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Abstract

We consider the problem of selecting the best es-
timator among a family of Tikhonov regularized
estimators, or, alternatively, to select a linear com-
bination of these regularizers that is as good as
the best regularizer in the family. Our theory re-
veals that if the Tikhonov regularizers share the
same penalty matrix with different tuning parame-
ters, a convex procedure based on ()-aggregation
achieves the mean square error of the best estima-
tor, up to a small error term no larger than Co2,
where o2 is the noise level and C' > 0 is an ab-
solute constant. Remarkably, the error term does
not depend on the penalty matrix or the number of
estimators as long as they share the same penalty
matrix, i.e., it applies to any grid of tuning pa-
rameters, no matter how large the cardinality of
the grid is. This reveals the surprising “cost-free”
nature of optimally tuning Tikhonov regularizers,
in striking contrast with the existing literature on
aggregation of estimators where one typically has
to pay a cost of o2 log(M ) where M is the num-
ber of estimators in the family. The result holds,
more generally, for any family of ordered linear
smoothers; this encompasses Ridge regression as
well as Principal Component Regression. The re-
sult is extended to the problem of tuning Tikhonov
regularizers with different penalty matrices.

1. Introduction

Consider a learning problem where one is given a response
vector y € R™ and a design matrix X € R"*P. Given a
positive definite matrix K € RP*P and a regularization pa-
rameter A > 0, the Tikhonov regularized estimator (K, \)
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is defined as the solution of the quadratic program

W(K,\) = argmin (|| Xw — y||> + T Kw), (1.1)
weRP

where || - || is the Euclidean norm. Since we assume that
the penalty matrix K is positive definite, the above opti-
mization problem is strongly convex and the solution is
unique. In the special case K = Iy, the above estimator
reduces to Ridge regression. It is well known that the above
optimization problem can be explicitly solved and that

WK, \) = (XTX +AK)"'xTy

:K—l/Q(K—l/ZXTXK—l/Q + )\Ipo)_lK_l/QXTy-

Problem statement. Consider the Gaussian mean model

y=p+e with e~ N(0,0%Tx,) (1.2)
where 1 € R” is an unknown mean, and consider a deter-
ministic design matrix X € R"*P, We are given a grid of
tuning parameters A1, ..., Ap; > 0 and a penalty matrix K
as above. Our goal is to construct an estimator w0 such that
the regret or excess risk

B[|IX - ]~ win E[IX(K, ) — ] (13)

-
is small. Beyond the construction of an estimator w that has
small regret, we aim to answer the following questions:

e How does the regret scale with M, the number of tun-
ing parameters on the grid?

e How does the regret scale with R* =
minj—q, v E[[|XW(K, ;) — pl?], the mini-
mal mean squared error among the tuning parameters
Ay ey As?

Ordered linear smoothers. If A, = X(XTX +
A K)71XT is the matrix such that A;y = Xw(K,\;),
the family of estimators {4y, j = 1, ..., M } is an example
of ordered linear smoothers, introduced (Kneip, 1994).

Definition 1. The set of n x n matrices F© C R"*" is
referred to as a family of ordered linear smoothers if (i) for
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all A € F, Ais symmetric and 0 < wTAw < |jw|? for
all w € RP, (ii) the matrices commute: AB = B A for all
A, B € F, and (iii) either A < B or B =< A holds for all
A, B € F, where < denotes the partial order of positive
symmetric matrices, i.e., A < B if and only if B — A is
positive semi-definite.

Condition (i) is mild: if the matrix A is not symmetric then
it is not admissible and there exists a symmetric matrix
A’ such that E[|| Ay — u||?] < E[||Ay — p]|?] with a strict
inequality for at least one ;+ € R™ (Cohen, 1966), so we may
as well replace A with the symmetric matrix A’. Similarly,
if A is symmetric with some eigenvalues outside of [0, 1],
then A is not admissible and there exists another symmetric
matrix A’ with eigenvalues in [0, 1] and smaller prediction
error for all ;1 € R™, and strictly smaller prediction error for
at least one pn € R™ if n > 3 (Cohen, 1966).

