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Abstract

Linear mixed-effects models play a fundamental role in statistical methodology. A vari-
ety of Markov chain Monte Carlo (MCMC) algorithms exist for fitting these models, but they
are inefficient in massive data settings because every iteration of any such MCMC algorithm
passes through the full data. Many divide-and-conquer methods have been proposed to solve
this problem, but they lack theoretical guarantees, impose restrictive assumptions, or have com-
plex computational algorithms. Our focus is one such method called the Wasserstein Posterior
(WASP), which has become popular due to its optimal theoretical properties under general
assumptions. Unfortunately, practical implementation of the WASP either requires solving a
complex linear program or is limited to one-dimensional parameters. The former method is
inefficient and the latter method fails to capture the joint posterior dependence structure of
multivariate parameters. We develop a new algorithm for computing the WASP of multivari-
ate parameters that is easy to implement and is useful for computing the WASP in any model
where the posterior distribution of parameter belongs to a location-scatter family of probability
measures. The algorithm is introduced for linear mixed-effects models with both implementa-
tion details and theoretical properties. Our algorithm outperforms the current state-of-the-art
method in inference on the functions of the covariance matrix of the random effects across
diverse numerical comparisons.
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1 Introduction

Fitting Bayesian linear mixed-effects models to massive data is challenging because posterior com-
putations scale poorly with the sample size. MCMC algorithms are most commonly used for fitting
such models, but existing algorithms require multiple passes through the full data in every itera-
tion; therefore, their application in massive data settings is impractically slow. This limitation
has motivated a rich literature on divide-and-conquer algorithms that scale sampling algorithms
by dividing the full data into smaller subsets, running sampling algorithms in parallel on the sub-
sets, and estimating a posterior distribution by combining MCMC draws from all the subsets. The
posterior distribution estimated in the last step replaces the full data posterior distribution for infer-
ence. A major problem with these approaches is that they either rely on restrictive assumptions on
the posterior distributions of parameters or have a complex combination algorithm. We develop a
new combination algorithm for divide-and-conquer posterior computations in linear mixed-effects
modeling that is computationally simple and has asymptotic Monte Carlo and statistical guaran-
tees.

Linear mixed-effects models are widely used in extending linear regression to account for hi-
erarchical dependence in the data and are very popular in Bayesian modeling (Gelman and Hill,
2007). There are numerous applications of mixed-effects models in the modern setting, including
e-commerce (von Brzeski et al., 2015; Gao and Owen, 2017), recommendation systems (Perry,
2017), and semiparametric regression (Wand, 2017). Software exist to automate the fitting of
Bayesian mixed-effects models (Stan Development Team, 2017), but they cannot be used in mas-
sive data applications due to memory and computational bottlenecks. We are motivated to scale
existing Bayesian methodology and software to arbitrarily large data sets using the divide-and-
conquer technique that allows us to bypass any restrictive asymptotic approximations.

Scalable Bayesian inference in massive data is an active area of research, but three main groups
of methods stand out. The first group relies on analytic approximations such that the posterior
distribution of parameters is estimated via optimization, including expectation propagation, vari-
ational Bayes, and Laplace approximation (Rue et al., 2009; Gelman et al., 2014; Tan and Nott,
2014; Kucukelbir et al., 2015; Lee and Wand, 2016; Ranganath et al., 2016). All these methods
are very general and are easily applied for linear mixed-effects modeling; however, analytic ap-
proximations can be highly biased in the estimation of posterior dependence structure and most
of these methods have no theoretical guarantees on posterior uncertainty quantification (Giordano
et al., 2017). The second group relies on new MCMC or sequential Monte Carlo (SMC) algo-
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rithms based on subsampling or approximate transition kernels that avoid passing through the full
data (Welling and Teh, 2011; Ahn et al., 2012; Korattikara et al., 2014; Lan et al., 2014; Shahbaba
et al., 2014; Maclaurin and Adams, 2015; Bardenet et al., 2017; Johndrow et al., 2015; Alquier
et al., 2016; Campbell and Broderick, 2018; Quiroz et al., 2018). While these algorithms are very
simple, none of them focus on posterior inference in linear mixed-effects models, and the current
examples are limited to regression, classification, and simple time series models.

The third group consists of methods based on the divide-and-conquer technique and has two
main advantages. First, any existing sampling algorithm requires a simple modification before it
runs on the subsets. Second, if the number of subsets is chosen large enough, then any sampling
algorithm can be used in massive data settings. This means that theoretical guarantees for the sam-
pling algorithm and the associated software are also easily extended to the new setting. A variety of
methods exist in this group, but they mainly differ in their third step that combines MCMC draws
from the subsets (Neiswanger et al., 2014; Wang and Dunson, 2013; Minsker et al., 2014; Wang
et al., 2015; Scott et al., 2016; Li et al., 2017; Minsker et al., 2017; Staib et al., 2017; Savitsky and
Srivastava, 2018; Xue and Liang, 2019). One such method is the WASP that combines posterior
distributions estimated across subsets through their Wasserstein barycenter, a notion of geometric
center for probability measures (Agueh and Carlier, 2011; Srivastava et al., 2015, 2018). WASP is
broadly applicable and has asymptotic statistical guarantees, but its combination algorithm requires
solving a linear program, which becomes computationally demanding as the number of subsets in-
crease. Resolving this limitation in linear mixed-effects modeling, we propose a new combination
algorithm that only requires centering and scaling of subset MCMC draws.

The WASP has motivated divide-and-conquer methods with simpler combination algorithms.
The Posterior Interval Estimation (PIE) algorithm is the first such method that computes quantiles
of the WASP by averaging the quantiles estimated from the subset MCMC draws (Li et al., 2017).
Compared to the WASP, PIE algorithm has stronger theoretical guarantees and a conceptually ap-
pealing combination algorithm, but its major restriction is that it is valid only for one-dimensional
parameters. A more recent method in this thread is Double-Parallel Monte Carlo (DPMC), which
is valid for multivariate parameters (Xue and Liang, 2019). Relying on the asymptotic normality
of posterior distributions on the subsets, DPMC approximates the full data posterior by a mixture
of appropriately centered subset MCMC draws. The asymptotic normality assumption in DPMC
is difficult to justify in practice because it implies that covariance matrices of the subset posterior
distributions are the same. Our experiments present cases where this assumption fails for inference
on the covariance matrix of random effects.

Focusing on scalable linear mixed-effects modeling, the proposed combination algorithm for
the WASP retains the computational simplicity of PIE and DPMC and has asymptotic statistical
guarantees. We exploit the fact that the WASP is analytically tractable if the subset posterior distri-
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butions belong to the same location-scatter family of probability measures (Álvarez-Esteban et al.,
2016). Under additional theoretical assumptions, we show that the full data posterior distribution
and the posterior distribution estimated by our combination algorithm have the same asymptotic
means and covariance matrices. The location-scatter family includes non-Gaussian posterior dis-
tributions, especially the elliptical families, so our combination algorithm is applicable even if
asymptotic normality of subset posterior distributions does not hold and reduces to the DPMC
algorithm if this assumption is justified. Due to the importance of location-scatter family of prob-
ability distributions in our combination algorithm, we call our method the Location-Scatter WASP
(LS-WASP).

LS-WASP has asymptotic Monte Carlo guarantees. In MCMC applications, intractable poste-
rior expectations are approximated using Monte Carlo averages. The approximation error is called
the Monte Carlo error, and it decays as O(T�1/2) under some assumptions, where T is the number
of MCMC iterations (Robert and Casella, 2004). The literature on quantifying the Monte Carlo
error using a divide-and-conquer method is sparsely populated. DPMC’s theoretical guarantees
ignore Monte Carlo error and focus only on the statistical error. The PIE algorithm obtains an
empirical approximation of the WASP through quantile estimates from subset MCMC draws and
quantifies the approximation error; however, this error differs from the Monte Carlo error. The
LS-WASP is applicable to MCMC draws from any sampling algorithm, but we quantify the Monte
Carlo error in LS-WASP based on the conditional data augmentation algorithm of van Dyk (2000).
Our choice is driven by the fact that developing theoretical Monte Carlo guarantees in Bayesian
linear mixed-effects modeling is an active area of research, which is outside the scope of this work;
see Román and Hobert (2015). If we assume that the error variance is known, then we are able
to extend known results for van Dyk’s algorithm to our setup and show that the Monte Carlo and
statistical errors are of the same order if T is large, an assumption that is typically true in practice.

There is an increasing interest in using ideas from optimal transport to solve machine learning
and statistical problems; see, for example, Arjovsky et al. (2017); Claici and Solomon (2018); Li
and Zhang (2018). Wasserstein distance has been also used for developing newMCMC algorithms
(Bernton et al., 2017). We emphasize that LS-WASP is not a new sampling algorithm and does
not compete with any of these approaches. Our goal is to contribute to this growing literature
and to show that we can obtain draws from the WASP if all the subset posterior distributions are
completely specified by their mean vectors and covariance matrices up to the same but unknown
probability measure with zero mean and identity covariance matrix.
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2 Background on data augmentation in linear mixed-effects

modeling

Our linear mixed-effects modeling setup is based on the classical data augmentation literature (van
Dyk, 2000). Let n be the number of subjects, s be the total number of observations from n subjects
(hereafter, s is called the sample size), si be the total number of observations specific to subject i
(i = 1, . . . , n), s =

Pn
i=1 si, and p, q be the number of fixed and random effects, respectively. If

yi 2 Rsi is the ith response, then the linear mixed-effects model assumes that

yi = Xi� + Zici + ei, ci ⇠ Nq(0, D), ei ⇠ Nsi(0, �
2
Ri), i = 1, . . . , n, (1)

where Ri is a known si-by-si symmetric positive definite matrix, Xi 2 Rsi⇥p and Zi 2 Rsi⇥q

are known matrices of fixed and random effects covariates, and ci 2 Rq and ei 2 Rsi are un-
known vectors of random effects and idiosyncratic errors for subject i, respectively, � 2 Rp is
the fixed effects parameter vector, Na(m,V ) represents an a-variate Gaussian distribution with
mean vector m and covariance matrix V , and 0, I represent a zero vector and an identity matrix
of appropriate dimensions. The q-by-q covariance matrix D and variance �2 are unknown. If ci is
missing data, then the observed data are Dobs = {(yi, Xi, Zi, Ri), i = 1, . . . , n}, augmented data
are Daug = {(yi, Xi, Zi, ci, Ri), i = 1, . . . , n}, and the parameter vector is ✓ = {�, vech(D), �2},
where vech(D) stacks the lower triangular portion of D column-wise in a vector.

