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Abstract Recently, convex nested stochastic composite optimization (NSCO) has received considerable attention
for its application in reinforcement learning and risk-averse optimization. However, In the current literature, there
exists a significant gap in the iteration complexities between these NSCO problems and other simpler stochastic
composite optimization problems (e.g., sum of smooth and nonsmooth functions) without the nested structure.
In this paper, we close the gap by reformulating a class of convex NSCO problems as “min max ... max” saddle
point problems under mild assumptions and proposing two primal-dual type algorithms with the optimal O{1/ 52}
(resp., O{1/€e}) complexity for solving nested (resp., strongly) convex problems. More specifically, for the often-
considered two-layer smooth-nonsmooth problem, we introduce a simple vanilla stochastic sequential dual (SSD)
algorithm which can be implemented purely in the primal form. For the multi-layer problem, we propose a
general stochastic sequential dual framework. The framework consists of modular dual updates for different types
of functions (smooth, smoothable, and non-smooth, etc.), so that it can handle a more general composition of
layer functions. Moreover, we present modular convergence proofs to show that the complexity of the general
SSD is optimal with respect to nearly all the problem parameters.

1 Introduction
1.1 Motivation

During the past few years, composite optimization has attracted considerable interest due to their importance
in applications, e.g., compressed sensing, image processing and machine learning. Many algorithmic studies have
been focused on composite optimization of the form min,cx f(z) + g(x), where f is a smooth convex func-
tion and g is a nonsmooth function with certain special structures. Optimal first-order methods have been
developed in [18,21,1,10,11] for solving these problems under different assumptions about g. In the stochastic
setting, Lan [8,9] present an accelerated stochastic approximation method that can achieve the optimal itera-
tion/sampling complexity when one only has access to stochastic (sub)gradients of the objective function (see,
e.g., [5,4,3] for extensions). The study of composite optimization has been later expanded to more complex nested
composition problems. Specifically, Lewis and Wright [15] developed a globally convergent algorithm for solving
mingcx f(g(z)), where the outer layer function f can be non-smooth, non-convex and extended-valued. Lan [12]
also studied the complexity of these problems when f is relatively simple. Wang et. al. [23] are the first to study
nested stochastic composite optimization (NSCO) problems when f and g are given as expectation functions.
NSCO found wide applications in reinforcement learning [23], meta-learning [2], and risk-averse optimization [19],
and thus becomes a more and more important topic in stochastic optimization.
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A key challenge in NSCO is the lack of unbiased gradient estimators for its composite objective function.
This issue can be illustrated with a simple two-layer problem:

min{f(z) := f1(f2(2))}, (L.1)

where f; and fo are accessible only through stochastic first-order oracles, denoted by SO;, which return unbiased
estimators (f;(vi, &), fi(yi,&)) for exact first-order information (f;(y;), f/(y;))) upon a query at y;. Here &;
are the random variables associated with SO;, ¢ = 1 or 2. By the chain rule, we know that the gradient of
fis f'(z) = f1(f2(x))f5(x)®. Because fo is stochastic, only stochastic estimators for the argument to fj () is
available. As such, unless f; is affine, obtaining unbiased estimators for f](f2(z)) is impossible.

One possible way to address this issue is to approximate fo(2?) with some v’ and use f](u?, €1) fo(xt, €L) as
a proxy for f'(z'). Indeed, Wang et. al. [22] proposed to track fa(z') with a moving average approximation

uli= (1= T 4 B (ot €8), (1.2)

and developed a stochastic compositional gradient descent (SCGD) algorithm which iteratively moves along
the quasi-gradient direction ff(u, &%) f4(xt, £5). By assuming fi to be smooth, they were able to establish the
sampling complexities of SCGD for finding an e—optimal solution if f is convex, or finding an e-stationary point
if fo is smooth. However these complexities are worse than those for one-layer problem and simpler stochastic
composite optimization without the nested structure (e.g., f1 is affine). Therefore, an interesting research question
is whether we can solve NSCO with the same complexity as if the nested structure does not exist.

On the one hand, the answer appears to be positive for some non-convex NSCO problems. More specifically,
in one-layer problems, we know that it takes O{1/e?} [6] queries to the stochastic oracle to find an e-stationary
solution Z, i.e., E[|[V £(Z)[|?] < . Recently, by using the same moving average approximation (1.2) and a specially-
designed potential function, Ghadimi et. al. [7] developed an O©{1/€®} algorithm for the two-layer problem and
Ruszczynski [19] extended it further to solve the multi-layer problem with the same O{1/ 62} complexity. More-
over, under some stronger smoothness assumptions, a variance reduction algorithm proposed in [25] can improve
the iteration complexity further to O{1/e'-5}.

On the other hand, the answer to this question is still unclear for convex NSCO problems. In order to find
an e-optimal solution (E[f(Z) — f«] < €) for one-layer problems, we know from [16] that the lower complexity
bounds are @{1/€} if f is non-smooth or O{1/e} if f is also strongly convex. However, the results for NSCO in
the literature fail to match them. To the best of our knowledge, only a few finite time convergence bounds have
been developeed for non-smooth convex NSCO problems in [22,24,23]. These works use moving averages similar
to (1.2) to track function values of the inner layers and apply multi-timescale schemes to ensure their faster
convergence. However, as shown in Table 1 and 2, there exists signifiant gaps between these complexity results
and the lower bounds mentioned above. For two-layer problems, if the innermost layer function is non-smooth,
the complexity is O{1/ 64}. Even with an additional smoothness assumption for fo, the O{1/ 62‘25} complexity
for convex problems and the O{1 /61'25} complexity for strongly convex problems still falls short of the one-
layer result [9,5]. For multi-layer problems, the complexities are even worse as they exponentially depend on the
number of layers k. Furthermore, these algorithms all require outer layer functions, i.e., fi for two-layer problems
and f1, ..., fr—1 for k-layer problems, to be smooth. This assumption may preclude some important applications
of convex NSCO, see the example of risk averse optimization in Section 6.

Table 1: Two-Layer Iteration Complexity Table 2: k-Layer Iteration Complexity
Problem  Type ‘ In the Literature ‘ SSD Framework ‘ ‘ In the Literature ‘ SSD Framework ‘
Convex N%Iirotﬁt(%(l) ‘ O%{}E/fi% }[2[3}3} ‘ O{1/€2}[*] ‘ ‘ (9{?/{61(/73'2:)}}[42?[}24] O{k3/€}[*] ‘
Coves o | oy | 00960 || oty | 0w |

(1) Results in the literature assume a non-smooth innermost layer and
smooth outer layers. The SSD framework allows the outer layers to
be smooth, smoothable or semi-smooth [*].

(2) All layers are smooth.

(3) We need all outer layers to be smooth to obtain the O{1/¢} com-
plexity.

® We expresss the gradient of f; : R™ — R™ as a R™*™ matrice such that the directional derivative f!(z;d) = f/(z)d.
Such a representation helps to simplify notations in deriving the gradient of a composed function.



1.2 Our Contributions

In this paper, we provide a positive answer to this question for solving a special but broad class of convex NSCO
problems, by closing the gap in sampling complexities between these convex NSCO problems and one-layer
stochastic optimization problems. More specifically, we consider the following multi-layer problem with a simple
(strongly) convex regularization term wu(x):

min{f(z) i= f1o f20.. 0 fule) + ule)}, (1.3)

and make the following two assumptions about its structure.

Assumption 1 Every layer function f; is convex such that it can be reformulated using the Fenchel conjugate
*©@
i

filys) = max iy — fi(mi), (1.4)

€
where II; is the domain of f;.

The composite function f(x) := f10 fao...o fi(z) + u(x) satisfies the following compositional monotonicity
assumption.

Assumption 2 For every non-linear layer function (i.e., fi(y;) is not affine with respect to y;), m1.4—1 =
T2 ... Ti—1 48 always component-wise non-negative for any w1 € Iy, o € Ila, ..., mi_1 € II;_1.

Note that these two assumptions together form a sufficient condition for the convexity of fi o...o fi, and hence
are stronger than the overall convexity assumption in [23,22,24].
These stronger assumptions allow us to rewrite every layer function in (1.3) using biconjugation to obtain a
saddle point reformulation:
min max {L(z;m.) = Li(x;m.g) +u(x)}, 1.5
reXTrl;kGHl;k{ (25 m128) (x5 mk) + u(z)} (1.5)

where the nested Lagrangian function is defined as

x ifi=k+1,

1.6
miLiv1 (@ i) — fi(m) f0<i <k (1.6)

Then by designing algorithms for this reformulated problem, we are able to improve the previous results for
solving NSCO in four aspects.

Firstly, we introduce a simple stochastic sequential dual algorithm, called vanilla SSD, to solve the smooth-
nonsmooth two-layer problem considered in [22] (but with Assumption 1 and 2). Notice that, other than stochas-
ticity, the saddle point reformulation (1.5) for the two-layer problem is similar to the “minmaxmax” problem
considered in [26]. Under the deterministic setting, Zhang et. al. [26] presented an efficient first-order method
which performs proximal updates for w9 and then for 71, before an proximal update for x in each iteration.
In order to handle the stochastic layer functions, we extend the primal-dual interpretation in [14] to show that
unbiased estimators for the dual proximal update 7; can be obtained with a single query to SO;. These two
innovations allow us to achieve the O{1/e?} and O©{1/¢} sampling complexities for solving convex and strongly
convex two-layer NSCO problems, respectively.

Secondly, we propose a general stochastic sequential dual (SSD) algorithmic framework to solve multi-layer
NSCO problems. In each iteration, the SSD framework performs proximal updates for all dual variables 7y, ..., 71
sequentially before an x proximal update. In contrast to the usual smoothness assumption for all outer layer func-
tions [22,23,24], the SSD framework can handle a rather general composition of different types of layer functions,
including smooth, smoothable and non-smooth functions. We show that SSD can achieve the optimal O{1/€?}
(resp., O{1/e}) sampling complexity for solving convex (resp., strongly convex) NSCO problems. Moreover, by
incorporating momentum extrapolations in the dual updates, SSD exhibits optimal iteration complexities for
solving deterministic multilayer problems as well. For example, if all the layer functions are smooth and deter-
ministic, then the iteration complexities are given by O{1/+/€} or O{log(1/¢)} depending on whether the problem
is convex or strongly convex.

Thirdly, the SSD framework is modular. By decomposing the optimality criterion of the entire saddle point
problem (1.5) into relatively decoupled individual optimality criterion for each variable 71, ..., T, «, we are able to
design modular dual proximal updates for each type of layer function (e.g., smooth, smoothable, and non-smooth).

@ Note that the conjugate of the vector function f;(y;) := [fi1, fi25- - fi,n;_,] is defined component-wise, i.e, f*(m;) :=
(i (mia), fia(mi2), s Fimiy (Ti,m;_, )] where f. is the Fenchel conjugate of f; ;.



These modular dual updates are almost independent of other composing layer functions, and so deploying the SSD
framework for a new nested composite problem is easy. The user only needs to plug the corresponding modular
dual updates for each layer function into the SSD framework. Moreover, the detailed iteration complexities of
the SSD framework also have an easy modular interpretation. For deterministic problems, the complexities of
the SSD framework are given by the sum of optimal iteration complexities for solving some simplified one-layer
problems,

min b, f;(Aix + ¢;) + u(z)/k, Vi, (1.7)
rzeX

where b; and (A;,¢;) are some linearizion of f1.,,—1 and fiy1. 2. For stochastic convex problems, the sampling
complexity nearly matches (other than a factor of k) the sum of sampling complexities for solving simplified
stochastic one-layer problems in (1.7), where (A;, ¢;) are accessible only through stochastic oracles. In stochastic
strongly convex setting, the sampling complexity for finding an e-close solution, i.e., E[||lzny — x*||2] < ¢, also
admits a similar interpretation.

Fourthly, we illustrate the SSD framework by applying it to two interesting applications; one involving mini-
mizing the mean-upper-semideviation risk of order 1 for a two-stage stochastic linear program and the other one
involving minimizing the maximum loss associated with a system of stochastic composite functions. We show
that the SSD framework is able to achieve the optimal @{1/€} iteration complexity for both of them.

The rest of the paper is organized as follows. First, Section 2 introduces the simple vanilla SSD algorithm
for the two-layer problem. Next, Section 3 introduces the full-fledged SSD framework, followed by Sections 4 and
5 which develop the modular dual updates and establishes the convergence properties, respectively. Finally we
provide two applications in Section 6 and make some concluding remarks in Section 7.

1.3 Notations& Terminology

We use the following notations throughout the paper.

— |I|l denotes the Iy (operator) norm unless specified otherwise. The feasible region X is convex and compact
with D% = max,, ,ex 5llz1 — z2||> < co. We use 2* to denote some optimal solution (its existence is
guaranteed by the compactness of X and the continuity of all layer functions).

— Every layer function f; is defined on R™+! and it is closed, proper and convex. We call a layer function
deterministic if there exists a first-order oracle O;, which, when queried at any y; € Y;, returns (f;(v;), f1(vi))
for some f!(y;) € 0f;(y;). We assume that the selection of subgradient is consistent, that is, f/(y;) is a fixed
element of df;(y;). We call it stochastic if there exists a stochastic first-order oracle SO;, which, when queried
at some y; € Y, returns a pair of stochastic estimates (f;(yi,&;), f1(yi,&;)) with

Elf;(yi &)] = fi(vi), Elff (vi €] = fi (), Var(fi(ys, &)) < o7, and Var(f (y;,&)) < oz,

Moreover, results returned by different queries to SO; are independent, and all {SO;} are independent. Notice
that O; is a special case of SO; with o, and o, being zero, so we use the SO; notation when referring to
both of them.

— The stochastic sub-gradients satisfies E[|| f/(y:,&)|?] < M1271 < ooVy;. Note that the Jensen’s inequality
implies that every f; is also Mz,-Lipschitz continuous.

— The Fenchel conjugate of a convex function g(z) is defined as g*(y) := maxg(z,y) — g(z). The Bregman’s
distance (or prox-function) associated with a convex function ¢ is defined as Dg(z,y) = g(y) — g(z) —
(¢’ (x),y — ). An important relationship for Bregman distance functions of conjugate functions is

Dy(z,y) = Dy(g'(y), 9’ (z)). (1.8)

— We say a layer function f; is Ly,-smooth if it satisfies £ (w) — fi(2)] < Lfi||yi1 — 2|, Vyi,y? € R+,
We call a function g(y) a-strongly convexr with respect to Bregman distance function V if it satisfies g(yl) —
9@ — (' W), vt =42 > Vit y?), Yyl y? € Y, and simply call it a-strongly convex if the Bregman
distance function is |lz2 — 21|%. Moreover, we call a function g(y) simple if the following problem can be
computed efficiently for any 7 € R", § € Y and n > 0: minyey (m,y) + g(y) + nlly — 712

® We use the i : j notation as a shorthand for all layer indices from i to j, i.e., {i,i+1,...,5}, and if j = k, we may simply
write it as 4 :. Here f;.; means f; o fi110...0 f;.



2 Vanilla SSD for Two-layer Problems

We develop in this section a vanilla SSD algorithm for solving two-layer problems. Such a simple set-up provides a
gentle but instructive preview to the general multilayer SSD algorithm without heavy notations and technicalities.

2.1 Saddle-point Reformulation

Consider

min{f(z) := f(f2(2)) +u(@)}, (2.1)
where { f;} are convex and Mz,-Lipschitz continuous and u(z) is simple and strongly convex with modulus o > 0.
We impose the following outer-layer smoothness assumption similar to [22].

Assumption 3 f1 is Ly -Lipschitz smooth with D?]l = MaXg, w1 edom(fr) Dy (m1,71) < 00, i.e., the radius of
the dual variable w1 with respect to fo is finite.

Note that we only need fs (f1) to be Lipschitz continous on X (resp. f2 image of X), so the preceding assumptions
can be easily satisfied for a compact X.
Since both fi; and fo are convex, applying bi-conjugations to them lead to the following composition La-
grangians,
Lo(z;m2) = mox — f3(m2),

. (2.2)
L1 (x;m1,m2) = w1 Lo (x5 m2) — f1(m1),

where m; € RY™1 and mo € R™*™ are the dual variables for f; and fa, and fi and f5 are their Fenchel
conjugates. Using L1 (x; 71, m2), we can reformulate (2.1) as a saddle point problem given by

min max max {L(z;m,m2) = L1(z;71, m2) + ulx)}, (2.3)
zeX ma€ll; m€lly

where IT; and I denote the domains of f{ and f3, respectively.
Proposition 1 below describes some basic duality relationship between (2.1) and (2.3).
Proposition 1 Let f and L be defined in (2.1) and (2.3). Then the following relations holds for all x € X.
a) Weak duality: f(x) > L(x;m,m2) V(w1,72) € 1 X II3.
b) Strong duality: f(x) = L(x; 7], m5) for any w5 € Ofz(x) and 77 € Of1(f2(z)).
Proof Let x € X be given. For the strong duality, it follows from the definitions of 7] and 75 that

fa(z) = La(w;m3),

filfa(2)) = La(z; 71, 73),
thus we get f(z) = L1(z; 7], 75) + u(z). For the weak duality, the following decomposition holds for any feasible
(m1,72):

L(x;7y,m5) — L(z;m1,m0) = L(x; 7], m5) — L(z371, m5) + L(2; 71, 75) — L(2; 71, 72)
= Li(a;71,m3) — L1 (x;m1,m3) +m1(Lo(a;73) — La(w;72)) -
A B
Then 7] € Argmax, ¢, {m1f2(x) — f{(m1) = Li(x;71,73)} implies that A > 0. B > 0 because La(z;75)
Lo(x;mg) > 0 and I is non-negative. Combining these observations, we conclude that f(z) = L(z;7],75)
L(x;m,72).
For a given z := (Z; 71, 72) € X x II1 x II3, we define the gap function with respect to some feasible reference

point z := (x; T, T2) as

m IV I

Q(Z,2) = L(T; 71, m2) — L(;71,T2). (2.4)
Note that Q(z,z) < 0,Vz € Z, if and only if Z is a saddle point of problem (2.3). The above gap function can
also provide an upper bound on the functional optimality gap, i.e., the difference between function value f(Z)
and the optimal value f(z*), for problem (2.1).
More specifically, to bound the functional optimality gap at an ergodic solution zv , we can focus on only a
few reference points. The following notation will be used to construct these reference points:

5 € Ofa(a”), € Of1(fa(x")), 72 € Of2(z"), and 71 € f1(f2(z™)).

