convergence bounds on Qi,j .

· The Ξ (or [|]) notation merely represents that the non-overlapping sub-vector functions fi,p1 , fi,p2 , . . . , fi,pL (yi) cover
all components of fi, i.e. p1 ∪ p2 ∪ . . .∪ pL = 1, 2, 3, . . . ,mi−1. But it should not be interpreted as fi,pl being a consecutive
block of fi. This general subset notation will be used in the sequel for simplicity.

28

4.6 Semi-Smooth-Noisy Layer Function

We consider the semi-smooth function with a semi-noisy argument, i.e., there exists some partitioning of the

argument, yi := [yi,S|yi,N], such that yi,S is noisy and ∇yi,Sfi([yi,S|yi,N]) is Lfi,S -Lipschitz continuous with

respect to yi,S for any fixed yi,N , while yi,N is exact and ‖πi,N‖ ≤ MΠi,N for all {πi,N : [πi,S|πi,N] ∈ ∂fi(yi)}.
In other words, the dual variable πi and the input Lq(x;πq) can be separated into

πi = [πi,S|πi,N], Lq(x;πq) =

[
Lq,S(x;πq)

Lq,N (x;πq)

]
.

However, since we do not assume fi(yi) ≡ fi,S(yi,S) + fi,N (yi,N), the conjugate function is not separable and

separate proximal updates for πi,S and πi,N is not possible. Instead we update them jointly with the following

implicit proximal update,

πt+1
i ∈ arg min

πi∈Πi
−πiȳt+1

i + f∗i (πi) + τ tiDf∗i (πti , πi),

which has the same implementation as that of the smooth layer function in Subsection 4.2

Now we derive the convergence bounds of Qi. First, we need to determine the strong convexity modulus of

πpDf∗i (πti , π
t+1
i) with respect to ‖πp(πti,S − π

t+1
i,S)‖, which is found in the next proposition.

Proposition 20 Let the convex mapping g(yS, yN) be semi-smooth, i.e., ‖∇ySg(yS, yN) − ∇ySg(ȳS, yN)‖ ≤
LgS‖yS − ȳS‖ ∀yS, yN , ȳS. Then given a non-negative weight vector w, the following relation holds for any

π := (πN , πS) ∈ ∂g(y) and π̄ := (π̄N , π̄S) ∈ ∂g(ȳ):

‖w‖w>Dg∗(π̄, π) ≥ 1
2LgS

‖w>(πS − π̄S)‖2. (4.28)

Proof We first show (4.28) for a one-dimensional g.

Claim If the convex h : Rn → R is semi-smooth with constant LhS , then Dh∗(π̄, π) ≥ 1
2LhS

‖w(πS − π̄S)‖2 for

sub-gradients π̄ ∈ ∂h(ȳ), π ∈ h(y).

The following analysis is an extension of Lemma 5.8 in [13]. Let φ(y) := h(y) − h(ȳ) − 〈π̄, y − ȳ〉 and let φS(y)

denote ∇ySφ(y). Clearly, ‖φS(yN , yS)− φS(yN , ŷS)‖ ≤ LhS‖yS − ŷS‖. Moreover, since 0 ∈ ∂φ(ȳ), the convexity

of h implies that φ(ȳ) ≤ φ(ŷ)∀ŷ. Therefore,

φ(ȳ) ≤ φ(y − 1
LhS

[0, φS(y)])

= φ(y) +

∫ 1

0

〈φS(y − τ
LhS

[0, φS(y)]),− 1
LhS

φS(y)〉d(τ)

= φ(y)− 1
LhS
‖φS(y)‖2 +

∫ 1

0

〈φS(y − τ
LhS

[0, φS(y)])− φS(y),− 1
LhS

φS(y)〉d(τ)

≤ φ(y)− 1
LhS
‖φS(y)‖2 +

∫ 1

0

τ‖φS(y)‖‖ 1
LhS

φS(y)‖d(τ)

= φ(y)− 1
2LhS

‖φS(y)‖2.

Noting φ(ȳ) = 0, we have 1
2LhS

‖π̄S − πS‖2 ≤ φ(y) = Dh(ȳ, y) = Dh∗(π, π̄).

Next, the extension to multi-dimensional g is similar to that of Proposition 15.

Now we are ready to prove the Qi bounds.

Proposition 21 Let fi be a semi-smooth function with a partial smoothness constant of Lfi,S and a partial

Lipschitz constant of MΠi,N (for the non-smooth part). Moreover, let fi’s argument be semi-noisy with con-

stant M2
q,S := maxπq∈Πq E[‖πq,S(ξiq)‖2] and Mq,N := maxπq∈Πq‖πq,N‖. If L̃fi,S := MpLfi,sM

2
q,S , M̃Πi,N :=

MpM̃Πi,NMq,N and STCi := E(
∑N−1
t=0 wt(∆tx,i + δti)), then the solution sequence {zt := (xt;πt1, . . . , π

t
k)} gen-

erated by Algorithm 3 with τ ti := t+1
6 + t

4 satisfies

E[
∑N−1
t=0 wtQi(z

t+1, z)] ≤ 1
6MpD2

Πi + 3N
2 MpLfi,sσ

2
Lq +

∑N−1
t=0 (

2L̃fi,S
t+1 +

√
N+1M̃Πi,N

2DX)‖xt − xt+1‖2

+ N
√
N+1
2 M̃Πi,NDX + STCi.

(4.29)

E[
∑N−1
t=0 wtQi(z

t+1, z)] ≤ 1
6MpD2

Πi + 3N
2 MpLfi,sσ

2
Lq +

∑N−1
t=0 (

L̃fi,S
t+1 +

c(t+1)
4)‖xt − xt+1‖2

+ 2N
c M̃

2
Πi,N + STCi, ∀c > 0.

(4.30)

29

Proof Since

Qi(z
t+1, z) :=πp

[
(πi,S − πt+1

i,S)Lq,S(xt+1;πt+1
q) + (πi,N − πt+1

i,N)Lq,N (xt+1;πt+1
q)

]
− πp[f∗i (πi)− f∗i (πt+1

i)],

Ati :=πp

[
(πi,N − πt+1

i,N)ȳt+1
i,N + (πi,S − πt+1

i,S)ȳt+1
i,S − (f∗i (πi)− f∗i (πt+1

i))
]

≤τ ti πpDf∗i (πti , πi)− τ
t
i πpDf∗i (πti , π

t+1
i)− (τ ti + 1)πpDf∗i (πt+1

i , πi),

we can group the terms into those related to πi,S and πi,N respectively, i.e., Qi(z
t+1, z) = Ati + Qti,S + Qti,N ,

where

Qti,S := πp(πi,S − πt+1
i,S)

{
Lq,S(xt+1;πt+1

q)− [Lq,S(xt;πt+1
q (ξiq)) + θtπtq,S(ξiq)(x

t − xt−1)]
}
,

Qti,N := πp(πi,N − πt+1
i,N)

{
Lq,N (xt+1;πt+1

q)− [Lq,N (xt;πt+1
q (ξiq)) + θtπtq,N (ξiq)(x

t − xt−1)]
}
.