Efficient parameter estimation and inference in (1) using EM-type and data augmentation al-
gorithms has been extensively studied. Our focus is on the conditional augmentation scheme in
which Lbi replaces ci, where L is a lower triangular (Cholesky) matrix with positive diagonal el-
ements such that D = LL

T and bi ⇠ Nq(0, I) (Meng and Van Dyk, 1999; Van Dyk and Meng,
2001). This scheme modifies (1) to

yi = Xi� + ZiLbi + ei, bi ⇠ Nq(0, I), ei ⇠ Nsi(0, �
2
Ri), i = 1, . . . , n, (2)

the augmented data to Daug = {(yi, Xi, Zi, bi, Ri), i = 1, . . . , n}, and the parameter vector to ✓ =

{�, vech(L), �2}. The parameter is assigned a prior with density ⇡(✓) = ⇡(�)⇡{vech(L)}⇡(�2),
where

⇡(�) = Np(µ�,⌃�), ⇡{vech(L)} = Nq(q+1)/2(µL,⌃L), ⇡(�2) = Inverse-Gamma(a, b), (3)

where µ�, µL are mean vectors, ⌃�,⌃L are covariance matrices, Inverse-Gamma distribution has
mean b/(a � 1) and variance b

2
/{(a � 1)2(a � 2)} for a > 2, b > 0. We have developed the

imputation (I) and prediction (P) steps of the conditional augmentation algorithm based on the E
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and M steps of ECME1 algorithm in van Dyk (2000); see the supplementary material for details.
In massive data applications, conditional augmentation is impractically slow. Obtaining draws

of �, vech(L), and �
2 requires passing through data for all the n subjects in every iteration. This

poses a major barrier to the use of conditional augmentation in applications with large number of
subsets and offsets the benefits of easy implementation and theoretically guaranteed convergence
to the stationary distribution. Our divide-and-conquer approach described next avoids passing
through the full data in every iteration by conditioning on smaller subsets of the full data while
retaining all the advantages of the conditional augmentation algorithm.

3 Distributed Bayesian inference in linear mixed-effects mod-

eling

3.1 First step: partitioning of samples

The first step in distributed Bayesian inference divides the n subjects into k subsets. We use indices
i and j for subjects and subsets, respectively. Define mj to be the number of subjects on subset
j, s̃j to be the total number of samples in subset j, and s̃ji to be the total number of samples
on subject i in subset j so that s̃j =

Pmj

i=1 s̃ji. Let yji, Xji, Zji, Rji, bji, eji be the equivalents of
yi, Xi, Zi, Ri, bi, ei for subject i in subset j (i = 1, . . . ,mj; j = 1, . . . , k), and Dj obs, Dj aug be
the observed and augmented data on subset j, respectively. We adopt two partitioning schemes:
with (default) and without overlap of subjects in the subsets. In the partitions with overlap, the
same subject can belong to multiple subsets, so

Pk
j=1 mj � n and

Pk
j=1 s̃j � s, whereas a subject

belongs to only one data subset in the partitions with no overlap. Only one restriction is imposed
in both the partitioning schemes: all observations specific to a subject lie in the same subset.

Consider the linear mixed-effects model in (2) for subset j. Let �j , Lj , �
2
j , and ✓j =

{�j, vech(Lj), �2
j} be the subset j versions of �, L, �2, and ✓. The model (2) for subject i in

subset j is

yji = Xji�j + ZjiLjbji + eji, bji ⇠ Nq(0, I), eji ⇠ Nsji(0, �
2
jRji), i = 1, . . . ,mj. (4)

The likelihoods of Lj and �
2
j , respectively, are obtained using (4). The likelihood of �j is de-

fined using the following model obtained by marginalizing (or collapsing) over bji in (4) for
i = 1, . . . ,mj

yji = Xji�j + ẽji, ẽji ⇠ Nsji

�
0, Uji(✓)

�1
 
, Uji(✓) =

�
�
2
jRji + ZjiLjL

T
j Z

T
ji

��1
. (5)
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The priors on Lj , �
2
j , and �j are assumed to be the same as in (3) and ⇡(✓j) =

⇡(�j)⇡{vech(Lj)}⇡(�2
j ).

A direct application of the conditional augmentation algorithm based on van Dyk (2000) is
problematic. The posterior distribution of ✓j conditions on the data in subset j that contains
(mj/n)-fraction of the full data; therefore, the Bernstein-von Mises theorem implies that the vari-
ance of the jth subset posterior distribution is inflated by a factor of n/mj relative to that of the
full data posterior distribution of ✓ (Minsker et al., 2017). The estimate of posterior distribution
of ✓ obtained using ✓j draws from the conditional augmentation of van Dyk (2000) overestimates
uncertainty in ✓. The modified conditional augmentation algorithm developed next ensures that the
asymptotic order of uncertainty estimates for ✓ obtained using the jth subset and full data posterior
distributions are the same as n,mj ! 1.

3.2 Second step: data augmentation on the subsets

We modify the conditional augmentation algorithm of van Dyk (2000) to ensure that the posterior
uncertainty of ✓j is properly calibrated relative to that of the full data posterior distribution for ✓.
Let `{vech(Lj)}, `(�2

j ), and `(�j) be the conditional likelihoods of Lj , �2
j , and �j computed using

(4) and (5). For ⇠j equalling �j , vech(Lj), or �2
j , the conditional density of jth subset posterior

distribution for ⇠j given Dj aug and the remaining parameters is defined as

⇡(⇠j | ✓j\⇠j,Dj aug) =
`
n/mj(⇠j)⇡(⇠j)R

`n/mj(⇠j)⇡(⇠j)d⇠j
, j = 1, . . . , k, (6)

where ✓j\⇠j represents all the parameters in ✓j except ⇠j , ⇡(⇠j) is the prior imposed on ⇠j , and we
have assumed that

R
`
n/mj(⇠j)⇡(⇠j)d⇠j is finite for every n, ⇠j , mj , and j. The modification of

the likelihood by raising it to the power of n/mj in (6) is called stochastic approximation because
it is equivalent to computing the conditional likelihood of ⇠j after replicating the data for every
subject (n/mj)-times in the jth subset. The subset posterior density in (6) extends stochastic
approximation to models with random effects and uncertainty estimates of the full and subset
posterior distributions have the same asymptotic order as n,mj ! 1 (Minsker et al., 2014, 2017).

The conditional augmentation algorithm cycles through the I and P steps in parallel on the k

subsets. On subset j, the I step imputes bji (i = 1, . . . ,mj) and the P step predicts ✓j using the full
conditionals defined in (6). At the end of tth iteration on subset j, let b(t)ji and ✓

(t)
j be the imputed

bji and predicted ✓j . Then, the I step in the (t+ 1)-th iteration on subset j is
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(a) draw b
(t+1)
ji given ✓(t)j andDj aug \bji fromNq{mbji(✓

(t)
j ), Vbji(✓

(t)
j )} for i = 1, . . . ,mj , where

mbji(✓
(t)
j ) = L

(t)T
j Z

T
ji

⇣
ZjiL

(t)
j L

(t)T
j Z

T
ji + �

2(t)
j Rji

⌘�1

(yji �Xji�
(t)
j ), (7)

Vbji(✓
(t)
j ) = I � L

(t)T
j Z

T
ji

⇣
ZjiL

(t)
j L

(t)T
j Z

T
ji + �

2(t)
j Rji

⌘�1

ZjiL
(t)
j . (8)

Our I step is identical to the I step in the conditional augmentation algorithm of van Dyk (2000)
because the missing data model for the random effects remains unchanged on subset j.

Our P step draws ✓(t+1)
j given b

(t+1)
ji (i = 1, . . . ,mj) in a sequence of three steps. Let D(t+1)

j aug

denote the augmented data in the (t + 1)-th iteration. The P step draws �(t+1)
j , L(t+1)

j , and �
2(t+1)
j

as follows:

(b) marginalize over bjis and draw �j given L
(t)
j , �

2(t)
j , and D(t+1)

j aug from Np{m(t+1)
�j

, V
(t+1)
�j

},
where

m
(t+1)
�j

=

(
n

mj

mjX

i=1

X
T
jiUji(✓

(t)
j )Xji + ⌃�1

�

)�1(
n

mj

mjX

i=1

X
T
jiUji(✓

(t)
j )yji + ⌃�1

� µ�

)
,

V
(t+1)
�j

=

(
n

mj

mjX

i=1

X
T
jiUji(✓

(t)
j )Xji + ⌃�1

�

)�1

; (9)

(c) define b̃(t+1)
j = (b(t+1)

j1 , . . . , b
(t+1)
jmj

)T and draw vech(Lj) given �
2(t)
j , �

(t+1)
j , and D(t+1)

j aug from
N q(q+1)

2
{m(t+1)

Lj
, V

(t+1)
Lj

}, where

m
(t+1)
Lj

=

 
n

mj

mjX

i=1

Z̃
(t+1)T
ji R

�1
ji Z̃

(t+1)
ji + �

2(t)⌃�1
L

!�1(
n

mj

mjX

i=1

Z̃
(t+1)T
ji R

�1
ji (yji �Xji�

(t+1)
j ) + �

2(t)
j ⌃�1

L µL

)
,

V
(t+1)
Lj

= �
2(t)
j

 
n

mj

mjX

i=1

Z̃
(t+1)T
ji R

�1
ji Z̃

(t+1)
ji + �

2(t)
j ⌃�1

L

!�1

,

Z̃ji =
⇣
b
(t+1)T
ji ⌦ Zji

⌘
Eq, i = 1, . . . ,mj, (10)

where Eq is the q2 ⇥ q(q + 1)/2 matrix satisfying vec(Lj) = Eqvech(Lj); and
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(d) draw �
2
j given �

(t+1)
j , L

(t+1)
j , b̃

(t+1)
j , and D(t+1)

j from Inverse-Gamma(a(t+1)
j , b

(t+1)
j ), where

a
(t+1)
j =

n

2mj
s̃j + a,

b
(t+1)
j =

n

2mj

mjX

i=1

f
(t+1)T
ji R

�1
ji f

(t+1)
ji + b, f

(t+1)
ji = yji �Xji�

(t+1)
j � ZjiL

(t+1)
j b

(t+1)
ji .