Proposition 2 below shows how to convert a bound on @ to the functional optimality gap.



Proposition 2 Let a sequence of feasible solutions {z = (mt 7T1,7'l'2)} be given and let z#V denote the ergodic

mean of {z'} given by Zt o Lw :BHl/ZN Lwt with wt > 0. If 2 = (z*; 71, 72) and Zt 0 th(zt+1,2) < B,
then
N *
@) = f&") < =B (2.5)

Proof In view of Proposition 1.b) and the convexity of L(#2,71,x) with respect to x, we have

A oA N-1
Et 0 tu! Et 0 tu! xN57T177T2)§Zt:0 w' L(a" 7y, 7).
i, o tHL L
Moreover, Proposition 1.a) implies that f(z*) > L(75" ", 7]" ", &") V¢, so
t+1_t+1
ity whf(@®) = g wl Lt w .
.. . . o . N—-1 ¢ _N t+1 P
Combining the previous two inequalities, we obtain ) ," " w'(f(Z") — ) < Zt 0 Lw tQ(z 2). Then the
desired inequality follows from dividing both sides by Zi\]: 61 wt. u

The next functional optimality gap conversion method uses both HEN —z* ||2 and the Q function. It will help
us to improve the convergence rate for solving strongly convex problems.

Proposition 3 Let a sequence of feasible solutions {z = (a%; 77{,7r2)} be given and let N denote the ergodic

mean of {x } given by Zt 0 Lw zt+1/z 0 Lwt with wt > 0. If Zt o YwtQ(tt,2) < B for 2 = (a7}, #2)
and 2HZE —z*||?> < C, then
_N *
f@) = f(@") £ ==— +Lf1MHZC (2.6)
Z
Proof By an argument similar to Proposition 2, we have C(J?N; T, ) — flz*) < Z =NT 3
t=0 "

The difference between f(zV) = £(&V; 71, #2) and L(zV; 7}, 7o) satisfies

(@i, ) = L@ 7], 72) = [ (r]) = f1(71) = (] —71) fa(@")
OISO sy Ny & N _
= Dy (#1,71) = Dy, (f2(a*), f2(z")) < Ly, Mip, 517 — 2™,
where (a) follows from the conjugate duality fo(zV) € 8f(#1), (b) follows from the relationship between

Bregman distances generated by conjugate functions (1.8), and (c) follows from the Ly -smoothness of fi in
Assumption 3. Therefore,

£@N) = f(=") = L(EN'frl,frg) — L@V at 7o) + L&Y 7y, ) — F(2¥)
= Z Tt +Lf1MH2C
t=0

2.2 Stochastic Layer Functions and Implicit Proximal Updates

With the saddle point reformulation in (2.3), we can solve problem (2.1) possibly by applying the sequential dual
(SD) algorithm proposed in [26]. The basic idea of the SD method is to perform proximal updates to the dual
variables w9 and 71 sequentially before the updating of the primal variable x in each iteration. For example, given
(z*; 7}, 7h) the SD method updates 7 by

it = argmaxm Lo(ah; 75 ) — f1 (m1) — T{ Dy (nf, m1), (2.7)

w1 €11

after the updating 75 to 7r§+1.

However stochastic layer functions pose some new challenges. Specifically, for a deterministic problem with
known and simple fi and f5, the dual iterates {ﬂf} can be computed explicitly through the proximal updates in
the SD algorithm [26]. In contrast, (2.1) provide only access to fi and f2 through stochastic first-order oracles,
but no direct access to fi or f5. As a consequence, it is impossible to explicitly obtain the arguments, e.g.,
Lo(zt;7h) in (2.7), for the proximal updates, and to evaluate these proximal updates. Fortunately, due to the
conjugate duality relationship we can obtain stochastic estimators for the arguments and evaluate these proximal
updates “implicitly” by calling the stochastic first-order oracles.



More specifically, suppose that the dual point 7; is associated with some primal point Yy ie., m = f{(gl) S
af; (Qi)' Even though the exact value of 7; is unknown, the relation

fily,) = my, — fi (m) <= m € 8fi(y,) <= m € arggjaxmy — fi (m) (2.8)

allows us to derive stochastic estimators for m; and f;(7;) with a single query to SO;,

7i(€) = fl(y,, &) and 7 (mi, &) = mil€)y, — fily,.60)- (2.9)

In other words, we have access to an implicit dual stochastic oracle, denoted by DSQ;, for each stochastic
layer function f;, which upon request at m; = f/ (y;), returns a pair of unbiased estimators for m; and 1 (mi).
Furthermore, we can construct from these dual estimators stochastic Lagrangians to approximate the composition
Lagrangians in (2.2),

La(m2(€2)) = m2(&2) - —f2 (w2, &2), (2.10)
L1(55m1(&1),m2(&2)) := m1(&)L2(5m2(€2)) — f1 (71, &1), (2.11)

and use them as arguments for proximal updates, e.g., La(z'; 7r2 L(&y)) in place of Lo(zt; Tt 1) for the proximal
update in (2.7).

In addition, we can compute stochastic estimators for the proximal updates by utilizing the stochastic first-
order oracles. Let us start with a special case of proximal updates with stepsize 0 (e.g., 74 = 0 in (2.7)).
Equivalently, we con51der the dual iterate 7rt+1 ¢ arg max m;y, —f (Wi)@.

It is clear that m/ ™! = = fily ;)- Hence, by calling the SO; at the y, (or DSO; at the associated m; = fily ;) we

can compute an unbiased estimator of 7rt+1 In the sequel, we call such a maximization an implicit mazximization
t4+1

generated simply by maximization, 7;

because the computation only involves the association of 7;
than an actual maximization problem.

To compute stochastic estimators for the proximal updates with positive stepsize, we need to generalize the
result in [14,13] about the relationshiop between proximal update and gradient computation. In particular, if
the Bregman’s distance is given by D=, then the dual iterate 7th-+1 returned by a proximal update starting from

with the primal point Y, and a call to SO;, rather

Wf = fz'(gf) is also associated with some primal point g?l as shown in Proposition 4.

Proposition 4 If TI't is associated with some primal point QZ’ i.e., Wf = fz’(gf) € 8fi(gz), then the proximal

update from Wf to 7r;?‘+ with argument yHl, i.e.,
’le+1 € argmin — 7rlyf+1 + fi(m) + T,»th; (7t ) (2.12)
m, €11;
satisfies
t 1 t+1 t+1y t41 t+1 t
= F) eofity ™) with ¥ = it +rly))/(+ 7). (2.13)

Proof This is a direct consequence of the conjugate duality relationship (2.8),

T € argmin —myl T+ £ (m) +Tfo;f (mf, ;)
mi€Il;
<(;L)> 7r§+1 € arg min _Wiyf+1 — waigf +(1+ 7'Zt)f;k (1)
T, €11;
it yi Tyl () 41 _ gy 41 t41
s € argnllym 772(1_;,_77—71)"']‘.@ (mi) < = =fily,") €9fily, ),
mE
yitt
where (a) follows from ylt € afF (nl) and (b) follows from (2.8). L]

t+1

In view of Proposition 4, we can compute an unbiased estimator of 7;" ~ by calling the stochastic oracle SO;

at yH'1 (or DSO; at the associated point 7rt+1 = fz( t""l)). In the sequel7 we call such a proximal update an
implicit proximal update because the computation involves the calculation of QZ—H in (2.13), the association of
(implicit) 7rf+1 with it, and the call to the SO;, but does not require explicit access to f;".

Therefore, the essential ingredients for designing sequential dual type algorithms are still applicable. We just
need to replace proximal updates with implicit proximal updates and maximization with implicit maximization,
and use appropriate stochastic estimators for the unknown arguments of these operators.

® We assume that the selection of maximizer is consistent with the subgradient selection, i.e., 7r£Jrl = fi’(gi) € af; (gi).



2.3 Vanilla SSD Algorithm

The design of the vanilla SSD algorithm has been motivated by a decomposition of the gap function @ (c.f.,
(2.4)) into

Q" 2) = Q" 2) + Q' 2) + Qo (2" 2), (2.14)

where Q2, @1, and Qo defined below are related to the optimality of 7rt+1 f""l and z'T!, respectively,

1 1 1 1
QQ(ZtJr ,2) = L(:cH' 71, T2) fﬁ(:ct"' ;7r1,7r§+ )

= m[ma'™ = f3 (m)] —m[rs T2 — (5] (2.15)
Ql(thrl,z) = [,(antJrl 7!‘1,7T§+1) L(:rt+1;7ri+1,7r£+1)

= m Lo(@" T wb Ty — f ()| e Lo T ) — ], (2.16)
Qu(z"* 2) == L@ at myt) — Lt met

= | wbt Pl Pt @Y | — (b e u(a)). (2.17)

To decrease the gap function ), we intend to find 7rt+1, 7ri+1 and x that can reduce the boxed terms in

their respective gap functions Q2, @1, and Q. Accordingly, the proposed vanilla SDD method (see Algorithms 1
and 2) for solving problem (2.1) consists of three steps to compute 7rt+1 §+1 t+1 in each iteration. Note
that we state this algorithm in its dual form and primal form, respectively, in Algorithms 1 and 2. While the
dual form provides us better intuition about the design of the algorithm, the primal form is more convenient for
implementation.

t+1

and x

More specifically, Algorithm 1 can be interpreted as follows. In Line 2, we aim to reduce Qaz(z'1, 2) by
choosing an associated 7rt+1 PRLgttl _ g (7r§+1)]. Since 71 is non-negative and

II5 is row separable, it is equlvalent to finding the component-wise smallest vector —[7r§+1a:t+1 i) (Tr?'l)]. Then
t+1

with the smallest value of —q[m;
using z! in place of the to-be-evaluated z' 1!, we define 715""1 through implicit-maximization arg max ., ¢y, ozt —
f5(m2), and call the stochastic oracle to compute the unbiased estimators of 7r5+1. Observe that we label the
unbiased estimators returned from calls to DSQO; with a superscript j, i.e., 5{ , to emphasize that they will be
used as part of arguments for the proximal update at the j-th layer.

Next, Line 3 of Algorithm 1 tends to reduce Q1 (zt+1, z) by specifying an associated 7r§+1 with a small value of
—[7r7i+1£2(xt+1; 7r§+1) —fT (Tr?rl)]. Since ! is still unavailable and only a stochastic estimator La(+; t+1(§2))

is accessible, it uses the stochastic estimator Lo(x"; 7r§+1(§%)) in place of Lo(z!*; 7r§+1) to define 7r7i+1 as
t+1 t, t+1,.1 ¢ t
m ' €argmaxmiLao(asmy (62)) = f1(m1) — 11 Dyx (71, 71),

w1 €1l

and then computes an unbiased estimator of 7r§+1 by calling the DSO1 to perform the implicit proximal update.
Finally, Line 4 needs to choose an z!*! with a small value of 7r§+17r§+1xt+1 +u(zt™) in Qo(2tT1, 2). Here
we use stochastic estimator 7Tt+1(§1) H'1(58) in place of 7Tt+1 t+1 to arrive at

t+1 o t+10 1,£0 ¢ 2
't :argr;l(lnﬂ'lJr (D)5 (€D + u(z) + Ll — ™|~ (2.18)
TE

Notice that 7r§+1(§2) is computed from a call to DSOs different from the one used to compute
(m t+1(§2) 15 (m t+1,£2))). This extra call to DSO3 is needed to construct an unbiased estimator for 7r§+17r§+1.

Algorithm 1 Vanilla Stochastic Sequential Dual (SSD) Algorithm for Two-Layer Problems

Input: zg € X, y(l) eEY, nf = f{(g(l)) € 8f1(g(1)).

1: fort=0,1,2,3.. 7 — 1 do

2:  Call DSOs at w5 twice to obtain {(wf“(gf) f3(m5 €} jeqoay, where bt = fl(a?) is defined by the
implicit maximization arg max,, ¢ g, T2z’ — f5 (72).

3: Call DSO; at TriJrl to obtain 7rt+1(fo) where ﬂ§+1 fily t+1) is defined by the implicit-proximal update

argmaxmenl mLo(at; mit (D)) — fi(m) — T Dyy (Wlam)

4: Set xtt! = arg ming ¢ x ﬂiJrl({(l) t+1(£2)x +u(z) + L ||x — xt|2.
5: end for
6: Return zV = ZiV:BI 2t /( N 1w ).




Algorithm 2 Primal Form of the Vanilla Stochastic Sequential Dual (SSD) Algorithm

Input: z9 € X, 6 Y.
1: fort70,1,2,3 T -1 do
Call SO twice at x! to obtain {(fg(xt,ég),fé(xt,5%.)}]»6{071}.
Set gtI‘H = [fa(xt, &) + Tltyt]/(l + 71) and call SO; at gi'“ to obtain f] (gtI‘H,ﬁ?).

2
3
t
£ Set 2t = argminy f{(u,E0) fy(at, EQ)a + u(e) + Lz — at2.
5: end for

6: Return zV = iv_?)l thl/(E:N Lawt).

Moreover, by unpacking the implicit proximal update, implicit maximization, and queries to DSO; in Algo-
rithm 1, we can obtain an equivalent primal form in Algorithm 2. Clearly, in this primal form, we do not need to
access any conjugate dual information of fi and fa.

We now clarify the relations between the vanilla SSD method and a few other existing algorithms in the
literature. Firstly, suppose that there is no stochastic noise. Then Algorithm 1 is related to the sequential dual
(SD) method in [26]. However, the SD method in [26] uses proximal update (rather than maximization) to
compute 7r2+1 for the inner layer. Moreover, it incorporates a few extrapolation steps to achieve the accelerated
rate of convergence for solving deterministic problems. This explains why we call Algorithm 1 vanilla SSD since it
does not have these acceleration steps. We will show later in this section that this simplified algorithm can already
achieve nearly optimal rates of convergence for solving convex and strongly convex two-layer NSCO problems. In
next section, we will develop a fully-fledged stochastic sequential dual method that can achieve optimal rates of
convergence in terms of their dependence not only on target accuracy, but also on other problem parameters.

Secondly, even though the vanilla SSD method was mainly inspired by the SD method in [26] for solving
trilinear saddle point problems, its primal form in Algorithm 2 appears to be quite close to the SCGD in [22].
More speciﬁca,lly7 Line 4 of Algorithm 2 also performs a descent step along a subgradient-like direction composed
of fi(z*,€9) and fi(y t+17£1) returned by SO queried at some averaged yt"'l However, SCGD in [22] employed
with the two-time-scale stepsizes can only achieve the suboptimal O(1/€e?) (resp., O(1/€'-2)®) rate of convergence
for solving convex (resp., strongly convex) problems. On the other hand, with a simple stepsize policy the
vanilla SSD method can achieve the O(1/€?) (resp. O(1/€)) rate of convergence, which is optimal in terms of its
dependence on ¢ for solving convex (resp., strongly convex) stochastic optimization problems.

2.4 Convergence Analysis for General Convex Problems

In this subsection, we establish the convergence of Algorithm 1 for solving general convex problems by assuming
that the strong convexity modulus « of u(z) in problem (2.1) is 0. For the sake of simplicity, we fix the weight
w' used in Algorithm 1 to compute the ergodic output solution zV to be 1. Throughout this section, we use
2t = (at;nl, 7L) to denote the iterates generated by Algorithm 1 and set the reference point z in the gap function
Q(-, 2) to be (z*; 71, m2), where 71 and 75 can depend on the stochastic iterates {z!}. The analysis consists of the
following parts. We first develop upper bounds for the decomposed gap functions Q2 and @1 defined in (2.15)
and (2.16), respectively. Then we suggest a stepsize selection for n' to bound the decomposed gap function Qg
defined in (2.17), and hence the overall gap function Q. After that, the convergence in terms of function values
is derived from Proposition 2.

We start by providing an upper bound on the decomposed gap function Q2.

Proposition 5 Let {zt} be generated by Algorithm 1 and let MH = Mz, Mr,. Then
t+1 <\/WZ\;ID E N—1 2NMpy .t _ t+12
E[ N Qa2 2)] < nDx +E[ 2,y 5oy Ll [1<]-
Proof The dual iterate 7r§+1 generated by Line 2 in Algorithm 1 satisfies

Atg =y ((m2 — 7T§+1)5Et —(fa(m2) = fa(m t+1))) <0

)

Comparing A5 with Q2 (z , we can see that the only difference exists in that z'*! in Q2(2t+17 z) is replaced

by z* in A%, and hence that

Qa(2'1 2) = Ab + BY with B = 7y (mp — 7r§+1)(act+1 —zh. (2.19)

® This iteration complexity needs to assume that f is also smooth. The convergence rate for solving non-smooth and
strongly convex two-layer problem has not been established in the literature.