Conditions (ii) and (iii) are more stringent: they require that
the matrices can be diagonalized in the same orthogonal
basis (ug, ..., 4, ) of R™, and that the matrices are ordered
in the sense that there exists n functions a;, ..., a, : R —
[0, 1], either all non-increasing or all non-decreasing, such
that

F c{ai(MNuuf + . + anNupul X € R}y, (1.4)
See (Kneip, 1994) for a proof of the equivalence between
(i1)-(iii) and the existence of uq,...,u, and aq, ..., a,, as
above such that (1.4) holds. This easily follows from
the fact that symmetric matrices that commute can be
diagonalized in the same orthonormal basis. A special
case of particular interest is the above Tikhonov regu-
larized estimators, which satisfies conditions (i)-(ii)-(iii).
In this case, F' = {A;,..., Ay} for the matrices A; =
X(XTX 4+ N\K)"'X7T that satisfy Ajy = Xw(K, \j).
To see that for any grid of tuning parameters A1, ..., Aps, the
Tikhonov regularizers F' = {Aj, ..., Ay} form a family of
ordered linear smoothers, the matrix Aj can be rewritten
as Aj = B(BTB + \jI,xp) ' BT where B is the matrix
X K~1/2. From this expression of A;, it is clear that A, is
symmetric, that A; can be diagonalized in the orthogonal
basis made of the left singular vectors of B, and that the
eigenvalues of A; are decreasing functions of the tuning
parameter. Namely, the i-th eigenvalue of A; is equal to
ai(N;) = wi(B)?/(ni(B)* + \;) where p1;(B) is the i-th
singular value of B.

Overview of the literature. There is a substantial amount
of literature related to this problem, starting with (Kneip,
1994) where ordered linear smoothers are introduced and
their properties were first studied. Kneip (1994) proves that
if Ay, ..., Aps are ordered linear smoothers, then selecting
the estimate with the smallest C), criterion (Mallows, 1973),

ie.,

k = argmin Cp(4;),
J=Lee,M

where C,(A) = || Ay — y||* + 207 trace(A;),

(1.5)

leads to the regret bound (sometimes referred to as oracle
inequality)

E[|Ayy — ul?] = R* < CoVR* 4 Co?,
* . o 2
where R* = j:rlr}.l’r})ME[HAJy w7

(1.6)

for some absolute constant C' > 0. See Kiinzel et al. (2014)
for a discussion on the analysis in Kneip (1994). The regret
bound (1.6) was later improved in (Golubev et al., 2010,
Theorem 3) (Chernousova et al., 2013) using an estimate
based on exponential weighting, showing that the regret is
bounded from above by o2 log(2 + R*/o?).

Another line of research has obtained regret bounds that
scales with the cardinality M of the given family of linear
estimators. Using an exponential weight estimate with a
well chosen temperature parameter, (Leung & Barron, 2006;
Dalalyan & Salmon, 2012) showed that if Ay, ..., Ay, are
square matrices of size n that are either orthogonal pro-
jections, or that satisfies some commutative property, then
a data-driven convex combination A gw of the matrices
A, ..., Apy satisfies

E|Agwy — ull’] = R* < Co*log M. (1.7)

where C' > 0 is an absolute constant. This was later im-
proved in (Bellec, 2018) using an estimate from the Q-
aggregation procedure of (Dai et al., 2012; 2014). Namely,
Theorem 2.1 in (Bellec, 2018) states that if Ay, ..., Ays are
square matrices with operator norm at most 1, then

P(lldqy - )

>1-6

. 2 2
_Ip}QNIIIAJy pll* < Co 1og(M/5))

=4

(1.8)

forany ¢ € (0,1), where AQ is a data-driven convex combi-
nation of the matrices A1, ..., Aps. A result similar to (1.7)
can then be deduced from the above high probability bound
by integration. It should be noted that the linear estimators
in (1.7) and (1.8) need not be ordered smoothers (the only
assumption in (1.8) is that the operator norm of A; is at most
one), unlike (1.6) where the ordered smoothers assumption
is key.

Another popular approach to select a good estimate among
a family of linear estimators is the Generalized Cross-
Validation (GCV) criterion of (Craven & Wahba, 1978;
Golub et al., 1979). If we are given M linear estimators
defined by square matrices Ay, ..., Ay, Generalized Cross-
Validation selects the estimator

14y —ylI?

A;])?

k= arg min
j=1,...,.M (trace[lnxn -
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We could not pinpoint in the literature an oracle inequality
satisfied by GCV comparable to (1.6)-(1.7)-(1.8), though
we mention that (Li, 1986) exhibits asymptotic frameworks
where GCV is suboptimal while, in the same asymptotic
frameworks, Mallows C,, is optimal.

