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Abstract

We consider the problem of selecting the best es-

timator among a family of Tikhonov regularized

estimators, or, alternatively, to select a linear com-

bination of these regularizers that is as good as

the best regularizer in the family. Our theory re-

veals that if the Tikhonov regularizers share the

same penalty matrix with different tuning parame-

ters, a convex procedure based on Q-aggregation

achieves the mean square error of the best estima-

tor, up to a small error term no larger than Cσ2,

where σ2 is the noise level and C > 0 is an ab-

solute constant. Remarkably, the error term does

not depend on the penalty matrix or the number of

estimators as long as they share the same penalty

matrix, i.e., it applies to any grid of tuning pa-

rameters, no matter how large the cardinality of

the grid is. This reveals the surprising “cost-free”

nature of optimally tuning Tikhonov regularizers,

in striking contrast with the existing literature on

aggregation of estimators where one typically has

to pay a cost of σ2 log(M) where M is the num-

ber of estimators in the family. The result holds,

more generally, for any family of ordered linear

smoothers; this encompasses Ridge regression as

well as Principal Component Regression. The re-

sult is extended to the problem of tuning Tikhonov

regularizers with different penalty matrices.

1. Introduction

Consider a learning problem where one is given a response

vector y ∈ R
n and a design matrix X ∈ R

n×p. Given a

positive definite matrix K ∈ R
p×p and a regularization pa-

rameter λ > 0, the Tikhonov regularized estimator ŵ(K,λ)
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is defined as the solution of the quadratic program

ŵ(K,λ) = argmin
w∈Rp

(

‖Xw − y‖2 + λwTKw
)

, (1.1)

where ‖ · ‖ is the Euclidean norm. Since we assume that

the penalty matrix K is positive definite, the above opti-

mization problem is strongly convex and the solution is

unique. In the special case K = Ip×p, the above estimator

reduces to Ridge regression. It is well known that the above

optimization problem can be explicitly solved and that

ŵ(K,λ) = (XTX + λK)−1XT y

=K−1/2(K−1/2XTXK−1/2 + λIp×p)
−1K−1/2XT y.

Problem statement. Consider the Gaussian mean model

y = µ+ ε with ε ∼ N(0, σ2In×n) (1.2)

where µ ∈ R
n is an unknown mean, and consider a deter-

ministic design matrix X ∈ R
n×p. We are given a grid of

tuning parameters λ1, ..., λM ≥ 0 and a penalty matrix K
as above. Our goal is to construct an estimator w̃ such that

the regret or excess risk

E[‖Xw̃ − µ‖2]− min
j=1,...,M

E[‖Xŵ(K,λj)− µ‖2] (1.3)

is small. Beyond the construction of an estimator w̃ that has

small regret, we aim to answer the following questions:

• How does the regret scale with M , the number of tun-

ing parameters on the grid?

• How does the regret scale with R∗ =
minj=1,...,M E[‖Xŵ(K,λj) − µ‖2], the mini-

mal mean squared error among the tuning parameters

λ1, ..., λM?

Ordered linear smoothers. If Aj = X(XTX +
λjK)−1XT is the matrix such that Ajy = Xŵ(K,λj),
the family of estimators {Ajy, j = 1, ...,M} is an example

of ordered linear smoothers, introduced (Kneip, 1994).

Definition 1. The set of n × n matrices F ⊂ R
n×n is

referred to as a family of ordered linear smoothers if (i) for
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all A ∈ F , A is symmetric and 0 ≤ wTAw ≤ ‖w‖2 for

all w ∈ R
p, (ii) the matrices commute: AB = BA for all

A,B ∈ F , and (iii) either A � B or B � A holds for all

A,B ∈ F , where � denotes the partial order of positive

symmetric matrices, i.e., A � B if and only if B − A is

positive semi-definite.