Clearly, they can be decomposed further into

Qti,S = Cti,S + T ti,S + δti,S +∆tπi,S +∆tx,i,S ,

Qti,N = Cti,N + T ti,N ,

where the individual error terms are defined in a similar fashion as those in (3.13). So we can just apply Propo-

sition 19 to bound E[
∑N−1
t=0 wtQti,N] and apply Proposition 16 and (4.28) to bound

E[
∑N−1
t=0 wt

(
Qti,S − τ

t
i πpDf∗i (πti , πi)− τ

t
i πpDf∗i (πti , π

t+1
i)− (τ ti + 1)πpDf∗i (πt+1

i , πi)
)
].

Then the desired convergence bound for Qi is simply the sum of the smooth bound (4.6) (with Lfi and Mq

replaced by Lfi,s and Mq,S) and the non-smooth bounds in (4.23) or (4.24) (with Mπ and Mq replaced by

MΠi,N and Mq,N).

We remark here that the above stepsizes τ ti are the same as those in Proposition 16, so the non-smooth part,

πi,N , is also updated using the smooth rule. Compared with the separable input mixing layer discussed in the

preceding subsection, the difference is that Df∗i , rather than Df∗i,S , appears in the convergence bounds (4.29)

and (4.30).

4.7 Summary of Modular Updates

For easy reference, we summarize all the convergence bounds on Qi into an abstract form,

E(
∑N−1
t=0 wtQi(z

t+1, z)) ≤ CSTi +
∑N−1
t=0 (Ht

i,− +Ht
i,+ +Ht

i,α)
(
wt

2 ‖x
t+1 − xt‖2

)
+ STCi, (4.31)

where the coefficient for wt

2 ‖x
t+1 − xt‖2 are split further into three categories: Ht

α if it is some multiple of
t+1

2 (useful for strongly convex problems), Ht
− if wtHt

− is monotonically non-increasing and Ht
+ if wtHt

+ is

monotonically non-decreasing. The detailed coefficients are shown in Table 3. Such an abstract representation

can simplify the derivation of the overall convergence rate in the next section.

5 Convergence Analysis

In this section, we study the convergence properties of Algorithm 3 by combining the preceding Qi bounds with

Q0 bounds from some x-updates. So we will reuse a few constants defined previously, including wt := (t+ 1)/2,

θt := (t)/(t + 1), the compact Qi, Mp, Mq and σLq notation associated with (4.2), and the noise bounds σ2
Li

and σ2
πi: defined in Proposition 13. Moreover, it is convenient to abstract away from the details about the layer

functions by summing up Qi in (4.31). More specifically, if we set Q1: :=
∑k
i=1Qi, then

E[
∑N−1
t=0 wtQ1:(z

t+1, z)] ≤ CST +
∑N−1
t=0

wt

2 (Ht
+ +Ht

α +Ht
−)‖xt+1 − xt‖2 + STC, (5.1)

where CST :=
∑k
i=1 CSTi, H

t
+ :=

∑k
i=1H

t
i,+, H

t
− :=

∑k
i=1H

t
i,−, H

t
α :=

∑k
i=1H

t
i,α, and STC :=

∑k
i=1 STCi.

30

Table 3: Summary of the Selection of Stepsizes and Bounds on E(
∑N−1
t=0 wtQi(z

t+1, z))

Arg Type Stepsize CSTi Ht
i,− Ht

i,+ Ht
i,α STCi?

Stochastic/Deterministic Affine

Exct (α > 0) 0
Nsy (α > 0) 0

Deterministic/Stochastic Smooth fi with L̃fi = MpLfiM
2
q

Exct (α > 0) t
2

2
t+1

L̃fi
Nsy (α > 0) t

4
+ t+1

6
1
6
MpD2

fi
+ 3

2
NMpLfiσ

2
Lq

4
t+1

L̃fi X

(Deterministic) Smoothable fi with D̃Πi = MpDΠiMq

Exct
DXMq
DΠi

N
2
D̃ΠiDX

D̃Πi
DX

Exct α > 0 2
(t+1)c

MpM2
q

2
c
D̃2
Πi

c(t+1)
2

Nsy
DXMq
DΠi

+

√
N+1σLq
2DΠi

N
2
D̃ΠiDX +

N
√
N+1MpDΠiσLq

2

D̃Πi
DX

X

Nsy α > 0
2MpM

2
q

(t+1)c
+

√
N+1σLq
2DΠi

2
c
D̃2
Πi

+
N
√
N+1MpDΠiσLq

2
c(t+1)

2
X

Deterministic/Stochastic Non-Smooth fi with M̃Πi = MpMΠiMq

Exct 0 N
√
N+1
2

M̃ΠiDX
√
N+1M̃Πi
DX

Exct α > 0 0 2N
c
M̃2
Πi

c(t+1)
2

Semi-Smooth/Semi-Nsy fi with L̃fi,S = MpLfi,sM
2
q,S , M̃Πi,N = MpMΠi,NMq,N .

Semi-Nsy t
4

+ t+1
6

1
6
MpD2

Πi
+ 3

2
NMpLfi,sσ

2
Lq

4
t+1

L̃fi,S X

+N
√
N+1
2

M̃Πi,NDX +

√
N+1M̃Πi,N
DX

Semi-Nsy t
4

+ t+1
6

1
6
MpD2

Πi
+ 3

2
NMpLfi,sσ

2
Lq

4
t+1

L̃fi,S X

α > 0 + 2N
c
M̃2
Πi,N

+
c(t+1)

2

E(
∑N−1
t=0 wtQi(z

t+1, z)) ≤ CSTi+
∑N−1
t=0

wt

2
(Ht

i,−+Ht
i,+ +Ht

i,α)‖xt+1−xt‖2 + STCi, with STCi := E(
∑N−1
t=0 wt(∆tx,i+ δti)).

In our analysis, we will make the distinction between deterministic problems, which only have deterministic

layer functions, and stochastic problems, which have at least one stochastic layer function, because the simpler

proofs for deterministic problems can serve as stepping stones for analyzing the more complicated stochastic

problems. Moreover, general convex problems (α = 0) and strongly convex problems (α > 0) will be considered

separately. Thus this section will have four subsections for deterministic convex problems, stochastic convex

problems, deterministic strongly convex problems and stochastic strongly convex problems, respectively. In each

subsection, we will develop a general convergence result using the abstract bound (5.1), and then illustrate it

with a concrete example.

5.1 Deterministic Convex Problems

We first consider the simplest case, the deterministic convex problem. The next convergence result follows from

choosing ηt := Ht
+ +Ht

−.

Theorem 3 If the solution sequence {zt := (xt;πt1, π
t
2, . . . , π

t
k)} is generated by Algorithm 3 with ηt := Ht

−+Ht
+

and τ ti s specified according to Table 3, then for any feasible z := (x∗;π1, . . . , πk),∑N−1
t=0 wtQ(zt+1, z) ≤ w0

2 H0
−‖x0 − x∗‖2 + wN−1HN−1

+ D2
X + CST. (5.2)

Moreover, if x̄N =
∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt with wt = (t+ 1)/2, then

f(x̄N)− f(x∗) ≤ 4
N(N+1)

CST + 1
N(N+1)

H0
−‖x0 − x∗‖2 + 2

N+1H
N−1
+ D2

X . (5.3)

Proof Since no stochastic estimators are used and α = 0, (5.1) can be simplified to∑N−1
t=0 wtQ1:(z

t+1, z) ≤ CST +
∑ wt

2 (Ht
+ +Ht

−)‖xt+1 − xt‖2, (5.4)

31

Layer Type Smooth Smoothable Non-smooth

Optimal Complexity O{
√
L̃fi
‖x0−x∗‖
√
ε

} O{
D̃ΠiDX

ε
} O{

M̃2
Πk
D2
X

ε2
}

Table 4: Optimal Iteration Complexity for One-layer Problem
(5.7)

and Q0 in (3.14) satisfies

wtQ0(zt+1, z) = wtAt0 ≤ 1
2

(
wtηt‖xt − x‖2 − wtηt‖xt+1 − x‖2 − wtηt‖xt+1 − xt‖2

)
.