The problem of optimally tuning Tikhonov regularizers,
Ridge regressors or smoothning splines has received con-
siderable attention in the last four decades (for instance,
the GCV paper (Golub et al., 1979) is cited more than four
thousand times) and the authors of the present paper are
guilty of numerous omissions of important related works.
We refer the reader to the recent surveys (Arlot & Celisse,
2010; Arlot & Bach, 2009) and the references therein for
the problem of tuning linear estimators, and to (Tsybakov,
2014) for a survey of aggregation results.

Coming back to our initial problem of optimally tuning a
family of Tikhonov regularizers w(K, A1), ..., (K, Ap),
the results (1.6), (1.7) and (1.8) above suggest that one
must pay a price that depends either on the cardinal-
ity M of the grid of tuning parameters, or on R* =
min;_1, v E[[|XW(K, ;) — u/|?], the minimal mean
squared error on this grid.

Optimally tuning ordered linear smoothers incurs no
statistical cost. Surprisingly, our theoretical results of the
next sections reveal that if Aq, ..., Ay are ordered linear
smoothers, for example Tikhonov regularizers sharing the
same penalty matrix K, then it is possible to construct a
data-driven convex combination A of Aq, ..., A such that
the regret satisfies

E(| Ay — pl*) = min E[|A;y - ul*) < Cro®

.....

for some absolute constant C; > 0. Hence the regret
in (1.3) is bounded by Cjo2, an upper bound that is
(a) independent of the cardinality M of the grid of tun-
ing parameters and (b) independent of the minimal risk
R* =minj—;__ n E[||4;y — p||?]. No matter how coarse
the grid of tuning parameter is, no matter the number of
tuning parameters to choose from, no matter how large the
minimal risk R* is, the regret of the procedure constructed
in the next section is always bounded by C 0.

Notation. Throughout the paper, C', Cs, Cs... denote ab-
solute positive constants. The norm || - || is the Euclidean
norm of vectors. Let || - ||, and || - || » be the operator and
Frobenius norm of matrices.

2. Construction of the estimator

Assume that we are given M matrices Ay, ..., Ay, each
matrix corresponding to the linear estimator A;y. Mallows
(1973) C,, criterion is given by (1.5).

Following several works on aggregation of estimators (Ne-
mirovski, 2000; Tsybakov, 2003; Leung & Barron, 2006;
Rigollet & Tsybakov, 2007; Dalalyan & Salmon, 2012; Dai
et al., 2012; Bellec, 2018) we parametrize the convex hull
of the matrices A1, ..., Aps as follows:

M

Ag £ 0,45,

Jj=1

foreach 0 € Ay, 2.1)

M
where Ay = {9 € R]M : 6‘j > O,ZGJ» = 1}

Jj=1

Above, Ay is the simplex in RM and the convex hull of
the matrices Ay, ..., Ay is exactly the set {Ag,0 € A}
Finally, define the weights 6 € A, by

M
N 1
= i Ag)+ 35D 05ll(Ag — Ajyl?). 22
6 = argmin (Cp( 0)+2j=19J”( 6 .7)y|\) 22

The first term of the objective function is Mallows C;, from
(1.5), while the second term is a penalty derived from the
(Q-aggregation procedure from (Rigollet, 2012; Dai et al.,
2012). The estimate (2.2) is equivalent to the procedure (Dai
et al., 2012) with the least-squares term replaced by C; it is
also close to the estimate from of (Dai et al., 2014) although
(Dai et al., 2014) presents an unncessary penalty term that
leads to worse guarantees than (2.2), cf. the discussion in
(Bellec, 2018).

The penalty is minimized at the vertices of the simplex and
thus penalizes the interior of A ;. Although convexity of the
above optimization problem is unclear at first sight because
the penalty is non-convex, the objective function can be
rewritten, thanks to a bias-variance decomposition, as

31 A0y — yll? + 202 trace(Ag) + 3 1071, 6,114,y — yll*.

(2.3)
The first term is a convex quadratic function in ¢, while
both the second term (202 trace[Ag]) and the last term are
linear in 6. It is now clear that the objective function is
convex and (2.2) is a convex quadratic program (QP) over
the canonical simplex, with M variables and M + 1 linear
constraints. The computational complexity of such convex
QP is polynomial and well studied, e.g., (Vavasis, 2001,
page 304), (Frank et al., 1956), (Nocedal & Wright, 2006,
Section 16.5).

