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Abstract—Deep Neural Networks (DNNs) have achieved ex-
traordinary performance in various application domains. To
support diverse DNN models, efficient implementations of DNN
inference on edge-computing platforms, e.g., ASICs, FPGAs,
and embedded systems, are extensively investigated. Due to the
huge model size and computation amount, model compression
is a critical step to deploy DNN models on edge devices. This
paper focuses on weight quantization, a hardware-friendly model
compression approach that is complementary to weight pruning.

Unlike existing methods that use the same quantization scheme
for all weights, we propose the first solution that applies different
quantization schemes for different rows of the weight matrix.
It is motivated by (1) the distribution of the weights in the
different rows are not the same; and (2) the potential of achieving
better utilization of heterogeneous FPGA hardware resources. To
achieve that, we first propose a hardware-friendly quantization
scheme named sum-of-power-of-2 (SP2) suitable for Gaussian-
like weight distribution, in which the multiplication arithmetic
can be replaced with logic shifter and adder, thereby enabling
highly efficient implementations with the FPGA LUT resources.
In contrast, the existing fixed-point quantization is suitable
for Uniform-like weight distribution and can be implemented
efficiently by DSP. Then to fully explore the resources, we propose
an FPGA-centric mixed scheme quantization (MSQ) with an
ensemble of the proposed SP2 and the fixed-point schemes.
Combining the two schemes can maintain, or even increase
accuracy due to better matching with weight distributions.

For the FPGA implementations, we develop a parameterized
architecture with heterogeneous Generalized Matrix Multiplica-
tion (GEMM) cores—one using LUTs for computations with
SP2 quantized weights and the other utilizing DSPs for fixed-
point quantized weights. Given the partition ratio among the two
schemes based on resource characterization, MSQ quantization
training algorithm derives an optimally quantized model for the
FPGA implementation. We evaluate our FPGA-centric quan-
tization framework across multiple application domains. With
optimal SP2/fixed-point ratios on two FPGA devices, i.e., Zynq
XC7Z020 and XC7Z045, we achieve performance improvement
of 2.1×−4.1× compared to solely exploiting DSPs for all
multiplication operations. In addition, the CNN implementations
with the proposed MSQ scheme can achieve higher accuracy
and comparable hardware utilization efficiency compared to the
state-of-the-art designs.

Index Terms—deep neural network, quantization, FPGA, in-
ference

I. INTRODUCTION

Deep learning or Deep Neural Networks (DNNs) have
achieved extraordinary performance in various application do-
mains [1]–[7]. However, the state-of-the-art DNNs may require
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up to GBs (Giga Bytes) for model size and 102 GFLOPs (Giga
Floating Point Operations) for inference computation, making
it a challenging task to perform on-device inference.

To efficiently execute the diverse DNN inference models
for broader applications, the resource-constrained edge com-
puting platforms require two crucial supports. The first one
is the specialized hardware acceleration for DNN inference.
Extensive research efforts have been dedicated to the efficient
implementations of DNN inference models on various edge-
computing platforms, such as ASICs [8]–[14], FPGAs [15]–
[18], and embedded CPUs/GPUs [19]–[23].

The second is the DNN model compression technique,
which not only seeks more efficient hardware implementation
based on given models, but also explores the opportunity of
algorithm and hardware co-design to achieve better trade-offs
among accuracy, hardware cost, and performance. There are
two essential techniques for model compression: DNN weight
pruning [24]–[30] and weight quantization [31]–[47].

This paper focuses on DNN weight quantization, which be-
comes imperative to the DNN hardware acceleration especially
on the FPGA and ASIC platforms. By representing weights
with fewer bits, weight quantization can directly simplify the
implementations and accelerate the inference execution speed
in a hardware-friendly manner. Also, it is supported in GPUs
(e.g., PyTorch [22] for NVIDIA GPUs) and mobile devices
(e.g., TensorFlow-Lite [23]). In addition, weight quantization
yields far less training overhead than weight pruning, let alone
the training-heavy network architecture search (NAS)-based
model compression techniques. Specifically, in state-of-the-art
DNN quantization methods (including our work), retraining
process takes usually 1/3 ∼ 1/2 of the epochs as those for
the pre-training process, which is totally acceptable training
overhead in the exchange for significant inference speedup.