(11)

Our conditional augmentation algorithm in parts (a)–(d) is a generalization of the ECME1

algorithm in van Dyk (2000) for distributed Bayesian inference. The computational complexity of
this algorithm is O{max(m1, . . . ,mk) ⇥ max(q6, p3)}. If n is large, then k is chosen to be large
enough so that mj ⌧ n for every j and parts (a)–(d) pass through that data for mj subjects in
every iteration. The algorithm in parts (a)–(d) draws ✓ from a modified likelihood that is raised to
a power of n/mj , but it is applicable more generally in situations where the likelihood of ✓ has
been raised to any positive power. In particular, if k = 1 and mj = n, then parts (a)–(d) reduce
to van Dyk’s conditional augmentation algorithm for sampling from the posterior distribution of ✓,
which also implies that the algorithm in parts (a)–(d) is easy to implement and numerically stable.

The post burn-in subset posterior draws for � and L are collected on every subset. Let T be
the total number of post burn-in iterations, �(t)

j and L
(t)
j be the marginal � and L draws obtained

from ✓
(t)
j on subset j at the tth post burn-in iteration, and ⇧�(· | Dj obs) and ⇧L(· | Dj obs) be the

marginal posterior distributions of � and L, with densities ⇡(� | Dj obs) and ⇡(L | Dj obs), obtained
from⇧Daug,✓j(· | Dj obs). Under certain assumptions discussed in Section 4, �(t)

j and L(t)
j marginally

follow ⇧�(· | Dj obs) and ⇧L(· | Dj obs), respectively, for j = 1, . . . , k and t = 1, . . . , T ; however,
the posterior draws from a subset cannot be used for inference on � or L because they are obtained
by conditioning on a fraction of the full data.

The WASP combines the subset posterior draws to obtain draws with a distribution that con-
ditions on the full data. The linear program for estimating the WASPs for � and L approximates
⇧�(· | Dj obs) and ⇧L(· | Dj obs) using empirical measures supported on the jth subset posterior
draws for � and L, respectively. To achieve an approximation error of ✏ in Wasserstein distance
of order 2, the number of subset posterior draws must satisfy T � Cmax{(1/✏)p/2, (1/✏)q(q+1)/4}
when p � 3 or q � 2, where C is a positive constant; see Theorem 15 in (Fournier and Guillin,
2015) for a precise statement; therefore, the number of subset posterior draws grows exponen-
tially with the dimensions for obtaining accurate empirical approximations of ⇧�(· | Dj obs) and
⇧L(· | Dj obs), resulting in the curse of dimensionality when p � 3 or q � 2. Furthermore, the com-
putational cost of the linear program for estimating the WASP grows as O(T 5), which is expensive
when ✏ is small and T � Cmax{(1/✏)p/2, (1/✏)q(q+1)/4}. Resolving these two problems in the
next section, we exploit the analytic properties of the WASP under certain regularity assumptions
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to develop a conceptually simple and easy to implement combination algorithm.

3.3 Third step: combining the subset posterior distributions for � and L

3.3.1 Optimal transportation and its application for distributed Bayesian inference

We introduce two definitions from optimal transportation that are required in the combination step.
The space of probability measures onRd is P(Rd) and theWasserstein space of order 2 probability
measures onRd isP2(Rd) = {⌫ 2 P(Rd) :

R
Rd k⇠�⇠0k22 ⌫(d⇠) < 1}, where k·k22 is the Euclidean

distance, ⇠0 2 Rd, and the definition of P2(Rd) does not depend on ⇠0. Let µ, ⌫ 2 P2(Rd) and
L(µ, ⌫) be the set of all probability measures on Rd ⇥Rd with marginals µ and ⌫. The Wasserstein
distance of order 2 between µ and ⌫ isW2(µ, ⌫) =

�
inf

⇡2L(µ,⌫)

R
Rd ⇥Rd kx� yk22 d⇡(x, y)

 1/2.
The first definition required for the combination step is that of the Wasserstein barycenter.

If ⌫1, . . . , ⌫k 2 P2(Rd) are k subset posterior distributions, then their Wasserstein barycenter is
defined as

⌫ = argmin
⌫2P2(Rd)

kX

j=1

wj

2
W

2
2 (⌫, ⌫j),

kX

j=1

wj = 1, w1, . . . , wk > 0, (12)

where wj is the weight assigned to ⌫j . We fix wj at 1/k in our numerical experiments because the
values ofm1, . . . ,mk are very similar. Ifm1, . . . ,mk values differ significantly across the subsets,
then we suggest choosing wj = mj/(m1 + . . . + mk), which gives more importance to subsets
containing more subjects. It is known that ⌫ exists uniquely under general regularity assumptions
(Agueh and Carlier, 2011). In the context of distributed Bayesian inference, ⌫j is the jth subset
posterior distribution and ⌫ is the WASP, which replaces the full data posterior distribution for
inference (Srivastava et al., 2015).

The second definition is that of the location-scatter family of probability distributions:

Definition 3.1 (Location-scatter family; Álvarez-Esteban et al. (2016)) Let X0 be a random

vector with probability law P0 2 P2(Rd) such thatE(X0) = 0 and cov(X0) = I , where I is a d⇥d

identity matrix, L(W ) be the probability distribution of a random variable W , and Md⇥d
+ be the

set of d⇥d positive definite matrices. The family F(P0) = {L(⌃1/2
X0+µ) : ⌃ 2 Md⇥d

+ , µ 2 Rd}
of probability laws induced by positive definite affine transformations from P0 is called a location-

scatter family, where ⌃1/2
is the symmetric square-root of ⌃.

The family F(P0) includes elliptical and non-elliptical distributions; see Definition 2.1 in Álvarez-
Esteban et al. (2016) for greater details.
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3.3.2 Combination of subset posterior samples via the LS-WASP

We start by stating a theorem about the WASP if subset posterior distributions belong to the same
location-scatter family. Let Q0 be a probability measure with zero mean and identity covariance
matrix similar to P0 in Definition 3.1. The following theorem restates Theorems 2.3, 2.4, and 4.2
in Álvarez-Esteban et al. (2016) adapted to our setup.

Theorem 3.2 (Álvarez-Esteban et al. (2016)) Assume that ⌫1, . . . , ⌫k 2 F(Q0) for someQ0 with

zero mean vector and identity covariance matrix. Let a1, . . . , ak 2 Rd
and V1, . . . , Vk 2 M

d⇥d
+ be

the mean vectors and covariance matrices of ⌫1, . . . , ⌫k. The Wasserstein barycenter ⌫ of ⌫1, . . . , ⌫k

with weights w1, . . . , wk defined in (12) belongs to F(Q0) with mean a and covariance matrix V

that satisfy

a =
kX

j=1

wjaj, V =
kX

j=1

wj

⇣
V

1/2
VjV

1/2
⌘1/2

(13)

where V exists uniquely and V
1/2

denotes the symmetric square root of V . Define the sequence of

matrices St (t = 0, . . . ,1) starting from a given S0 2 M
d⇥d
+ as

St+1 = S
�1/2
t

(
kX

j=1

wj(S
1/2
t VjS

1/2
t )1/2

)2

S
�1/2
t , t = 0, 1, 2, . . . ,1. (14)

Let ⌫
(t)

be a probability measure with meanm and covariance matrix St and ⌫
(t) 2 F(Q0). Then,

W2(⌫, ⌫(t)) ! 0 as t ! 1, implying that St ! V in every matrix norm.

In our simulations, we set S0 = I and perform the iterations in (14) until |trace(St+1�St)| < 10�6.
We bypass solving the WASP linear program by exploiting the analytic form of the mean

vector and covariance matrix of the WASP in Theorem 3.2. Let m�j , mLj and V�j , VLj be the
mean vectors and covariance matrices of ⇧�(· | Dj obs), ⇧L(· | Dj obs), and m� , mL and V � , V L

be the mean vectors and covariance matrices of the WASPs of subset posterior distributions for �,
L. Based on Definition 3.1 and Theorem 3.2, if there are probability measures Q1 and Q2 such
that ⇧�(· | Dj obs) 2 F(Q1) and ⇧L(· | Dj obs) 2 F(Q2) for every j = 1, . . . , k, then for any
�j ⇠ ⇧�(· | Dj obs) and Lj ⇠ ⇧L(· | Dj obs),

U1j = V
�1/2
�j

(�j �m�j) ⇠ Q1, U2j = V
�1/2
Lj

{vech(Lj)�mLj}) ⇠ Q2. (15)

Theorem 3.2 also implies that the WASPs of � and L belong to F(Q1) and F(Q2), respectively, so
m�+V

1/2
� U1j andmL+V

1/2
L U2j follow theWASPs of � andL, respectively, for every j = 1, . . . , k.

11



Our combination algorithm replaces the unknown parameters and random variables in (15) by
their MCMC counterparts. The Monte Carlo estimates ofm�js,mLjs, V�js, and VLjs based on the
subset MCMC draws are

m̂�j =
1

T

TX

t=1

�
(t)
j , m̂Lj =

1

T

TX

t=1

vech(L(t)
j ), V̂�j =

1

T

TX

t=1

(�(t)
j � m̂�j)(�

(t)
j � m̂�j)

T
,

V̂Lj =
1

k

kX

j=1

n
vech(L(t)

j )� m̂Lj

on
vech(L(t)

j )� m̂Lj

oT

. (16)

We plug-in m̂�j and m̂Lj for m�j and mLj in (13) and V̂�js and V̂Lj for V�j and VLj in (14) to
estimate the means and covariance matrices for the WASPs of � and L, which are denoted as m̂� ,
m̂L, V̂ � , and V̂ L. The Monte Carlo realizations of U1j and U2j in (15) based on �

(t)
j and L(t)

j are

û
(t)
j1 = V̂

�1/2
�j

⇣
�
(t)
j � m̂�j

⌘
, û

(t)
j2 = V̂

�1/2
Lj

n
vech(L(t)

j )� m̂Lj

o
, j = 1, . . . , k, t = 1, . . . , T,

(17)

Finally, we obtain t0th WASP draws of � and L as

�
(t0)

= m̂� + V̂

1/2

� û
(t)
j1 , vech(L(t0)

) = m̂L + V̂

1/2

L û
(t)
j2 , t

0 = t+ (j � 1)T, (18)

for every j and t.
In our simulated and real data analyses, we have observed that computation of V̂ � and V̂ L using

Theorem 3.2 fails numerically because St in (14) becomes rank deficient. This problem persists
irrespective of the choices for S0, and it motivates the development of a numerically stable version
of (14). We accomplish this by first rewriting the fixed point equation for V in (13) as

I =
kX

j=1

V
�1/2

⇣
V

1/2
w

2
jVjV

1/2
⌘1/2

V
�1/2 ⌘

kX

j=1

Aj, Aj = V
�1/2

⇣
V

1/2
w

2
jVjV

1/2
⌘1/2

V
�1/2

,

(19)

where Aj is known as the geometric mean of V �1 and w
2
jVj and is denoted as V �1

](w2
jVj); see

Section 4.1 in Bhatia (2009) for greater details. Taking the transpose of both sides in (19) im-
plies that I =

Pk
j=1 A

T
j , and averaging this with I =

Pk
j=1 Aj gives I =

Pk
j=1(Aj + A

T
j )/2.