Moreover, Young’s inequality implies that

E[S 1Ly B — GBIl — oY) < ANMT 3 5B = V2N My Dx.

Therefore, we have
N-1
E[} iy Q2(="F1,2)]
_ N1 _
SB[ T AL + B G (BS — YRR |2t — ot |12)] + B[ YRR |2t — 2|2
N—-1 +/
< V2NMpDx +1E[Zt 0! V2NN |5t — gt 12),

Next we move on to provide an upper bound on @;. The following three point inequality lemma (Lemma 3.8
[13]) is important for our development.

Lemma 1 Assume that the function g : Y — R is u-strongly conver with respect to some Bregman’s distance
function V, i.e., g(y) — g(9) — (¢’ @),y —§) > pV(§,y) Yy, 5 € Y. If § € argmingey {(m,y) + 9(y) + 7V (5,9)}
for some m and T > 0, then

G —y,m) +9@) —9y) <TV(@y) — (t+)V(9,y) -7V (5,9) Yy € Y. (2.20)

We also need a technical lemma (similar to Lemma 4.10 [13]) to bound the error resulted from using the
stochastic argument Lo (z?; 7r5+1(§2)).

Lemma 2 Let §° be some martingale noise with E[5¢|t] = 0 and E[||6%|||t] < o2 Vt. If variable # € IT is correlated
with {8} with My := max.¢||7||, then

E[Y N 7,64 < VN Mo (2.21)

Proof We need an auxiliary sequence {frt} which is conditionally uncorrelated with {(St}. More specifically, let

Tt 0 ift=0
T =
argminﬂen—(étfl,ﬂ>—i—T%Hﬁ't*l —xl? ift>1,

where 7 > 0 is some positive stepsize. Then we have E[(7*, §")[t] = 0 and

At+l s ot st ~p2 A1 a2 st At+1)2
—(@T =&, 8" Srgla’ = &P - gl = &) - gAY

ie.,
At ot At a2 Athl A2 )2
— (&' = #,8") < T[3llE" - #7 = I = A7)+ 5 16017

Next summing up the above relations from 0 to NV — 1 and taking expectation on both sides, we should get

(a)
N_ ~ N
E[CN N6 < rREF1P + Ty a0

2 1 2
%Mﬂ—-i—?NU )

IN

where (a) follows from E[(7?,%)[t] = 0. So the desired bound (2.21) follows from picking 7 := \F‘T L]

We are now ready to state an upper bound on the decomposed gap function Q2. For the sake of simplicity,
we assume here that a constant stepsize policy is used in Algorithm 1. It should be noted that similar results can
also be proved for variable stepsize policies, e.g., Tf = 0O(V1).

Proposition 6 Let {z'} be generated by Algorithm 1 with i = 7 = \/ﬁw/LflUﬁ/(ﬁDHl), DIQ—[I =
Df (71‘1, ) MH _MH1MH2 Then

EN NG Qi 2)] < VNMyp op, + V2N /L1, Diryof, + V2NMpDx + E[X N, W%fﬂn E_ gt
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Proof The 7T§+1 generated by the implicit proximal update in Line 3 of Algorithm 1 satisfies

Al = (m — 7T Lo 75 (€d) — (ff (m) — f(xfT)

(2.22)
< 7Dy (k1) = 7Dy (w7 — (7} + ) Dy (T ).

Comparing .Afi with @1, we see that
Qi) = b+ (m = 7™ L2 mh ™) - La(as T (D))
= A+ (m =7 (Lo s = Lot mh™) + (La(ati 5T — Lot mhT €h)]
= Al + B! + AL, (2.23)
where
B = (1 — s )efH e o),
A i= (w1 = o) [La(atyms™) - La(atimh T (D)
So, Similar to Proposition 5, we have
E[CN o B < VENMpDyx + B[Nt V2N ot pt+12). (2.24)
Moreover, the stochastic error Aﬁ can be split further into
Al =A% 467, (2.25)
with
AL, = (= ) Lot mb ™) — Lot mh (D))
of i= (m — ) [La(e'sms ) — La(atims T ()]
Because La(z!; 7r2 Yy = fo(a?) and Lo(at; 7r§+1(§ )) = fa(zt, €3) (according to (2.9) and (2.10)) , we have
E[|£2(a"m5) — Lo(a’sm3  @)I) = Ell f2(") — fala", )] < o,

So the 1/L, -strong convexity of D #; and Young’s inequality implies that

IE[Am - T1Df*(7r§ 7r§+ )] < ﬁLhU?}: (2.26)
hence
N-1
ER = Atl] < V2 \/Lf1D171‘7f2 +Ezt 0 7—lDf 775, t+1)]~ (2.27)

Moreover the following bound can be derived from Lemma 2,

B[ o) = E [0V —rllLa(ets mbt) — Lol mb ™ (€)))] + B [ 205 milLa(atsngth) - Lo(ehs mb ()]

< \/NMHlan.
(2.28)

Thus substituting the above bounds on B in (2.24), AL in (2.27), A} in (2.22), and 6} in (2.28) into the
decomposed gap function Q1 in (2.23), we obtain

Zt 0 Ql t+l ,2)]

/N N-1 2N
<7 Df 7r1,7r1 + \/Llenlah + \ﬁMnlfffz +V2NMpyDx +E[ Doim 01 721)%” |zt — ztT1)?]
<VNMp, o4, +V2N\/Ly, Dip 04, + V2ZNMpDx + B[ ! %fn”x — ).

11
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J
t+1 _t+1
77T2 )

Fig. 1: Illustration of Stochastic Dependency: 7Tt+1(§2) is d—separated from 7rt+1(£(1)) conditioned on (7]

and 7rt+1(§2) is d-separated from 7rt+1 conditioned on 7rH

Next, We turn our attention to the upper bound on the decomposed gap function Qg. According to Lemma
1, the x-proximal update in Line 4 of Algorithm 1 satisfies

A= (E)m €
n

)z —2%) +u( ) - u(a®)
<t — a2 -

t_ 1 Tt 2
Tla’ — a2 = Blla® — ¥ (2.29)

Observe that A6 differs from Qg only in stochastic error, i.e.,
Qo(z"*1,2) = A + A, (2.30)

where A§ := (riTirbtt — 2t ( Q)rl T (ed)) (2T — 2¥).

Moreover, since 7rt+1(§2) comes from a separate query to DSOs (SO5), it is independent of fo(z!,£3) and
hence its descendant 7rt+1(§1) conditioned on 7r2+1 (see Figure 1). Therefore, the following expectation and
variance of 7rt+1(§1) t+1(§2) can be derived:

E[ritH(€))mstH e ni T, bt = Bl T (€)Ini T nf T B[S () [t bt
=m Bl €)lm

t+1_t+1
m Ty .

E[f|xi T (€D)mst(€9) — it alt 2 ad T bt

B0y _ pbH |2 L Ry i tH1_t+1 1 t41 .0\ t+1 1 t+1
<E[lni(ed) — mi Pt ab TR s @)1 i w5 + Bl T (gt (€8) — w5 TP, wt

~2
< crmMH2 + ]\/[chrTr2 = 0n,,-

So we can split the stochastic error term further:
A = AL o+ 8, (2.31)
with

Al g = (@l — )T E)) (@ - 2,

86 = (o ab T — Al ED) b T () (2 — ).

Notice that unbiasedness of 7rt+1(§?)7r§+1(§8) implies E[65] = 0, Vt.
Now we are ready to bound the decomposed gap function Qg and hence the overall gap function @, and to
establish the convergence of Algorithm 1.

12



Theorem 1 Let My := My, My, and &%1: = 0,21-1M1272 + M1271072T2. Let {z'} be generated by Algorithm 1 with
n' = V2NM/Dx + VNér,, /(V2Dz) and 7{ = VN /Ly 04,/(vV2Dp,). Then

E[X N5 Q1Y 2)] < V2NGr, Dx + 4V2NMyDx + V2N /Ly, D05, + VNMp, 04,
Moreover, the ergodic solution NV = Z -0 xt'H/N satisfies
E[f(z") - /(a")] < 5 (V26 +4V2MyDx +V2\/L; Dip,og, + M, o,). (2.32)
Proof Using (2.29), (2.30) and (2.31), and the fact
N— 1 VN6, -
B[S (AL — D2zttt — o)) < /¥ Dy,

we can obtain the following bound for Qg:

N— N—1 VN6,
EIY NG Qo ) < n0dlle — 2% + /3 Dxom. — il yoaptllet — 2t 2, (2:33)
Then combining (2.33) with the bounds for Q2 and @1 in Proposition 5 and 6, we get

E[Zi\lzgl Q(ZtJrl,Z)] <+V2Nér, Dx +4\/2NMHDX + VQNWLfl’DHlUfZ + \/NMﬂlo'fQ-

Therefore, by setting the reference point z in the above inequality to 2 := (z*; 71, 72), (2.32) follows immediately
from Proposition 2. .

2.5 Convergence Analysis for Strongly Convex Problems

In this subsection, we establish the convergence of Algorithm 1 for solving two-layer NSCO problems with strong
convexity modulus a > 0. We set the weight w’ to be (t+1)/2 for defining the ergodic output solution, and focus
on reference points of the form 2z = (z*; 7], m2), where 3 can depend on the stochastic iterates {zt} Other than
increasing n's for the z-updates and using Proposition 3 for functional optimality gap conversion, the analysis is
similar to the preceding subsection; we first develop upper bounds on gap functions Q2, Q1, Qo, and hence @,
and then show the convergence in function value.

First, we develop a convergence bound for the decomposed gap function @2 in the following proposition.
Notice that the coefficients for ||z* — z!71||? is increasing proportionally to a(t + 1) in the bound.

Proposition 7 Let {zt} be generated by Algorithm 1 and let MH = Mz, Mr,. Then
_ 1 t
Zt o 11) Q t+1 )] < gNMH+E[ o %”xt —$t+1||2}.
Proof 1t is clear that the decomposition of Q2 in (2.19) still holds:
Q2(="",2) = A5 + B5, (2.34)

where B := 7} (mg — nbT) (&' — 2') and AY = 7] ((m2 — 7hTH)at — (f5(m2) — f3(75T1))) < 0. By Young’s
inequality, we have

B — (41 bt 2 N-1_ t4M? 18 9N 172
B[y w (85 — Rl — o)) < S wt T e = AT

So we can obtain the desired bound by summing up (2.34):

Zt 0 w Q2 t+1vz)]
<E-N L wl AL + BISN G w! (B — LD gt gt 2))] 4 Rt it 2]

< %MH +E[ ivol (t+1)aw ” t+1 —.Tt||2}.

[
Next, we show a convergence bound for the decomposed gap function J;. Compared to Proposition 6, the
more restricted reference point z = (z*; 7], m2) in this subsection allows for an improved bound.

13



Proposition 8 Let {zt} be generated by Algorithm 1 with Tf = %,Vt, J\an = Mg, My, and D?]I =
Dy (79, 7F). Then
E[ ii?)l thl(zt-‘rl’z)} < %Lflﬂf2 Dﬂl —|— ]\4'2 +E[ N 1 M”.’Et —:Et+1||2}.

Proof The decomposition formulas in (2.23) and (2.25) still hold:

Q1(z",2) = Al + Bl + 61 + A, (2.35)
where
AL = (rf =T Lo my T (€2)) = ( () = T (71T,
Ay = (=) (Laleh ) — La(asmy T (62)),
81 = (i —mh) (La(a’my ) = Lot my T (),
Bl = (n} —mtHmy T @ -2t
Since 7 is independent of the stochastic iterates {z'} and E[La(z'; 7r§+1(§%))|7r§+1] = E[fo(a? 52)\7rt+1] =
fa(at) = Lo(xt; 772+1) we have E[§%] = 0, Vt. Moreover, Line 3 of Algorithm 1 implies that
Af < 7'1Df (nh,m1) — TlDf* (b, 7Y — (o + 1)Df1*(7fi+17771)~ (2.36)
Thus with 7§ = %, the terms D: (zt,77) and Dy (77?'1,77{) in the above inequality admits telescoping

cancellation through a w!-weighted sum,

0_0 0 N-1 N 1 N N-1
Zt 0 Lwt Al < w'rf Df*(ﬂ"l,wf)—w Dys(m1,71) = Y4y thfol*(W{,ﬂi+l)

1192 t t t_t+1 (2:37)
< §DPm, — Zt 0 wﬁDf (1,7 ).
The 1/Ly, -strong convexity of Df; implies that
3 L
Zt 0 Lt (AL, —T1Df*(7rfy ) <E [Zt o W % || Lo(at Hl) L(z" Wéﬂ( &) } (2.38)
t Ly 2 '

< Zt =0 tw t+1 50, = 4NLf10f2

Similar to Proposition 7, the following bound of the weighted sum of Bf holds,
E[C ! w'Bl] < S AT + B[Syt Gt — ot ). (2.39)

Thus in view of the Q1 decomposition (2.35), substituting (2.38), (2.37) and (2.39) into ]E[Zf 0 LwtQ, (211 2)]
leads to the desired bound.
L]
Now we move on to bound Qg. Obviously, the decomposition formulas (2.30) and (2.31) from the last sub-
section are still valid:

Qu(z"",2) = Ah + AL o + 46, (2.40)
where
Ay = E) T T E)ETT -2t +ul™) - u@”),
Al g = (wf Al — 2N E) b (ED)) (T - 2f)
8§ = (mi P aptt — Al E)nst <£S)><xtx>.

Moreover, since the stochastic estimators 7ri+1(§?) and 7T§+1(£8) are generated in the same way as the last
subsection, we conclude

]E[Trt+1( ) t+1(§2)|ﬂ_t+1 tJrl]: t+1 t+1

1 1 1 1 1 1 ~2 2 2 2 2
E[Hﬂ't—i_ ( ) §+ (52) t+ t+ ” | T ) T §+ ]Saﬂ'l: = Uﬂ'lMﬂz +MH10W27

and
E[64] = 0 Vt.

So the following bound on Qg convergence follows from setting n’ := (t+1)a/3.

14
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Proposition 9 Let {z } be generated by Algorithm 1 with 77 = 1oz, then

]E[Et 0 th tJrl,Z)]_’_ N(N+3)QE[H$N—CU*”2]

2.41)
9N ~2 N—-1 (t+1 t+1 t)2 (
< fla® - 2" + o7, — B [ Dl e ot - a2
Proof The strong convexity modulus of u(z), i.e. & > 0, and Lemma 1 imply that
t t1g,.t 2 tlg.t 12 t t+1 2
Ay <n'glla’ =2 = ' glla" — T = (0 +a) gl -2
Then the w'-weighted sum satisfies
t 0 2 N+3) N _ 2 N—-1 (t+1 1 t)12
B[S whAb) < 120 — o2 - NOEROgoN _ 2 - gy Nt CHentja gt (2.42)
Moreover a bound for A;’O is
t+1 1 1 _t+1 t+1 20y _t+1 /4042
B[S wh (Al o — S el — o) < EB[E Lo gy Imi ekt — mit e)nt T (9)117) o3

IN ~
S Haﬂ'l
Therefore, in view of the decomposition of Qg in (2. 40) we can conclude (2.41) by substituting the bound
on A} in (2.42) and the bound on A’ 0 in (2.43) into E[ Zt -0 tho(thrl, z)]. ]
Now we put all the pieces together to establish the convergence of Algorithm 1 for the strongly convex NSCO
problem.

Theorem 2 Let {zt} be generated by Algorithm 1 with nt = w and Tf = % Let My := My, My, and

67271: = a?rl M1272 + MIZYIJTQFQ. Then we have

N 2
E[%HI —*H < %Cl + WCQ

N * 6log(N+1
EB[f(z") = f(z")] < %@+ SLp, MPL)CO1 + gy (2 + SR L M7 YO,
where C1 := 38 MF + 3Lflaf2 + 562, and Cy := D% +%||a:0—x*||2.

Proof Adding up the bounds on the decomposed gap functions Q2, @1 and Q¢ bounds from Proposition 7, 8 and
9, we obtain

N(N
E[Y ! wl QL o) + YR LN — o2 < F 0y + 0. (2.44)
Then choosing the reference point z to be z* := (z*; 7}, 73), noticing that Q(z'T1, 2*) > 0 V¢ and dividing both
sides by w , we get

Ca.

1.V 2 3 3 3 3
Ef3lla™ —2"[7] < (N+3)aCl + N(N+3)(XCQ Sw aC1t N(N+1)a

+1

Moreover, since zV is the w' / Zt 0 Lot weighted sum of 't we conclude from the Jensen’s inequality that

E[3[la™ - o*|?) < g0+ SpEditl e,

Next, to show convergence in function value, we pick the reference point z in (2.44) to be z := (x*; 7], #2) such
that E[Zt 0 LwtQ(11 2)] < %Cl + %C’g. Then in view of Proposition 3, we have

S 5
E[f(@") - f(z")] <E i Ozw Tt 2 4 1y My, - o)
t=0

6log(N+1 2
< %(2+ ELf1MH2)C1 + N(]\}+1)(2+ Og(a - )LflMﬂz)CQ-

[

We conclude this section by raising two issues about the vanilla SSD Algorithm. Firstly, Algorithm 1 is limited
in its application. It can only solve the smooth-nonsmooth two-layer NSCO problem. Secondly, Algorithm 1’s
iteration complexity is optimal only for €, but not other problem parameters like L ¢, . Over the next few sections,
we will address these issues by developing a nearly optimal modular algorithmic framework for solving general
multilayer NSCO problems.