Weight quantization can be considered as a mapping from
32-bit floating-point weights into m-bit weight representations.
There are different types of quantization schemes including
binary [31]–[34], ternary [35]–[37], low-bit-width fixed-point
[38]–[43], and power-of-2 [44]–[47]. In general, binary and
ternary quantization schemes result in significant accuracy
loss, for example, > 5% under binary and 2%−3% for ternary
quantization. The fixed-point quantization can represent the
DNN weights using low bit-width, e.g., 4-bit, with negligible
accuracy loss. To further simplify hardware implementations,
power-of-2 quantization scheme was proposed to replace the



multiplications with bit-shifting operations. However, power-
of-2 results in non-negligible accuracy degradation, usually
around 1% − 2%, which even cannot be overcome with
increasing precision.

To overcome the challenges, instead of using the same
quantization scheme for all weights, we propose the first
solution that applies different quantization schemes for dif-
ferent rows of the weight matrix. It is motivated by (1)
the distribution of weights in the different rows are not the
same; and (2) the potential of achieving better utilization
of heterogeneous FPGA hardware resources. We propose a
hardware-friendly quantization scheme named sum-of-power-
of-2 (SP2) suitable for Gaussian-like weight distribution, in
which the multiplication arithmetic can be replaced with logic
shifter and adder, thereby enabling highly efficient implemen-
tations with the FPGA LUT resources. At the same time,
the SP2 quantization enjoys the negligible accuracy loss, just
like the fixed-point quantization scheme. In comparison, the
fixed-point quantization is suitable for Uniform-like weight
distribution and can be implemented efficiently by DSP.

To fully explore the FPGA resources, we propose an FPGA-
centric mixed scheme quantization (MSQ) with an ensemble
of the proposed SP2 and the fixed-point schemes. Given that
each individual scheme can achieve negligible accuracy loss,
we demonstrate that combining the two can maintain, or even
reach higher accuracy. It is due to the benefit of using two
quantization schemes: even within a single layer, the local
weight distributions can be diverse, if we assign the right
quantization scheme to better fit the local weight distributions,
accuracy can be boosted.

For the FPGA implementations, we developed a param-
eterized architecture with heterogeneous Generalized Matrix
Multiplication (GEMM) cores—one using LUTs for computa-
tions with SP2 quantized weights and the other utilizing DSPs
for fixed-point quantized weights. We first find the partition
ratio of the SP2 to fixed-point quantization for weights of a
DNN layer through FPGA resource characterization, such that
the DSP utilization is kept at 100% and LUT utilization can
also be optimized. Given the partition ratio, MSQ quantization
training algorithm derives an optimally quantized model for
the FPGA implementation. We evaluate our FPGA-centric
quantization framework across multiple application domains
including image classification, object detection and recogni-
tion, machine translation, speech recognition, sentiment clas-
sification, and natural language processing, with various DNNs
such as convolutional neural networks (CNN), and recurrent
neural networks (RNN). With optimal SP2/fixed-point ratios
on two FPGA devices, i.e., Zynq XC7Z020 and XC7Z045, we
achieve performance improvement of 2.1×−4.1× compared
to solely exploiting DSPs for all multiplication operations. In
addition, the CNN implementations with the proposed MSQ
scheme can achieve higher accuracy and comparable hardware
utilization efficiency compared to state-of-the-arts.

The contributions of this work are:
• We propose a novel hardware-friendly SP2 quantization

scheme, which enjoys both non-multiplication operations

and negligible accuracy degradation.
• We provide the first DNN quantization solution that

jointly applies two quantization schemes to achieve better
utilization of heterogeneous FPGA hardware resources
while not harming the quantized model accuracy.

• Our framework features a novel architecture with het-
erogeneous GEMM engines and design optimizations,
to accommodate our mixed scheme quantization and to
optimize FPGA resource allocation.

• The effectiveness of our proposed MSQ is validated
across multiple application domains and with FPGA
devices, on inference accuracy and FPGA resource uti-
lization efficiency.