Second, following the definition of fixed point iterations in (14), we first square both sides of
I =

Pk
j=1(Aj +A

T
j )/2 and define the new fixed point algorithm after multiplying by S1/2

t on both

12



1. Input:

(a) Subset posterior draws for � and L, �(t)
j and L(t)

j (j = 1, . . . , k; t = 1, . . . , T ), and a known
function of �, L, denoted as f(�, L); for example, f(�, L) = LL

T = D or f(�, L) = ⇢,
where ⇢ is the correlation matrix obtained from D.

(b) Monte Carlo estimates of mean vectors and covariance matrices of the subset posterior
distributions and the WASPs of � and L, m̂�j , m̂Lj , m̂� , m̂L, V̂�j , V̂Lj , V̂ � , V̂ L

(j = 1, . . . , k).

2. Do:

(a) Center and scale the subset posterior draws for j = 1, . . . , k and t = 1, . . . , T to define

û
(t)
j1 = V̂

�1/2
j� (�(t)

j � m̂�j), û
(t)
j2 = V̂

�1/2
jL {vech(L(t)

j )� m̂Lj}.

(b) For j = 1, . . . , k and t = 1, . . . , T , define the t0th � and LWASP draws using the tth draws
from the jth subset posterior distribution for � and L as

�
(t0)

= m̂� + V̂

1/2

� û
(t)
j1 , vech(L(t0)

) = m̂L + V̂

1/2

L û
(t)
j2 , t

0 = (j � 1)T + t.

(c) For t0 = 1, . . . , kT , define the t0th WASP draw for f(�, L) as f(�(t0)
, L

(t0)
).

3. Return: �(1)
, . . . , �

(kT ), L(1)
, . . . , L

(kT ), and f(�(1)
, L

(1)
), . . . , f(�

(kT )
, L

(kT )
).

Algorithm 1: Sampling from the WASP of �, L, f(�, L) using the LS-WASP algorithm.

sides as

St+1 = S
1/2
t

 
kX

j=1

h
S
�1
t ](w2

jVj) + {S�1
t ](w2

jVj)}T
i
/2

!2

S
1/2
t , t = 0, 1, 2, . . . ,1, (20)

and declare the convergence of St sequence when |trace(St+1 � St)| < 10�6. The computation
of S�1

t ](w2
jVj) in (20) is greatly simplified by using the following result from matrix analysis:

S
�1
t ](w2

jVj) = wjS
�1
t

�
StVj

�1/2; see Theorem 4.1.3 in Bhatia (2009) for the proof. The matrix
Aj has been discovered earlier for exploring the Riemannian geometry of a Gaussian distribution
(Skovgaard, 1984), but we use it to combine covariance matrices of the subset posterior distribu-
tions, where we use the fixed point iterations in (20) instead of (14) for computing V̂ � and V̂ L.
Algorithm 1 summarizes the steps for obtaining the WASP draws of �, L, and a known function
f(�, L) using the subset posterior draws. It is justified theoretically in the next section.

Algorithm 1 has several advantages, including conceptual and computational simplicity. First,
an important advantage of Algorithm 1 is that it does not assume that the subsets are mutually
independent or subset posterior distributions are Gaussian; therefore, our algorithm is applicable
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even for dependent non-Gaussian subset posterior distributions that belong to the same location-
scatter family. This feature differentiates Algorithm 1 from the DPMC algorithm. Second, unlike
the PIE algorithm or the algorithm in Srivastava et al. (2015), Algorithm 1 generates draws from
the WASP rather than approximating the WASP using an empirical measure. This feature allows
it to bypass the curse of dimensionality when p � 3 or q � 2. Furthermore, the PIE algorithm
is limited to computation of marginal barycenters and it is not clear how to compute the joint
barycenter from a collection of marginal barycenters. Finally, if all the V

(t)
�j

s and V
(t)
Lj

s are the
same, then Algorithm 1 reduces to the DPMC algorithm.

4 Theoretical properties of the LS-WASP algorithm

4.1 Theoretical properties of the Markov chains generated on the subsets

The I and P steps in parts (a)–(d) form a partially collapsed Gibbs sampler (Van Dyk and Park,
2008; Park and Van Dyk, 2009). At the (t+ 1)-th iteration, we draw (a) (bj1, . . . , bjmj) given �

(t)
j ,

L
(t)
j , �2(t)

j , Dj obs, (b) �j given L
(t)
j , �2(t)

j , Dj obs after collapsing over bjis, (c) Lj given �
2(t)
j , �(t+1)

j ,
D(t+1)

j aug , and (d) �2
j given �

(t+1)
j , L(t+1)

j , D(t+1)
j aug for t = 0, . . . ,1. A slower-mixing parent sampler

of the sampler in (a)–(d) blocks over � and L and has three steps (i) same as (a), (ii) draw (�, L)

given �
2(t)
j , D(t+1)

j aug , and (iii) same as (d). It is known that the Markov chain generated by (i)–(iii)
is geometrically ergodic if L is diagonal (Román and Hobert, 2015), but new tools are required to
develop similar theoretical guarantees for the Markov chain generated by parts (i)–(iii) and (a)–(d)
for the general model in (4) after stochastic approximation.

Developing such tools is outside the scope of this work, but the MCMC theory is greatly sim-
plified if �2 is known. Let �0, L0, and �

2
0 be the true values of �, L, and �

2. Given �
2 = �

2
0 , the

modified form of (4) after stochastic approximation is

yji = X̃ji✓j + ✏ji, X̃ji = [Xji Z̃ji], Z̃ji = b
T
ji ⌦ Zji, eji ⇠ Nsji(0,

mj�2
0

n Rji), bji ⇠ Nq(0, I),

(21)

where ✓j = {�j, vech(Lj)}. Under the setup of (21), parts (a)–(d) and (i)–(iii) are modified to new
samplers with parts (a0)–(c0) and (i0)–(ii0) that fix �

2(t)
j = �

2
0 for every t and remove part (d) and

(iii), respectively, which draw �
2
j . The full conditionals in (i0) and (ii0) are Gaussian, which implies

that {Dj aug, �j, vech(Lj)} given Dj obs follows a Gaussian distribution. The last result, Section 2.2
of Meng and Van Dyk (1999), and Liu (1994) imply that the geometric rate of convergence of the
Markov chain {{�(t)

j , vech(L(t)
j )}, t � 0} generated by parts (i0)–(ii0) is �DA

j = kI � Ij obsI
�1
j augkop,
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where kAkop is the maximum eigenvalue of the symmetric positive definite matrix A,

Ij obs = �@
2 log ⇡(✓j | Dj obs)

@✓j@✓
T
j

����
✓j=✓0

, Ij aug = E

⇢
�@

2 log ⇡(✓j | Dj aug)

@✓j@✓
T
j

����Dj obs, ✓j

� ����
✓j=✓0

,

(22)

✓0 = {�0, vech(L0)}, and ⇡(✓j | Dj obs), ⇡(✓j | Dj aug) are the conditional densities of ✓j implied
by (21). Because the sampler in parts (i0)–(ii0) is a slower mixing parent of the sampler in parts
(a0)–(c0), the geometric ergodicity of the Markov chain generated by parts (i0)–(ii0) implies that the
Markov chain generated by parts (a0)–(c0) is geometrically ergodic.

We justify replacing m�js, mLjs, V�js, and VLjs in Algorithm 1 by their MCMC estimates
under the assumption that �2 is known and equals �2

0 in (4). The sampler with parts (a0)–(c0) is
a faster-mixing variant of (i0)–(ii0) and is identical to the jth subset posterior sampler that fixes
�
2(t)
j = �

2
0 for every t; therefore, central limit theorems for Monte Carlo averages based on jth

subset posterior draws exist and m̂�j �m�j = OPj(T
�1/2), m̂Lj �mLj = OPj(T

�1/2), V̂�j �V�j =

OPj(T
�1/2), and V̂Lj �VLj = OPj(T

�1/2) (j = 1, . . . , k), where every convergence is elementwise
and Pj is the probability measure on {�(t)

j , vech(L(t)
j ), t � 0} Markov chain generated subset j;

see supplementary material for derivations and the next section for assumptions under which the
central limit theorems for Monte Carlo averages exist.

4.2 Monte Carlo and statistical errors in draws obtained using the LS-

WASP algorithm

Our theoretical guarantees for the LS-WASP algorithm are based on (21). In Section 4.1, we have
assumed that �2 = �

2
0 for a simplified analysis of asymptotic Monte Carlo properties. We simplify

the setup further by assigning flat priors on � and vech(L) and setting mj = m, wj = 1/k for
every j. The additional assumption still implies that the Markov chains generated across subsets
are geometrically ergodic (Meng and Van Dyk, 1999), but it enables simpler analysis of asymptotic
statistical properties. We introduce additional notations that are required to state our assumptions
and theoretical results. Let P n

✓0 be the true probability distribution of y implied by the full data
version of (21), ⇧n, ⇧jm be the full data and jth subset posterior distributions of ✓, and ⇧n be
the WASP of ⇧1m, . . . ,⇧km. Define Xj and Zj by stacking Xjis and Zjis along the rows, Rj by
stacking Rjis into a block diagonal matrix, and X , Z, and R to be the full data versions of Xj , Zj ,
and Rj .