The final estimator is
N M 3
= Ay =350, 0545y,

a weighted sum of the values predicted by the linear esti-
mators Ay, ..., A;. The performance of this procedure is
studied in (Dai et al., 2014; Bellec, 2018); (Bellec, 2018) de-
rived the oracle inequality (1.8) which is optimal for certain

(2.4)
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collections {A;, ..., Ay }. However, we are not aware of
previous analysis of this procedure in the context of ordered
linear smoothers.

1.5 1.6 1.7 1.8 1.9 2.0

Figure 1. Ajy = Xw(Ip, A;)y for X = diag(10,1),y = (2,8)
and different values of \;
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Figure 2. Heatmap of penalty values in the convex hull for the
estimators in Figure 1

For n = 2, a visualization of the penalty pen(f) =
3 Z;‘il 0,11 (Ag—A;)y||? in (2.2) is displayed in the figures
above. The discrete points in Figure 1 correspond to pre-
dicted values Xw(kK, A;) for the same matrix K and many
different tuning parameters {\;,j = 1,..., M }. Figure 2
is a heatmap of the penalty defined in the convex hull of
{Xw(K,A;j),7 =1, ..., M}. For each point /1 in the convex
hull of { Xw(K, A;),j = 1,..., M}, the value of the penalty
of /i in the heatmap is defined as mingea ,,:i=a,y Pen(6).
This minimum is computed by linear programming for each
[i in a dense grid in the convex hull. We used n = 2,
y=(1,-1)7T, X = diag(2,1) and K = Qdiag(1,3) QT

where ) € R"*" is a randomly generated orthonormal
matrix. The code is provided in the supplementary material.

3. Constant regret for ordered linear
smoothers

Theorem 3.1. The following holds for absolute constants
C1,Cs,C3 > 0. Consider the Gaussian mean model (1.2).
Let { Ay, ..., Ay} be a family of ordered linear smoothers
as in Definition 1. Let 0 be the solution to the optimization
problem (2.2). Then [i = Agy enjoys the regret bound

E[| Agy - pll"] - min E[|4;y—ul] < C10%. 3.

Furthermore, if j. = argmin;_,  E[||A;y — p|?] has
minimal risk then for all x > 1,

P{||Agy — pll> — || 4,y — pl|* < Coo®z} > 1—Cse™ ™.
3.2)

Let us explain the “cost-free” nature of the above result. In
the simplest, one-dimensional regression problem where the
design matrix X has only one column and p = X g* for
some unknown scalar 3*, the prediction error of the Ordi-
nary Least Squares estimator is E[|| X (3°'* — 5*)||2] = o2
because the random variable || X (3°'* — 8*)|2 /o2 has chi-
square distribution with one degree-of-freedom. As indi-
cated by our result, the regret of /i never exceedes a constant
multiple of the prediction error in a one-dimensional linear
model. The right hand side of (3.1) is independent of the
minimal risk R*, independent of the cardinality M of the
family of estimators, and if the estimators were constructed
from a linear model with p covariates, the right hand side of
(3.1) is also independent of the dimension p.

The following result shows that selecting an estimator based
on C), as in k in (1.5) cannot enjoy the same property: (1.5)
will suffer an error term of order o(R*)'/? in some cases.
The intuition is that because k in (1.5) is discontinuous, k
can be mistaken with small but positive probability around
the discontinuity boundary and this mistake induces an error
of order o/(R*)'/2 and (1.6) is not improvable for k. Convex
minimization over the simplex as in (2.2), together with the
penalty of the previous result, has a smoother behavior and
does not suffer this instability.

Theorem 3.2. There exists ;1 € R™ and a family of ordered
linear smoothers F' = { A1, Ao} with M = 2 such that if
y ~ N(u, IL,) with o® = 1,

P(|Agy — ul? — B = C4(R)Y2) > Cs > 0
where R* = min;_1 o E[||A;y — u||?] = O(n).

Since the most commonly used ordered linear smoothers are
Tikhonov regularizers (which encompass Ridge regression
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and smoothing splines), we provide the following corollary
of Theorem 3.1 for convenience.