Our work is significantly different from existing quantiza-
tion frameworks that leverage the inter-layer, multi-precision
approach. We exploit the previously neglected flexibility on
quantization schemes (using both fixed-point and SP2) by
adopting a novel intra-layer, multi-scheme approach. Specifi-
cally, we identify an optimized ratio of the two schemes from
FPGA (LUT and DSP) resource characterization, and then
assign the different rows of the weight matrix within a layer
into the two schemes according to the weight distributions.
Our method is totally perpendicular to, and can be combined
with, the existing inter-layer, multi-precision approaches.

II. BACKGROUND ON DNN WEIGHT QUANTIZATION

A. Weight Quantization Schemes

1) Uniform Interval Quantization Schemes: Uniform in-
terval quantization schemes include binary, ternary, and low-
bit-width fixed-point. Binary or ternary quantization uses ex-
tremely low precision for DNN models, i.e., binarized (e.g., -1,
+1) or ternarized (e.g., -1, 0, +1) levels. Representative binary
quantization methods include Binaryconnect [31], Binarized
Neural Network (BNN) [32], XNOR-net [33], and ABC-Net
[34]. With weights constrained to {−1, 1}, multiplications can
be replaced by additions/subtractions. Additions/subtractions
can also be eliminated using XNOR and AND operations if
activations are quantized to binary as well. On the other hand,
ternary quantization schemes are implemented in TWN [35],
TTQ [36], and [37]. Ternary representation keeps zero in quan-
tization levels, which requires one more bit to present weights.
Ternary networks also benefit from non-multiplication opera-
tions while maintaining the natural sparsity (since zero weights
are kept). Although binary and ternary quantization can signif-
icantly reduce operations and simplify the implementations of
hardware accelerators, it introduces non-negligible accuracy
loss. For example, based on reports from the above works,
accuracy typically degrades by > 5% under the binary scheme,
and 2− 3% for ternary.

Comparing with binary and ternary quantization, the fixed-
point quantization scheme applies the modest and flexible
quantization rates to preserve the accuracy as that of the
32-bit floating-point models. For example, 4-bit fixed-point
introduces zero or negligible accuracy loss. Fixed-point quan-
tization scheme has been implemented with different meth-



ods/algorithms by DoReFa-Net [38], PACT [39], DSQ [40],
QIL [41], µ L2Q [42], and LSQ [43].

With the m-bit fixed-point scheme, quantized weight values
are defined as the scaling factor α times quantization levels:

QFP (m,α) = ±α× {0, 1

2m−1 − 1
,

2

2m−1 − 1
, ..., 1}. (1)

And the mapping from a 32-bit floating-point weight w into
the quantized weight ŵ by m-bit fixed-point representation (in
sign-magnitude) is given by the following quantizer:

ŵ =
∏

QFP (m,α)

w

= α · h−1
( 1

2m − 1
round((2m − 1) · h(dw,αc))

)
,

(2)

where
∏
QFP (m,α)(·) denotes the quantizer function to project

onto QFP (m,α); the function h(·) transforms a value within
[−1,+1] into the range of [0, 1], for example we can use
h(·) = tanh(·)/2 + 0.5; and dw,αc clips w according to

dw,αc =


−1, w < −α
w/α, −α ≤ w ≤ α
1, w > α

. (3)

2) Non-Uniform Interval Quantization Schemes: On the
other hand, power-of-2 quantization is a non-uniform interval
quantization scheme, representative methods including [44]–
[47]. Power-of-2 quantization replaces multiplications by bit
shifting operations and this number system also possesses
higher precision around the mean, which fits the Gaussian
distribution of DNN weights better [48], [49]. With an m-
bit weight representation (in sign-magnitude), the quantized
weight values by the power-of-2 scheme are defined as

QP2(m,α) = ±α× {0, 1

22m−1−2 ,
1

22m−1−3 , ..., 1}. (4)

And the power-of-2 quantizer is then given by

ŵ =
∏

QP2(m,α)

w

=

{
α · h−1

(
2round(log2 h(dw,αc))

)
h(dw,αc) > 2−2

m+1

0 h(dw,αc) ≤ 2−2
m+1.