The posterior inference using Algorithm 1 with known a �
2 has two sources of errors. First,

the Monte Carlo error arises from using the Monte Carlo estimates in (17) and (18). Second, we
use ⇧n for inference on ✓ instead of ⇧n, which is the source of statistical error. This source of
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error is named so because it is free of any Monte Carlo approximation. We impose the following
assumptions in our theoretical setup so that the Monte Carlo and statistical errors decay to zero at
the root-n rate as n,m, T tend to infinity:

1. There are probability distributions Q1 and Q2 specifying location-scatter families F(Q1)

and F(Q2), respectively, such that the posterior distributions ⇧�(· | Dn) and ⇧�(· | Dj)

(j = 1, . . . , k) belong to F(Q1) and ⇧L(· | Dn) and ⇧L(· | Dj) (j = 1, . . . , k) belong to
F(Q2) with P n

✓0-probability 1.

2. The number of fixed effects p and random effects q do not depend on n orm.

3. The number of subjects on a subset (m) and number of subsets (k) increase with n and satisfy
km = n{1 + on(1)}, where on(1) ! 0 as n,m ! 1.

4. There are p⇥ p, q⇥ q symmetric positive definite matrices ⌦XX , ⌦ZZ that do not depend on
n orm and that satisfy

1

m
XT

j R
�1
j Xj = �2

0⌦XX + om(1),
1

m
ZT
j R

�1
j Zj = �2

0⌦ZZ + om(1), j = 1, . . . , k,

where om(1) is a matrix that converges to the zero matrix elementwise as m ! 1.

5. There are p⇥p, q2⇥q
2 symmetric positive definite matrices ⌦U1U1 , ⌦U2U2 that do not depend

on n orm and that satisfy

1

n

nX

i=1

XT
i Ui(✓0)Xi = ⌦U1U1 + on(1),

1

n

nX

i=1

⇥
{LT

0 Z
T
i ZiUi(✓0)}⌦ {Ui(✓0)Z

T
i ZiL0}

⇤
= ⌦U2U2 + on(1),

1

m

mX

i=1

XT
jiUji(✓0)Xji = ⌦U1U1 + om(1),

1

m

mX

i=1

⇥
{LT

0 Z
T
jiZjiUji(✓0)}⌦ {Uji(✓0)Z

T
jiZjiL0}

⇤
= ⌦U2U2 + om(1),

for every j = 1, . . . , k, where Ui(✓) = (ZiLL
T
Z

T
i + �

2
0Ri)�1, Uji(✓) = (ZjiLL

T
Z

T
ji +

�
2
0Rji)�1, and om(1) is a matrix that converges to the zero matrix elementwise as n,m ! 1.

Our assumptions are based on existing theoretical results in Meng and Van Dyk (1999) and
Srivastava et al. (2018). Assumption 1 says that the full data and subset posterior distributions
of � and L are members of the same location-scatter families, respectively, This assumption is
used in deriving analytic expressions for means and covariance matrices of the WASPs for � and
L. Assumption 2 ensures that the dimension of ✓ remains fixed as n,m tend to infinity and is
used when we apply the strong law of large numbers and derive (22). Assumptions 3 and 4 are
required for justifying that any subset posterior distribution is a noisy approximation of the full
data posterior distribution. Assumption 3 is used to determine the limits of ⇧1m, . . . ,⇧km and
⇧n as m and n tend to infinity. Assumption 4 is based on the strong law of large numbers and
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imposes conditions on the partitions and full data such that the asymptotic orders of the means and
covariance matrices of⇧1m, . . . ,⇧km and⇧n are the same up to o(1) terms. Similar to Assumption
4, Assumption 5 is used in proving that the geometric rate of convergences of the Markov chains
generated on the k subsets and that generated by the full data sampler are identical up to o(1)

terms. Assumptions 1–4 and 1–5 are required for bounding the statistical and Monte Carlo errors,
respectively.

Our assumptions are violated in applications where the full data or subset posterior distributions
do not belong to the same location-scatter family. In these applications, Algorithm 1 provides
an approximation of the true WASP based on a location-scatter family. Assumption 2 implies
that Algorithm 1 is inapplicable for high-dimensional linear mixed-effects modeling. There are
two main reason for imposing this restriction. First, theoretical results in Meng and Van Dyk
(1999) assume that the parameter dimension is fixed, which rules out high-dimensional models.
Second, in high-dimensional settings, the prior distribution impacts the rate of convergence of the
posterior distribution of parameters, so it is critical to understand the theoretical properties of the
prior distribution (Castillo et al., 2015). The literature on high-dimensional mixed-effects model is
sparsely populated and frequentist results have become available only recently (Jiang et al., 2016;
Dicker and Erdogdu, 2017). This implies that the prior distributions on L and � in (3) require a
careful study as p ! 1, q ! 1 with n ! 1, which is beyond the scope of this work. We
demonstrate some of these difficulties later in Section 6.

We first quantify the rate of decay of the Monte Carlo error. Denote the means and covariance
matrices of ⇧n, ⇧jm, ⇧n as µ, µj , µ and ⌃, ⌃j , ⌃. If ✓j is distributed as ⇧jm, then Assumption 1
implies that ✓ = µ+⌃

1/2{⌃�1/2
j (✓j�µj)} follows theWASP with P n

✓0-probability 1 (j = 1, . . . , k).

In Algorithm 1, we replace µ, ⌃, ⌃j , and µj by their Monte Carlo estimates µ̂, ⌃̂, ⌃̂j , and µ̂j to
obtain ✓T , theMonte Carlo estimate of ✓. Let⇧T be the distribution of ✓T and P k = P1⌦· · ·⌦Pk be
the probability measure on the Markov chains of ✓ generated by the k subset posterior distributions.
Then, the following theorem defines theMonte Carlo error asW2(⇧T ,⇧n) and proves that it decays
at the root-n rate under certain assumptions.

Theorem 4.1 If Assumptions 1–5 hold and n = o(
p
T ), then as n, T ! 1

W2(⇧T ,⇧n) = o(n�1/2) in P k
-probability

with P
n
✓0-probability 1.

The proof of this theorem is in the supplementary materials along with other proofs. If
W2(⇧T ,⇧n) = o(n�1/2) in P

k-probability as n, T ! 1, then ⇧T and ⇧n deliver the same in-
ference in the sense that their posterior means and covariance matrices are the same if n is large
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and n2 = o(T ) on every subset. In practice, we run MCMC algorithms on all the subsets such that
T > n

2.
We define the statistical error as W2(⇧n,⇧n) and the following theorem shows that it decays

to zero at the root-n rate under certain assumptions.

Theorem 4.2 If Assumptions 1–4 hold, then as n ! 1

W2(⇧n,⇧n) = o(n�1/2) in P n
✓0-probability.

The proof of this theorem is based on Theorem 1 in Srivastava et al. (2018). It is known that ⌃
and ⌃ are O(n�1) in P

n
✓0-probability. If W

2
2 (⇧n,⇧n) is o(n�1) in P

n
✓0-probability and n is large,

then this theorem implies that the posterior credible intervals obtained using ⇧n and ⇧n match up
to o(n�1/2) terms.

Extensions of Theorems 4.1 and 4.2 hold for functions of ✓. In applications, the interest lies
in the functions of � and L; for example, the covariance matrix of random effects D = LL

T is
a function of L. Consider any function f mapping ✓ 2 ⇥ to {f1(✓), . . . , fa(✓)} 2 Ra for some
integer a; for example, if f(✓) = vech(LLT ), then a = q(q + 1)/2. Let ⇧nf , ⇧nf , and ⇧Tf be the
full data posterior distribution, the WASP, and the MCMC-based approximation of the WASP of
f(✓). The following corollary states that ⇧Tf provides an accurate alternative to ⇧nf for inference
on f(✓) if Assumptions 1–5 hold and the second moments of f(✓) with respect to ⇧1m, . . . ,⇧km

and ⇧n exist.

Corollary 4.3 If the assumptions of Theorems 4.1 and 4.2 hold and
Pa

i=1 f
2
i (✓) = kf(✓)k22 

Cf (1+ k✓k22), where Cf is a universal constant free of n and k · k2 is the Euclidean norm, then the
approximation error in using ⇧Tf for inference on f(✓) instead of ⇧nf as n, T ! 1 is defined as

W2(⇧Tf ,⇧nf ) = oPk(n�1/2) + oPn
✓0
(n�1/2),

where the first and second terms on the right represent the asymptotic orders of Monte Carlo and

statistical errors, respectively.

The proof follows from Corollary 5 in Srivastava et al. (2018) and noticing that W2(⇧Tf ,⇧nf ) 
W2(⇧Tf ,⇧nf ) + W2(⇧nf ,⇧nf ). The extra assumption on kf(✓)k22 is required to ensure that the
posterior covariance matrix of f(✓) exists. SinceW2(⇧Tf ,⇧nf ) quantifies the approximation error
in using ⇧Tf instead of ⇧nf for inference on f(✓), this corollary provides the theoretical basis for
using L draws obtained using Algorithm 1 for inference on D = LL

T .
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5 Experiments

5.1 Setup

We replicate the setup for linear mixed-effects modeling in Li et al. (2017). They show that
the WASP performs better than its divide-and-conquer competitors in combining subset poste-
rior draws; however, these empirical results do not compare the WASP with DPMC, so we use
DPMC as our main competitor and focus on joint inference on multivariate parameters with di-
mensions greater than one. The MCMC based approximation of the full data posterior, denoted as
⇧̂n, is the benchmark in all our simulation comparisons. If ⇧̃n is the LS-WASP- or DPMC-based
approximation of ⇧̂n, then the approximation error in using ⇧̃n instead of ⇧̂n is

Approximation Error =
h
kµ� µ̃k22 + tr

n
⌃+ ⌃̃� 2(⌃1/2⌃̃⌃1/2)1/2

oi1/2
, (23)

where µ, µ̃ represent the means and ⌃, ⌃̃ represent the covariance matrices of ⇧̂n, ⇧̃n, respectively.
The error in (23) is defined based on W2(⇧̂n, ⇧̃n) and is small when the differences between the
means and covariance matrices of ⇧̂n and ⇧̃n are simultaneously small.

We compare the computational efficiencies of DPMC and LS-WASP based on their run-times
and effective sample sizes (ESSs). If ˜ESS and ESS are the ESSs and t̃ and t are the run-times
(in hours) of the DPMC or LS-WASP and full data posterior distributions, respectively, then the
computational efficiency of DPMC or LS-WASP relative to the full data posterior distribution is
defined based on Johndrow et al. (2019) as

Computational Efficiency = log2{( ˜ESS/t̃)/(ESS/t)}. (24)

In our experiments, the run-times of DPMC and LS-WASP are very similar, so the differences
between their computational efficiencies result mainly from the differences between their ESSs.