Since wtHt
+ ≥ wt−1Ht−1

+ and wtHt
− ≤ wt−1Ht−1

− , the wt-weighted sum of {Q0(zt+1, z)} satisfies∑N−1
t=0 wtQ0(zt+1, z) ≤ w0

2 H0
−‖x0 − x∗‖2 + wN−1HN−1

+ D2
X −

∑ wt

2 (Ht
− +Ht

+)‖xt+1 − xt‖2.

Then adding the above inequality to (5.4), (5.2) follows immediately.

Next we can set z in (5.2) to ẑ := (x∗; π̂1, π̂2, . . . , π̂k) such that (5.3) is a direct consequence of Proposition 11.

We demonstrate the implication of the above result by applying Algorithm 3 to solve

min
x∈X
{f(x) := f1 ◦ f2 ◦ . . . ◦ fk(x) + u(x)}, (5.5)

where fk is non-smooth, a subset of the layer functions {fi}i∈P are smoothable and the remaining layer functions

{fi}i∈S are smooth. Clearly, Theorem 3 implies that Algorithm 3 has an iteration complexity of

O


√∑

i∈S L̃fi‖x0−x∗‖
√
ε

+
∑
i∈P D̃ΠiDX

ε +
M̃2
Πk
D2
X

ε2

 . (5.6)

In addition, (5.6) can be interpreted as the sum of optimal iteration complexities for solving the simplified

one-layer problems

min
x∈X

b>i fi(Aix+ ci) + 1
ku(x) ∀i ∈ [k], (5.7)

where bi and (Ai, ci) are some linearization of f1:i−1 and fi+1:. More specifically, if the layer function fi is smooth,

smoothable or non-smooth, then L̃fi , D̃Πi and M̃Πk (for fk) are the corresponding Lipschitz-smoothness constant,

dual radius and Lipschitz continuity constant for b>i fi(Aix+ ci), so the optimal iteration complexity for solving

it is shown in Table 4.

Moreover, if we ignore the layered composition structure in (5.5) and treat the entire function as non-

smooth, then the optimal iteration complexity is O{(MΠ1
MΠ2

. . .MΠk)2D2
X/ε

2}. But since ‖π̂1 . . . π̂k−1‖MΠk ≤
MpMΠk := M̃Πk ≤MΠ1

MΠ2
. . .MΠk for any feasible ẑ := (x∗; π̂1, π̂2, . . . , π̂k), the iteration complexity of Algo-

rithm 3 in (5.6) is never worse than that of the naive approach. Indeed, M̃Πk := MpMΠk is usually much smaller

than MΠ1
MΠ2

. . .MΠk . In addition, the complexiy bound in (5.6) also much weaker dependence on L̃fi , D̃Πi
(see [9] for relevant discussions). So the iteration complexity in (5.6) often improves over the naive approach.

5.2 Stochastic Convex Problems

Next, we move on to stochastic convex problems with α = 0. Clearly, both the primal gap function Q0 and the

aggregate gap function Q1: have additional stochastic error terms resulting from noisy arguments:

Q0(zt+1, z) ≤ At0 +∆tx,0 + δt0, (5.8)

E[
∑N−1
t=0 wtQ1:(z

t+1, z)] ≤ CST +
∑N−1
t=0 (Ht

+ +Ht
−)E

[
wt

2 ‖x
t+1 − xt‖2

]
+ E[

∑N−1
t=0 wt

∑k−1
i=1

(
δti +∆tx,i

)
].

(5.9)

Note that the last summation in (5.9) ends at k − 1 because the innermost layer fk always has exact argu-

ment. Moreover, since the solution sequence {zt := (xt;πt1, . . . , π
t
k)} generated by Algorithm 3 is stochastic,

the reference point z required by Proposition 11 for bounding functional optimality gap is a random vector,

32

ẑ := (x∗; π̂1, . . . , π̂k), where (π̂1, . . . , π̂k) is dependent on {zt}. Taken together, those extra stochastic terms

become:

δt :=
∑k−1
i=0 δ

t
i =

∑k−1
i=1 π̂p(π̂i − πti)[Lq(x

t;πt+1
q)− Lq(xt;πt+1

q (ξiq))] + (πt+1
1: − π

t+1
1: (ξ0

1:))(x
t − x), (5.10)

∆tx :=
∑k−1
i=0 ∆

t
x,i =

{
[
∑k−1
i=1 π̂p(π̂i − πt+1

i)(πt+1
q − πt+1

q (ξiq))] + [πt+1
1: − π

t+1
1: (ξ0

1:)]
}

(xt+1 − xt). (5.11)

Hence we need the following bounds on δt and ∆tx.

Lemma 3 Let the solution sequence {zt} be generated by Algorithm 3 and let ẑ be the random reference point.

If

σ̃∆ :=
∑k−1
i=1 MpMΠiσLq , σ̃

2
Π := 4

∑k−1
i=1 M

2
pM

2
Πiσ

2
πi+1:

≤
∑k
i=1(4i)M2

Π1:i−1
σ2
πiM

2
q , and wt := (t+ 1)/2,

then we have

E[‖[
∑k−1
i=1 π̂p(π̂i − πt+1

i)(πt+1
q − πt+1

q (ξiq))] + [πt+1
1: − π

t+1
1: (ξ0

1:)]‖2] ≤ kσ̃2
Π , (5.12)

E[
∑N−1
t=0 wtδt] ≤ (N + 1)

√
Nσ̃∆. (5.13)

Proof First, we show (5.12). Proposition 13 implies that ∀1 ≤ i ≤ k − 1

E[‖[π̂p(π̂i − πt+1
i)(πt+1

q − πt+1
q (ξiq))]‖2] ≤ 4M2

pM
2
ΠiE[‖πt+1

q − πt+1
q (ξiq)‖2]

≤ 4M2
pM

2
Πiσ

2
πi+1:

,

and that

E[‖πt+1
1: − π

t+1
1: (ξ0

1:)‖2] ≤ σ2
π1:
.

So in view of the algebraic fact ‖
∑k
i=1 ai‖

2 ≤ k‖ai‖2, we conclude (5.12) by summing up the above inequalities.

Next, we show (5.13). Clearly, E[δt0] := E[(πt+1
1: − πt+1

1: (ξ0
1:))(x

t − x∗)] = 0, so E[
∑N−1
t=0 wtδt0] = 0. As for

i ≥ 1, because

E[‖πti
(
Lq(xt;πt+1

q)− Lq(xt;πt+1
q (ξiq))

)
‖2] ≤M2

Πiσ
2
Lq , ‖w

tπ̂p‖ ≤ N
2 Mp,

E[‖
(
Lq(xt;πt+1

q)− Lq(xt;πt+1
q (ξiq))

)
‖2] ≤ σ2

Lq , ‖w
tπ̂pπ̂i‖ ≤ N

2 MpMΠi , ∀t ≤ N − 1,

Lemma 2 implies that

E[
∑N−1
t=0 wtδti]

= E[
∑N−1
t=0 wtπ̂pπ̂i(L(πt+1

q , xt)− L(πt+1
q (ξiq), x

t))] + E[
∑N−1
t=0 wtπ̂p(−πti)(L(πt+1

q , xt)− L(πt+1
q (ξiq), x

t))]

≤ N
√
N

2 (MpMΠiσLq +MpMΠiσLq)

= N
√
NMpMΠiσLq .