Corollary 3.3 (Application to Tikhonov regularizers). Let
K be a positive definite matrix of size p X p and let
Ay ey Anr > 0 be distinct tuning parameters. Define 6
as the minimizer of

M

9:argmin( 0; Xw(K, \, — |2 + 202 0;df;
rg i ||Z i) =l ;

1
§ZGIIXwKA> ul?), 33

where df; = trace[XT(XTX + \;K)"XT]. Then the
éjti)(K, Aj) in RP is such that
the regret (1.3) is bounded from above by Cy0? for some
absolute constant C; > 0.

. . M
weight vector =} ._,

This corollary is a direct consequence of Theorem 3.1 with
Aj = XT(XTX + \;K)~*XT. The fact that this forms a
family of ordered linear smoothers is explained after (1.4).
The objective function (3.3) corresponds to the formulation
(2.3) of the objective function in (2.2); we have chosen this
formulation so that (3.3) can be easily implemented as a
convex quadratic program with linear constraints, the first
term of the objective function being quadratic in 6 while the
second and third terms are linear in 6.

The procedure above requires knowledge of o2, which needs
to be estimated beforehand in practice. Estimators of o2
are available depending on the underlying context, e.g.,
difference based estimates for observations on a grid (Dette
etal., 1998; Hall et al., 1990; Munk et al., 2005; Brown et al.,
2007), or pivotal estimators of ¢ in sparse linear regression,
e.g., (Belloni et al., 2014; Sun & Zhang, 2012; Owen, 2007).
On a low-bias model, (Hastie et al., 2001, Section 7.5)
recommends estimating o2 by the squared residuals. It was
later suggested in (Arlot, 2019) that the procedure in (Hastie
et al., 2001) could overfit, and that using slope heuristic to
estimate o is likely to provide a better estimator. We also
note that procedure (2.2) is robust to misspecified o if each
A; is an orthogonal projection (Bellec, 2018, Section 6.2).

4. Multiple families of ordered smoothers or
Tikhonov penalty matrices

Theorem 4.1. The following holds for absolute constants
C1,C5y,C3 > 0. Consider the Gaussian mean model (1.2).
Let { Ay, ..., Ay} be a set of linear estimators such that

{Ay, .., Ay} CFLU.. U Fy,

where Fy; is a family of ordered linear smoothers as in
Definition 1 for each k = 1, ...,q. Let 0 be the solution to

the optimization problem (2.2). Then ji = Ay enjoys the
regret bound

E[l Agy — ull*)

<Cy0? + Cy0? log q.

— ] . — 2
; T}?F,E[|‘Ajy w7
(4.1)

Furthermore, if j,. = argmin;_,
minimal risk then for all x > 1,

o ElllAjy — pl|?] has

P{|| Ay — pl* —
21 — 03671:.

|4,y — pl|* < Cao®(z + log q)}
“4.2)

We now allow not only one family of ordered linear
smoothers, but several. Above, ¢ denotes the number of fam-
ilies. This setting was considered in (Kneip, 1994), although
with a regret bound of the form v/ R*o log(¢)? + o2 log(q)*
where R* = min;—;__  E[||4;y — p/|?]; Theorem 4.1 im-
proves both the dependence in R* and in g. Let us also note
that the dependence in q in the above bound (4.2) is optimal
(Bellec, 2018, Proposition 2.1).

The above result is typically useful in situations where sev-
eral Tikhonov penalty matrices K1, ..., K, are candidate.
For each m = 1, ..., g, the penalty matrix is K,,, the prac-
titioner chooses a grid of b,,, > 1 tuning parameters, say,

{)\gm)7a =1,..., by, }. If the matrices Ay, ..., Ay are such

that
{41, ..., An}
- U;In 1 {X(XTX + At(lm)Km)ilev a = 1; ---7b7n}a

sothat M = Y7 b
regret bound

m, the procedure (2.2) enjoys the

E[l[Agy — pl*] = min  min B[ Xt(Kn, Aa) = pl]*

<ga=1,....b;m

< 0602(1 +logq)

and a similar bound in probability. That is, the proce-
dure of Section 2 automatically adapts to both the best
penalty matrix and the best tuning parameter. The error
term 02(1 + log ¢) only depends on the number of regular-
ization matrices used, not on the cardinality of the grids of
tuning parameters.

5. Proofs

We start the proof with the following deterministic result.