15



3 SSD Framework

In this section, we propose a general Stochastic Sequential Dual (SSD) algorithmic framework to solve the
multilayer NSCO problem (1.3), i.e., mingcx{f(x) := f1 0 fao...0 fr(z) + u(x)}. Focusing on the general
algorithmic framework in this section, we impose minimal structural assumptions on the layer functions. More
specifically, we assume that every f; is convex and M Hi©—Lipschitz continuous, equipped with a DSO; for the
dual iterates generated by some dual proximal updates (c.f. Subsection 2.2). The finer details about f;, such
as their smoothness properties (smooth, smoothable or non-smooth), the exact dual proximal updates, and the
restrictions on composition, will be presented in later sections.

3.1 Saddle Point Reformulation

As illustrated in Section 1, Assumptions 1 and 2 allow us to reformulate problem (1.3) as

JICIéi)ré wfleaﬁlz{ﬁ(x;ﬂl:) = Li(z;71.) +u(z)}. (3.1)

where 1. and [I;. are the shorthand notations for . and 1. k®, and

Li(x;m.) =

if 4 = 1
{x ifi=k+1, (3.2)

miLip1 (2 mipr:) — fi(m) if0<i<k.

Then it is straightforward to extend Proposition 1 to describe a basic duality relationship between (1.3) and
(3.1) as in the following proposition.

Proposition 10 Let f and L be defined in (1.3) and (3.1), respectively. Then the following relations hold for all
zeX.

a) Weak Duality: f(x) > L(x;m1.) Vr1, € II4..
b) Strong Duality: f(z) = L(x;77].), for some 7}, € II1..

Proof The proof is similar to Proposition 1. Let € X and 7. € II;. be given. The strong duality result follows
from choosing 7} € 8fi(fi+1:(x)) such that

Li(w;mi,miyr.) = fi:(x) for i =k, k—1,...,1.
For the weak duality, first note that for any feasible (71,2, ..., 7), we have

k * % *
fla) = L(zyme) =300 4 [L(msmgm1, 75, mh) — L(@ -1, 75, 75 41)]

= Z?:l T 1[(m fi:(2) = 7 (75)) = (w5 () = £ (75))] -

Aj

Moreover, A; = 0if f; is linear since II; is a set of singleton and 7rj*- = m;. If f; is not linear, we have A; > 0 since
m; is the maximizer of 7; fj11.() — f; (7;) and 71,51 is non-negative. Thus we always have f(z) > L(z;71.). =
Accordingly, for a feasible z := (Z; 71.), we define the multilayer gap function with respect to some reference

point z := (z;71.) as
Q(Z,2) = L(T;m1.) — L(2;71.). (3.3)

For an ergodic average solution z, the value of the gap function with respect to a few reference points provides
an upper bound for the functional optimality gap of problem (1.3). Such reference points are usually constructed
from the following dual points:

77 € Ofi(firr:(2%)) and #; € Afi(fiv1.(&Y)).

For example, the next proposition shows an upper bound derived by using the reference point 2 := (z*;#71.).

© M, is defined in Subsection 1.3.
@ We use II;.; to represent IT; x IT; 41 X ... x II;, and ;.5 to represent either (m;, wjq1,...,7j) or mwiy1...w; depending
on the context.
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Proposition 11 Let feasible solutions {z = (It ﬂf )} be given and let N denote the w'-weighted ergodic
average of {z'}, given by ZtI\LBl t+1/Z =0 Lwt. If 2= (z*;#1.) and Zt 0 th t+1 2y < B, then

F@EN) = @) < =xEr—-
@) - fa¥) < Ztow

Proof The proof is similar to that of Proposition 2. The only difference exists in that we need to use the multilayer
duality result, i.e., Proposition 10 instead of Proposition 2. [
In addition, just like Proposition 3, when the outer layer functions {fi, f2,..., fi—1} are all smooth, another
upper bound can be derived using both @ and %H:EN — .CL‘*||2 This alternative bound will help us improve the
convergence rate for solving strongly convex NSCO problems.

Proposition 12 Let fi,...,fi—1 be Lipschitz-smooth with constants Ly, Ly,,...,Ly,_ . Let feasible so-

lutions {z' = (a';7t)} be given and let N denote the w'-weighted ergodic average of {z'}, given by
N-1 N-1 ~ ~ N—-1 ~ _
>ico wt:ct+1/zt20 wh. If 2 .= (2% 7)1, i), >ieo w'Q(2'1,2) < B and %H:cN —z*||> < C, then

- _— 9
where Ly = ;:1 MH]:lflLflMHlJrl;'

Proof Clearly, by using the argument in Proposition 2 with the multi-layer duality properties in Proposition 10,
we have

_N ~ ~
L(ZE ;ﬂ—T:i—lvﬂ—i:)ff(x* = N 1 tZt 0 ’LUQ t+17z)'

P
But the difference between f(zV) and £(zV; 7}, |, #:.) satisfies
F@EY) = L@ mlio 7)) = L@ 7o, 7)) — L@ w1, 7
= Zi_l L@N;my o w Figa) — L@ 7w Frg)]
= Zz Lt U () = £ D) = (rf = 7)) frens (BY))]
= Zz 1 11 Dy (R, )

(b) * _ * T
S mhaa D (fron: (), frpr.@Y)) < 342N — 2% = LyC,

where (a) follows from fi,1.(z") € 8ff (#;) (the definition of ;) and (b) follows from the relationship between
conjugate Bregman distances (1.8). So we get the desired bound for f(zV) — f(z*). ]

Moreover, we can utilize stochastic estimators {m;(&;), fi (7;,&;)} returned from {DSO;} to construct the
stochastic composition Lagrangians for multilayer NSCO as follows:

z ifi=k+1,
Li(x;m;, i) ‘= 5
(= (&) {m(fi)ﬁi-i-l(x;7Ti+1:(fi+1;)) = fi(mi, &) H0<i<k, .

where 7;.(§;.) is the shorthand for (m;(&;), mit1(§41)s .-, 7k(€g)), and use them as arguments for the dual
proximal updates. This leads us to the SSD framework.

3.2 SSD Framework

The SSD framework is again inspired by a decomposition of the gap function in (3.3) into

QL 2) = Qo 2) + L Qi 2, (3.5)

where Qg measures the optimality of 2zt and (); measures the optimality of 7Tf+12

Qu(z'",2) = L2 = LAY

=|m e T |-

z — u(zx),
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t+1 41 41 t+1 41 t+1
Qi(z" N 2) == L@ w1, ) — L@ o, 7wl Al )

= Tli—1 (mﬁi+1( Ll ) = £ )~ T L (T L) — £ () ) :

(3.7)

To decrease the @ function, we can find 7rt+1,7r2+11,...,7ri+1 and to reduce the boxed items in

Qk,Qr_1,---,Qo, respectively. Accordingly, each iteration of the SSD framework (Algorithm 3) performs se-
quential proximal updates to the dual variables my,...,m; before updating x. Notice that new m; proximal
update is a natural generalization of the w2 and 71 updates in Algorithm 1. Similar to the mo update, find-
ing a 7rtjL with a small value of —7y.,;_1[7 t+1£< (2T fi% ) — fi(m Zt.+1)] is equivalent to finding one with

1(z H'l, Ffill ) — fl- (m ;-H'l )], due to the non-negativity of 71,1 and the

row-separability of proximal penalty Vi and domain I7;. In addition, similar to the 71 update in Algorithm 1, the
argument £i+1(mt+1;7rfiil: 1 g yet to be computed and only a stochastic estimator

Liv1( Wfi%:(£f+1:)) is accessible. So we employ an momentum-based guess, i.e.,

t+1

component-wise small values, —[r; e

) is not available because z

gt = Lo (hy mi L (E) + 00l (6 ) (@ — 2t (3.8)

and define the proximal update to generate wzHl by

b e argmin —mg T+ S () + 7 Vi, ).

T €Il;

t+
T

Next, the new z-proximal update in Line 9 of Algorithm 3 is a straightforward extension of the Line 4 in Algorithm
1, obtained by replacing 7rt+1(£1) th1(52) with its multilayer counterpart 7rt+1(§?:).

Moreover, if all the layer functions are either smooth or non-smooth, we can rewrite Algorithm 3 in a purely
primal form, shown in Algorithm 4.

Algorithm 3 Stochastic Sequential Dual(SSD) Framework

Input: z_1 = 29 € X, feasible {z0}k_,

1: fori=k,k—1,...,1do

2 Call DSO; i times at 0 to obtain estimates {[x?(¢7), f7(n?, & )]};;%

3: end for

4: fort=0,1,2,3...N — 1 do

5: fori=k,k—1,...,1do v

6: Set ??tJrl = Lt (zh 7":111 (£Z+1 ) + 0t t+1 (£1+1 )(at —ath).

7 Call DSO; i times at 7/ 1! to obtain estimates {[7rt+1(fj) i t+1,§])] p _¢, where 7/ T comes from the (im-

plicit) proximal update, 7r5+ € argming ¢, myf"'l + fF(m) + mVi(wt, ).

8: end for
9: Set att1 := arg ming ¢ x 7t ({O o +u(z) + 1t Lz — =t
10: end for

11: Return zVV := Zi\]:f)l sy ZiV:BI w'

Algorithm 4 Primal Form of the SSD Framework

Input: Q(l) =z_1=x9 € X, {g? itl

1: fori=k,k—1,...,1do _ o

2 Call SO; i times at y? to obtain estimates {[f/(y%,&]), 7 (f{(¥"), €N}Z4

3: end for

4: fort=10,1,2,3...N — 1 do

5: fori:kt,k:l—l,...,ldo v

6 Set giJr = £i+1( fl (yiii :5:+1 )) + 6° +1(y21175i+1) fk( +17£k)(m —at 1)
and yt+t = (g7 + rly!) /(1 + 7)),

7 Call SO; i times at y”l to obtain estimates [f/ (ytJrl EJ) IEfiy t+1) 5])]}
8: end for

9: Set z'*! := argmin, ¢ x f{(g§+1,£0) Sy t+17§2)1 + u(z) + Wt%”f’? — a2

10: end for

11: Return zVV := Zé\]:?)l R any Zé\]:?)l w'

® A generic row-separable Bregman distance function V; is used to denote the proximity-penalty term because different
types of layer functions require different kinds of Bregman’s distances.
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3.3 Q; Decomposition

The effects of Algorithm 3 in reducing the component gap functions @Q; can be illustrated more clearly by
comparing each Q; with the three-point inequality (2.20) of the corresponding proximal update. More specifically,
for a fixed i > 1, @; can be written more compactly as

Q=" 2) = mp ((m = Lo (™) = (7 (m) = £ () (3.9)

where the subscript p denotes the indices of all layers outside layer i, i.e., p = 1 : i — 1, and the subscript ¢
denotes the indices of all layers inside layer 4, i.e., ¢ = ¢ + 1 :. In this compact form, the left-hand-side of the
corresponding three-point inequality (2.20) associated with the proximal update in Line 7 of Algorithm 3 is given
by

A= mp (= s (€) + O (€)@ =T = U () = (). (3.00)
The differences between them are:
Qi(z"1,2)—Af =
mp(mi = ) (Lq(a g = Lo(@ T mg T (Q) (3.11)
(s = w1 (Lol T (ED) — [Lalehsm T E) + O et 2 TN)), (312)
where (3.11) and (3.12) capture the errors resulted from using stochastic estimators and from using momentum

guesses respectively.
Now, let us take a closer look at (3.12):

(3:12) = mp(mi — i) (1a(a 5T (D)) = Loty (€Q))] - Ol (€)@ —2'7)
= mp ((mi = O (€ " = 2) = 0 [(mi — T € @ - 2 )))
+0' (i T — mhmg(en) (f — 2T,
In other words, (3.12) = 7;* + C} with
T = mp ((m = O (€ @ = 2) = 0'[(m — e € @~ T)])
Cf = O mp(ni Tt — mh)mo () (@t — 2" Y.

It is clear that with appropriately chosen 6?, 7? admits telescopic cancellations and Cf can be canceled with
V;(nt, 7Tt+1) and %th — 2'71||2. We remark here that this decomposition is due to the stochastic momentum
guess (3.8). Such a guess is inspired by the novel momentum guess proposed in [26], so similar to how the
consequent decomposition in [26] accelerates the SD algorithm, the above decomposition helps Algorithm 3 to
achieve improved rates of convergence for NSCO.

Next, we move on to analyzing (3.11). The following decomposition of the stochastic error holds:

(3.11) =mp(m; — m; TH[Lg (@ mg ) — Lo mgt(€D)]
=mp(mi — i ) [Lq(ahsmy ") = Lo(abs gt EN)] + mp(mi — m ) (gt — T (€)@ - 2

=mp(mi *Wz)[ﬁq(x mgth) = La(a"smg ™ (€))] + mp(my — m ) [Lq(a's TFEH) Lq(z';mg ™ (€D + Ary

where

>
S
Il

mp(m; — mH)[Lq (x5 et — Loz miTHED)],
Al = mp(nf — al T [Lq(ah 7l — Lol 7l (ED)),
AL = mp(my — i (@l — PN ED)) @ - 2h).

Notice that A%, can be canceled using V; (!, t+1) and that A;.’i can be handled with %Hx“rl z%||%. In addition,

we will show in the next subsection that Lq(z!; 773"'1 (f}z)) is an unbiased estimator for Lg(z; 7rf1+1) in 6. In other

words, we have developed a unified decomposition for each @;,

Qi(z"2) = A+ T + ¢l +6f + AL, + AL, (3.13)
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and grouped the terms into components according to how they could possibly be handled. Such a unified decom-
position is the key to the forthcoming modular convergence analysis for Algorithm 3.
In addition, we note that for Qo, it is straightforward to extend (2.30) to obtain

Qo(z"*,2) = Ab + AL g + 60, (3.14)
where
Ay = HE) T~ 2) +u ) — (),
Apg = (mH! =i @)@ -2,
6 = (it - mE) @ — o).

.Af) is the left-hand-side of the three-point inequality (2.20) implied by Line 9 of Algorithm 3, A;’O can be handled

with %thJrl —z'||?, and 7rt+1(§?:) is an unbiased estimator for wﬁ?"l in 6f.

3.4 Repeated Calls to DSO;

It
1 1/¢k—1 1(¢k—2 1(¢k—3 1
m ] e ATE) e e
- k—
i HHETD e e
i mHETD) o M)
s G

Fig. 2: Tllustration of Stochastic Dependency. The stochastic estimators 7rt+1(fj) in the 71'2+1 row are independent estima-
41 t+1 is generated by a proximal update with an argument yl+1, consisting of all stochastic estimators in the
(E+1— 'L)th column {7l (€i)}rsi. So every 7rt+1(§]) depends on the entire “triangle” of estimators, {7rl+1(§l Visir>i

Now to obtain an unbiased estimator for 7r , it is necessary to call all {DSO;};~; again to obtain estimators outside the
t+1

tors of 7,

”triangle”, i.e. {Tl't+1(£ )}j>i,i<i, which are condltlonally independent of 7;

We explain the repeated calls to DSQO; in Algorithm 3. Algorithm 3 appears to be wasteful in its use of stochastic
estimators in that it calls all inner oracles {DSO;};~; to draw fresh estimators for every 71' ! update. But as

explained in Figure 2, these fresh estlmators are essential for obtammg unbiased estlmators for {7rt+1} More

formally, the followmg lemma shows that 7rz T (3 11.) and L. (! fii

+1)

(§z+1:)) are indeed the desired unbiased

estimators for 7r Land £; («! , respectively.

Proposition 13 Let the stochastic estimators {7Tt+1( g)}0§j<i§k be generated in Algorithm 3. If j < i, then
Efm (E)Imi ) = mi ! and BIL, (o mf T (€)= Loty mi). (3.15)
Moreover, if ML = maxze X ;. cII;. {E 1L (2 3. (&) ] ]} then their variances satisfy

t+1 t+1 t+1 2k 2 2 82
E[In€) - i P < 0 = S8 MR M,
1 1 1 2 k
E[I£u(a"ni M €) - Lot P | < 0f, o= b MB, (603, M2, +40%).

Proof Firstly, we use backward induction on layer indices to show the expectation result. Let P(i) denote the
following statement about unbiasedness for layer i:

Elr; T () |ni ) = alt, and E[C; (2"l (€)InfT ] = Loty il v < i
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Clearly, the definition of DSO; implies that P(k) holds. Now assume that P(i+1) is true for some 1 < ¢ < k—1.

Because 7/ 11 (¢;) depends only on 71, 7/t (¢;) is d-separated from {7Tt+1(£j) f (T, €)) )5 conditioned on
?+1 So
T : ’

E[rit (€] nit'] = Elal T (€)nl Bl

t+1 it t+1
7:+1:( 1+1)|7r |= Ur E[

t+1
7ri+1:( i+1: i ]

)

and
E[L (% m e ) mit ) = al T Bl (of mf (€ )l = £ (.

Moreover, since j < i, the estimators {7rt+1(£l) I Hl,flj )}i>i are used neither directly nor indirectly in

t+1 t+1 . t+1 t+1 t+1

generating 7, So ;" is independent of both 7ri+1:(’£i+1:) and Liy1(zb; LIy (f{_,’_l:)) conditioned on ;[ .