In view of δt :=
∑k
i=0 δ

t
i , the desired bound in (5.13) follows immediately.

Now we are ready for the functional value convergence result. Because of the need to cancel additional

stochastic errors, we set ηt := Ht
− +Ht

+ + (
√
N + 1

√
kσ̃Π)/(2DX) in the following convergence theorem.

Theorem 4 Let the solution sequence {zt} be generated by Algorithm 3 with τ ti chosen according to Table 3 and

let ηt := H̃t
− + H̃t

+ + (
√
N + 1

√
kσ̃Π)/2DX . Then we have

E[
∑N−1
t=0 wtQ(zt+1, ẑ)] ≤ CST + w0

2 H
0
−‖x0 − x∗‖2 + wN−1HN−1

+ D2
X + N

√
N+1

√
k

2 DX σ̃Π +N
√
Nσ̃∆.

Moreover, let x̄N =
∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt with wt = (t+ 1)/2. Then

E(f(x̄N)− f(x∗)) ≤ 4
N(N+1)

CST + 1
N(N+1)

H0
−‖x0 − x∗‖2 + 2

N+1H
N−1
+ D2

X

+ 4√
N
σ̃∆ + 2

√
k√

N+1
σ̃ΠDX .

(5.14)

33

Layer Type Complexity

Smooth

√
L̃fi
‖x0−x∗‖+

√
MpD2

Πi√
ε

+
MpLfi

σ2
Lq

ε
+
M2
pσ

2
πi:
D2
X

ε2
+
M2
pM

2
Πi
σ2
Lq

ε2

Smoothable[3]
D̃ΠiDX

ε
+

(MpDΠiσLq)
2

ε2
+
M2
pM

2
Πi
σ2
πi+1:

D2
X

ε2

Non-Smooth(Layer k)
M̃2
Πk
D2
X

ε2
+
M2
pσ

2
πk
D2
X

ε2

Table 5: Iteration Complexity for Solving Stochastic Linearized One-layer Problem

Proof First, since {wt
(
Ht

+ + (
√
N + 1

√
kσ̃Π)/2DX

)
} is monotonically non-decreasing and {wtHt

−} is monoton-

ically non-increasing, the three point inequality (2.20) for At0 implies that the wt weighted sum of Q0 satisfies

E[
∑N−1
t=0 wtQ0(zt+1, ẑ)] ≤ w0

2 H0
−‖x0 − x∗‖2 −

∑N−1
t=0

wt

2 (Ht
− +Ht

+ +
√
N+1

√
kσ̃Π

2DX)E
[
‖xt − xt+1‖2

]
+ wN−1(Ht

+ +
√
N+1

√
kσ̃Π

2DX)D2
X + E[

∑N−1
t=0 wt(∆tx,0 + δt0)].

(5.15)

Then adding (5.15) to (5.9), we conclude from Lemma 3 and the Young’s inequality that

E[
∑N−1
t=0 wtQ(zt+1, ẑ)] ≤CST + w0

2 H
0
−‖x0 − x∗‖2 + wN−1HN−1

+ D2
X + N

√
N+1

√
k

4 DX σ̃Π

+ E[
∑N−1
t=0 wt(−

√
N+1

√
kσ̃Π

2DX
1
2‖x

t+1 − xt‖2 +∆tx)] + E[
∑N−1
t=0 wtδt]

≤CST + w0
2 H

0
−‖x0 − x∗‖2 + wN−1HN−1

+ D2
X + N

√
N+1

√
k

2 DX σ̃Π + (N)
√
Nσ̃∆.

Next, since Proposition 11 implies f(x̄N)−f(x∗) ≤
∑N−1
t=0 wtQ(zt+1, ẑ)/(

∑N−1
t=0 wt), (5.14) follows from dividing

both sides of the above inequality by (
∑N−1
t=0 wt).

We illustrate Theorem 4 by applying it to (5.5) again, but with access to only stochastic oracles for layer

functions. A straightforward application of Theorem 4 implies that Algorithm 3 has an iteration complexity of

O

{√∑
i∈S L̃fi‖x0−x∗‖+

√∑
i∈SMpD2

Πi√
ε

+

∑
i∈SMpLfiσ

2
Lq

ε

+
∑
i∈P D̃ΠiDX

ε +
∑
i∈P (MpDΠiσLq)2

ε2

+
M̃2
Πk
D2
X

ε2
+

(k)σ̃2
πi
D2
X

ε2
+
σ̃2
∆

ε2

}
.

(5.16)

Notice that the above iteration complexity bound is influenced more heavily by the noise of inner layer functions

through σLq , σ̃Π and σ̃∆ because every proximal update uses stochastic estimators from all its inner layers.

Moreover, the complexity bound in (5.16) also admits a linearized one-layer interpretation. By substituting

in σ̃∆ :=
∑k−1
i=1 MpMΠiσLq and σ̃2

Π := 4
∑k−1
i=1 M

2
pM

2
Πiσ

2
πi+1:

, (5.16) reduces to

O

{∑
i∈S

√
L̃fi‖x0−x∗‖+

√
MpD2

Πi√
ε

+
MpLfiσ

2
Lq

ε +
kM2

pσ
2
πi:
D2
X

ε2
+

(k−1)M2
pM

2
Πi
σ2
Lq

ε2

+
∑
i∈P

D̃ΠiDX
ε +

k(MpDΠiσLq)2

ε2
+
kM2

pM
2
Πi
σ2
πi+1:

D2
X

ε2

+
M̃2
Πk
D2
X

ε2
+
kM2

pσ
2
πk
D2
X

ε2

}
.

(5.17)

If we linearize every fi in a similar fashion as (5.7), but assuming only stochastic oracle access to (Ai, ci) with

E[‖Ai(ξi)x+ ci(ξi)− Aix− ci‖2] ≤ σ2
Lq , E[‖Ai(ξi)− Ai‖2] ≤ σπi+1: , then the complexities for solving them are

shown in Table 5 and their sum matches (5.17) up to a factor of k.

5.3 Deterministic Strongly Convex Problems

We start to consider deterministic strongly convex problems. Since u(x) have a strong convexity modulus of α > 0,

we can choose increasing ηts to obtain an improved convergence result, which is shown in the next proposition.