Lemma 5.1 (Deterministic inequality). Let Ay, ..., Ay be
square matrices of size n X n and consider the procedure
(2.2) in the unknown mean model (1.2). Then for any A €
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{A1, ..., Ap ),
1Agy — ull?> — | Ay — ull®
T 1A _ 2 a1
Sj:qlﬁ)’(M (2&? (A; — A)y — 20 trace(4; — A)

— (45 - Ayl?).

Proof. The above is proved in (Bellec, 2018, Proposition
3.2). We reproduce the short proof here for completeness:
If H : Ap; — R is the convex objective of (2.2) and A =
Ay, for some k = 1,..., M, the optimality condition of
(2.2) states that VH () (ex — 6) > 0 holds (cf. (Boyd &
Vandenberghe, 2009, (4.21))). Then VH (6)(ex — 6) > 0
can be equivalently rewritten as

IIAgy —pl® = Ay — pl?

Z ( (A; — A)y — 20? trace(A; — A)

— (4, - Ayyl?).

The proof is completed by noting that the average
ZM 0, ia; with weights 0 = (01, . GM) € Ay is smaller
than the maximum max;—i, . a; forallaq,...,ap. O

Throughout the proof, A is a fixed deterministic matrix with
| Allop < 1. Our goal is to bound from above the right hand
side of Lemma 5.1 with high probability. To this end, define
the process (Zp)p indexed by symmetric matrices B of
size n X n, by

Zp =27 (B — A)y — 20° trace(B — A)
—5(I(B = Ay|* - d(B, A)?)

where d is the metric

d(B, A)?
(5.1)
where A, B € R™"*".

With this definition, the quantity inside the parenthesis in the
right hand side of Lemma 5.1 is exactly Z4, — $d(A;, A)2.
The appearance of the term involving the metric d is thanks
to the penalty term in the definition of 0 (ctf. (2.2)). To show
that the regret of the estimator A,y does not scale with the
model dimension, we need to establish that the growth of
the centered process Zp is surpassed by the growth of the
term 3d(B, A)?.

The main technical challenge is in controlling the process
Zp. We rely on the fact that the smoothers are ordered,
which allows us to use generic chaining to bound the sumpre-
mum of Zp in a very efficient manner.

= E[|(B-A)y|*) = o*|| B- Al 5+ (B—A)ull*,

Split the process Zp into a Gaussian part and a quadratic
part. Define the processes (Gp)p and (Wg)p by

Gp =" 2Ixn — (B — A)](B - A)p,
Wp = 2e7(B — A)e — 20 trace(B — A)
— LeT(B— AP+ % |B - A%

Before bounding supremum of the above processes, we
need to derive the following metric property of ordered
linear smoothers. If 7" is a subset of the space of symmetric
matrices of size n X n and if d is a metric on T, the diameter
A(T,d) of T and the Talagrand generic chaining functionals
for each o = 1, 2 are defined by
A(T,d) = sup d(A4,B),
A,BET
—+oo
okl d(t, Ty,)
k=1

Yo (T,d) = inf sup

5.2)
(Tw)k>0 teT

where the infimum is over all sequences (T} )x>0 of subsets
of T such that |Tp| = 1 and |T},| < 22"

Lemma 5.2. Let a > 0 and let i € R™. Let F C R"*"
be a family of ordered linear smoothers (cf. Definition 1)
and let d be any semi-metric of the form d(A,B)? =
al|A = B||% + [[(A = B)ul|*. Then v2(F,d) +71(F,d) <
C7A(F,d) where C7 is an absolute constant.

Proof. We have to specify a sequence (T}),>0 of subsets
of F with |T,| < 22". Since F satisfies Definition 1, there
exists a basis of eigenvectors u1, ..., u,, non-decreasing
functions aq,...,a, : R — [0,1] and a set A C R such

that ' = {B),\ € A} where By = > | a;(A)uul, cf.
(1.4). Hence for any Ag, \, v € A,
B)\; sz az 'L(V))Q

w; = <a+ (uf 1)?) >0,
d(Bx,, Bx)* + d(By, B,)* = d(By,, B,)?

+22wi(ai(>\) ai(v)).