Thus
t+1 t+1 t+1 t+1 t+1
E[“wl (€ 1+1;)‘7"i: | =E[r Tit1: (§Z+1 ks Tit1: ] = Tit1:
t t+1 t,_t+1
ElLi1 (2 mi 1€y )i ) = BlLin (0 midn (€0 )) I = Lo (@i midh),
where the second equalities in both relations follow from the induction hypothesis, P(i 4+ 1). In view of the above
two observations, we can conclude that P(¢) is true if P(i + 1) is true. Thus P(j) holds for all 1 < j < k.

Now we turn our attention to the variance bounds. The next decomposition follows from the definition of
nested Lagrangian:

Li(ahs i ED) — L' nith)

= ﬁi(ﬂﬁt'ﬂﬁl(ﬁi) 7%'+1 (Civ1:) — [Wfﬂﬁiﬂ(l‘t;ﬂfﬂ;( L)) fi(m an)
it i (o T (EL ) — Lo (ahmi )]

=(w“l(ai)—w'?“)cm(xt-wfi (€l 1) — (FF e = £ ()

Lo (@ 7)) — Lo (2 L))

Moreover, since both 7rt+1(£1) Z- Land ff(n t-+1,£]) ff(7r5+1) are uncorrelated with £i+1(a:t;7rf]:%:( g+1:))
t+1

conditioned on m, we have
E[|Cs(a"; i (€1) — La(a®; nl) 1P Iat (3.16)
= E[|(z} T (&) — mi ) Lia (&5 mlfL (€l 0)) — (£ (=€) — ) PRl (3.17)
+E[ln L (2t miE (6 1) — Lo (@b mf )P 7l (3.18)

The variance assumption for SO; and the conditional independence relationships imply that
t41 t41 t41 2| t+1 2 3,2
IE[H(T(zJ’_ (&) _ﬂ'i+ )£z+1($ 771.-:-_1 ( z+1:))|| ||7Tz+ 1< O-WiM[:i+1;‘
Because [} (7 H'l,fj) = f! (y fj)y - fl(y & ') for some gz with E[||g§||2} < M% ., we have

E[|| £ («TY €0y — 7 (Y P e
=E[(=" (&) — oyt - (i ) = KGRI
S 2UWiMLi+1; +20f1

So it follows from the algebraic identity |la + b||? < 2||a||® 4 2||b]|? that

(3.17) < 4o¥, + 602, M7 (3.19)

i+1:"
In addition, since j < 1, TI';H_I
to

is independent of £; 41 (x%; 7TH_1 (fH_l )) conditional on Trl_,’_l , (3.18) can be simplified

2 t t+1 ] t+1 2 t+1 t+1
(3.18) < M, E[||Liq1 (= §7ri+1:( f+1;)) ﬁz—&-l(ﬂl7 y T4 1: M= 7,+1]
2 t t+1 1 t+1 2 _t+1
< M E[|Lig1 (25wl (6], 1) — Loy @h i) mihl.

So we can substitute (3.19) and (3.20) into (3.16) to obtain

(3.20)

E[llLi(a"smi (6))) — Lol PImi ] <
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2 2 2 2 t. t+1 2 _t+1
40F, + 6072, M7, + Mpy, Bl Cipr (2" wl 016 1) — Lo (@F nf )P i)

A

Notice that A is the same as right-hand-side of the above inequality except for changing the index from i to i+ 1.
So the desired bound on E[||£;(x"; wf""l(fi)) — L;(x% 7rt+1)|| \Trt'H] follows from applying the above inequality
recursively. )

Finally, the bound for E[\|7rf+1(£f) H'1|| |7Tt+1] can be derived in a similar fashion. L]

4 Modular 7;-Updates and Q;-Bounds

In this section, we provide the m;-updates for Algorithm 3 in more details and develop the associated Q; con-
vergence bounds. Obviously, for a given f;, the update depends on its function class (affine, smooth, smoothable
or non-smooth), its oracle type (deterministic or stochastic) and other composing layers. But the dependence on
other layer functions is quite weak. In particular, the m;-update only needs to know whether the argument yf'H
is ezact, i.e., no stochastic estimators are involved in its construction (e.g., #* in the mg-update of Algorithm 1)
or noisy, i.e., stochastic estimators are involved (e.g., L2 (z!; 7r§+1(§%)) in the mj-update of Algorithm 1). Thus
it suffices to propose a modular 7;-update for every type of function, oracle and argument. Moreover, since the
Q; convergence analysis focuses only on the (implicit) dual iterates {7rf} rather than their stochastic estimators,
a stochastic f; should have the same @; bound as the deterministic f;. So we develop a separate @Q;-bound only
for every function class and every argument type.

The convergence bounds on @; is based on the decomposition in (c.f. (3.13)),
Qi(z"1,2) = AL+ T +Cj + 6] + A%, + Ap,
and the three point inequality (2.20),

A <7 7TpV (7?1,7?1) -7 7rpV (7th,7Tt+1) — (7’11t + afi*)ﬁpVi(Werl,m), (4.1)
where ajy- is the strong convexity modulus of f;° with respect to V;. Essentially, we will fix wh = (t+1)/2
and #* := (t)/(t + 1) and use the terms from (4.1) to cancel all but Atx ;, and 6! in Q; to obtain bounds for

Zf 0 Lw tQi(z 1 2)] for all z := (z*; 7,72, ..., 7)) where (w1, m2,...,7;) can depend on {z}.
Now we deﬁne a few constants that will become handy. Recall the compact notation (3.9) for Q;:
Q=" 2) i= mp ((m = P Lo (@ mf ™) = (7 (m) = £ (). (4.2)
We let Mp© denote an upper bound for ||7p|| for all possible reference points, let M(? = M127i+1M12L+2 . M%k >
E[||r Hl({q)H ] and let U'£ = O‘%H_l > E[||£ (= ﬂ'fI% [i] — Liy1 (2 TI‘II% )I?) (derived in Proposition 13). More-

over, we will group the stochastic terms that depend on z-prox update into STC; := E[ Zt 0 thfm + 55] and
leave their discussion to Section 5.

4.1 Affine Layer Function

In this subsection, we consider the easiest affine layer function, f;(y;) := A;y; + b;. Clearly, II; is a singleton set,
{A;}, and the subgradient (resp., estimator) returned by the (stochastic) oracle is A; (resp., 4;(&;)). So regardless
of the Bregman’s distance V;, the stepsize ’7' and the argument ytJrl the proximal update

t+1 t+1 tor gt
mt Gargﬂlljln —mif; S (i) + 7 Vi, )
™€

always returns A;. More specifically, given a nyrl the jth element of {[WZHl(ﬁg ), fi (m

7 in Algorithm 3, is:

1. [A (53) fily ”1,53) ,»(g{)gf“] if f; has a stochastic oracle,

2. [As, fi(T Hl) Alngr | if f; has a deterministic oracle.

As for the bound on @Q;, notice that 7rf+1 — m; = 0 for any feasible m;, thus Q;(z
observation leads to the following @; convergence bound.

L 55)]}, returned by Line

7

t+1 %) is always zero. This

Proposition 14 If f; is affine, then the solution sequence {z' = (z*;n}, x5, ... ,712)} generated by Algorithm 3
satisfies
E[X N wlQi (24, 2)] = 0. (4.3)

® While M, M, ... M, _, gives such an upper bound, Mp is usually much smaller, especially when we have some
rough idea about the location of the reference point.
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4.2 Smooth Layer Function

In this subsection, we consider the smooth layer function f; such that || f/(y;) — f/(5:)]|® < L yi —will, Vyi, 9i €
R™#. A direct computation of the corresponding 7;-proximal update is not always possible because f;" may not
be known or simple. So we use D fr s the proximity penalty function to implement an implicit proximal update
from an associated m:

t+1 . _t+1 t t
it € argmin —m gt 4 £ (mi) + 7 D s (i, ;).
mi€Xl;
More specifically, given a Wf = fl'(g:) and a proximal update argument gjf'H, W;-H'l is associated with g;&l =

iyt + Qwrl 1+ 7}) and the j-th element of it I 7r’.5+17 g , returned by Line 7 in Algorithm 3, is
124 7 T 7 T g T

3

L[fheD), il e — £yt €)gi T if fi has a stochastic oracle,
2 [f1Y), 1@ = fyi Ty f £ has a deterministic oracle.

In order to develop the @; convergence bound, we need to show a technical result for the strong convexity
modulus of the multi-dimensional Bregman’s distance function Dyx.

Proposition 15 Let an m-dimensional vector function g be Lg-smooth , i.e., ||g'(y) — ¢ (@)]|® < Lglly — 7
and let g* and Dy~ denote its (component-wise) conjugate function and (component-wise) conjugate Bregman’s
distance function. Then given an m-dimensional non-negative weight vector w, we have
2

[

ol @ -

T _
[wllw" Dy~ (7,m) > oL, (4.4)

for any associated ™ and 7. In particular, if f; is Ly, -smooth, then the dual solutions {Wf} generated by Algorithm 3
satisfy

t+1 ty 12
mp (T —m;
mpllmp Vit wt+1y > 172l = o)l (45)
2Ly,
Proof First, if w =0, (4.4) is clearly true. Now, assume w # 0. The definition of operator norm implies
T/, 7 = _ .
lu"(9°(y) =g (@Il < Lglly — gl Yu with [lu] = 1.
So the one-dimensional gu,, () := ugg(y) with wy = m is Lg-Lipschitz smooth and its Fenchel conjugate g3,

is 1/Lg strongly convex. More specifically, since g, (y) = ugg/(y), we have

T T T - 1 T N2 e = . T
Gty (W) = Guay, (U T) — Uy (7 — )G > 5L [t (= 7)1, if 7 = g'(§) , i, T = g, (7).
g

Thus the key to showing (4.4) is to relate g;,, (ulw) with ug,g* () on associated 7’s.

Those two quantities are quite different in general. In gy, , (ugfr) = maxy Uy Ty — Ju. (y), we can choose only
one overall maximizer, y*, but in wupg* (1) = Zj Uy, j Maxy; Tjy; —g;(y;), multiple maximizers y; can be selected
for every 7;. So we always have gy, (ugﬂ) < ugg* (7). However, for associated m, all those y;fs are the same.
More specifically, let m = ¢’ (y*), i.e., mj = g;v (y*). Then the conjugate duality implies that g*(7) = my* — g(y*),
SO

T T __ _ T T
G, (o) = MaX w TG = guy (7) 2 v (1y” = 9(y7)) = uwg” (m)-

Therefore, gy, (ugy ) = ugg* () holds for all associated 7’s. If 7 = ¢'(j) and 7 = ¢’ (y), we have

T _ T T _ T N\ —
Uy Dg= (7, ) = g™ () — Uy g™ (F) — wg (7 — T3

_ T _\ - 1T _\p2

= g () = g, () = ul (m = 1) = Sl = DI
g

Then (4.4) follows from multiplying both sides of the above inequality by ||w||?. In addition, for smooth functions

fi, the dual solutions {wf} are always associated with gf, since they are produced by implicit proximal updates.

So (4.5) follows immediately. L]

Now we are ready for the convergence bounds on ;. First, we consider the general case with noisy arguments.

© l2 operator norm.
o operator norm.
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Proposition 16 Let f; be Ly, -smooth with a noisy argument. If solutions {zt = (:ct; 71'57 ... ,712)} are generated
by Algorithm 3 with T,L-t = ﬁ + i, then

N-1
Zt 0 fw ‘Qi(= e ,2)] < %MPDH + 2 MPLLUL +ER o ?ileL”le*xt”z}

(4.6)
+ STC;,
where DY = E[| Dy (0, w)|], Ly, = MpLy, MZ and STC; == E[S " w's! + AL ,].
Proof Since f; is 1-strongly convex with respect to D £ ! satisfies the following three point inequality (2.20):
Af <7 71'17Dfi* (772'7772) Ti 71'Pl)f (7Tz:7rt+1) (th + 1)71-10fo (7"1“_17 i) (4'7)
So the w!-weighted sum of Af admits a telescopic cancellation:
Zt 0 wt.At < wor? (mpDy» (W?,m) —wN_l(TiN71 + 1)E[7rpr*( 3] Zt o Lot 7 Wpr*( xt t+1)]
| S —
<M, D3,
(4.8)

We are going to use the negative terms in the above inequality to cancel ’Tit, Cf and Aﬁri in Q; (see (3.13)).
Firstly, observe that Zii 61 thit admits a telescopic cancellation and the remaining terms can be handled

by Df*( i ,m)
BNy wh T — N (N Y 1)Dy ()Y, )]

< E[-o™ my(rl — m)d (€)@ — 2N - Mol D () )]

a) N-1
< 2

—

Ly Elllwy (€)™ — =% (4.9)

20— My Ly, [Eflmg (€)1 g TEfle — 2™~y ]]

—~

(b)

—

) 9N 2 N—1)2 = N N-1;2
< LE[M;:L;M =™ — N = B[22y Alz™ =277,

where (a) follows from MpL mpDx («N,m) > 3 Ll (s — w12 by Proposition 15 and the Young’s inequality,
(b) follows from the conditional independence between 7 (ﬁq) and %V, and (c) follows from the definition of M.

Secondly, C75 can be canceled by Zt 01 tw® Dy (7rt 7rt+1) in similar fashion:
N-1
E[} ., w' (c? - éwpr; (nf, 7T )]
. _ t
= B[y w0 mp (i — ahywh (€D (af — 27 — o, Dy (nf, 7l )] (4.10)

CEyy “““MPLLM% 2 < B[N 2 E g et — 22,

where (b) follows from zo = x_1.
Furthermore the stochastic error A;i due to noisy arguments can be canceled by the remaining term
Zt o wft+1ﬂ_ Df*( f t+1):
B[y w Aﬁn B Dy (wf, m ™))
*]Ezt ol W (mp(l T — wh)(L(mi T (€d), 2t) — L(mf T 2t)) — Hihmp D (wh i) (4.11)
<Zt 0 tof t+1 2MpolU£ TMpoﬂLq-
The desired convergence bound (4.6) then follows from substituting (4.8), (4.9), (4.10) and (4.11) into
Zt 0 tw Qi1 2)]. n

Clearly, in the easier case with exact arguments, only a slight modification to the above analysis is needed to
develop the @; bound. In fact, since Aﬁri = 0, we can set Tf = t/2 to obtain a simpler bound, as illustrated in
the next corollary.

Corollary 1 Let f; be Ly,-smooth with an evact argument. If solutions {2t = (a7, ... ,TI'Z)} are generated by
Algorithm 3 with 7§ = %, then

E[y N w'Qiz, )] S B[S #yls llatt! — o)), (4.12)

where D12—[i = E[||Dy: (70, 7)) and Ly = MpoiM,?.
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4.3 Smoothable Layer Function

Now we move on to smoothable layer functions. Nesterov [17] shows that a one-dimensional function g is smooth-
able if it can be expressed as g(y) = max ¢ 7 7y — g* (y) for some known and simple g*, i.e., the proximal update
7t € argmax, oy — g (y) — |l — 77 ||? can be computed efficiently for any y, 7~ € IT and 7 > 0. We
call the multi-dimensional layer function f; smoothable if all its components, f; ;, are smoothable. Note that
such a structural assumption is stronger than the first-order oracle assumption because both the value and the

subgradient of f; at any given y; can be computed by solving

_ 2
argmax m; jy; — fij(mi5) — (0)||mi 5 — 7517
i, €15 5

More specifically, to implement the proximal update in Line 7 of Algorithm 3,

t+1 . _t41 t t
7ri+ eargmln_ﬂiyi+ +f;<(7ri)+7_i‘/i(7ria7ri)7

m;, €11;
(. ) e— - . = |2 . = 112 ) = 2 t+1
we set V; (7, m;) = /Ti—1/2 [Hﬂ'hl —miall% llmie — Ti2ll” o 1 Timay — Tioma_y | ] such that each row of
is computed by
t+1 . _t4+1 fit 2
7Ti;§ € argmin —m,jyi"_ + fij(mig) + %Hw” — 5l
;€15 5

Then the I-th element of the estimate {[7r§+1(§§), 17 (7T§+1, eh) ;;é is given by the exact value [ﬂf"'l, 1 (wf+1)].
Similar to the preceding subsection, we need to determine the strong convexity modulus of mpV;(, ) to derive

the convergence bound on ;. The next proposition finds such a constant.

Proposition 17 If f; : R™i — R™i=1 4s smoothable and V; j(m; j,7; ;) = %wa - 7’ri7j||2, then

t+1 _ _ty)2
T :
Il Vit mi) 2 It =l
Proof 1If mp is zero, then the desired inequality clearly holds. Now assume that 7, # 0 and let uy = ﬁ
P

Assumption 2 implies that u, is a non-negative weight vector that sums up to one. Therefore we conclude from
Jensen’s inequality that

t+1 Y2
| 2 _ luw(t™ — )|
2§||Zuw,a mij = i g)lI” = —

ng
U Vi (705, T5) [ /Mi—1 = Zuw,i%ﬂm‘,j — 755l

j=1

The desired inequality then follows from multiplying both sides with ||7p||? and noticing ||7p||1 < /mi—1||7pll2-
[

Now we are ready to show the convergence bounds on @;. One difference from the smooth layer exists in
that f; is no longer strongly convex with respect to V;, so these bounds have worse dependencies on N. In
the following proposition, two separate @); bounds are proposed for the general convex NSCO problem and the
strongly convex NSCO problem respectively.