Condition (i) is mild: if the matrix A is not symmetric then

it is not admissible and there exists a symmetric matrix

A′ such that E[‖A′y − µ‖2] ≤ E[‖Ay − µ‖2] with a strict

inequality for at least one µ ∈ R
n (Cohen, 1966), so we may

as well replace A with the symmetric matrix A′. Similarly,

if A is symmetric with some eigenvalues outside of [0, 1],
then A is not admissible and there exists another symmetric

matrix A′ with eigenvalues in [0, 1] and smaller prediction

error for all µ ∈ R
n, and strictly smaller prediction error for

at least one µ ∈ R
n if n ≥ 3 (Cohen, 1966).

Conditions (ii) and (iii) are more stringent: they require that

the matrices can be diagonalized in the same orthogonal

basis (u1, ..., un) of Rn, and that the matrices are ordered

in the sense that there exists n functions α1, ..., αn : R →
[0, 1], either all non-increasing or all non-decreasing, such

that

F ⊂ {α1(λ)u1u
T
1 + ...+ αn(λ)unu

T
n , λ ∈ R}. (1.4)

See (Kneip, 1994) for a proof of the equivalence between

(ii)-(iii) and the existence of u1, ..., un and α1, ..., αn as

above such that (1.4) holds. This easily follows from

the fact that symmetric matrices that commute can be

diagonalized in the same orthonormal basis. A special

case of particular interest is the above Tikhonov regu-

larized estimators, which satisfies conditions (i)-(ii)-(iii).

In this case, F = {A1, ..., AM} for the matrices Aj =
X(XTX + λjK)−1XT that satisfy Ajy = Xŵ(K,λj).
To see that for any grid of tuning parameters λ1, ..., λM , the

Tikhonov regularizers F = {A1, ..., AM} form a family of

ordered linear smoothers, the matrix Aj can be rewritten

as Aj = B(BTB + λjIp×p)
−1BT where B is the matrix

XK−1/2. From this expression of Aj , it is clear that Aj is

symmetric, that Aj can be diagonalized in the orthogonal

basis made of the left singular vectors of B, and that the

eigenvalues of Aj are decreasing functions of the tuning

parameter. Namely, the i-th eigenvalue of Aj is equal to

αi(λj) = µi(B)2/(µi(B)2 + λj) where µi(B) is the i-th
singular value of B.

Overview of the literature. There is a substantial amount

of literature related to this problem, starting with (Kneip,

1994) where ordered linear smoothers are introduced and

their properties were first studied. Kneip (1994) proves that

if A1, ..., AM are ordered linear smoothers, then selecting

the estimate with the smallest Cp criterion (Mallows, 1973),

i.e.,

k̂ = argmin
j=1,...,M

Cp(Aj), (1.5)

where Cp(A) = ‖Ay − y‖2 + 2σ2 trace(Aj),

leads to the regret bound (sometimes referred to as oracle

inequality)

E[‖Ak̂y − µ‖2]−R∗ ≤ Cσ
√
R∗ + Cσ2, (1.6)

where R∗ = min
j=1,...,M

E[‖Ajy − µ‖2]

for some absolute constant C > 0. See Künzel et al. (2014)

for a discussion on the analysis in Kneip (1994). The regret

bound (1.6) was later improved in (Golubev et al., 2010,

Theorem 3) (Chernousova et al., 2013) using an estimate

based on exponential weighting, showing that the regret is

bounded from above by σ2 log(2 +R∗/σ2).

Another line of research has obtained regret bounds that

scales with the cardinality M of the given family of linear

estimators. Using an exponential weight estimate with a

well chosen temperature parameter, (Leung & Barron, 2006;

Dalalyan & Salmon, 2012) showed that if A1, ..., AM are

square matrices of size n that are either orthogonal pro-

jections, or that satisfies some commutative property, then

a data-driven convex combination ÂEW of the matrices

A1, ..., AM satisfies

E[‖ÂEW y − µ‖2]−R∗ ≤ Cσ2 logM. (1.7)

where C > 0 is an absolute constant. This was later im-

proved in (Bellec, 2018) using an estimate from the Q-

aggregation procedure of (Dai et al., 2012; 2014). Namely,

Theorem 2.1 in (Bellec, 2018) states that if A1, ..., AM are

square matrices with operator norm at most 1, then

P

(

‖ÂQy − µ‖2]− min
j=1,...,M

‖Ajy − µ‖2 ≤ Cσ2 log(M/δ)
)