34

Theorem 5 Let f be a deterministic NSCO problem (1.3) with α > 0 and let kn denote the number of layer

functions which are neither smooth nor linear. Let {zt := (xt;πt1, . . . , π
t
k)} be generated by Algorithm 3 with

ηt := Ht
− + t+1

3 α and τ ti specified according to Table 3 and c = 2
3kn

α. If wt := (t + 1)/2, the following bounds

hold for both the last iterate xN and the ergodic average solution x̄N :=
∑N−1
t=0 wtxt/(

∑N−1
t=0 wt):

1
2‖x

N − x∗‖2 ≤ 6
N(N+3)

CST
α + 3

2N(N+3)
(
H0
−
α + 1

3)‖x0 − x∗‖2, (5.18a)

f(x̄N)− f(x∗) ≤ 4
N(N+1)

CST + 1
N(N+1)

(H0
− + α

3)‖x0 − x∗‖2. (5.18b)

Proof The x-update in Line 7 of Algorithm 3 satisfies the following three-point inequality (see (2.20)):

At0 ≤ ηt

2
1
2‖x

t − x‖2 − ηt+α
2

1
2‖x

t+1 − x‖2 − ηt

2 ‖x
t − xt+1‖2. (5.19)

In view of this relation, we can use increasing ηt := (t + 1)α/3, while keeping
∑N−1
t=0 wtAt0 small. Such an

increasing stepsize policy for ηt is the key to improve the convergence rate because it allows a more effective

cancellation of error terms from the aggregate dual gap function Q1:. More specifically, the bound on Q1: in (5.1)

can be simplified to

∑N−1
t=0 wtQ1:(z

t+1, z) ≤ CST +
∑N−1
t=0

wt

2 (Ht
α +Ht

−)‖xt+1 − xt‖2. (5.20)

Since Ht
i,α in Table 3 are given by

Ht
i,α =

{
0 if fi is either smooth or affine,
(t+1)c

2 otherwise,

c = 2α/(3kn) implies Ht
α = (t+ 1)α/3.

Now let a feasible reference point z := (x∗, π1, ..., πk) be given. Since ηt satisfy wtηt ≤ wt−1(ηt−1 + α) and

Q0(zt+1, z) = At0, we have

∑N−1
t=0 wtQ0(zt+1, z) ≤ w0η0 1

2‖x
0 − x‖2 − wN−1(ηN−1 + α) 1

2‖x
N − x‖2 −

∑N−1
t=0 wtηt 1

2‖x
t+1 − xt‖2. (5.21)

Then by adding the above inequality to (5.20), we get

∑N−1
t=0 wtQ(zt+1, z) + wN−1(ηN−1 + α) 1

2‖x
N − x∗‖2 ≤ w0(η0 +H0

−) 1
2‖x0 − x∗‖2 + CST.

To obtain (5.18a), we can set the reference point to z∗ := (x∗;π∗1 , . . . , π
∗
k). The desired bound for 1

2‖x
N − x∗‖2

then follows immediately from the previous conclusion and the fact that Q(zt, z∗) ≥ 0 ∀t, . Moreover, if we set

the reference point to ẑ := (x∗; π̂1, . . . , π̂k), (5.18b) can be derived by applying Proposition 11.

To illustrate Theorem 5, we return to (5.5) again, but with α > 0. A straightforward application of (5.18b)

implies that Algorithm 3 exhibits an iteration complexity of

O

{√∑
i∈S L̃fi+α ‖x0−x∗‖√

ε
+

√
kn

∑
i∈P D̃2

Πi√
αε

+
knM̃

2
Πk

αε

}
.

It should be noted, however, that the above iteration complexity is not optimal for smooth layers. Instead, we

can use both (5.18a) and (5.18b) to design a multi-epoch restarting scheme (see Section 4.2.3 [13]) to improve

the complexity to

O

{√∑
i∈S L̃fi
α + 1

(
log(

‖x0−x∗‖2α
ε) + 1

)
+

√
kn

∑
i∈P D̃2

Πi√
αε

+
knM̃

2
Πk

αε

}
. (5.22)

which matches the sum of optimal iteration complexities for solving linearized one-layer problems (5.7), shown

in Table 6.

35

Layer Type, α > 0 Smooth Smoothable Non-smooth

Optimal Complexity O{(
√
kL̃fi
α

) log
‖x0−x∗‖2

ε
} O{

kD̃ΠiDX√
ε
} O{

kM̃2
Πk
D2
X

εα
}

Table 6: Optimal Complexity for Strongly Convex One-layer Problem (5.7).

5.4 Stochastic Strongly Convex Problems

Now we consider stochastic strongly convex problems. In general, we can only prove a O(1/
√
N) functional value

convergence rate for Algorithm 3 because the α-strong convexity cannot improve the convergence bound for

E[
∑N−1
t=0 wtδti] from (5.10). However, when all layer functions outside the innermost stochastic layer function are

(stochastic) smooth, i.e.,

f(x) := f1 ◦ . . . ◦ fl−1︸ ︷︷ ︸
(stochastic)smooth

◦ fl︸︷︷︸
stochastic

◦ fl+1 ◦ . . . ◦ fk(x)︸ ︷︷ ︸
deterministic

+u(x), (5.23)

the alternative gap to functional optimality conversion rule in Proposition 12 allows us to select reference points,

for which E[
∑N−1
t=0 wtδti] = 0, to accelerate it to O(1/N). We will study this special case for the rest of the

subsection.

More specifically, since Proposition 12 only needs a bound for Q(·, z̃) with z̃ := (x∗;π∗1:l−1, π̂l:) and a bound

for 1
2‖x̄

N − x∗‖2, which can be derived from Q(·, z∗) with z∗ := (x∗;π∗1 , . . . , π
∗
k), we can focus on (random)

reference points of the form z := (x∗;π∗1:l−1, πl:), where only πl: could depend on the stochastic solution sequence

{zt}. Lemma 4 below states some simplified bounds on δt (c.f. (5.10)) and ∆tx (c.f. (5.11)) for these reference

points,

δt :=
∑k
i=0 δ

t
i =

∑l−1
i=0 δ

t
i =

∑l−1
i=1 π

∗
p(π∗i − π

t
i)[Lq(x

t;πt+1
q)− Lq(xt;πt+1

q (ξiq))] + (πt+1
1: − π

t+1
1: (ξ0

1:))(x
t − x),

∆tx :=
∑k
i=0∆

t
x,i =

∑l−1
i=0∆

t
x,i =

{
[
∑l−1
i=1 π

∗
p(π∗i − π

t+1
i)(πt+1

q − πt+1
q (ξiq))] + [πt+1

1: − π
t+1
1: (ξ0

1:)]
}

(xt+1 − xt).

Lemma 4 Let the solution sequence {zt} be generated by Algorithm 3. If

σ̃2
Π := 4

∑l−1
i=1M

2
pM

2
Πiσ

2
πi+1:

≤
∑l
i=1(4i)M2

Π1:i−1
σ2
πiM

2
q and wt := (t+ 1)/2,

then

E[‖
∑l−1
i=1 π

∗
p(π∗i − π

t+1
i)[πt+1

q − πt+1
q (ξiq)] + [πt+1

1: − π
t+1
1: (ξ0

1:)]‖2] ≤ σ̃2
Π , (5.24)

E[
∑N−1
t=0 wtδt] = 0. (5.25)

Proof The derivation for (5.24) is similar to that in Lemma 3 except the terms in {π∗p(π∗i − πt+1
i)[πt+1

q −
πt+1
q (ξiq)]}l−1

i=1 ∪ {π
t+1
1: − π

t+1
1: (ξ0

1:)} are all conditionally uncorrelated. Next, to show (5.25), first notice E[δt0] :=

E[πt+1
1: − πt+1

1: (ξ0
1:))(x

t − x∗)] = 0. Moreover, for any i ≤ l − 1, π∗p(π∗i − πti) is conditionally independent of

[Lq(xt;πt+1
q)− Lq(xt;πt+1

q (ξiq))], so E[δti] = 0. Thus we have E[
∑N−1
t=0 wtδt] = 0.