The full data and subset posterior draws are obtained using the data augmentation algorithm
in Section 3.2. Every sampling algorithm is run for 104 iterations, with a burn-in time of 5 ⇥ 103

iterations. We collect every fifth MCMC draw after burn-in for inference on ✓. DPMC and LS-
WASP follow the generic three-step strategy for obtaining posterior draws for ✓ from the subset
posterior draws and differ only in the combination step. All the three steps are implemented in R or
R combined with C++ using Rcpp and run on an Oracle Grid Engine cluster with 56-core 128GB
compute nodes running CentOS-7.4 Linux. The full data posterior computations are allocated four
times more memory resources than those for subset posterior computations.
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5.2 Simulated data analysis

The simulation setup follows the model in (1). We set s = 106, n = 50, 000, and randomly assign
the s samples to n subjects, with 20 being the average number of observations per subject (si).
The entries in Xi and Zi are set to 1 or �1 with equal probability for every i. We set p = 4, q = 3,
� = (�2, 2,�2, 2), D11 = 1, D22 = 2, D33 = 3, D12 = �0.56, D31 = 0.52, and D23 = 0.0025,
�
2 = 0.01, and Ri = I , where I is an identity matrix of appropriate dimension. The parameter

values are the same as in Li et al. (2017) and responses are generated using (1). The simulation is
replicated ten times.

The approximation error in (23) is evaluated for every two- and higher-dimensional joint dis-
tributions of parameters. We use �,D, and correlation matrix ⇢ obtained fromD as the parameters
for comparisons, where the last two parameters are functions of L. The approximation errors are
computed for the posterior distributions of all a-dimensional parameters, where 1 < a  p for �,
1 < a  q(q + 1)/2 for D, and 1 < a  q(q � 1)/2 for ⇢. The computational efficiency in (24) is
evaluated using the draws for � andD. We also evaluate the effects of disjoint and overlapping data
subsets on the approximation errors and computational efficiencies. We set k as 50, 100, 150, 200
in both partitioning schemes. In the disjoint scheme, subset sample size decreases as k increases
from 50 to 200. On the other hand, the subset sample sizes are fixed at 250 and 500, respectively,
in the overlapping partitioning scheme for every k.

Our simulation setup highlights the generality of the assumptions of LS-WASP. Theoretical
guarantees for DPMC rely on the asymptotic normality of the subset and full data posterior distri-
butions, whereas LS-WASP assumes that subset and full data posterior distributions belong to the
same location-scatter family. The asymptotic normality of the subset posterior distributions for �
are easier to justify than those for L because L is a (lower triangular) Cholesky matrix; therefore,
we expect LS-WASP to have a smaller approximation error than DPMC for inference on D and ⇢

whenever the subset sample size is small. This happens when k is large in the disjoint partitioning
scheme. The LS-WASP scales the subset MCMC draws to have identity covariance in (17) before
the re-scaling and re-centering step in (18). Because the scaling of subset MCMC draws is absent
in DPMC, we expect the computational efficiency of LS-WASP to be slightly higher than that of
DPMC for �, D, and ⇢. The simulation results and conclusions for ⇢ are very similar to those for
D, so we have moved them to the supplementary material.

The approximation errors of LS-WASP for inference on � andD are slightly smaller than those
of DPMC, but the magnitudes of differences depend on the partitioning schemes (Tables 1–2). In
both partitioning schemes, DPMC and LS-WASP have similar approximation errors for inference
on � for everym, k and for inference onD whenm is large. In all these cases,m is large enough to
guarantee that the errors for DPMC and LS-WASP are of the same order. The approximation errors
for DPMC and LS-WASP decrease with increasing k in the overlapping partitioning scheme for
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Table 1: Average approximation errors (23) in estimating posterior distributions of two- and higher-
dimensional parameters based on the entries of � and D under the disjoint partitioning scheme
across ten simulation replications. The Monte Carlo errors across replications are in parentheses.

�
2-dimensional 3-dimensional 4-dimensional

k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200
DPMC 0.005 0.005 0.007 0.008 0.01 0.011 0.013 0.014 0.046 0.051 0.062 0.072

(0.002) (0.002) (0.004) (0.002) (0.002) (0.003) (0.005) (0.004) (0.009) (0.013) (0.021) (0.023)
LS-WASP 0.005 0.005 0.007 0.008 0.01 0.011 0.013 0.014 0.046 0.051 0.062 0.071

(0.002) (0.002) (0.004) (0.002) (0.002) (0.003) (0.005) (0.004) (0.009) (0.013) (0.021) (0.023)

D
2-dimensional 3-dimensional 4-dimensional

k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200
DPMC 1.243 1.911 2.396 2.834 1.047 1.606 2.02 2.392 1.848 2.817 3.574 4.229

(0.021) (0.02) (0.025) (0.036) (0.018) (0.014) (0.02) (0.028) (0.03) (0.023) (0.058) (0.038)
LS-WASP 1.239 1.88 2.385 2.81 1.044 1.585 2.009 2.369 1.835 2.791 3.549 4.189

(0.014) (0.011) (0.016) (0.019) (0.01) (0.008) (0.014) (0.015) (0.018) (0.019) (0.023) (0.026)
5-dimensional 6-dimensional

DPMC 5.043 7.682 9.787 11.566 30.929 47.135 60.015 70.986
(0.069) (0.06) (0.146) (0.1) (0.413) (0.346) (0.871) (0.602)

LS-WASP 5.012 7.627 9.702 11.46 30.734 46.781 59.504 70.298
(0.047) (0.046) (0.057) (0.068) (0.281) (0.269) (0.327) (0.395)

a given parameter dimension a and m because both methods combine a greater number of noisy
approximations of the full data posterior distribution, resulting in smaller approximation errors
for larger ks. On the other hand, in the disjoint partitioning scheme, the approximation errors of
DPMC and LS-WASP increase with k and a, but the errors for LS-WASP are slightly smaller than
those for DPMC when k is large.

We observe an interesting pattern in the approximation errors of D in the overlapping parti-
tioning scheme. The errors for m = 250 are smaller than those for m = 500, and the difference
increases with a. This pattern cannot be explain by the existing theoretical results in Li et al.
(2017) and Srivastava et al. (2018), which focus on disjoint partitions. A possible explanation for
this observation is that the second term in (23) (that is, tr

n
⌃+ ⌃̃� 2(⌃1/2⌃̃⌃1/2)1/2

o
) increases

with m in overlapping partitions due to the increasing dependencies among the subset posterior
distributions. On the other hand, if we define the squared bias based on (23) as kµ� µ̃k22, then the
squared bias decreases with m. The second term in (23) increases more quickly with m than the
decrease in squared bias, which results in an increase in the approximation error withm. This em-
pirical result motivates a general strategy for choosing k in divide-and-conquer Bayesian inference
with overlapping partitions based on the bias-variance trade-off, which we leave as future work.

The computational efficiencies of LS-WASP are slightly larger than that of DPMC in both
partitioning schemes and for every parameter,m, and k (Tables 3–4). This happens mainly because
the ESS of LS-WASP is higher than that of DPMC due to the additional step in LS-WASP that
scales the subset MCMC draws. The number of subset MCMC draws increases with k in DPMC
and LS-WASP, which leads to the increase in computational efficiencies with k. DPMC and LS-
WASP are significantly faster than the full data posterior computations. Specifically, both methods
require 1.39 and 0.74 hours on an average to finish when k = 50 and k = 200, respectively,
whereas the full data posterior computations run for 55 hours on an average. Because LS-WASP
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Table 2: Average approximation errors (23) in estimating posterior distributions of two- and higher-
dimensional parameters based on the entries of � andD under the overlapping partitioning scheme
with m = 250 and m = 500 across ten simulation replications. The Monte Carlo errors across
replications are in parentheses. The ‘-’ entry indicates that km < n; that is, the sum of the number
of subjects on all the subsets is less than the total number of subjects.

�
m = 250

2-dimensional 3-dimensional 4-dimensional
k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200

DPMC - - - 0.045 - - - 0.087 - - - 0.421
- - - (0.021) - - - (0.037) - - - (0.13)

LS-WASP - - - 0.045 - - - 0.087 - - - 0.421
- - - (0.021) - - - (0.037) - - - (0.13)

m = 500
2-dimensional 3-dimensional 4-dimensional

k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200
DPMC - 0.079 0.06 0.051 - 0.156 0.125 0.108 - 0.693 0.555 0.446

- (0.045) (0.029) (0.025) - (0.065) (0.055) (0.044) - (0.244) (0.198) (0.168)
LS-WASP - 0.079 0.06 0.051 0.156 0.125 0.108 - 0.693 0.555 0.446

- (0.045) (0.029) (0.025) - (0.065) (0.055) (0.044) - (0.244) (0.198) (0.168)

D
m = 250

2-dimensional 3-dimensional 4-dimensional
k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200

DPMC - - - 1.264 - - - 1.063 - - - 1.872
- - - (0.012) - - - (0.009) - - - (0.021)

LS-WASP - - - 1.258 - - - 1.058 - - - 1.863
- - - (0.012) - - - (0.009) - - - (0.021)

5-dimensional 6-dimensional
DPMC - - - 5.108 - - - 31.325

- - - (0.054) - - - (0.32)
LS-WASP - - - 5.084 - - - 31.177

- - - (0.054) - - - (0.318)
m = 500

2-dimensional 3-dimensional 4-dimensional
k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200

DPMC - 1.952 1.914 1.915 - 1.642 1.608 1.613 - 2.864 2.864 2.859
- (0.058) (0.044) (0.04) - (0.047) (0.032) (0.028) - (0.051) (0.091) (0.053)

LS-WASP - 1.932 1.904 1.892 - 1.627 1.601 1.595 - 2.843 2.851 2.833
- (0.041) (0.024) (0.014) - (0.034) (0.017) (0.014) - (0.037) (0.083) (0.041)

5-dimensional 6-dimensional
DPMC - 7.822 7.798 7.812 - 47.93 47.826 47.902

- (0.117) (0.198) (0.115) - (0.717) (1.172) (0.714)
LS-WASP - 7.771 7.76 7.736 - 47.637 47.598 47.439

- (0.084) (0.188) (0.102) - (0.528) (1.112) (0.631)

has lower approximation errors and higher computational efficiencies than DPMC when k < m

andm ⌧ n, we conclude that LS-WASP is better than DPMC for inference on L and its functions,
including D, in these cases.