≥ 1− δ (1.8)

for any δ ∈ (0, 1), where ÂQ is a data-driven convex combi-

nation of the matrices A1, ..., AM . A result similar to (1.7)

can then be deduced from the above high probability bound

by integration. It should be noted that the linear estimators

in (1.7) and (1.8) need not be ordered smoothers (the only

assumption in (1.8) is that the operator norm of Aj is at most

one), unlike (1.6) where the ordered smoothers assumption

is key.

Another popular approach to select a good estimate among

a family of linear estimators is the Generalized Cross-

Validation (GCV) criterion of (Craven & Wahba, 1978;

Golub et al., 1979). If we are given M linear estimators

defined by square matrices A1, ..., AM , Generalized Cross-

Validation selects the estimator

k̂ = argmin
j=1,...,M

‖Ajy − y‖2
(trace[In×n −Aj ])2

.
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We could not pinpoint in the literature an oracle inequality

satisfied by GCV comparable to (1.6)-(1.7)-(1.8), though

we mention that (Li, 1986) exhibits asymptotic frameworks

where GCV is suboptimal while, in the same asymptotic

frameworks, Mallows Cp is optimal.

The problem of optimally tuning Tikhonov regularizers,

Ridge regressors or smoothning splines has received con-

siderable attention in the last four decades (for instance,

the GCV paper (Golub et al., 1979) is cited more than four

thousand times) and the authors of the present paper are

guilty of numerous omissions of important related works.

We refer the reader to the recent surveys (Arlot & Celisse,

2010; Arlot & Bach, 2009) and the references therein for

the problem of tuning linear estimators, and to (Tsybakov,

2014) for a survey of aggregation results.

Coming back to our initial problem of optimally tuning a

family of Tikhonov regularizers ŵ(K,λ1), ..., ŵ(K,λM ),
the results (1.6), (1.7) and (1.8) above suggest that one

must pay a price that depends either on the cardinal-

ity M of the grid of tuning parameters, or on R∗ =
minj=1,...,M E[‖Xŵ(K,λj) − µ‖2], the minimal mean

squared error on this grid.

Optimally tuning ordered linear smoothers incurs no

statistical cost. Surprisingly, our theoretical results of the

next sections reveal that if A1, ..., AM are ordered linear

smoothers, for example Tikhonov regularizers sharing the

same penalty matrix K, then it is possible to construct a

data-driven convex combination Â of A1, ..., AM such that

the regret satisfies

E[‖Ây − µ‖2]− min
j=1,...,M

E[‖Ajy − µ‖2] ≤ C1σ
2

for some absolute constant C1 > 0. Hence the regret

in (1.3) is bounded by C1σ
2, an upper bound that is

(a) independent of the cardinality M of the grid of tun-

ing parameters and (b) independent of the minimal risk

R∗ = minj=1,...,M E[‖Ajy − µ‖2]. No matter how coarse

the grid of tuning parameter is, no matter the number of

tuning parameters to choose from, no matter how large the

minimal risk R∗ is, the regret of the procedure constructed

in the next section is always bounded by C1σ
2.

Notation. Throughout the paper, C1, C2, C3... denote ab-

solute positive constants. The norm ‖ · ‖ is the Euclidean

norm of vectors. Let ‖ · ‖op and ‖ · ‖F be the operator and

Frobenius norm of matrices.

2. Construction of the estimator

Assume that we are given M matrices A1, ..., AM , each

matrix corresponding to the linear estimator Ajy. Mallows

(1973) Cp criterion is given by (1.5).