Proposition 18 Let f; be smoothable and let its argument be noisy. If STC; := Zt 0 Lt 6t + A; Z)] ,
D?L_ i= maxy, e, ||Vi(mi, 7:)|| and D, := MpDr, My, then the solution sequence {z' := (mt,ﬂ’l,7r2, . .,71'2)}
generated by Algorithm 8 satisfies the following bounds.

a) If 7} = 0£2Dn + DgM then

N \/ N— D
E[> = 01 w' Q1 2)] < MV, Dy, oc, + DH Dx +> ;= 1w DI; 2ttt — 2t)? 4+ STC;.  (4.13)

b) If th = Uﬂ%gj + (t+1) MpM for some ¢ > 0, then

B[S wQ, 2)] < MM, Dy g, + 2D, + Tt L ot - 0|2 4 TG, (4.14)
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Proof The three point inequality (2.20) becomes

t ot t t t t t
w' Af <w rmpVi(mi, ) —w TlﬂpV(TI’“TF

t+1 tt 1

H_w T mp Vi 1 ). (4.15)
Compared with the increasing stepsizes Tf used in Proposition 16, we have to keep Tf almost constant, leading to
a faster accumulation of errors. Moreover, we use different weighted temporal sums of {||z’ — z/71||?} to develop

bounds; in a) each ||zf — 212 is multiplied by wt, while in b) each ||zt — z!™1||? is multiplied by a rapidly

increasing wt( + 1)/2. But the resulting Zt —0 Lo (t + 1)/2||:Et — mt'HHQ can be compensated by an increasing
nt, so b) is useful for improving convergence rates in strongly convex problems.
Now we show a). Since tht is monotonically non-decreasing, the telescoping sum of (4.15) satisfies
Zt 0 g "A;
0 N—1 — —1 N 1 N 1 N
< [won MpVi(m; i) + thl (wtrf —wt 1Tf )Wp%(ﬂ'f,ﬂ'i)} - T; mpVi(m;' , m;)
SN sttt (410

<! N 1MpD2 — N1 lN R VAC AN Zt o Lwtrtm,Vi(nt, mithy

N\/ t t+1 N—-1_N-1 N
MpDH oc, + DH,DX Et o w7'7rpVi(7ri,7ri+ ) —w T; mpVi(m;', ms).

The negative terms in concluding inequality above will be used to cancel out C A;Z and Tt In particular, we
split Tit into components according to their roles in handling Cf and Af,i:

t oLy VN+1 t Dx Mg

Ti,o’ - QDHi ) Ti,ﬂ' - DH

First, Tit admits a telescopic cancellation and the remainder can be canceled by w1 11\; 17TpVZ-(7er, i)

EY ot wt T —wN Tt ZN LrpVi(wlN 7))

™

=E[-w" mp(r — m)ng €)Y — 2N —wN T e Vil )] (4.17)

(a) N—-1 M, D. M, N N—1,2 N-1 Dy N N—1,2
< P BlllaT = e T = et Ellle™ — 2 |
where (a) follows from —mp(m’ — m)mg’ (€)(a™ — ™71 < mp(xY — m)llllmg’ (€)1l — NI,
MympVi(xN 7)) > %Hﬂp(m — 7M)|I? in Proposition 17, the Young’s inequality and the conditional indepen-
dence between zV and W(JIV (&)- As for C!, we have

D _
E[Y ot wh(Ct — 7t Vi(at, mi T 1<2N Lt (01)2 Bl [t — 2t w1

< T e Dt — ot

where (b) follows from the relation w’6® = w!~! and '~ < 1.
Furthermore, since E[\|L(ﬂ,§+1(£i),x ) — L(m ZH, H11?) < aﬁq, we obtain

E[S0 A, —w'rl gmpVi(al, mi )
< TN Bl — s € 0) — £ ] — ey b e = a1 a1o)

N—1 tMpDH,-UEq N /N+1
< Zt:O w N—;—l = yi MpDHiUEq-

Thus the desired inequality (4.13) follows from substituting (4.15), (4.16), (4.17), (4.18) and (4.19) into
E[Y5 wfQi(="2) S B[S wf (Af+ T + €+ AL + AL+ 6)].

In addition, the bound in (4.14) can be derived similarly, but with 7} = (t+1) My, M2. n

For the simpler exact arguments case, the next result is an immediate corollary.

Corollary 2 Let f; be smoothable with exact arguments. If D%,i = maxn, &, e, | Vilm, 7))l and @Hi =
MpDy, My, then the solution sequence {2t = (ab 7t b, .. .,71'2:)} generated by Algorithm 3 satisfies the fol-
lowing bounds.
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a) If 7t = ngqu then

- D
E[Y N wlQi(z, 2)) < ¥Dp, Dy + Yyt Y BBl — 2. (4.20)
b) If 7} = (HI)CMpM for some ¢ > 0, then

Zt o thz t+1 Z)} < %25214_2]\7 1 (t-‘rl)c t]E[|‘13t+1—3,’t||2]. (421)

4.4 Non-smooth Layer Function

Now we study the non-smooth layer function f;. Since f; is not accessible explicitly, we choose Dy as the
proximity penalty functlon to implement the implicit proximal update from an associated 7T . So other than

i+l update rule is exactly the same as that for smooth layer functlons.

different stepsizes 7' , the 7;

The non-smooth layer function is nearly the most general convex function in that it only needs to be Lipschitz
continuous. So it is tempting to treat every layer function as non-smooth for simplicity. However, this does not
work because we need a rather strong assumption for the non-smooth layer function to ensure the convergence

of Algorithm 3.

Assumption 4 If f; is non-smooth, then its argument is exact, i.e., the inner layer functions fiy1, fit2,..., fx
are all deterministic functions.

This assumption can be explained in view of the decomposition of @; in (3.13). Just like the smooth layer function,

the proximal update 7Tt+ satisfies

Aj < 7impDyy (wf, i) = mimp Dy (wi,w; ) — (v + Dmp Dy (wi o). (4.22)

But the Bregman’s distance D Ir associated with the non-smooth f; is not necessarily strongly convex, so the
stochastic error Aﬁi from a noisy argument can not be canceled in our framework. Indeed, it appears that such
an assumption is often implicitly used in the literature. For example, in [22] and [24], the authors only consider
problems where the innermost layer function f; can be non-smooth. Since the argument x to fj is always exact,
those problems satisfy Assumption 4 automatically.

Since D f; cannot help us to cancel any terms, we might as well set the penalty parameter Tit to zero. This
way of specifying stepsizes leads us to the following convergence result.

Proposition 19 Let f; be My, -Lipschitz continuous with exact argument. If MIL- = MpMj, Mgy, then the

solution sequence {z* = («*;nl, 7k, ... ,wi)} generated by Algorithm 3 with Tf = 0 satisfies the following bounds.
N— 1 1/ M

Zt o w Q t+1 Z)_ N\/ M DX"’Z w '/ N+1 H ” t+1 _ t||27 (4.23)

SN Qi 2) < PN+ NG D a2 e s 0, (4.24)

Proof Notice that 7} := 0 and (4.22) imply
Al <0t and E[Y N P wlAl] < (4.25)

. . —1 wiy/N+1 Mn, .
We now derive (4.23) by using Zi\; ! wi“x“‘l —z'||? to cancel out Ct and 7 in (3.13). For T, after
JVNII M _
the telescopic cancellation, the remaining term can be canceled by “——-~F1 = Dy llz N N1 2.

N—1 tt N-1/NFT Mn, . N _ N-1)2
—o Wi — % 27+ —D’;Hx - l

_ N-1 N N, N N-1
=—w mp(m; —m)mg (87 —x ) —

N-l/NFT Mg, N _N-1,2
%%Hm -z I (4.26)

N-1__ D AMP, gy N
<w X L= DX M ;-
VN+IMp, 2 VN+

Then C! can be handled by the unused Eiv 02 w Ty MH ez L gt)2

N-1 t N 2 \/ M
o ’LUtCi _ o w VvVN+1 H || t+1 tHQ

1 1 1 t/NFI M, 12
Zt 1 Lwts Yrp(ni T — al)mlt ! (2t — 2 )—%%th—wt 1<) (4.27)

<ZN ? 2w DXMH
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Substituting (4.25), (4.26) and (4.27) into Zt o YwtQi(z*1,2) and noting that Et 0 \/QLDXMHL

%N\/N + lDXMHi, we have (4.23). The derivation of bound (4.24) follows similarly except that

Tt N, N— N No1y2 _ 20N-14Mp o -

Zt =0 tf TP —Fw ||~'” - I” < = 2H =
N—-1 tat N—-2 c(t+1 t+1 t2 2(N—-1) 2
1ot wich = Yilg? A an ot — ot < 2D g

4.5 Separable Mixture Layer Function

Starting from this subsection, we move on to layer functions constructed from other functions of different types,
referred to as sub-functions. Of course, one could ignore the mixture structure, assign the weakest type to the entire
function, and design an algorithm accordingly. But our SSD framework can exploit certain mixture structures to
obtain better convergence results. Two such structures will be analyzed over this and the next subsection.

In this subsection, we focus on separable mixture function f; where parts of the dual variable 7; can be updated
independently according to the type of associated sub-functions. First, we consider the most straightforward
structure, output mizring, where the vector function f; can decomposed into sub-vector functions of different types.
In other words, the function f;, the dual variable 7; and the conjugate function f;° admit a row partitioning:

[fip (0i)] [ipy | [ fips (Tipy) ]

fi,p2 (vi) Ti,pa fi*p2 (7"%132)
fiyi) = : ®, m= | fi(m) = .

_fi,PL (yl)_ L™4,pr, -fi*,pL (WL;DL )

So we can update each m; j,, using one of the update rules developed in the preceding subsections according to
the type of f; p,. Now we develop the Q; convergence bound. If we separate the outer layers’ reference vector mp
accordingly, i.e., mp := [7p, |Tps| - - . |7p. ], then the gap function @Q; becomes separable,

Qi1 2) = ZQ” (=", 2),
where
t+1 t+1, t+1 * t+1
Q=" 2) 1= oy ((mipy = Lol m ) = [y (mip) = S (el -

As a consequence, the bounds for E[ Zt 0 thi’l(thrl,z)] are the same as those developed before; we just
have to replace the layer function constants, Mp, My, Ly, and Dy, with the corresponding sub-function
constants, Mp,, My, ,, L Firs and Dy, ,. Moreover, if there are affine sub-functions, we can relax the compositional
monotonicity in Assumption 2, mp > 0, to requiring m; ,, > 0 only for non-affine f; ;, .

Next, we consider the so-called separable input mixing, which means there exists some partitioning y; :=
[Yi,q1 |Vi,qz| - - - [Vi,q.] such that

L
)= Z fisa (Wisg,)-
=1

It is clear that both m; and f; allow decomposition as follows:
Ty = [7Ti7Q1‘7ri»q2|”"7ri,QL]7 fz 7rz : Zfz @ 1ql

L
(zt+17 Z) = Zl:l Qi,j(zt+17 Z), where
t+1 1 t+1, _t+1 * * ¢ t41
Qi 2) = mi | (i — whp )L @) = [ (i) — S (el -

Therefore, we can also update each m; 4, separately using the previous update rules according to the type of f; 4,.
Moreover, the bound on Q; is just the sum of individual convergence bounds on Q; ;.

Thus the gap function @Q); is also separable, @Q;

® The = (or [|]) notation merely represents that the non-overlapping sub-vector functions fip1> fispas- -+ fipr, (Ys) cover
all components of f;, i.e. pyUpaU...Upr =1,2,3,...,m;_1. But it should not be interpreted as f; ,, being a consecutive
block of f;. This general subset notation will be used in the sequel for simplicity.
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4.6 Semi-Smooth-Noisy Layer Function

We consider the semi-smooth function with a semi-noisy argument, i.e., there exists some partitioning of the
argument, y; ‘= [y; s|yi n], such that y; s is noisy and Vy, s fi([yi,s|yi,~]) is Ly, s-Lipschitz continuous with
respect to y; s for any fixed y; v, while y; y is exact and ||m; x|| < My, N for all {m; n : [m; s|m n] € Ofi(yi)}-
In other words, the dual variable 7; and the input L4(z;7q) can be separated into

Ly s(z;m
= sl Loloimg) = RSB,
q, ’

However, since we do not assume f;(y;) = fi s(¥i,s) + fi, N(yi,~), the conjugate function is not separable and
separate proximal updates for m; ¢ and 7; y is not possible. Instead we update them jointly with the following

implicit proximal update,

b argmin —migl ! 4 [ (m) + Dy (xl ),

my€Il;

t+
T

which has the same implementation as that of the smooth layer function in Subsection 4.2
Now we derive the convergence bounds of Q;. First, we need to determine the strong convexity modulus of

mpDys « (mt t+ ) with respect to ||mp (! 4 7rt+1)\|7 which is found in the next proposition.

Proposition 20 Let the conver mapping g(ys,yn) be semi-smooth, i.e., |Vysg(ys,yn) — Vysg(Ts,yn)ll
Lysllys — §sll Vys,yn,§s. Then given a non-negative weight vector w, the following relation holds for any
m = (nn,7ms) € 0g(y) and 7 := (Tn,7Ts) € 0g(7):

T — T — 2
[|wl|w D g~ (7, m) > (ms — 7s)||”- (4.28)

Proof We first show (4.28) for a one-dimensional g.

Claim If the convex h : R™ — R is semi-smooth with constant Ly, then Dy« (7, 7) > 2L1, (ms — 7s)||? for
rs
sub-gradients 7™ € Oh(y), m € h(y).

The following analysis is an extension of Lemma 5.8 in [13]. Let ¢(y) := h(y) — h(g) — (7,y — ) and let ¢s(y)
denote Vygs¢(y). Clearly, ||¢s(yn,ys) — ¢s(yn,s)|| < Lpgllys — §sll. Moreover, since 0 € d¢(F), the convexity
of h implies that ¢(7) < ¢(4)Vy. Therefore,

3(1) < 6y — 1,210, 65 ()
1
— o)+ [ (6s(

0

g [0 s (y )D’_Lis ¢s(y))d(r)
1
=9(y) - i||¢5(y)||2 +/0 (bs(y = 1,7 (0,85 (¥)]) — b5 (), —ﬁ%(y»d(ﬂ

1
gqs(y)fﬁn%(y)n%/o 7llos W)l g ¢s (@)1 d(r)
= 0() — ap— I és)I1*.

Noting ¢(5) = 0, we have 57— |75 — ms]|® < 6(y) = Du(5,) = Die (7).
Next, the extension to multl dimensional g is similar to that of Proposition 15. n
Now we are ready to prove the ); bounds.

Proposition 21 Let f; be a semi-smooth function with a partial smoothness constant of Ly, 5 and a partial
Lipschitz constant of My, n (for the non-smooth part). Moreover, let f;’s argument be semi-noisy with con-
stant M(is = maxr e, Ell|7g,s (5}1)”2] and My N = maxy em,|Imqnll. If Ly, o == Mpoi,sM;S, Mg, N =
MpMpm, nMg N and STC; := IE( N 1 t(At‘,m + 61)), then the solution sequence {2 := (z';m%,... 7t)} gen-
t+1
+

erated by Algorithm 8 with 7' % satisfies

N—-1 ¢ t+1 1 2 3N 2 N71 Ly, VN+IM t t412
E[XS Do w'Qi(z"" 2)] SgMpDiy, + %5 MpLy, (o7, + 3¢ ( t+1s + 2DXH )t — 2t

(4.29)
+ NN+l véVHMH,i,NDX + STC;.
N-1 Lf, t41
E[ t=0 tQi(Zt+172)] MpDH +2 MPLfL ,UL "‘Z t+1s + P(i— ))”xt _$t+1||2 (4.30)

?Mﬂi’N -+ STC“ Ve > 0.
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Proof Since
Q'L(Zt+1,z) =Tp |:(7ri,S — Tffsl)‘cq}s(xt+1;ﬂ'z+1) + (71'1‘
—mplfi (mi) = £ (),
A=y [ =D (s —m SN (7 ) — 1 i)

<r{mpDys (nf,mi) — rimpDys (b, 7T — () + DmpDyps (nlF ),

t+1 t+1 t+1
N — it )‘Cq,N(x + §7Tq+ )}

) i, N

we can group the terms into those related to m; s and m; y respectively, i.e., Qi(z"1,2) = Al + Q;S + Q;N,
where

Qls = mo(mis = i) { Lg,s (@ mit) — £, (€0) + 'l (€D — o]}
1 1 1 1,41 3 —1
Qt = mp(min — ) { Lo @) = (Lo @5 mf T (€D) + 0'n w (€D @ — a7}
Clearly, they can be decomposed further into

Qis=Clg+Tis+dr s+Ams + AL s,
Qin=Cin+TiN,

where the individual error terms are defined in a similar fashion as those in (3.13). So we can just apply Propo-
sition 19 to bound E[Eivzgl wt ;N] and apply Proposition 16 and (4.28) to bound

B[N0 wh (QF g — rimpDys (nh,my) — impDys (wh, YY) — (7} + Dmp Dy (i my) ).

Then the desired convergence bound for @Q; is simply the sum of the smooth bound (4.6) (with Ly, and M,
replaced by Ly, = and M, g) and the non-smooth bounds in (4.23) or (4.24) (with Mz and My replaced by
My, N and My n).

n
We remark here that the above stepsizes Tit are the same as those in Proposition 16, so the non-smooth part,
T; n, is also updated using the smooth rule. Compared with the separable input mixing layer discussed in the
preceding subsection, the difference is that Dy», rather than Df;)s, appears in the convergence bounds (4.29)
and (4.30).