(5)

With weights quantized into the power-of-2 scheme, multi-
plications between weight i.e., 2b(b ∈ N) and activation i.e.,
a can be implemented by bit shifting as follows:

2b × a =


a << b, b > 0

a, b = 0

a >> b, b < 0

. (6)

Although the power-of-2 quantization scheme can simplify
hardware implementation by eliminating multiplications, its
precision cannot be increased effectively with increasing m,
because increasing m will merely increase resolution around
the mean, while the tails are still in low precision. This can

Algorithm 1: DNN Quantization with ADMM and STE
input : 32-bit floating-point DNN model M, with weights

W to be quantized.
Quantization scheme: S ∈ {Fixed-point, Power-of-2,
Sum-of-power-of-2}
target: Quantized model M̂
// Initialization:
U0 = 0; Z0 = W;

foreach Epoch do
// Update Z, U:
Zt ← projS(W + U t−1);
U t ←W − Zt + U t−1;
foreach Batch do

// STE for activation quantization:
input← projS(input);
loss←M(input);
loss← loss+

∑
1
2
‖W − Zt + U t‖2;

Backpropagate loss and update W;

Return M̂ ←M{projS(W)}.

also be observed from Eq (5) that when w is a large value,
increasing m does not have an effect on ŵ. In practice, 3 ∼ 7
bits are usually used for power-of-2 quantization, and more
bits could not further promote the accuracy of the quantized
models. As mentioned in §II-A1 that 4-bit fixed-point results
in negligible accuracy degradation, but 4-bit power-of-2 quan-
tization will result in accuracy loss of 1%− 2%.

B. Quantization Algorithms

Quantization performs projection from the continuous do-
main to a discrete number system, which makes the gradients
of the loss function unavailable for backpropagation during the
training. Two approaches can be applied to solving this un-
available gradient issue. One is employing a Straight Through
Estimator (STE) [50], [51] to set the gradient to the constant
value of 1 as

Forward : y = round(x)

Backward :
∂y

∂x
= 1x∈R

, (7)

which is effective in the quantization training. The other
approach employs Alternating Direction Method of Multipliers
(ADMM) to iteratively solve the parameters with a target
quantization scheme as the optimization contraint [47], elimi-
nating the need to backpropagate through the quantizer. In this
work, we use a combination of ADMM and STE, as shown in
Algorithm 1, which in general follows the ADMM algorithm
for weight quantization and where the STE is only applied for
activation quantization.

III. SUM-OF-POWER-OF-2 (SP2) QUANTIZATION SCHEME

In this section, we propose a new hardware-friendly sum-
of-power-of-2 (SP2) quantization scheme, which enjoys the
non-multiplication operations for the inference computation as
the binary, ternary, and power-of-2 schemes, while achieving
negligible inference accuracy degradation.



TABLE I
ANALYSIS ON THE OPERATIONS FOR WEIGHT-ACTIVATION MULTIPLICATION BY TWO QUANTIZATION SCHEMES OF THE WEIGHTS.

Weight Activation Ops for Weight × Activation
Quantization Scheme m-bit fixed-point n-bit fixed-point

n-bit addition for m− 2 timesOperands (m− 1)-bit integer n-bit integer
Quantization Scheme m-bit SP2 n-bit fixed-point shift by up to 2m1 − 2 bits

Operands m1-bit integer, m2-bit integer
n-bit integer shift by up to 2m2 − 2 bits

m1 +m2 = m− 1,m1 ≥ m2 up to (n+ 2m1 − 2)-bit addition

Fig. 1. Quantization levels by fixed-point, power-of-2, and SP2 in 4-bit
weight representation precision, and weight probability distribution of
the 4th layer in MobileNet-V2.

A. SP2 Quantization Scheme

The proposed hardware-friendly sum-of-power-of-2 (SP2)
quantization scheme can be considered as a variant of the
power-of-2 quantization. SP2 scheme can eliminate multipli-
cation operations in the (quantized) DNN inference models
(as the power-of-2 scheme), and at the same time is designed
to address the non-negligible accuracy loss of power-of-2
quantization. This is achieved by solving the low precision
issue in the tail ends of the weight distribution.