Following several works on aggregation of estimators (Ne-

mirovski, 2000; Tsybakov, 2003; Leung & Barron, 2006;

Rigollet & Tsybakov, 2007; Dalalyan & Salmon, 2012; Dai

et al., 2012; Bellec, 2018) we parametrize the convex hull

of the matrices A1, ..., AM as follows:

Aθ ,

M
∑

j=1

θjAj , for each θ ∈ ΛM (2.1)

where ΛM =
{

θ ∈ R
M : θj ≥ 0,

M
∑

j=1

θj = 1
}

.

Above, ΛM is the simplex in R
M and the convex hull of

the matrices A1, ..., AM is exactly the set {Aθ, θ ∈ ΛM}.

Finally, define the weights θ̂ ∈ ΛM by

θ̂ = argmin
θ∈ΛM

(

Cp(Aθ)+
1

2

M
∑

j=1

θj‖(Aθ −Aj)y‖2
)

. (2.2)

The first term of the objective function is Mallows Cp from

(1.5), while the second term is a penalty derived from the

Q-aggregation procedure from (Rigollet, 2012; Dai et al.,

2012). The estimate (2.2) is equivalent to the procedure (Dai

et al., 2012) with the least-squares term replaced by Cp; it is

also close to the estimate from of (Dai et al., 2014) although

(Dai et al., 2014) presents an unncessary penalty term that

leads to worse guarantees than (2.2), cf. the discussion in

(Bellec, 2018).

The penalty is minimized at the vertices of the simplex and

thus penalizes the interior of ΛM . Although convexity of the

above optimization problem is unclear at first sight because

the penalty is non-convex, the objective function can be

rewritten, thanks to a bias-variance decomposition, as

1
2‖Aθy − y‖2 + 2σ2 trace(Aθ) +

1
2

∑M
j=1 θj‖Ajy − y‖2.

(2.3)

The first term is a convex quadratic function in θ, while

both the second term (2σ2 trace[Aθ]) and the last term are

linear in θ. It is now clear that the objective function is

convex and (2.2) is a convex quadratic program (QP) over

the canonical simplex, with M variables and M + 1 linear

constraints. The computational complexity of such convex

QP is polynomial and well studied, e.g., (Vavasis, 2001,

page 304), (Frank et al., 1956), (Nocedal & Wright, 2006,

Section 16.5).

The final estimator is

µ̂ , Aθ̂y =
∑M

j=1 θ̂jAjy, (2.4)

a weighted sum of the values predicted by the linear esti-

mators A1, ..., Aj . The performance of this procedure is

studied in (Dai et al., 2014; Bellec, 2018); (Bellec, 2018) de-

rived the oracle inequality (1.8) which is optimal for certain
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and smoothing splines), we provide the following corollary

of Theorem 3.1 for convenience.

Corollary 3.3 (Application to Tikhonov regularizers). Let

K be a positive definite matrix of size p × p and let

λ1, ..., λM ≥ 0 be distinct tuning parameters. Define θ̂
as the minimizer of

θ̂ = argmin
θ∈ΛM

(1

2
‖

M
∑

j=1

θjXŵ(K,λj)− y‖2 + 2σ2
M
∑

j=1

θjdfj

+
1

2

M
∑

j=1

θj‖Xŵ(K,λj)− y‖2
)

, (3.3)

where dfj = trace[XT (XTX + λjK)−1XT ]. Then the

weight vector w̃ =
∑M

j=1 θ̂jŵ(K,λj) in R
p is such that

the regret (1.3) is bounded from above by C1σ
2 for some

absolute constant C1 > 0.

This corollary is a direct consequence of Theorem 3.1 with

Aj = XT (XTX + λjK)−1XT . The fact that this forms a

family of ordered linear smoothers is explained after (1.4).

The objective function (3.3) corresponds to the formulation

(2.3) of the objective function in (2.2); we have chosen this

formulation so that (3.3) can be easily implemented as a

convex quadratic program with linear constraints, the first

term of the objective function being quadratic in θ while the

second and third terms are linear in θ.