We establish a bound on the gap function Q in the following proposition. Just like the previous subsection,

the α-strong convexity allows us to choose an increasing ηt.

Proposition 22 Let kn denotes the number of layer functions which are neither smooth nor linear. Let {zt :=

(xt;πt1, . . . , π
t
k)} be generated by Algorithm 3 with ηt = Ht

− + t+1
3 α and τ ti specified according to Table 3 and

c := 1
3kn

α. Then

E[
∑N−1
t=0 wtQ(zt+1, z)] +

N(N+1)α
12 E[‖xN − x‖2] ≤ (α6 +

H0
−

2)‖x0 − x‖2 + CST + 3N
2α σ̃

2
Π . (5.26)

Proof Clearly, the aggregate dual gap function Q1: can be bounded by

E[
∑N−1
t=0 wtQ1:(z

t+1, z)] ≤ CST+
∑N−1
t=0

wt

2 (Ht
α+Ht

−)E[‖xt+1−xt‖2]+E[
∑N−1
t=0 wt

∑k−1
i=1 (δti +∆tx,i)]. (5.27)

The primal gap function Q0 can be decomposed to Q0(zt+1, z) = At0 + δt0 +∆tx,0 with

At0 ≤ 1
2

(
ηt‖xt − x‖2 − (ηt + α)‖xt+1 − x‖2 − ηt‖xt − xt+1‖2

)
. (5.28)

36

So the wt-weighted sum of Q0(zt+1, z) satisfies

E[
∑N−1
t=0 wtQ0(zt+1, z)] ≤w

0η0

2 ‖x0 − x‖2 − wN−1(ηN−1+α)
2 E[‖xN − x‖2] + E[

∑N−1
t=0 wtδt0 +∆tx,0]

−
∑N−1
t=0

wt

2 (t+1
3 α+Ht

−)E[‖xt+1 − xt‖2].
(5.29)

Next we use the above (t + 1)α/3‖xt − xt+1‖2 to cancel terms from (5.27). Since c := 1/(3kn) in Table 3,

Ht
α = (t+ 1)α/6. The remaining (t+ 1)α/12‖xt+1 − xt‖2 can bound ∆tx using the Young’s inequality:

E[
∑N−1
t=0 wt(∆tx −

(t+1)α
12 ‖xt − xt+1‖2)] ≤ 3N

2α σ̃
2
Π . (5.30)

Finally in view of E[
∑N−1
t=0 wtδti] = 0, the desired bound in (5.26) can be obtained by adding (5.29) to (5.27).

Now we use Proposition 12 to show the convergence of Algorithm 3 in function values. Towards that end,

it is convenient to split CST into CST := CST (0) + NCST (1) such that constants CST (0) and CST (1) are

independent of N .

Theorem 6 Let {zt := (xt;πt1, . . . , π
t
k)} be generated by Algorithm 3 using ηt = Ht

− + t+1
3 α and τ ti s specified

according to Table 3 with c = 1
3kn

α. If wt := (t+ 1)/2 and x̄N =
∑N−1
t=0 wtxt/

∑N−1
t=0 wt, then

E[f(x̄N)− f(x∗)] ≤ 4
N(N+1)

(1 +
3L̃R log(N+1)

α)CST (0) + 4
N+1 (1 + 3L̃R

α)CST (1) + 6
N+1 (1 + 3L̃R

α)
σ̃2
Π
α

+ 1
N(N+1)

(1 +
3L̃R log(N+1)

α)(H0
− + 1

3α)‖x∗ − x0‖2,
(5.31)

where L̃R :=
∑l−1
i=1MpLfiM

2
q is smoothness constant associated with outer layer functions f1, . . . , fl−1.

Proof Just like Theorem 5, we can set the reference point z in Proposition 22 to be z̃ and then z∗ to derive:

E[
∑N−1
t=0 wtQ(zt+1, z̃)] ≤ (α6 +

H0
−

2)‖x0 − x‖2 + CST + 3N
2α σ̃

2
Π , (5.32)

E[1
2‖x

t − x∗‖2] ≤ 1
t(t+1)

(1
2 +

3H0
−

2α)‖x0 − x‖2 + 6
t(t+1)

CSTt

α + 9
(t+1)

σ̃2
Π

α2 , ∀t. (5.33)

Then (5.33) and the Jensen’s inequality imply

E[1
2‖x̄

N − x∗‖2] ≤E[
∑N−1
t=0 wt 1

2‖x
t − x∗‖2]∑N−1

t=0 wt

≤ 4
N(N+1)

3 log(N+1)
α CST (0) + 4

N+1
3
αCST

(1) + 6
N+1

3
α
σ̃2
Π
α

+ 2
N(N+1)

3 log(N+1)
α (H0

− + 1
3α) 1

2‖x
∗ − x0‖2,

and (5.32) imply

E(

∑N−1
t=0 wtQ(zt+1, z̃)∑N−1

t=0 wt
) ≤ 4

N(N+1)
CST (0) + 4

N+1CST
(1) + 2

N(N+1)
(H0
− + 1

3α) 1
2‖x
∗ − x0‖2 + 6

N+1
σ̃2
Π
α .

So the desired bound (5.31) follows directly from Proposition 12.

Now, we illustrate the use of Theorem 6 by considering the problem, minx∈X f(x) := f1 ◦ . . . ◦ fk(x) + u(x),

where fk is stochastic non-smooth and {fi}i≥2 are stochastic smooth. Because there is one nonsmooth layer, i.e.,

kn = 1, Theorem 6 implies that Algorithm 3 has an iteration complexity of

O

{(√∑k−1
i=1 L̃fi+α‖x0−x∗‖√

ε
+

√∑k−1
i=1 MpD2

Πi√
ε

)√
1 + L̃R

α log(1
ε) +

∑k−1
i=1 MpLfiσ

2
Lq

ε (1 + L̃R
α)

+
M̃2
Πk
αε (1 + L̃R

α) +
σ̃2
Π
αε (1 + L̃R

α)

}
.

Moreover, the complexity for finding a solution xN s.t. E[‖xN − x∗‖2] ≤ ε can also be interpreted as the sum of

iteration complexities (listed in Table 7) for finding ε-close solutions for linearized stochastic one-layer problems

(c.f. (5.7)) minx∈X b>i fi(Aix+ ci) + u(x) where (Ai, ci) are accessible only through stochastic oracles.

6 Applications

In this section, we demonstrate the practical use of the SSD Algorithm 3 by applying it to two concrete problems.

37

Layer Type, α > 0 Complexity for Finding an ε-close Solution

Smooth

√
L̃fi

+α‖x0−x∗‖+
√
MpD2

Πi√
αε

+
MΠ1:i−1

Lfi
σ2
Lq

αε
+
M2
Π1:i−1

σ2
πi:

α2ε

Non-Smooth(Layer k)
‖x0−x∗‖√

ε
+
M̃2
Πk
α2ε

+
Mpσ

2
πk

α2ε

Table 7: Iteration Complexities for Strongly Convex Stochastic Linearized One-layer Problems

x

y

x

f(x)

E[g(x, ξ)]

Ix
y + cE[(g(x, ξ)− y)+]

f2 f1

Fig. 3: Two Layer Formulation for (6.1).

x

y

x

fγ(x)

E[g(x, ξ)]

Ix
y + cE[hγ(g(x, ξ)− y)]

fγ2 fγ1

Fig. 4: Two Layer Formulation for (6.2).