Formally, the quantized weight values by the sum-of-power-
of-2 scheme with a total of m-bit representations are

QSP2(m,α) = ±α× {q1 + q2},

q1 ∈ {0,
1

22
m1−1 ,

1

22
m1−2 , ...,

1

2
},

q2 ∈ {0,
1

22
m2−1 ,

1

22
m2−2 , ...,

1

2
},

(8)

where q1 and q2 are power-of-2 numbers in similar format
as the quantization levels in Eq. (4), and m1 and m2 are the
number of bits to represent the power-of-2 numbers i.e., q1
and q2, respectively. Please note that with a total of m bits to
represent an SP2 quantized weight value, 1 bit is still reserved
for the sign bit, and therefore we have m1+m2+1 = m with
m1 ≥ m2. In addition, the quantization levels by SP2 i.e.,
±{q1 + q2} are within [−1,+1].

Note that with m-bit representations, the SP2 scheme pro-
vides a total of 2m1 × 2m2 × 2 − 1 = 2m − 1 quantization

levels. Although the power-of-2 quantization scheme in m-
bit representations also provide 2m − 1 quantization levels,
the quantization levels resulted from the two schemes scatter
distinctly, and therefore the schemes perform differently in
preserving the accuracy of the quantized models. In Figure
1, the curve represents the actual probability distribution of
DNN weights in a representative layer. Along the x-axis, we
label the quantization levels by fixed-point, power-of-2, and
our sum-of-power-of-2 quantization schemes. All the three
schemes use 4-bit representations and therefore each of them
has 15 quantization levels within [−1,+1].

First, let us understand the intuition why the power-of-2
quantized models incur the non-negligible accuracy degrada-
tion, while SP2 and fixed-point quantized models can achieve
similar accuracy performance. The power-of-2 scheme has
very high precision around the mean with only 4-bit weight
presentation, but the tail ends present very low precision.
In contrast, our SP2 quantization possesses relatively evenly
scattered quantization levels, which is close to that of fixed-
point quantization levels, except the tail ends where very few
weight values are presented. This explains the advantages of
SP2 quantization scheme.

Next, we analyze the effect of SP2 quantization scheme on
the computation of weight-activation multiplication. In Table
I, we compare fixed-point and SP2 quantization schemes of
the weights, while throughout this paper we use fixed-point
quantization for the activation. In the first scheme with m-bit
fixed-point quantization for the weight and n-bit fixed-point
quantization on the activation, the weight operand is actually
represented as the (m− 1)-bit unsigned integer, since 1 bit is
for the sign. Although a quantization level is within [−1,+1],
the actual weight operand is the (m− 1)-bit unsigned integer.
And the activation operand is directly represented as the n-bit
unsigned integer, because activations are non-negative. The
operations for implementing weight-activation multiplication
are therefore n-bit additions for (m− 2) times.

For the second scheme with m-bit SP2 quantization on the
weight, we have an m1-bit unsigned integer and an m2-bit
unsigned integer together to encode the quantization level of
the quantized weight, and m1 +m2 = m− 1 because 1 bit is
for the sign. The quantization level is then 2b1 + 2b2 , where
b1 and b2 are encoded with m1 and m2 bits, respectively.
The weight-activation multiplication is implemented by (1)
shift of the activation operand by b1 bits, (2) shift of the
activation operand by b2 bits, and (3) addition of the two



TABLE II
RESULT FROM DIFFERENT QUANTIZATION SCHEMES FOR THE RESNET-18 AND MOBILENET-V2 DNN MODELS ON CIFAR10, CIFAR100, AND

IMAGENET DATASETS.

Quantization Bit width ResNet-18 Accuracy (%) MobileNet-v2 Accuracy (%)
Scheme (Wght./Actv.) Top1 Top5 Top1 Top5

CIFAR10
Baseline (FP) 32/32 93.62 - 92.51 -

P2 4/4 92.97 (−0.65) - 91.34(−1.17) -
Fixed 4/4 93.43 (−0.19) - 92.34 (−0.17) -
SP2 4/4 93.47 (−0.15) - 92.72 (+0.21) -

MSQ (half/half) 4/4 93.53 (−0.09) - 92.57 (+0.06) -
MSQ (optimal) 4/4 93.65 (+0.03) - 92.55 (+0.04) -