The procedure above requires knowledge of σ2, which needs

to be estimated beforehand in practice. Estimators of σ2

are available depending on the underlying context, e.g.,

difference based estimates for observations on a grid (Dette

et al., 1998; Hall et al., 1990; Munk et al., 2005; Brown et al.,

2007), or pivotal estimators of σ in sparse linear regression,

e.g., (Belloni et al., 2014; Sun & Zhang, 2012; Owen, 2007).

On a low-bias model, (Hastie et al., 2001, Section 7.5)

recommends estimating σ2 by the squared residuals. It was

later suggested in (Arlot, 2019) that the procedure in (Hastie

et al., 2001) could overfit, and that using slope heuristic to

estimate σ2 is likely to provide a better estimator. We also

note that procedure (2.2) is robust to misspecified σ if each

Aj is an orthogonal projection (Bellec, 2018, Section 6.2).

4. Multiple families of ordered smoothers or

Tikhonov penalty matrices

Theorem 4.1. The following holds for absolute constants

C1, C2, C3 > 0. Consider the Gaussian mean model (1.2).

Let {A1y, ..., AMy} be a set of linear estimators such that

{A1, ..., AM} ⊂ F1 ∪ ... ∪ Fq,

where Fk is a family of ordered linear smoothers as in

Definition 1 for each k = 1, ..., q. Let θ̂ be the solution to

the optimization problem (2.2). Then µ̂ = Aθ̂y enjoys the

regret bound

E[‖Aθ̂y − µ‖2]− min
j=1,...,M

E[‖Ajy − µ‖2]

≤C1σ
2 + C3σ

2 log q. (4.1)

Furthermore, if j∗ = argminj=1,...,M E[‖Ajy − µ‖2] has

minimal risk then for all x ≥ 1,

P
{

‖Aθ̂y − µ‖2 − ‖Aj∗y − µ‖2 ≤ C2σ
2(x+ log q)

}

≥1− C3e
−x. (4.2)

We now allow not only one family of ordered linear

smoothers, but several. Above, q denotes the number of fam-

ilies. This setting was considered in (Kneip, 1994), although

with a regret bound of the form
√
R∗σ log(q)2+σ2 log(q)4

where R∗ = minj=1,...,M E[‖Ajy−µ‖2]; Theorem 4.1 im-

proves both the dependence in R∗ and in q. Let us also note

that the dependence in q in the above bound (4.2) is optimal

(Bellec, 2018, Proposition 2.1).

The above result is typically useful in situations where sev-

eral Tikhonov penalty matrices K1, ...,Kq are candidate.

For each m = 1, ..., q, the penalty matrix is Km, the prac-

titioner chooses a grid of bm ≥ 1 tuning parameters, say,

{λ(m)
a , a = 1, ..., bm}. If the matrices A1, ..., AM are such

that

{A1, ..., AM}
= ∪q

m=1 {X(XTX + λ(m)
a Km)−1XT , a = 1, ..., bm},

so that M =
∑q

m=1 bm, the procedure (2.2) enjoys the

regret bound

E[‖Aθ̂y − µ‖2]− min
m≤q

min
a=1,...,bm

E[‖Xŵ(Km, λa)− µ‖2]

≤ C6σ
2(1 + log q)

and a similar bound in probability. That is, the proce-

dure of Section 2 automatically adapts to both the best

penalty matrix and the best tuning parameter. The error

term σ2(1 + log q) only depends on the number of regular-

ization matrices used, not on the cardinality of the grids of

tuning parameters.

5. Proofs

We start the proof with the following deterministic result.

Lemma 5.1 (Deterministic inequality). Let A1, ..., AM be

square matrices of size n× n and consider the procedure

(2.2) in the unknown mean model (1.2). Then for any Ā ∈
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{A1, ..., AM},

‖Aθ̂y − µ‖2 − ‖Āy − µ‖2

≤ max
j=1,...,M

(

2εT (Aj − Ā)y − 2σ2 trace(Aj − Ā)

− 1
2‖(Aj − Ā)y‖2

)

.