If Ao < X < v, since each «;(-) is non-decreasing, the
sum in the right hand side of the previous display is non-
positive and d(By, B,)? < d(B,, By,)?> — d(By, By,)?
holds. Let N = 22" and § = A(F,d)/N. We construct
a d-covering of F' by considering the bins BIN; = {B €
F:6%j <d(B,By,)? <&8(j+1)}forj=0,...N—1
where \g = inf A. If BIN; is non-empty, then any of its
elements is a §-covering of BIN; thanks to

d(Bx, B,)? <d(B,, By,)? — d(Bx, By,)?
<(§+1)6% — 56 = 6%

for weights

— ai(Xo))(i(A) —
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for B,, By € BIN; with A < v. This constructs a J-
covering of F with N = 22" elements. Hence 75 (F,d) <
A(F,d) S22, 28/2 /22" — A(F, d)Cs and the same holds
for v, (F, d) for a different absolute constant. O

The two following lemmas are proved in the supplement by
leveraging the bound in Lemma 5.2 on the complexity of
ordered smoothers.

Lemma 5.3 (The Gaussian process G ). Let T™ be a family
of ordered linear smoothers (cf. Definition 1) such that
supper+ d(A, B) < 6* for the metric (5.1). Then for all
x>0,

P(sup Gp < 0(Co + 3v22)d*) >1—e".
BeT*

Lemma 5.4 (The Quadratic process Wg). Let T* be a
Jamily of ordered smoothers (cf. Definition 1) such that
o||B — A|lp < 6* forall B € T*. Then for all x > 0,

IP’( sup Wy < 01006*—1—0110\/55*—&—012021‘) >1-2e7%.
BeT*

The goal is to now combine the two previous lemmas to
obtain tail bounds on sup g - (Zp — 5d(B, A)?). We first
proceed on a slice {B € F : §, < d(B,A) < 6*} for two
reals §, < O*.

Lemma 5.5. Suppose I is a family of n X n ordered linear
smoothers (cf. Definition 1), and A is a fixed matrix with
|| Allop < 1 which may not belong to F. Let d be the metric
(5.1). Then for any reals u > 1, and §* > §, > 0, we have

u

with probability at least 1 — 3e™,

sup (Zp — Ld(B, A4)?)

BEF: §.<d(B,A)<s*
< (Ci3 [02u + 0*ovul| — 752
< 0140' u + (5*) 555

Proof. First note that
the supremum.

—d(B,A)? < —§? for any B as in

Now Zp = G+ Wp where G g and W are the processes
studied in Lemmas 5.3 and 5.4. These lemmas applied to
T* ={B € F : d(B, A) < §*} yields that on an event of
probability at least 1 — 3e™" we have

SUpger- ZB ngqu*(GB +Wg)

§015(0'5*(1 + \/ﬂ) + 0'2u).

Since © > 1, we have established the first inequality by
adjusting the absolute constant. For the second inequal-
ity, we use that C136.0v/u < 4C%0%u + 16 (5*) and set
014 == 013 + 40123 O

We use here a method known as slicing, we refer the reader
to Section 5.4 in (van Handel, 2014) for an introduction.

Lemma 5.6 (Slicing). Suppose I’ is a family of n X n
ordered linear smoothers (cf. Definition 1), and A is a fixed
matrix with || Al|op < 1 which may not belong to F. Let
d be the metric (5.1). Then for any x > 1, we have with
probability at least 1 — Cze™*
suppep (Zp — 3d(B, A)?) < Coo?x.

Proof. Write F' as the union F' = U72 , T}, where T}, is the
slice

Ty ={B € F:d,_, <d(B,A) <d},

with 8o = 0 and 6, = 2¥¢ for k > 1. By definition of the
geometric sequence (0 )x>0, inequality 1507 — 207_; <
10? — 0% < Loz — {67 holds for all k> 1. Wlth
Oy = Op_1,0" = Oy, Lemma 5 5 yields that for all k£ > 1,

P( sup (Zp — 3d(B, A)?) < Crao”uy, — 1%61% + if)
BeT),

>1— 3e Uk

for all u;y > 1. The above holds simultaneously over all
slices (T%)x>1 with probability at least 1 —3 Y 7> | e~ “* by
the union bound. It remains to specify a sequence (ug)r>1
of reals greater than 1. We choose uy, = = + 6% /(1602C14)
which is greater than 1 since x > 1. Then by construc-
— £62 4 22 = (Cuy + 1/2)0% and
we set Cy = C’14 + 1/2 Furthermore, Yoo e =

ety e~2*"/(16C11)  The sum 3D 00y e—2"/(16C1a)
is equal to a finite absolute constant named C’3 in the state-
ment of the Lemma. O

tion, 0140'2U

Proof of Theorem 3.1. Let F = {Ay,.., Ay} and A =
A;, where j. is defined in the statement of Theorem 3.1.
The conclusion of Lemma 5.1 can be rewritten as