Algorithm 5 SSD Algorithm for Mean-upper-semideviation Risk

Input: x−1 = x0 ∈ X, y0
1
∈ dom(fγ1).

1: Draw scenario ξ02,1 and compute π0
2(ξ02,1) := (fγ2)′(x0, ξ02,1).

2: for t = 0, 1, 2, 3...N − 1 do
3: Draw independent scenarios ξt+1

2,1 , ξ
t+1
2,0 , ξ

t+1
1,0 from Ξ according to the probability distribution of ξ.

4: Let x̄t+1 := xt + θt(xt − xt−1).

Set πt+1
2 (ξt+1

2,1) := [g′(x̄t+1, ξt+1
2,1); I] and f∗2 (πt+1

2 , ξt+1
2,1) := [g(x̄t+1, ξt+1

2,1)− g′(x̄t+1, ξt+1
2,1)x̄t+1; 0].

Set πt+1
2 (ξt+1

2,0) := [g′(x̄t+1, ξt+1
2,0); I].

5: Set ȳt+1
1 := L2(xt;πt+1

2 (ξt+1
2,1)) + θtπt2(ξt2,1)(xt − xt−1).

Compute yt+1
1

:= (τ t1y
t
1

+ ȳt+1
1)/(1 + τ t1) and set πt+1

1 (ξt+1
1,0) := ∇fγ1 (yt+1

i
, ξt+1

1,0).

6: Set xt+1 := arg minx∈X πt+1
1 (ξt+1

1,0)πt+1
2 (ξt+1

2,0)x+ ηt 1
2
‖x− xt‖2.

7: end for
8: Return x̄N :=

∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt.

6.1 Risk Averse Optimization

In risk-averse optimization, one important risk measure is the mean-upper-semideviation of order one [20]. More

specifically, the risk associated with a random cost variable Z is:

ρ(Z) := E[Z] + cE[(Z − E[Z])+]¸,

where the risk-expectation trade-off parameter c ≤ 1 reflects the modeler’s risk aversiveness. Now if random

variable Z(x) represents the cost incurred by a decision x under a random scenario ξ (distributed according to

some probability measure over Ξ), i.e., Z(x) ∼ g(x, ξ), then the risk minimization problem is

min
x∈X
{ρ(Z(x)) := E[g(x, ξ)] + cE[(g(x, ξ)− E[g(x, ξ)])+]}. (6.1)

We assume g(x, ξ) to be non-smooth for generality. For example, in the two-stage linear program (with relative

complete recourse), g(x, ξ) is the minimum objective value of the second stage LP, which is clearly non-smooth.

To apply our SSD framework, we can formulate (6.1) as a two layer problem. However, this formulation

violates Assumption 4 because the non-smooth layer function f1(x, y) := y + cE[(g(x, ξ) − y)+] has a noisy

argument y. One way around the issue is to replace the non-smooth (z)+ by a Nesterov’s smooth approximation

function with a parameter γ > 0 [17] (the one-sided Huber Loss function):

hγ(z) := max
π∈[0,1]

πz − γ
2 ‖π‖

2 ≡


0 if z < 0
1
2z

2 if 0 ≤ z ≤ γ
z − 1

2γ if γ < z

.

¸ (y)+ := max{0, y}.

38

Since hγ approximates (z)+ uniformly, i.e., hγ(z) ≤ (z)+ ≤ hγ(z) + γ
2 , we can set γ = ε such that an ε/2-optimal

solution for the smoothed problem fγ is an ε-optimal solution for (6.1). More specifically, the smoothed problem

is defined as

min
x∈X
{fγ(x) := E[g(x, ξ)] + cE[hγ (g(x, ξ)− E[g(x, ξ)])]}, (6.2)

and its two layer formulation is shown in Figure 4. Observe that ∂fγ1 (x, y)/∂y is a c/γ continuous function of

y for a fixed x, so fγ1 is a semi-smooth-noisy layer function. Then by filling in the abstract dual updates in the

SSD Framework Algorithm 3, a concrete implementation for solving (6.2) can be easily deduced, which is shown

in Algorithm 5. Moreover, if the problem satisfies

E[|g(x, ξ)|2] ≤M2
g and E[|g(x, ξ)− E[g(x, ξ)]|2] ≤ σ2

g , ∀x,

E[‖g′(x, ξ)‖2] ≤M2
πg and E[‖g′(x, ξ)− E(g′(x, ξ))‖2] ≤ σ2

πg , ∀x,

we can pick the stepsizes in Algorithm 5 to be

τ t1 = t
4 + t+1

6 , ηt = 4c
(t+1)γ

M2
πg +

√
N+1cMπg

DX +

√
2(N+1)c
2DX

√
6σ2
πg +M2

πg .

Then according to Theorem 4, Algorithm 5 has a convergence rate of

O{ 1
N(N+1)

(M2
g +

M2
πg
D2
X

γ) + 1
Nγ (σ2

πg + nσ2
g) + 1√

N
(MπgDX + σπgDX + σg)}.

In addition, by substituting in γ = ε, we can show that Algorithm 5 has an iteration complexity of

O{M
2
g√
ε

+
MπgDX

ε + 1
ε2

(σ2
πgD

2
X + σ2

g +M2
πgD

2
X)},

which matches the O{1/ε2} complexity for solving risk-neutral convex stochastic program.

6.2 Stochastic Composite Optimization

x

z

x

f(x)

Ax

Ix
F (z) + g(x)

f3 f2

Fig. 5: Two Layer Formulation for (6.3).

x

...

f (2)(x)

f (1)(x)

f (m)(x)

f(x)

max

f3 f2 f1

Fig. 6: Three Layer Formulation for (6.4).

Next we consider a stochastic composite optimization problem that arises frequently in machine learning and

data analysis [3]:

min
x∈X
{f(x) := F (Ax) + g(x) ≡ max

πF∈ΠF
〈πF , Ax〉 − F ∗(πF) + g(x)}, (6.3)

where F is a smoothable function, for example, the total variation loss function, and g is a stochastic smooth

function, for example, the data fidelity loss function. In addition, the dimension of A is usually large, so we

assume that there exist a stochastic oracle SO to return unbiased estimates A(ξ), A
>

(ξ), and g′(x, ξ) for A, A>

and g′(x), and that their variances are uniformly bounded by σ2
A, σ2

A> and σ2
πg respectively.

Clearly, (6.3) can be formulated as a two layer problem shown in Figure 5. By noticing that f3 is a stochastic

linear layer and f2 is a separable mixture layer with input mixing, it is straightforward to derive from the abstract

39

Algorithm 6 SSD Algorithm for Composite Optimization

Input: x−1 = x0 ∈ X and π0
F ∈ ΠF .

1: Set y0
g

:= x0 and call SO to obtain estimate A(ξ03,2).

2: for t = 0, 1, 2, 3...N − 1 do

3: Call SO to obtain estimates A(ξt+1
3,2) and A

>
(ξt+1

3,0).

4: Let x̄t+1 := xt + θt(xt − xt−1).

Let yt+1
g

:= (τ tgy
t
g

+ x̄t+1)/(1 + τ tg) and call SO to obtain πt+1
g (ξt+1

2,0) := g′(yt+1
g

, ξt+1
2,0).

5: Let yt+1
F

:= A(ξt+1
3,2)xt +A(ξt3,2)(xt − xt−1).