Proof. The above is proved in (Bellec, 2018, Proposition

3.2). We reproduce the short proof here for completeness:

If H : ΛM → R is the convex objective of (2.2) and Ā =
Ak for some k = 1, ...,M , the optimality condition of

(2.2) states that ∇H(θ̂)(ek − θ̂) ≥ 0 holds (cf. (Boyd &

Vandenberghe, 2009, (4.21))). Then ∇H(θ̂)(ek − θ̂) ≥ 0
can be equivalently rewritten as

‖Aθ̂y − µ‖2 − ‖Āy − µ‖2

≤
M
∑

j=1

θ̂j

(

2εT (Aj − Ā)y − 2σ2 trace(Aj − Ā)

− 1
2‖(Aj − Ā)y‖2

)

.

The proof is completed by noting that the average
∑M

j=1 θ̂jaj with weights θ̂ = (θ̂1, ..., θ̂M ) ∈ ΛM is smaller

than the maximum maxj=1,...,M aj for all a1, ..., aM .

Throughout the proof, Ā is a fixed deterministic matrix with

‖Ā‖op ≤ 1. Our goal is to bound from above the right hand

side of Lemma 5.1 with high probability. To this end, define

the process (ZB)B indexed by symmetric matrices B of

size n× n, by

ZB =2εT (B − Ā)y − 2σ2 trace(B − Ā)

− 1
2 (‖(B − Ā)y‖2 − d(B, Ā)2)

where d is the metric

d(B,A)2 , E[‖(B−A)y‖2] = σ2‖B−A‖2F+‖(B−A)µ‖2,
(5.1)

where A,B ∈ R
n×n.

With this definition, the quantity inside the parenthesis in the

right hand side of Lemma 5.1 is exactly ZAj
− 1

2d(Aj , Ā)
2.

The appearance of the term involving the metric d is thanks

to the penalty term in the definition of θ̂ (cf. (2.2)). To show

that the regret of the estimator Aθ̂y does not scale with the

model dimension, we need to establish that the growth of

the centered process ZB is surpassed by the growth of the

term 1
2d(B, Ā)2.

The main technical challenge is in controlling the process

ZB . We rely on the fact that the smoothers are ordered,

which allows us to use generic chaining to bound the sumpre-

mum of ZB in a very efficient manner.

Split the process ZB into a Gaussian part and a quadratic

part. Define the processes (GB)B and (WB)B by

GB = εT [2In×n − (B − Ā)](B − Ā)µ,

WB = 2εT (B − Ā)ε− 2σ2 trace(B − Ā)

− 1
2ε

T (B − Ā)2ε+ σ2

2 ‖B − Ā‖2F .

Before bounding supremum of the above processes, we

need to derive the following metric property of ordered

linear smoothers. If T is a subset of the space of symmetric

matrices of size n×n and if d is a metric on T , the diameter

∆(T, d) of T and the Talagrand generic chaining functionals

for each α = 1, 2 are defined by

∆(T, d) = sup
A,B∈T

d(A,B),

γα(T, d) = inf
(Tk)k≥0

sup
t∈T

+∞
∑

k=1

2k/αd(t, Tk) (5.2)

where the infimum is over all sequences (Tk)k≥0 of subsets

of T such that |T0| = 1 and |Tk| ≤ 22
k

.

Lemma 5.2. Let a ≥ 0 and let µ ∈ R
n. Let F ⊂ R

n×n

be a family of ordered linear smoothers (cf. Definition 1)

and let d be any semi-metric of the form d(A,B)2 =
a‖A−B‖2F + ‖(A−B)µ‖2. Then γ2(F, d) + γ1(F, d) ≤
C7∆(F, d) where C7 is an absolute constant.