4.7 Summary of Modular Updates

For easy reference, we summarize all the convergence bounds on @); into an abstract form,
(S0 0! Qi1 2)) < CSTy + g (B! -+ HEy + HY o) (% 2" — a'|]?) +STC, (4.31)

thHwt-l-l _ xtH2

where the coefficient for are split further into three categories: HY, if it is some multiple of

% (useful for strongly convex problems), H! if w*H? is monotonically non-increasing and H_t,_ if thi is
monotonically non-decreasing. The detailed coefficients are shown in Table 3. Such an abstract representation

can simplify the derivation of the overall convergence rate in the next section.

5 Convergence Analysis

In this section, we study the convergence properties of Algorithm 3 by combining the preceding (); bounds with
Qo bounds from some z-updates. So we will reuse a few constants defined previously, including w? := (t+1)/2,
6t := (t)/(t + 1), the compact Q;, Mp, Mg and o, notation associated with (4.2), and the noise bounds O’%i

and 072”: defined in Proposition 13. Moreover, it is convenient to abstract away from the details about the layer

functions by summing up Q; in (4.31). More specifically, if we set Q1. := Zle Q;, then
BN wl Q. (2, 2)] < CST + SNV W (HY + HE + HY)|ja'+! — 2?2 + STC, (5.1)

where CST := ZZ 1 CSTy, H+ —Zl 1Hz+7 HY = Zf 1Ht

1,—

HY = Y% | H!,, and STC := Y| STC;.
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Table 3: Summary of the Selection of Stepsizes and Bounds on E(Zi\’:?)l w'Qi(2'1, 2))

Arg Type ‘ Stepsize ‘ CST; ‘ Hfﬁ Hit’+ H ‘ STC;?

Stochastic/Deterministic Affine

Exct (¢ >0) | O
Nsy (a > 0) 0
Deterministic/Stochastic Smooth f; with i/fi = MpLy, Mq2
Exct (o > 0) % H%Zfb
Nsy (a > 0) iy % %MpD?i + %NMpoiU%q t%lLfl
(Deterministic) Smoothable f; with ﬁHi = MpDp, My
- Dy,
Exct e YD, Dx P
Exct >0 (t+1)CMPM %ﬁlzn @
Dyv M VN+1io ~ NN+1IM,Dyg. o D,
Nsy gn,q + 2DH,£q %DIL’DX + 5 it DI)Y;
QMP}W VNTio, 2,50 NvN+1IMpDyp;or c(t+1)
Nsy o >0 (t+1)cq 2D, . =Du, p) 4 2
Deterministic/Stochastic Non-Smooth f; with Mﬂi = MpMp, My
- N+IMp,
Exct 0 NVNEL T Dy SRS 2
Exct a >0 0 %MJQL w
Semi-Smooth/Semi-Nsy f; with Ly, ¢ = MpLy, M2 g, M, N = MMz, n Mg N
Semi-Nsy Lyt §MpDY, + SNMpLy, 07 wilsis
+N\/é\/ﬁ]\;[n_ ~Dx \/N+;MH N
i x
Semi-Nsy i + % %MpD?ji + %NMpoi,s‘T%q p%lzfz,s
a>0 +200r2 +@
(Zt 0 LwtQi (211, 2)) < CST; +ZN . “’ (Hf _+Hj +nya)||xt+1 zt||2 4+ STC;, with STC; := E( wh(AL ;+65)).

In our analysis, we will make the distinction between deterministic problems, which only have deterministic
layer functions, and stochastic problems, which have at least one stochastic layer function, because the simpler
proofs for deterministic problems can serve as stepping stones for analyzing the more complicated stochastic
problems. Moreover, general convex problems (a = 0) and strongly convex problems (o > 0) will be considered
separately. Thus this section will have four subsections for deterministic convex problems, stochastic convex
problems, deterministic strongly convex problems and stochastic strongly convex problems, respectively. In each
subsection, we will develop a general convergence result using the abstract bound (5.1), and then illustrate it
with a concrete example.

5.1 Deterministic Convex Problems

We first consider the simplest case, the deterministic convex problem. The next convergence result follows from
choosing n* := H_ﬁ_ + Ht.

Theorem 3 If the solution sequence {2" := (a'; 7%, 7b, ..., 7L)} is generated by Algorithm 3 with n' := H'. + H'.
and TitS specified according to Table 3, then for any feaszble z:= (% w1, ML),

SNt 2) < W HO [ — 2¥|? + wN T HY 1D 4 OST (5.2)

Moreover, if TV = ZN Lt t+1/zt o w' with w' = (t +1)/2, then

_N * 0,0 (2 N—1.2
f@) = fla*) < N(A‘}H) CST + N(A}H)H,Hx - |* + 27 HY D% (5.3)
Proof Since no stochastic estimators are used and a = 0, (5.1) can be simplified to

Y whQu (e ) < OST + 30 % (1Y + HY )|+ — 22, (5.4)
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‘ Layer Type ‘ Smooth ‘ Smoothable ‘ Non-smooth ‘

2

Ls ||lzg—z* D D
0{’/ f,bu\/g I ‘ o(2mPxy | o Ny, 3

Optimal Complexity ‘ o2

Table 4: Optimal Iteration Complexity for One-layer Problem
(5.7)

and Qo in (3.14) satisfies
wi QoY 2) = wh Al < 1 (wtntth — 2] — wint|at! — ) — whpt||ztt - thQ) .
Since w'H: > wt*lH_t,’__1 and w'HY < w! " H'™1 the w!-weighted sum of {Qo (2!, 2)} satisfies
ol 0 Qo 2) < B H||a® — o |2 +wN T HY TIDY — S % (HL + HY) ot — 22,

Then adding the above inequality to (5.4), (5.2) follows immediately.
Next we can set z in (5.2) to £ := (z*; #1, 2, ..., 7y ) such that (5.3) is a direct consequence of Proposition 11.

We demonstrate the implication of the above result by applying Algorithm 3 to solve
min{f(2) = fiof20..0 file) +ule)h (5.5)

where fj is non-smooth, a subset of the layer functions { f; };c p are smoothable and the remaining layer functions
{fi}ies are smooth. Clearly, Theorem 3 implies that Algorithm 3 has an iteration complexity of

ol VEies et 5 oy o3| (56)

Ve € €2

In addition, (5.6) can be interpreted as the sum of optimal iteration complexities for solving the simplified
one-layer problems

Héln bi fi(Aiz + ci) —|— zu(x) Vi € [k], (5.7)
where b; and (A4;, ¢;) are some linearization of f1 .i—1 and f;4+1.. More specifically, if the layer function f; is smooth,
smoothable or non-smooth, then L fir D 17, and M Hk (for fi) are the corresponding Lipschitz-smoothness constant,
dual radius and Lipschitz continuity constant for bl fi(A;x + ¢;), so the optimal iteration complexity for solving
it is shown in Table 4.

Moreover, if we ignore the layered composition structure in (5.5) and treat the entire function as non-
smooth, then the optimal iteration complexity is O{ (M7, My, ... My, )2D% /€®}. But since || .. . Fp_1 | My, <
MpMyp, = MHk < M, My, ... My, for any feasible 2 := (x™; 71, 2, . - , k), the iteration complexity of Algo-
rithm 3 in (5.6) is never worse than that of the naive approach. Indeed, My, := MpMpy, is usually much smaller
than M, My, ... M, . In addition, the complexiy bound in (5.6) also much weaker dependence on ifw f?m
(see [9] for relevant discussions). So the iteration complexity in (5.6) often improves over the naive approach.

5.2 Stochastic Convex Problems

Next, we move on to stochastic convex problems with o = 0. Clearly, both the primal gap function Q¢ and the
aggregate gap function (1. have additional stochastic error terms resulting from noisy arguments:

Qo(""1,2) < Ah + AL o + 60, (5.8)

BN wtQr. (1, )] < ST+ N1 + HY)E [%ﬂut“fﬁnﬂ +E Lt SR (6t 4 AL ).
(5.9)
Note that the last summation in (5.9) ends at k — 1 because the innermost layer fi always has exact argu-
ment. Moreover, since the solution sequence {zt = (mt;ﬂf,...,ﬂ};)} generated by Algorithm 3 is stochastic,

the reference point z required by Proposition 11 for bounding functional optimality gap is a random vector,
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2 := (z*;#1,...,7y), where (#1,...,7) is dependent on {z'}. Taken together, those extra stochastic terms
become:

ot = Yy of = S (i — ) [ L (ot ml ) — Lo(atmb T EN] + (i - wl PN EL)) @ —2),  (5.10)
k— e
AL = YN AL = {18 s = al D (= ml ) + [ - A @ = et (G
Hence we need the following bounds on 6° and Af.

Lemma 3 Let the solution sequence {zt} be generated by Algorithm 3 and let 2 be the random reference point.

If
k—1 k .
A= Zl L My, M, or,, 0f =431 MyMp oz ., <S5 (4)Mp, . oz Mg, and w' = (t+1)/2,

then we have
E[I[) wp(ds — it (it — a2 El)] + [ — i HEN?) < ke, (5.12)

E[Y o w'ét] < (N +1)vVNéa. (5.13)
Proof First, we show (5.12). Proposition 13 implies that V1 <i <k —1
1 1 1 2 1 1
E||[p (s — m 1) (g — wl T EDIP] < AMEME B[ |lwg ™ — mg (€0 117]
< 4M§Mnigﬂ'i+1: )

and that
Ef|xiTt — ot el))?] < o2,

So in view of the algebraic fact ||Z:f:1 ail|? < kl|ai||?, we conclude (5.12) by summing up the above inequalities.
Next, we show (5.13). Clearly, E[6§] := E[(W§+1 — 7r’i+1(§(1]))( z*)] = 0, so E[ Zt 0 wtéo] = 0. As for
i > 1, because

1 1 2 2 ~
Efllr} (£q(a'sm™) = Lot w60 IP) < ME, 0%, 'l < 55,
E[H(ﬁq(m ma ) = La(at; 772“(53)))”2] < 02, llwhapti|| < FMpMp,, V< N -1,
Lemma 2 implies that
Zt 0 wt‘st
= B[ whipmi (L(rl ™ at) — L(rl T (Ed), )] + B[ 1Ly why(—mf) (L(ri™, o") — L(xlT(]), 2")]
< YN (MyMp,0¢, + MpMiz,or,)
= NVNMpMp,or,.
In view of 6¢ := ZLO 6!, the desired bound in (5.13) follows immediately. (]

Now we are ready for the functional value convergence result. Because of the need to cancel additional
stochastic errors, we set 1’ := H! + Hi + (VN + 1\/%&1-[)/(2’DX) in the following convergence theorem.

Theorem~ 4 Let the solution sequence {zt} be generated by Algorithm 38 with Tit chosen according to Table 3 and
let n' := H. + HY + (/N + 1Wké17)/2Dx . Then we have

E[X N w1, 2)] < ST+ L H |20 — 2|2 + wN T HY T1D% + NVNIWED 517+ NvVNG A
Moreover, let z¥ = Zi\rzgl wtettl/ Zfi?)l w' with w' = (t +1)/2. Then

E(f(z") = f(2") < ey OST+ oy Ho e — 271 + w3 HY D% -
+ \FUA + \/LO'H'DX (514
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P 7"]@
€2 €2

| Layer Type | Complexity |
Lf lzo— Z*H“'\/ D%, ]VIpo_U% M252 D2 JW2IWIZ-I,0%
‘ Smooth ‘ NG iy Ez a4 p ZQL x Lt q
2 2 2 2
Dy, D (MpDp,or,)? M2Mp o2 D%
‘ Smoothable[3] ‘ i ox | WP 0Le) TR T i i

N2 D2 M202 D2
Non-Smooth(Layer k) M, X x

Table 5: Iteration Complexity for Solving Stochastic Linearized One-layer Problem

Proof First, since {w* (Hﬂtr + (VN + 1\/E&H)/2DX)} is monotonically non-decreasing and {w’H" } is monoton-
ically non-increasing, the three point inequality (2.20) for A6 implies that the w! weighted sum of Qq satisfies
N-—-1 P 0.0 0 2 N—-1 v N k&
E[} iy w'Qo(z"", 2)] < 4 H2 |2’ — ™| - W (HL + HY + f VALIRE (ot — 2 1?]

=0 (5.15)

+ N Y+ YR DY BN m,0+50)]-

Then adding (5.15) to (5.9), we conclude from Lemma 3 and the Young’s inequality that

]E[ i\/'ol tQ(Zt+1,2)] SCST + ﬂHngO 73:*”2 walHNflpgf + Ni\/l\fjl\/;px&n

N VN N-—
+]E[ s 01 t( 2D\)(UU1| t+1 t||2+A§,)}+E[ t=01 wtat]

<CST + Y H |20 — 2*|? + wN T HY 1D} 4 WWEIVED 5 4 (N)VNGA.

Next, since Proposition 11 implies f(zV)— f(z*) < Zii?)l w' Q211 2) Zt 0 Lw?), (5.14) follows from dividing

both sides of the above inequality by Zt 0 wt) u
We illustrate Theorem 4 by applying it to (5.5) again, but with access to only stochastic oracles for layer

functions. A straightforward application of Theorem 4 implies that Algorithm 3 has an iteration complexity of

m”%*l*”Jm/Zies MpDY. 2ies MpoiUiq
O NG +

€

Siep(MpDroc,)? (5.16)

- - -

M}, D% | (k)62 D% | 52
+ ekz + 621 +T§ '

ZieP ﬁHiDX
€

Notice that the above iteration complexity bound is influenced more heavily by the noise of inner layer functions
through o, 67 and 6 because every proximal update uses stochastic estimators from all its inner layers.

Moreover, the complexity bound in (5.16) also adrnits a linearized one-layer interpretation. By substituting
inGa =1 MyMp,op, and 6% =47 MZM? 02, , (5.16) reduces to

Ti+1:

T * 2 2 2 2 2
o {Z ,/Lfi|\xofx\}+ /M, D% L MpLpod, | KMol DY (-DMIMRoZ,
€ €

62 €2
€S
~ 2
Pn.Px . k(Mp,Dp,or,)? kMZMp o2 DX
4y R Dot g S i (5.17)
iep
72 2 2 _2 2
M}, D N kM7o2 D% }
€2 €2 :

If we linearize every f; in a similar fashion as (5.7), but assuming only stochastic oracle access to (A;, ¢;) with
E[||A; (&) + ¢i(&) — Ajz — ¢||?] < O'%q, E[||4;(&) — A1) < Oniq1., then the complexities for solving them are
shown in Table 5 and their sum matches (5.17) up to a factor of k.

5.3 Deterministic Strongly Convex Problems

We start to consider deterministic strongly convex problems. Since u(z) have a strong convexity modulus of a > 0,
we can choose increasing 7's to obtain an improved convergence result, which is shown in the next proposition.
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Theorem 5 Let f be a deterministic NSCO problem (1.3) with o > 0 and let kn denote the number of layer

functions which are neither smooth nor linear. Let {z' := (zf; 7"%7--‘:7%)} be generated by Algorithm 3 with

t=H! + t+1a and 7} speczﬁed according to Table 8 and ¢ = Sk a. If wt == (t+1)/2, the followmg bounds

hold for both the last iterate = and the ergodic average solution N = Zt —0 Lw xt/ Zt 0 Lot
— * 12
sl — 2| < N(Js+3) C&gTJFW( S $)llzo — 1%, (5.18a)
N
F@) = f@*) < 5o OST+ v (H2 + 2)|lwo — z*||. (5.18b)

Proof The z-update in Line 7 of Algorithm 3 satisfies the following three-point inequality (see (2.20)):

t E1gpat 2 ‘ol t+1 2 ot t+12
Ab < glle’ = all® = g g a" —wfF = lla -2 (5.19)
In view of this relation, we can use increasing 7' := (t + 1)a/3, while keeping Z{SV:BI w? AL small. Such an

increasing stepsize policy for n! is the key to improve the convergence rate because it allows a more effective
cancellation of error terms from the aggregate dual gap function @1.. More specifically, the bound on Q7. in (5.1)
can be simplified to

SN Qi (21, 2) < OST + NP WL (HE + HY ||l — 22, (5.20)

Since Hia in Table 3 are given by

‘ {0 if f; is either smooth or affine,
H; o=

w otherwise,

¢ = 2a/(3ky) implies HS, = (t + 1)a/3.
Now let a feasible reference point z := (z*, 71, ..., m;) be given. Since n satisfy w'n’ < w!1(n*~! + a) and
Qo (zt'H, z) = AB, we have
Yot wl Qo' 2) < w3 e’ — 2| —wN T N T+ )3 laN — 22 = L win! Bl — 2% (5.21)

Then by adding the above inequality to (5.20), we get

S 0t QT 2) + wN T N T 4 @) |2 — 2| < wO(n° + HD) 4 |lxo — 2*||% + CST.

To obtain (5.18a), we can set the reference point to z* := (z*;77,...,7%). The desired bound for %HxN —z*|?
then follows immediately from the previous conclusion and the fact that Q(zt, 2*) > 0 Vt, . Moreover, if we set
the reference point to 2 := (z*;#1,...,7), (5.18b) can be derived by applying Proposition 11. [

To illustrate Theorem 5, we return to (5.5) again, but with o > 0. A straightforward application of (5.18b)
implies that Algorithm 3 exhibits an iteration complexity of

O{ Sies Lrtelizo=all | vk Tier Dl | kalih,
o .