Compute πt+1
F := arg minπF∈ΠF −〈πF , y

t+1
F
〉+ F ∗(πF) + τ tF

1
2
‖πF − πtF ‖

2

6: Set xt+1 := arg minx∈X〈π
t+1
g (ξt+1

2,0) +A
>

(ξt+1
3,0)πt+1

F , x〉+ ηt 1
2
‖x− xt‖2.

7: end for
8: Return x̄N :=

∑N−1
t=0 wtxt+1/

∑N−1
t=0 wt.

SSD Framework in Algorithm 3 a concrete implementation for solving (6.3), shown in Algorithm 6. Moreover,

with appropriately chosen stepsizes, Theorem 4 implies that Algorithm 6 has an iteration complexity of

O{
√
Lg‖x−x∗‖√

ε
+
‖A‖DXDΠF

ε +
(σ2
A+σ2

A>)D2
XD

2
ΠF

ε2
+
σ2
πg
D2
X

ε2
},

which is not improvable under our setting.

Next, comparing Algorithm 6 with the accelerated primal dual (APD) algorithm [3] designed specifically for

problem (6.3), we see that APD can achieve the same convergence rate. However, our general approach allows an

easy extension to handle more complicated problems in which f in (6.3) is but one sub-component. In particular,

if f (i) := g(i)(x) + F (i)(A(i)x), then a minimax problem which arises frequently from constrained optimization

or multi-objective optimization is

min
x∈X
{f(x) := max{f (1)(x), f (2)(x), . . . , f (m)(x)} ≡ max

π1∈∆+
m

∑
π

(i)
1 f (i)(x)}¹. (6.4)

Clearly, (6.4) admits a three layer formulation shown in Figure 6, so we only need to add an additional proximal

step to update πt+1
1 after parallel (implicit) proximal updates for πt+1

3 , πt+1
2 in Algorithm 6. Moreover, if the

variances for g(i)(·, ξi), ∇g(i)(·, ξi), A(i)(ξi), A
(i)>(ξi) are uniformly bounded by σg, σ2

πg , σ2
A and σ2

A> , and if

‖A(i)‖, DΠ
F (i)

and ‖∇g(i)(·)‖ are uniformly bounded by ‖A‖, DΠF and Mg, then a straightforward application

of Theorem 4 implies that the extended algorithm has an iteration complexity of

O{
√
Lg‖x−x∗‖√

ε
+
√
m‖A‖DXDΠF

ε +
m(σ2

A+σ2
A>)D2

XD
2
ΠF

ε2
+
m(σ2

πg
D2
X+σ2

g)

ε2
+
√
mMg

ε }.

Moreover, if the entropy Bregman’s distance function is used for the π1 proximal update like [26], the above

complexity can be improved to be nearly independent of the number of sub-components,

O{
√
Lg‖x−x∗‖√

ε
+

√
log(m)‖A‖DXDΠF

ε +
log(m)(σ2

A+σ2
A>)D2

XD
2
ΠF

ε2
+

log(m)(σ2
πg
D2
X+σ2

g)

ε2
+

√
log(m)Mg

ε }.

.

7 Conclusion

In this paper we showed that by imposing a layer-wise convexity assumption and a compositional monotonicity

assumption, convex NSCO problems can be solved with tight iteration complexities. For the two-layer problem,

we introduced a simple vanilla-SSD algorithm which can be implemented purely in the primal form. For the multi-

layer problem, we proposed a general Stochastic Sequential Dual (SSD) framework. The framework consists of

modular dual updates for different types of functions (smooth, smoothable, non-smooth, etc.), and so is capable

of handling the general composition of different layer functions. Moreover, we presented modular convergence

proofs to show that the complexity of SSD is optimal for nearly all problem parameters.

¹ ∆m+ := {π1 ∈ Rm+ |
∑m
i=1 π

(i)
1 = 1} is the probability simplex.

40

Reference

1. Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009.

2. Tianyi Chen, Yuejiao Sun, and Wotao Yin. Solving stochastic compositional optimization is nearly as easy as solving
stochastic optimization. arXiv preprint arXiv:2008.10847, 2020.

3. Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang. Optimal primal-dual methods for a class of saddle point problems.
SIAM Journal on Optimization, 24(4):1779–1814, 2014.

4. S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite opti-
mization, II: shrinking procedures and optimal algorithms. SIAM Journal on Optimization, 23:2061–2089, 2013.

5. Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly convex stochastic com-
posite optimization i: A generic algorithmic framework. SIAM Journal on Optimization, 22(4):1469–1492, 2012.

6. Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic programming.
SIAM Journal on Optimization, 23(4):2341–2368, 2013.

7. Saeed Ghadimi, Andrzej Ruszczynski, and Mengdi Wang. A single timescale stochastic approximation method for
nested stochastic optimization. SIAM Journal on Optimization, 30(1):960–979, 2020.

8. G. Lan. Efficient methods for stochastic composite optimization. Manuscript, Georgia Institute of Technology, 2008.
9. G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming, pages 365–397, 2012.

10. G. Lan. Gradient sliding for composite optimization. Mathematical Programming, 159(1-2):201–235, 2016.
11. G. Lan and Y. Ouyang. Accelerated gradient sliding for structured convex optimization. Computational Optimization

and Applications, 2020. under revision.
12. Guanghui Lan. Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization. Math-

ematical Programming, 149(1-2):1–45, 2015.
13. Guanghui Lan. Lectures on Optimization Methods for Machine Learning. Springer-Nature, 2020.
14. Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Mathematical Programming,

171:167–215, 2018.
15. Adrian S Lewis and Stephen J Wright. A proximal method for composite minimization. Mathematical Programming,

158(1-2):501–546, 2016.
16. Arkadi Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and method efficiency in optimiza-

tion. John Wiley UK/USA, 1983.
17. Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103(1):127–152, 2005.
18. Yurii Nesterov. Gradient methods for minimizing composite objective function. core discussion papers 2007076, uni-

versité catholique de louvain. Center for Operations Research and Econometrics (CORE), 5(5.3), 2007.
19. Andrzej Ruszczynski. A stochastic subgradient method for nonsmooth nonconvex multi-level composition optimization.

arXiv preprint arXiv:2001.10669, 2020.
20. Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic programming: modeling and

theory. SIAM, 2014.
21. P Tseng. On accelerated proximal gradient methods for convex-concave optimization, manuscript. University of

Washington, USA, 2008.
22. Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient descent: algorithms for minimizing

compositions of expected-value functions. Mathematical Programming, 161(1-2):419–449, 2017.
23. Mengdi Wang, Ji Liu, and Ethan X Fang. Accelerating stochastic composition optimization. The Journal of Machine

Learning Research, 18(1):3721–3743, 2017.
24. Shuoguang Yang, Mengdi Wang, and Ethan X Fang. Multilevel stochastic gradient methods for nested composition

optimization. SIAM Journal on Optimization, 29(1):616–659, 2019.
25. Junyu Zhang and Lin Xiao. Multi-level composite stochastic optimization via nested variance reduction. arXiv preprint

arXiv:1908.11468, 2019.
26. Zhe Zhang, Shabbir Ahmed, and Guanghui Lan. Efficient algorithms for distributionally robust stochastic optimization

with discrete scenario support. arXiv preprint arXiv:1909.11216, 2019.

41

	Introduction
	Vanilla SSD for Two-layer Problems
	SSD Framework
	Modular -Updates and Qi-Bounds
	Convergence Analysis
	Applications
	Conclusion