Proof. We have to specify a sequence (Tk)k≥0 of subsets

of F with |Tk| ≤ 22
k

. Since F satisfies Definition 1, there

exists a basis of eigenvectors u1, ..., un, non-decreasing

functions α1, ..., αn : R → [0, 1] and a set Λ ⊂ R such

that F = {Bλ, λ ∈ Λ} where Bλ =
∑n

i=1 αi(λ)uiu
T
i , cf.

(1.4). Hence for any λ0, λ, ν ∈ Λ,

d(Bλ, Bν)
2 =

n
∑

i=1

wi(αi(λ)− αi(ν))
2

for weights wi = (a+ (uT
i µ)

2) ≥ 0,

d(Bλ0
, Bλ)

2 + d(Bλ, Bν)
2 = d(Bλ0

, Bν)
2

+2
n
∑

i=1

wi(αi(λ)− αi(λ0))(αi(λ)− αi(ν)).

If λ0 ≤ λ ≤ ν, since each αi(·) is non-decreasing, the

sum in the right hand side of the previous display is non-

positive and d(Bλ, Bν)
2 ≤ d(Bν , Bλ0

)2 − d(Bλ, Bλ0
)2

holds. Let N = 22
k

and δ = ∆(F, d)/N . We construct

a δ-covering of F by considering the bins BINj = {B ∈
F : δ2j ≤ d(B,Bλ0

)2 < δ2(j + 1)} for j = 0, ..., N − 1
where λ0 = inf Λ. If BINj is non-empty, then any of its

elements is a δ-covering of BINj thanks to

d(Bλ, Bν)
2 ≤d(Bν , Bλ0

)2 − d(Bλ, Bλ0
)2

≤(j + 1)δ2 − jδ2 = δ2.
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for Bν , Bλ ∈ BINj with λ ≤ ν. This constructs a δ-

covering of F with N = 22
k

elements. Hence γ2(F, d) ≤
∆(F, d)

∑∞

k=1 2
k/2/22

k

= ∆(F, d)C8 and the same holds

for γ1(F, d) for a different absolute constant.

The two following lemmas are proved in the supplement by

leveraging the bound in Lemma 5.2 on the complexity of

ordered smoothers.

Lemma 5.3 (The Gaussian process GB). Let T ∗ be a family

of ordered linear smoothers (cf. Definition 1) such that

supB∈T∗ d(Ā, B) ≤ δ∗ for the metric (5.1). Then for all

x > 0,

P( sup
B∈T∗

GB ≤ σ(C9 + 3
√
2x)δ∗) ≥ 1− e−x.

Lemma 5.4 (The Quadratic process WB). Let T ∗ be a

family of ordered smoothers (cf. Definition 1) such that

σ‖B − Ā‖F ≤ δ∗ for all B ∈ T ∗. Then for all x > 0,

P

(

sup
B∈T∗

WB ≤ C10σδ
∗+C11σ

√
xδ∗+C12σ

2x
)

≥ 1−2e−x.

The goal is to now combine the two previous lemmas to

obtain tail bounds on supB∈F

(

ZB − 1
2d(B, Ā)2

)

. We first

proceed on a slice {B ∈ F : δ∗ ≤ d(B, Ā) < δ∗} for two

reals δ∗ < δ∗.

Lemma 5.5. Suppose F is a family of n×n ordered linear

smoothers (cf. Definition 1), and Ā is a fixed matrix with

‖Ā‖op ≤ 1 which may not belong to F . Let d be the metric

(5.1). Then for any reals u ≥ 1, and δ∗ > δ∗ ≥ 0, we have

with probability at least 1− 3e−u,

sup
B∈F : δ∗≤d(B,Ā)<δ∗

(

ZB − 1
2d(B, Ā)2

)

≤ C13

[

σ2u+ δ∗σ
√
u
]

− 1
2δ

2
∗

≤ C14σ
2u+ 1

16 (δ
∗)2 − 1

2δ
2
∗.