145y — pl* = | Ay — p|* < sup (Zp — 5d(B, A)?)
BEF
where F' = {A;,...,Ap} is a family of ordered linear

smoothers. Lemma 5.6 completes the proof of (3.2). Then
(3.1) is obtained by integration of (3.2) using E[Z] <
JsSP(Z > t)dt for any Z > 0. O

Proof of Theorem 4.1. As in the proof of Theorem 3.1, we
use Lemma 5.1 to deduce that a.s.,

1Agy — pl* — 1| Ay — |

< max (Za, — 2d(A;, A)?)
J=1,ey

_ 1

= max lr.?nea)]i(ZB 1d(B, A)?).



The Cost-free Nature of Optimally Tuning Tikhonov Regularizers and Other Ordered Smoothers

Since each F}, is a family of ordered linear smoothers, by
Lemma 5.6 we have

Hb(maXBepk (ZB — %d(B,A)Q) > 020'2TIJ> < Cze™™®

foreach k = 1,...,q. The union bound yields (4.2) and we
use E[Z] < [[“P(Z > t)dt for Z > 0 to deduce (4.1). O

6. Numerical experiments
6.1. Experiment 1: example from Theorem 3.2

In this section we use the example discussed in Theorem 3.2
to illustrate the advantage of the Q-aggregation estimator
Apy over selection estimators. Following the example con-
structed for the proof of Theorem 3.2, we let 1 be any vector
in R™ with ||u]|2 = n(1 — ¢/v/n). Let Ay = 0, Ay = I,
and 02 = 1. From Theorem 3.2, the Mallows Cp selec-
tion estimator Ay has a regret of order €2(y/n), while the
regret of Ay is of order O(1) from Theorem 3.1. Thus
our theory guarantees that the Q-aggregation estimator (2.2)
outperforms Mallows C, in this example.

Take n = 500, ¢ = 1. We generate N = 5000 i.i.d. copies
of y = p + €. Each time we compute the two estimators
Ajy and Asy, and their squared errors || Ay — w||? and

[Asy — w||?. The histograms of the squared errors are
shown in figure 3.

DQ—aggregation
Mallows Cp
3000 -

2000~

1000~

.

200 300 400 500 600
Squared Error

Figure 3. histograms of squared errors from experiment 1

The estimator Aoy has risk E|| Ay — u||2 = n, which is
larger than E|| A1y — /| = ||i£/|?>. However we argued in
the proof of Theorem 3.2 that even for large n, Mallows C),
selects Ao with some constant probability, as is reflected in

figure 3.

It is also shown in figure 3 that the Q-aggregation estimator
achieves much more accurate estimation of p compared
to Mallows C),. That is due to its freedom to explore any
convex combination of A;y and Ayy. In fact our experiment
shows that even if the preferred J=2is always selected,
Ajy still incurs a higher loss than Azy. That is, for this
particular example, no selection procedure can match the
performance of the Q-aggregation estimator.

6.2. Experiment 2: Tikhonov regularizers

In this section we test the performance of the Q-aggregation
estimator (2.2) on a family of Tikhonov regularized estima-
tors, in the special case of Ridge regression, i.e. K = I,xp.
Specify the Tikhonov regularizers as follows.

1. Set n = 500, p = 1000, M = 3.

2. Generate X € R"*P with all entries of X distributed
i.i.d. standard normal.

3. Set A1 = 200, Ay = 2000, A3 = 20000.

4. Define A; = X(XTX + )\jlpxp)_lXT.

Set the ground truth ;¢ € R™ as the all ones vector. We
generate N = 5000 i.i.d. copies of y = p + €, and compare
the performances of the following three estimators of y:

1. [ the Q-aggregation estimator (2.2);

2. fiep: selection based on Mallows C);

3. [igey: selection based the Generalized Cross-Validation
criterion.

Figure 4 shows the boxplots for the squared errors of fi,
fiep and fige, across all N = 5000 randomizations. From
the figure it is clear that the estimator /i which takes convex
combinations of the Tikhonov regularizers outperforms both
selection procedures by a significant margin.

400-

Method

Mallows Cp
GCV

Squared Error

Method

Figure 4. boxplots of squared errors from experiment 2

B Q-aggregation
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