5.3 MovieLens ratings data analysis

We evaluate the performance of DPMC and LS-WASP on the 10M MovieLens ratings data
(http://grouplens.org). This data set contains about 10 million movie ratings from about
72 thousand users, where the ratings range from 0.5 to 5 in increments of 0.5. Following Perry
(2017), we have used theMovieLens ratings data to define three new predictors capturing a movie’s
category, a movie’s popularity, and a user’s mood. Four movie categories are defined based on the
genre of a movie, which is a non-empty subset of the 19 predefined genres in the MovieLens rat-
ings data. A movie belongs to the action category if its genre is action, adventure, fantasy, horror,
sci-fi, or thriller, to the children category if its genre is animation or children, to the drama category
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Table 3: Average computational efficiencies (24) in estimating the posterior distributions of � and
D under the disjoint partitioning scheme across ten simulation replications. The Monte Carlo
errors across replications are in parentheses.

� D
k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200

DPMC 10.458 12.402 13.44 14.096 10.391 12.365 13.523 14.328
(0.088) (0.093) (0.101) (0.092) (0.085) (0.087) (0.097) (0.083)

LS-WASP 10.459 12.404 13.448 14.117 10.438 12.413 13.575 14.389
(0.089) (0.093) (0.1) (0.092) (0.083) (0.085) (0.094) (0.086)

Table 4: Average computational efficiencies (24) in estimating the posterior distributions of � and
D under the overlapping partitioning scheme with m = 250 and m = 500 across ten simulation
replications. The Monte Carlo errors across replications are in parentheses. The ‘-’ entry indicates
that km < n; that is, the sum of the number of subjects on all the subsets is less than the total
number of subjects.

�
m = 250 m = 500

k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200
DPMC - - - 13.323 - 12.342 12.836 13.338

- - - (0.092) - (0.107) (0.099) (0.099)
LS-WASP - - - 13.325 - 12.344 12.84 13.34

- - - (0.093) - (0.105) (0.097) (0.098)

D
m = 250 m = 500

k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200
DPMC - - - 13.233 - 12.3 12.799 13.3

- - - (0.082) - (0.096) (0.074) (0.099)
LS-WASP - - - 13.275 - 12.346 12.852 13.351

- - - (0.082) - (0.096) (0.077) (0.099)

if its genre is crime, documentary, drama, film-noir, musical, mystery, romance, war, or western,
and to the comedy category if its genre is comedy. A movie category predictor is a vector of length
four representing the four categories. If a movie belongs to C 2 {1, 2, 3, 4} categories, then the
entries in the movie’s predictor vector for these categories is 1/C and the remaining entries are 0.

The movie popularity and user mood predictors are computed using the movie ratings. If a
user’s rating for a movie is greater than or equal to four, then we say that the user likes the movie.
The popularity of a movie is defined as logit{(l+0.5)/(r+1)}, where l and r respectively are the
number of users who liked and rated the movie among the 30 or fewer most recent reviewers of the
movie. A user’s mood is defined as 1 if the user liked the previously rated movie and 0 otherwise.
The movie popularity and user mood are treated as numeric predictors, and the effect of movie
category predictor is coded with action category as the baseline such that the category coefficients
sum to zero.

We perform 10 replications of our experiment by randomly selecting 50,000 users (subjects) in
each replication. The number of ratings (samples) in each replication is more than seven million.
The total number of fixed effect predictors is 6, where four predictors are for the movie categories
and the remaining two are movie popularity and user mood. The random effect predictors are the
same as fixed effect predictors. The dimensions of � and D are 6 ⇥ 1 and 6 ⇥ 6, respectively. In
the application of DPMC and LS-WASP, we vary k as 100,200 for the disjoint partitioning scheme
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and k = 100,m = 2000 for the overlapping partitioning scheme. The application of conditional
data augmentation based on van Dyk (2000) is impractically slow in that it failed to finish 5000
iterations in a week. On the other hand, the DPMC and LS-WASP algorithms finish 104 iterations
within 2 days; therefore, we do not present results for the full data posterior distribution.

Due to the absence of the full data posterior results as the benchmark, we present results for
a modified form of the computational efficiency only (Table 5). The approximation errors cannot
be calculated due to the absence of benchmark results; for the same reason, we define a modified
computational efficiency based on (24) as log2 ESS/t, where ESS and t are the effective sample
size and run-time (in hours) of the DPMC orWASP. The modified computational efficiencies of the
LS-WASP and DPMC for all the parameters and partitioning schemes agree with our simulation
results in that LS-WASP has a slightly higher modified computational efficiency than DPMC due
to higher ESSs for every parameter across all settings. The subset sample sizes in both partitioning
schemes are relatively large to satisfy the theoretical assumptions of DPMC and LS-WASP, so the
full data posterior approximations obtained using both methods are very similar across all settings;
see supplementary material for the definition of metric for comparing DPMC and LS-WASP.

Table 5: Average modified computational efficiencies in estimating the posterior distributions of �
and D under the overlapping and disjoint partitioning schemes across ten replications of Movie-
Lens ratings data analysis. The Monte Carlo errors across replications are in parentheses.

�
Overlapping Partitions (m = 2000) Disjoint Partitions (m = 500) Disjoint Partitions (m = 250)

k = 100 k = 100 k = 200
DPMC 22.045 22.815 24.434

(0.068) (0.371) (0.142)
LS-WASP 22.036 22.811 24.391

(0.066) (0.365) (0.132)

D
Overlapping Partitions (m = 2000) Disjoint Partitions (m = 500) Disjoint Partitions (m = 250)

k = 100 k = 100 k = 200
DPMC 20.189 21.039 21.79

(0.054) (0.232) (0.194)
LS-WASP 20.257 21.167 22.074

(0.056) (0.233) (0.048)

5.4 US natality data analysis

We compare DPMC and LS-WASP on perinatal health data from the United States National Center
for Health Statistics (US natality data) (Abrevaya, 2006). Li et al. (2017) have used this data
to show that the WASP performs better than competing approaches even when the asymptotic
normality fails to hold for the subset posterior distributions, but their results are restricted to one-
dimensional parameters. Our empirical results show that the conclusions of Li et al. (2017) are
also true for multivariate parameters. We have also chosen this example because the application of
conditional data augmentation algorithm of van Dyk (2000) is feasible, which allows us to compare
the approximation errors and computational efficiencies of DPMC and LS-WASP.
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Table 6: Average approximation errors (23) in estimating posterior distributions of two- and higher-
dimensional parameters based on the entries of � and D under the disjoint partitioning scheme
across ten replications of the US natality data analysis. The Monte Carlo errors across replications
are in parentheses.

�
2-dimensional 3-dimensional 4-dimensional 5-dimensional 6-dimensional

k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30
DPMC 0.022 0.028 0.008 0.012 0.003 0.005 0.002 0.002 0.001 0.002

(0.009) (0.012) (0.003) (0.004) (0.001) (0.002) (0.001) (0.001) (0) (0.001)
LS-WASP 0.021 0.027 0.008 0.011 0.003 0.004 0.002 0.002 0.001 0.002

(0.009) (0.012) (0.004) (0.005) (0.001) (0.002) (0.001) (0.001) (0) (0.001)

D
2-dimensional 3-dimensional 4-dimensional 5-dimensional 6-dimensional

k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30 k = 20 k = 30
DPMC 0.123 0.122 0.219 0.277 0.292 0.369 1.005 1.504 6.812 9.891

(0.023) (0.014) (0.036) (0.03) (0.048) (0.04) (0.099) (0.21) (0.593) (1.157)
LS-WASP 0.113 0.101 0.197 0.234 0.263 0.312 0.88 1.202 6.05 8.12

(0.023) (0.014) (0.037) (0.023) (0.049) (0.03) (0.1) (0.072) (0.608) (0.392)

The US natality data contains samples from 3809 mothers. There are two observation for ev-
ery mother, so n = 3809 and s = 7618. The response is infant’s birthweight, and the covariates
include 13 birth-specific predictors. Following Li et al. (2017), we use 14 variables including all
13 covariates and one intercept as fixed effects and mother’s age, gestation period, and number of
living infants as random effects in (2). We partition the data for mothers into k disjoint and over-
lapping subsets. Choosing k greater than 30 for disjoint partitions results in unstable estimation
of subset posterior distributions, so we set k = 20, 30 for disjoint partitions. Motivated from the
simulations, we use k = 20, 30, 50, 100 andm = 250, 500 for overlapping partitions. This setup is
replicated ten times for different selections of mothers.

The differences in the approximation errors of DPMC and LS-WASP for inference on D are
larger than those in the simulations (Tables 6–7). Agreeing with our simulation results, LS-WASP
and DPMC have similar approximation errors for all two- to six-dimensional parameters based on
�. The number of subjects per subset is very small in the disjoint partitioning scheme to justify
the asymptotic normality of subset posterior distributions for L, so DPMC’s assumptions are vi-
olated and LS-WASP has a clear advantage over DPMC when k = 30. This results in smaller
approximation errors of LS-WASP than DPMC for inference on two- to six-dimensional parame-
ters based onD when k = 30 in the disjoint partitioning scheme. The same conclusions also holds
for overlapping partitions when m = 250.

Agreeing with our simulation results, the computational efficiencies of LS-WASP are higher
than those of DPMC in every setting (Table 8). The only change is that the differences are much
higher than those observed in the simulations. The estimates of the posterior distributions of pa-
rameters based on LS-WASP are more stable than those based on DPMC. This happens mainly due
to the two scaling of subset MCMC draws in LS-WASP, which is absent in DPMC; see (17) and
(18). For example, despite the relatively large subset sample size, Figure 1 shows that bi-variate
kernel density estimates of LS-WASP are more stable than those of DPMC as k changes from 20
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Table 7: Average approximation errors (23) in estimating posterior distributions of two- and higher-
dimensional parameters based on the entries of � andD under the overlapping partitioning scheme
with m = 250 and m = 500 across ten replications of the US natality data analysis. The Monte
Carlo errors across replications are in parentheses.