Proof. First note that −d(B, Ā)2 ≤ −δ2∗ for any B as in

the supremum.

Now ZB = GB+WB where GB and WB are the processes

studied in Lemmas 5.3 and 5.4. These lemmas applied to

T ∗ = {B ∈ F : d(B, Ā) ≤ δ∗} yields that on an event of

probability at least 1− 3e−u we have

supB∈T∗ ZB ≤ sup
B∈T∗

(GB +WB)

≤C15(σδ
∗(1 +

√
u) + σ2u).

Since u ≥ 1, we have established the first inequality by

adjusting the absolute constant. For the second inequal-

ity, we use that C13δ∗σ
√
u ≤ 4C2

13σ
2u+ 1

16 (δ
∗)2 and set

C14 = C13 + 4C2
13.

We use here a method known as slicing, we refer the reader

to Section 5.4 in (van Handel, 2014) for an introduction.

Lemma 5.6 (Slicing). Suppose F is a family of n × n
ordered linear smoothers (cf. Definition 1), and Ā is a fixed

matrix with ‖Ā‖op ≤ 1 which may not belong to F . Let

d be the metric (5.1). Then for any x ≥ 1, we have with

probability at least 1− C3e
−x

supB∈F

(

ZB − 1
2d(B, Ā)2

)

≤ C2σ
2x.

Proof. Write F as the union F = ∪∞
k=1Tk where Tk is the

slice

Tk = {B ∈ F : δk−1 ≤ d̃(B, Ā) ≤ δk},

with δ0 = 0 and δk = 2kσ for k ≥ 1. By definition of the

geometric sequence (δk)k≥0, inequality 1
16δ

2
k − 1

2δ
2
k−1 ≤

1
2σ

2 − 1
16δ

2
k ≤ 1

2σ
2x − 1

16δ
2
k holds for all k ≥ 1. With

δ∗ = δk−1, δ
∗ = δk, Lemma 5.5 yields that for all k ≥ 1,

P

(

sup
B∈Tk

(ZB − 1
2d(B, Ā)2) ≤ C14σ

2uk − 1
16δ

2
k + σ2x

2

)

≥1− 3e−uk ,

for all uk ≥ 1. The above holds simultaneously over all

slices (Tk)k≥1 with probability at least 1−3
∑∞

k=1 e
−uk by

the union bound. It remains to specify a sequence (uk)k≥1

of reals greater than 1. We choose uk = x+ δ2k/(16σ
2C14)

which is greater than 1 since x ≥ 1. Then by construc-

tion, C14σ
2uk − 1

16δ
2
k + σ2x

2 = (C14 + 1/2)σ2x and

we set C2 = C14 + 1/2. Furthermore,
∑∞

k=1 e
−uk =

e−x
∑∞

k=1 e
−22k/(16C14). The sum 3

∑∞

k=1 e
−22k/(16C14)

is equal to a finite absolute constant named C3 in the state-

ment of the Lemma.

Proof of Theorem 3.1. Let F = {A1, ..., AM} and Ā =
Aj∗ where j∗ is defined in the statement of Theorem 3.1.

The conclusion of Lemma 5.1 can be rewritten as

‖Aθ̂y − µ‖2 − ‖Āy − µ‖2 ≤ sup
B∈F

(ZB − 1
2d(B, Ā)2)

where F = {A1, ..., AM} is a family of ordered linear

smoothers. Lemma 5.6 completes the proof of (3.2). Then

(3.1) is obtained by integration of (3.2) using E[Z] ≤
∫∞

0
P(Z > t)dt for any Z ≥ 0.

Proof of Theorem 4.1. As in the proof of Theorem 3.1, we

use Lemma 5.1 to deduce that a.s.,

‖Aθ̂y − µ‖2 − ‖Āy − µ‖2

≤ max
j=1,...,M

(ZAj
− 1

2d(Aj , Ā)
2)

= max
k=1,...,q

max
B∈Fk

(ZB − 1
2d(B, Ā)2).
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