VoeE ae

It should be noted, however, that the above iteration complexity is not optimal for smooth layers. Instead, we
can use both (5.18a) and (5.18b) to design a multi-epoch restarting scheme (see Section 4.2.3 [13]) to improve
the complexity to

/ . L ¥ 12 q/k?n i 252_ kn,Mz

which matches the sum of optimal iteration complexities for solving linearized one-layer problems (5.7), shown
in Table 6.
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‘ Layer Type, a > 0 ‘ Smooth ‘ Smoothable ‘ Non-smooth ‘

T2 2
KM% D%

P Oo{——1

k’DH ’DX

kLyj, —z*|2
Optimal Complexity ‘ o{( Tf")log llzo f I | o{

Table 6: Optimal Complexity for Strongly Convex One-layer Problem (5.7).

5.4 Stochastic Strongly Convex Problems

Now we consider stochastic strongly convex problems. In general, we can only prove a O(1/v/N ) functional value
convergence rate for Algorithm 3 because the a-strong convexity cannot improve the convergence bound for

Zt 0 wtét from (5.10). However, when all layer functions outside the innermost stochastic layer function are
(stochastic) smooth, i.e.,

f@) = fioofiss o i o firo...ofu(e)tule), (5.23)
~—
— —_—
(stochastic)smooth stochastic deterministic

the alternative gap to functional optimality conversion rule in Proposition 12 allows us to select reference points,
for which E[ Zt 0 wtéf] = 0, to accelerate it to O(1/N). We will study this special case for the rest of the
subsection.

More specifically, since Proposition 12 only needs a bound for Q(:, Z) with z := (z*;7],;_1, #.) and a bound
for 1|z — 2*||?, which can be derived from Q(-,2*) with z* := (z*;7},...,7}), we can focus on (random)
reference points of the form z := (z*;7],;_;,7.), where only 7. could depend on the stochastic solution sequence
{z'}. Lemma 4 below states some simplified bounds on §* (c.f. (5.10)) and AL (c.f. (5.11)) for these reference
points,

6t::2506t Yiso 0t = sy mp(ni — whlLq(atiwi ) = Lo(ahwi T E))) + (T — al (D)) ! —w),
AL =g AL = Dish ALy = ([Tt mp (= m O = b (E)] + (R - R R} T - ).

Lemma 4 Let the solution sequence {zt} be generated by Algorithm 3. If

Gf =AY T MEMY 02, <30 (4)ME, 02, M2 and w' = (t +1)/2,

then
* 1 1 ~
[zt mp(nf — wl )™ — bt D] + I — =P eI < o7 (5.24)
E[Y N wtst] =o. (5.25)
Proof The derlvatlon for (5.24) is similar to that in Lemma 3 except the terms in {mp(m; — 7Tt+1)[7rf]+1 -

fl+1(§q)] -1 Ty {7rt+1 t+1(§1 )} are all conditionally uncorrelated. Next, to show (5.25), first notice E[5§] :=
E[ﬂ't-j—l t+1(§1 ))(zt — 2*)] = 0. Moreover, for any i < | — 1, my(m} — 7}) is conditionally independent of
[Lq(atsml® by — £4(zt; 7rq+1(£q))], so E[6!] = 0. Thus we have E[ZI{V:BI wét] = 0. L]
We establish a bound on the gap function @ in the following proposition. Just like the previous subsection,
the a-strong convexity allows us to choose an increasing nt.

Proposition 22 Let ky denotes the number of layer functions which are neither smooth nor linear. Let {z =

(Jct;ﬂf, e ,772)} be generated by Algorithm 8 with nt = HY + t+1a and 7' specified according to Table 3 and
¢:= z—a. Then
= oo

N+1)a
EN 5w, 2)] + NOFDOR LN _ 02) < (& 4 22 ag — o2 + CST+ 3%, (5.26)
Proof Clearly, the aggregate dual gap function Q). can be bounded by
(X w!Quzt, )] < CST+ 000" 4 (HL + HOE[l2 ! — o]+ B[S wh S5 (6 + AL ). (5:27)

The primal gap function Qo can be decomposed to Qq(2!*1, 2) = Ab + 6 + Ai,o with

A5 < 3 ('t =2l = O + @)l — ol = nfllat — "2 (5.28)
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(="*12)

So the w!-weighted sum of Qq(z satisfies

_ 0,0 N-—1 N-—-1
E[S N3 wtQo(2, 2)] <Y |2 — o — Y FOR[oN — o)) + B[S N whsh + AL ]

N— 1w t+1 t t+1 )2 (5.29)
e a+ HOE[||lz""" — 2|7

Next we use the above (t + 1)a/3[jz! — z!™1||? to cancel terms from (5.27). Since ¢ := 1/(3ky) in Table 3,
H!, = (t + 1)a/6. The remaining (¢ + 1)a/12[|zt*1 — 2| can bound AL using the Young’s inequality:

B[y ot wh(al — S ot — 2t1)12)) < 3853, (5.30)

Finally in view of E[ Zt 0 wtéf] = 0, the desired bound in (5.26) can be obtained by adding (5.29) to (5.27). =

Now we use Proposition 12 to show the convergence of Algorithm 3 in function values. Towards that end,
it is convenient to split CST into CST := cST® + NOST™ such that constants CST® and CSTW) are
independent of N.

Theorem 6 Let {z' := (z';7},...,7L)} be generated by Algom'thm 3 usmg n' = H. +

according to Table 3 with ¢ = %ﬂa. If w' = (t+1)/2 and TV Zt o Lwts t/zt 0 Lwt, then

t+1a and T s specified

E[f(&") ~ f(2")] < oy (1 + Lm0y og0©) 4 ot 1 4 8he)yosr™) 4 16 (14 3Lm) T

) (5.31)
3LRlog(N+1) )(

1 0,1 2
+ v (L HZ + ga)llz” — 20",
where LR = El 1 MpLy, M(? is smoothness constant associated with outer layer functions f1,..., fi_1-

Proof Just like Theorem 5, we can set the reference point z in Proposition 22 to be Z and then z* to derive:

E[Y N, wiQ(zt! ~)] <(% )H«’Eo — x| + CST + 367, (5.32)
IE[%Hx - ” 1< t1+1)( + 2a )||a:0 H2 + t(til) CiT/ + D 2127’ vt. (5.33)

Then (5.33) and the Jensen’s inequality imply

E[,”f _ H ] < [Zt 0 tw 2||x z*|?]
Et 0 tuf

4 3log(N+1 0 4 3 1 6 3%

<wor SR osTO 4+ g 305TW + 1573
2 3log(N+1)

+ N(N+1) « (

HY + Ja)zz" - o,
and (5.32) imply

N 1 tQ( t+1 2)

=i

G

0
+ woern (HY + 305 ll2" = zol® + x%1 %2

E( ) < st + irosT®

- N N+1

Et 0 Ht ( )

So the desired bound (5.31) follows directly from Proposition 12. [

Now, we illustrate the use of Theorem 6 by considering the problem, min,cx f(x) := fio...0 fr(z) + u(x),

where f, is stochastic non-smooth and { f;};>2 are stochastic smooth. Because there is one nonsmooth layer, i.e.,
kn = 1, Theorem 6 implies that Algorithm 3 has an iteration complexity of

VEET! Ly tallwo—a*|| | 4/Si2) MpDY, i Y MLy, o7 i
(’){( e + ) 1+ LR jog(L) 4 = fe (1 4 Ley

Ve €

(6713

N2 - o -
- ”k(1+LR)+””(1+LR)}'

Moreover, the complexity for finding a solution 2%V s.t. E[||z" — 2*||?] < € can also be interpreted as the sum of
iteration complexities (listed in Table 7) for finding e-close solutions for linearized stochastic one-layer problems
(c.f. (5.7)) mingex b, fi(Aix + ¢;) + u(z) where (A;,¢;) are accessible only through stochastic oracles.

6 Applications

In this section, we demonstrate the practical use of the SSD Algorithm 3 by applying it to two concrete problems.

37



Layer Type, o > 0 Complexity for Finding an e-close Solution ‘

Ly, +allwo—a"||+ M,,D2 Mg, . Ly o2 MI?7 o2
‘ Smooth ‘ v iy iz fi%Lg ; T
Dé6 (o723
ME Mpo2
~ lzg—z* || Iy, Pomy
‘ Non-Smooth(Layer k) ‘ — + o= oZe

Table 7: Iteration Complexities for Strongly Convex Stochastic Linearized One-layer Problems

Elg(z, &)] @\ E[g(z, &)] @\

y + cE[(g(z, &) — y)+]

Y+ cE[RY (g(z, §) — y)]

f2 f1 f3 I

Fig. 3: Two Layer Formulation for (6.1). Fig. 4: Two Layer Formulation for (6.2).

Algorithm 5 SSD Algorithm for Mean-upper-semideviation Risk

Input: z_1 =z € X, g[l) € dom(f;).
1: Draw scenario £J ; and compute 79(£3 ;) := (f5)(z0,€3 ;).

2: fort=0,1,2,3...N — 1 do
3: Draw independent scenarios 557"11, 5-51’ EBI from = according to the probability distribution of .
4 Let #tt! = ot + 0t (a? — 2t 1).

Set x5 (€£41) = /41, €510 1] and £ (5P, €450 o= ot €511) — /a4, €5
Set ﬂ_t+1(£t+1) . [g (xt+1 £t+1) I]
5 Set it i= La(atimpt(E5H) + 0'wh (€L ) (@ — 2t ).
Compute yi“ = (rfy! + 9071/ (L 4 ) and set wiH(EY) = VAT (L €D,
6 Set ot = argming ey 7T (E T €T + 0t Gl — 217,
end for N i
: Return zVV := >iso wtxt+1/zt:6 wt

%

6.1 Risk Averse Optimization

In risk-averse optimization, one important risk measure is the mean-upper-semideviation of order one [20]. More
specifically, the risk associated with a random cost variable Z is:

p(Z) = E[Z] + E[(Z - E[Z])+]°,

where the risk-expectation trade-off parameter ¢ < 1 reflects the modeler’s risk aversiveness. Now if random
variable Z(z) represents the cost incurred by a decision z under a random scenario ¢ (distributed according to
some probability measure over =), i.e., Z(z) ~ g(z,§), then the risk minimization problem is

min{p(Z(z)) i= Elg(z,€)] + cEl(g(z, ) ~ Elg(z, )], ]} (6.1)
We assume g(z, &) to be non-smooth for generality. For example, in the two-stage linear program (with relative
complete recourse), g(z, ) is the minimum objective value of the second stage LP, which is clearly non-smooth.

To apply our SSD framework, we can formulate (6.1) as a two layer problem. However, this formulation
violates Assumption 4 because the non-smooth layer function fi(z,y) := y + cE[(g9(z,£) — y)+] has a noisy
argument y. One way around the issue is to replace the non-smooth (z)4 by a Nesterov’s smooth approximation
function with a parameter v > 0 [17] (the one-sided Huber Loss function):

0 if z<0
R (z) == m[ax}wz— f||7r|| %zz ifo<z<».
0,1
27%7 ifvy<z

® (y)+ := max{0,y}.

38



Since h” approximates (z)4 uniformly, i.e., K7 (z) < (2)1 < h7(z)+ 3, we can set 7 = € such that an ¢/2-optimal
solution for the smoothed problem f7 is an e-optimal solution for (6.1). More specifically, the smoothed problem
is defined as

min{f"(z) := Elg(z, )] + cE[M" (9(z, &) — Elg(z, O]}, (6.2)

and its two layer formulation is shown in Figure 4. Observe that Of] (z,y)/dy is a ¢/ continuous function of
y for a fixed x, so fiy is a semi-smooth-noisy layer function. Then by filling in the abstract dual updates in the
SSD Framework Algorithm 3, a concrete implementation for solving (6.2) can be easily deduced, which is shown
in Algorithm 5. Moreover, if the problem satisfies

Ellg(z,€)|*] < M; and E[lg(z,€) — E[g(x, €)]|*] < o5, Va,

E[llg’ (x, &)|I] < M7, and E[||¢(z,€) — E(¢'(z,€))||’] < o7, Va,

we can pick the stepsizes in Algorithm 5 to be

t_ ot t+1 t _  4c 2 VN+1eMn, | /2(N+1)c 2 2
= + 6 n = (t+1)'yMﬂ'g Dx + 2D x 60”g +M7Tg'

Then according to Theorem 4, Algorithm 5 has a convergence rate of

2 2
MﬂgDX
Y

Ol oy (M2 + )+ w5 (0%, +n0%) + e (Mn, Dx + 0w, Dx +09)}.

In addition, by substituting in 7 = ¢, we can show that Algorithm 5 has an iteration complexity of

2
M2? | M.,Dx

O{W €

+ % (07, D% + 05 + Mz, DY)},

which matches the O{1/ 52} complexity for solving risk-neutral convex stochastic program.

6.2 Stochastic Composite Optimization

. @\@ -

Ix

F(2) +g(2)
I3 f2 fs I f1
Fig. 5: Two Layer Formulation for (6.3). Fig. 6: Three Layer Formulation for (6.4).

Next we consider a stochastic composite optimization problem that arises frequently in machine learning and
data analysis [3]:
min{f(z) := F(Az) + g(x) = max (rp,Az) — F*(mp) + g(z)}, (6.3)
zeX nr€llp
where F' is a smoothable function, for example, the total variation loss function, and g is a stochastic smooth
function, for example, the data fidelity loss function. In addition, the dimension of A is usually large, so we
assume that there exist a stochastic oracle SO to return unbiased estimates A(§), A (€), and ¢'(x, &) for A, AT
and ¢'(x), and that their variances are uniformly bounded by (7124, 01247 and 0'721—9 respectively.
Clearly, (6.3) can be formulated as a two layer problem shown in Figure 5. By noticing that f3 is a stochastic
linear layer and fo is a separable mixture layer with input mixing, it is straightforward to derive from the abstract
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Algorithm 6 SSD Algorithm for Composite Optimization

Input: z_; =20 € X and w% € llp.

1: Set % := z¢ and call SO to obtain estimate A(fgg).

2: fort=0,1,2,3...N — 1 do

3: Call SO to obtain estimates A({ggl) and A" ({éfol)

4 Let #tt! = ot 4 0t (2t — 2t 1).

Let yt+1 = (Ttyt + it+l)/(1 +7}) and call SO to obtain miT( t+1) =g'(y t+1,§t+1).

5: Let yt+1 = A& H'l)ac + A&l o) (zt — 2t ).
t+1

Compute 7" 1= argmin, ¢, — <7rF,yt+1) + F*(rp) + T;%HWF —wt||?
6: Set 1 := argmin, ¢ x (75T ( H'1) +A (Etfl) o)+ nt 3z — 2t||2.
7: end for

8: Return zV := SN Laptpt+l ) SOV Loyt

SSD Framework in Algorithm 3 a concrete implementation for solving (6.3), shown in Algorithm 6. Moreover,
with appropriately chosen stepsizes, Theorem 4 implies that Algorithm 6 has an iteration complexity of
2 2

VIgle=a"l | IAIDxDu, | (o4+0%7)D5Dh, o2 D%
ofyrelerl  1APx 00, | ZaTPaT he  Trap Xy,

which is not improvable under our setting.

Next, comparing Algorithm 6 with the accelerated primal dual (APD) algorithm [3] designed specifically for
problem (6.3), we see that APD can achieve the same convergence rate. However, our general approach allows an
easy extension to handle more complicated problems in which f in (6.3) is but one sub-component. In particular,
it fO .= g(i)(:c) + F(i)(A(i)x), then a minimax problem which arises frequently from constrained optimization
or multi-objective optimization is

min{f(z) := max{f(l)(a:),f@)(a:),...,f(m)( } = max Zﬂ' )f(z) (6.4)

rzeX meAt

Clearly, (6.4) admits a three layer formulation shown in Figure 6, so we only need to add an additional proximal

step to update t+1 after parallel (implicit) proximal updates for 7r§+1,7r§+1 in Algorithm 6. Moreover, if the

. . T
variances for g( ( &), Vg(z)(~,§i), AW (), AD (&) are uniformly bounded by oy, 0'721—9, 0% and 01247, and if

A , D .., and Vg(i) || are uniformly bounded by ||A||, Dr7,. and My, then a straightforward application
F () F g
of Theorem 4 implies that the extended algorithm has an iteration complexity of

O{W/LQHI—I*H n Vm||A|Dx Dy n m(o%+0°1)DXDh, n m(oZ Dy +oy,) N \/EMQ}
Ve € - .

€2 €2

Moreover, if the entropy Bregman’s distance function is used for the 7 proximal update like [26], the above
complexity can be improved to be nearly independent of the number of sub-components,

O{,/qu;cgz*” N 1/log(m)|\13”'DXDHF n log(m) (0% +0%+)D% D7, n 1og(m)(a§gp§(+a§) N log(em)Mg 3

= €

7 Conclusion

In this paper we showed that by imposing a layer-wise convexity assumption and a compositional monotonicity
assumption, convex NSCO problems can be solved with tight iteration complexities. For the two-layer problem,
we introduced a simple vanilla-SSD algorithm which can be implemented purely in the primal form. For the multi-
layer problem, we proposed a general Stochastic Sequential Dual (SSD) framework. The framework consists of
modular dual updates for different types of functions (smooth, smoothable, non-smooth, etc.), and so is capable
of handling the general composition of different layer functions. Moreover, we presented modular convergence
proofs to show that the complexity of SSD is optimal for nearly all problem parameters.

e A= {m € RP| >, 71'%1.) = 1} is the probability simplex.
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