�
m = 250

2-dimensional 3-dimensional 4-dimensional
k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100

DPMC 0.039 0.029 0.029 0.018 0.012 0.013 0.01 0.007 0.005 0.005 0.004 0.003
(0.018) (0.021) (0.019) (0.008) (0.006) (0.005) (0.005) (0.004) (0.002) (0.002) (0.002) (0.001)

LS-WASP 0.039 0.029 0.029 0.018 0.012 0.013 0.01 0.007 0.005 0.005 0.004 0.003
(0.018) (0.022) (0.019) (0.008) (0.006) (0.005) (0.005) (0.004) (0.002) (0.002) (0.002) (0.001)

5-dimensional 6-dimensional
DPMC 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0)
LS-WASP 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0)
m = 500

2-dimensional 3-dimensional 4-dimensional
k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100

DPMC 0.026 0.02 0.018 0.013 0.01 0.007 0.007 0.004 0.004 0.003 0.003 0.002
(0.015) (0.009) (0.008) (0.006) (0.004) (0.004) (0.004) (0.002) (0.001) (0.001) (0.001) (0.001)

LS-WASP 0.026 0.02 0.018 0.013 0.01 0.007 0.007 0.004 0.004 0.003 0.003 0.002
(0.015) (0.009) (0.008) (0.006) (0.004) (0.004) (0.004) (0.002) (0.001) (0.001) (0.001) (0.001)

5-dimensional 6-dimensional
DPMC 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0) (0) (0) (0) (0)
LS-WASP 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0) (0) (0) (0) (0)

D
m = 250

2-dimensional 3-dimensional 4-dimensional
k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100

DPMC 0.092 0.093 0.109 0.103 0.174 0.179 0.173 0.176 0.232 0.238 0.231 0.235
(0.033) (0.016) (0.017) (0.011) (0.032) (0.031) (0.023) (0.022) (0.042) (0.041) (0.031) (0.03)

LS-WASP 0.083 0.085 0.103 0.096 0.152 0.156 0.154 0.155 0.203 0.208 0.206 0.207
(0.037) (0.017) (0.018) (0.011) (0.035) (0.025) (0.021) (0.02) (0.047) (0.033) (0.028) (0.027)

5-dimensional 6-dimensional
DPMC 0.795 0.805 0.808 0.828 5.509 5.575 5.557 5.609

(0.091) (0.151) (0.14) (0.117) (0.437) (0.866) (0.743) (0.657)
LS-WASP 0.673 0.676 0.705 0.701 4.773 4.786 4.916 4.826

(0.09) (0.081) (0.124) (0.079) (0.486) (0.528) (0.643) (0.453)
m = 500

2-dimensional 3-dimensional 4-dimensional
k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100

DPMC 0.103 0.083 0.088 0.09 0.133 0.134 0.124 0.131 0.178 0.178 0.166 0.175
(0.035) (0.024) (0.02) (0.011) (0.029) (0.024) (0.026) (0.026) (0.038) (0.032) (0.035) (0.034)

LS-WASP 0.103 0.082 0.087 0.089 0.126 0.127 0.114 0.123 0.169 0.17 0.153 0.164
(0.035) (0.025) (0.021) (0.011) (0.029) (0.025) (0.027) (0.025) (0.038) (0.034) (0.035) (0.033)

5-dimensional 6-dimensional
DPMC 0.614 0.602 0.623 0.629 4.355 4.401 4.291 4.405

(0.088) (0.103) (0.105) (0.112) (0.492) (0.598) (0.605) (0.645)
LS-WASP 0.579 0.566 0.571 0.578 4.097 4.142 3.918 4.051

(0.081) (0.106) (0.097) (0.096) (0.474) (0.611) (0.56) (0.562)

to 30. The full data posterior computations require 3 hours on an average to finish, whereas the
DPMC and LS-WASP algorithms are significantly faster, requiring 0.42 and 0.41 hours to finish
when k = 20 and k = 100, respectively. Because our US natality data results agree with our sim-
ulations results, we conclude that LS-WASP outperforms DPMC in inference on D and maintains
the superior performance in both partitioning schemes.
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Table 8: Average computational efficiencies (24) in estimating the posterior distributions of � and
D under the disjoint scheme and overlapping partitioning schemes across ten replications of the
US natality data analysis. The Monte Carlo errors across replications are in parentheses.

�
Disjoint Partitions Overlapping Partitions (m = 250) Overlapping Partitions (m = 500)

k = 20 k = 30 k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100
DPMC 7.739 8.509 6.548 7.102 7.699 8.661 6.045 6.573 7.38 8.159

(0.13) (0.07) (0.098) (0.122) (0.105) (0.12) (0.146) (0.126) (0.138) (0.081)
LS-WASP 8.028 9.046 6.746 7.293 7.895 8.871 6.084 6.636 7.431 8.219

(0.099) (0.062) (0.084) (0.093) (0.087) (0.095) (0.137) (0.114) (0.138) (0.075)

D
Disjoint Partitions Overlapping Partitions (m = 250) Overlapping Partitions (m = 500)

k = 20 k = 30 k = 20 k = 30 k = 50 k = 100 k = 20 k = 30 k = 50 k = 100
DPMC 5.598 6.458 4.108 4.499 5.081 5.904 3.723 4.478 4.682 5.381

(0.479) (0.41) (1.005) (0.617) (0.4) (0.338) (0.819) (0.813) (0.502) (0.493)
LS-WASP 7.433 8.744 6.21 6.59 7.093 8.078 5.147 5.711 6.361 7.129

(0.485) (0.331) (0.433) (0.364) (0.27) (0.254) (0.409) (0.38) (0.404) (0.251)
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Figure 1: Contours of bi-variate kernel density estimates of the posterior distributions of
(D21, D31), (D31, D32), and (D21, D32) obtained using DPMC and LS-WASP in the overlapping
partitioning scheme with m = 500 and k = 20, 30 in a replication of US natality data analysis. In
each of the three density plot, k increases from 20 to 30 across panels.

6 Discussion

We have presented the LS-WASP algorithm motivated from applications in linear mixed effects
modeling, but it can be used for computing the WASP in other applications if the assumptions of
Theorems 4.1 and 4.2 are justified. In many divide-and-conquer applications, it is reasonable to
approximate the subset posterior distributions as members of a common location-scatter family. In
these cases, Algorithm 1 provides an approximation to the true WASP based on a location-scatter
family. One such application is divide-and-conquer nonparametric regression using Gaussian pro-
cess priors (Guhaniyogi et al., 2017), where the PIE algorithm is used for simple and efficient
marginal inference on the value of an unknown regression function at a given predictor value;
however, joint inference on the values of unknown regression function at a collection of predictor
values requires solving a computationally intensive linear program for computing theWASP. Algo-
rithm 1 bypasses this problem while retaining the simplicity of the PIE algorithm. More research
is required for developing analogues of Algorithm 1 for computing the WASP in time-series and
network models that account for second and higher order dependencies.

We have used the LS-WASP algorithm for combining subset MCMC draws obtained using
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conditional data augmentation, but it can be used with any type of sampling algorithm. The main
reason for our choice is that we are able to prove Theorem 4.1 using a known result about geometric
ergodicity of the Markov chain generated by conditional data augmentation. Similar results are un-
available for other sampling algorithms in mixed-effects modeling, especially for the Hamiltonian
Monte Carlo (HMC) sampling algorithm used by Stan and the Stochastic Approximation Monte
Carlo (SAMC) algorithm used by Xue and Liang (2019). Given a proof for geometric ergodicity of
Stan’s HMC or SAMC sampler is developed in the future, the proof of Theorem 4.1 demonstrates
that such guarantees can be immediately extended to Markov chains generated by Stan’s HMC
or SAMC sampler on the subsets. We expect that Algorithm 1 is applicable for generating draws
from the WASP if we have obtained subset posterior samples using Stan or SAMC.

We have remarked in Section 4.2 that Assumption 2 implies that the LS-WASP algorithm is
inapplicable for high-dimensional linear mixed-effects modeling. The main reason for limiting our
focus to finite dimensional models is that studying the impacts of priors on the posterior distribu-
tions of high-dimensional � and L is beyond the scope of this work. We present a simple example
to illustrate some of the computational problems. Consider a linear random-effects model based
on (2) with p = 0, si = 1, yi 2 R, zTi 2 R1⇥q, and Ri = 1 for every i, L = ⌧I , �2 is fixed at �2

0 ,
and q/n = c, where c is a constant in (0, 1) and ⌧ is set to be positive for identifiability. In this set
up, (2) and (3) reduce to

yi = ⌧z
T
i bi + ei, ei ⇠ N(0, �2

0), bi ⇠ Nq(0, I), ⌧ ⇠ N(0, 2), i = 1, . . . , n, (25)

where ⌧ is the parameter with prior variance  2 and �2
0 is known. The data augmentation algorithm

for sampling ⌧ is recovered by setting k = 1 in parts (a)–(d) of the algorithm in Section 3.2:

(i) (I step) draw bi given yi and ⌧ as Nq(
ziyi
wi⌧

, I � zizTi
wi

) for i = 1, . . . , n, where wi = kzik22 +
�
2
0/⌧

2; and

(ii) (P step) draw ⌧ given y1, . . . , yn, b1, . . . , bn asN(
Pn

i=1 yi(z
T
i bi)

v ,
�2
0
v ), where v =

Pn
i=1(z

T
i bi)

2+

�
2
0/ 

2.

We evaluate the empirical performance of this algorithm through a simulation study. We set
⌧ = 2, �2

0 = 0.01, generate elements of zi’s as independentN(0, 1) random variables, and use three
different values of n and q: n 2 {100, 500, 1000} and q = cn, where c 2 {0.1, 0.5, 0.9}. For every
n and q, the data are simulated following (25) and posterior samples of ⌧ are obtained by running
the algorithm in steps (i)–(ii) for 20,000 iterations. After discarding the first 10,000 samples as
burn-ins, the posterior samples of ⌧ have extremely high serial autocorrelation for every n and q

(Figure 2). The problem worsens as n increases because the fraction of augmented data (that is,
b1, . . . , bn) also increases with n. Furthermore, this problem is not resolved by the subset posterior
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Figure 2: The auto-correlation function depending on n for the simulation example in (25). The x
and y axes represent the lags and auto-correlation computed using the post burn-in MCMC draws
obtained from the conditional data augmentation algorithm of van Dyk (2000) for inference on ⌧ .
The sample size (n) and number of random effects (q) increase along the panels from left to right.

sampling algorithms based on (i)–(ii). This example motivates study of the prior distributions on �
and L, the rate at which p, q, k, andm increase to infinity with n, and data augmentation algorithms
for posterior inference on � and L in high-dimensional linear mixed-effects models, which can be
extended to massive data settings using a high-dimensional extension of the LS-WASP algorithm.

Supplementary Materials

The supplementary material is available online and contains proofs of the theoretical results
and additional experimental results. The code used in the experiments is available at https:
//github.com/blayes/LSWASP.
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