CIFAR100
Baseline (FP) 32/32 74.49 92.70 71.48 91.98

P2 4/4 73.88 (−0.61) 92.14 (−0.56) 68.68 (−2.80) 90.06 (−1.92)
Fixed 4/4 74.37 (−0.12) 92.31 (−0.39) 71.16 (−0.32) 91.63 (−0.35)
SP2 4/4 74.33 (−0.17) 92.49 (−0.21) 71.13 (−0.35) 91.69 (−0.29)

MSQ (half/half) 4/4 74.58 (+0.09) 92.39 (−0.31) 71.21 (−0.27) 91.74 (−0.24)
MSQ (optimal) 4/4 74.60 (+0.11) 92.63 (−0.07) 71.50 (+0.02) 91.82 (−0.16)

ImageNet Wght./Actv. 4/32
Baseline (FP) 32/32 69.76 89.08 71.88 90.29

P2 4/4 68.20 (−1.56) 87.14 (−1.94) 69.93(−1.95) 88.63(−1.66)
Fixed 4/4 69.72 (−0.04) 88.67 (−0.41) 71.26 (−0.62) 90.18 (−0.11)
SP2 4/4 69.74 (−0.02) 88.71 (−0.37) 71.32 (−0.56) 90.17 (−0.12)

MSQ (half/half) 4/4 70.11 (+0.35) 89.41 (+0.33) 71.26 (−0.62) 90.04 (−0.25)
MSQ (optimal) 4/4 70.27 (+0.51) 89.42 (+0.34) 71.31(−0.57) 90.11(−0.18)

shifted operands. Since b1 and b2 are encoded by m1- and
m2-bit unsigned integer, respectively, Operations (1) and (2)
can be shift by at most 2m1−2 and 2m2−2 bits, respectively.
The shifted activation operands will be n + 2m1 − 2 and
n+2m2 −2 bits respectively. Therefore one (n+2m1 −2)-bit
addition is needed. In summary, with SP2 weight quantization,
the weight-activation multiplication can be implemented with
two shift operations and one addition operation.

B. Accuracy Performance Analysis

In this section, we discuss the accuracy performance of the
fixed-point (Fixed), power-of-2 (P2), and proposed sum-of-
power-of-2 (SP2) quantization schemes. Our baseline models
use 32-bit floating-point (FP) for both weights and activa-
tions. All the quantization schemes apply 4-bit quantization.
While different quantization schemes are explored for weights,
activations are using fixed-point quantization. Table II sum-
marizes the quantized models’ accuracy with the accuracy
changes (with respect to the baseline FP models) marked
in the brackets. Experiments are conducted with ResNet-
18 and MobileNet-v2 models on CIFAR10, CIFAR100, and
ImageNet. As for activation quantization, 4-bit fixed-point
is used for all the models, except the MobileNet-v2 on
ImageNet dataset. MobileNets are a family of specialized and
lightweight models, therefore presenting unstable convergence
under modifications such as pruning and quantization. Activa-
tion quantization of MobileNet-v2 on ImageNet is performed
in §IV-C with comparisons to existing works.

In Table II, we now focus on P2, Fixed, and SP2 quan-
tization schemes, and the MSQ scheme will be discussed
in §IV. First, power-of-2 (P2) results in significant accuracy
degradation, around 1%∼2% in general with extreme case of
2.80% Top-5 accuracy loss of MobileNet-v2 on CIFAR100.

For ImageNet, both the fixed-point (Fixed) and sum-of-power-
of-2 (SP2) schemes have negligible accuracy loss,≤ 0.41% for
ResNet-18 and ≤ 0.62% for MobileNet-v2 accross the three
datasets. These two schemes achieve comparable accuracy of
quantized models. In summary, the 4-bit-width Fixed and SP2
quantization schemes are essentially equivalent in terms of the
accuracy of the quantized models, and their accuracy losses
are negligible.

IV. A FPGA-CENTRIC MIXED SCHEME QUANTIZATION

In this section, we propose our mixed scheme quantization
(MSQ) for FPGA implementations of DNN inference models.
Based on the analysis in §III-B, fixed-point and SP2 quantiza-
tion are equivalent in preserving the accuracy of the quantized
models when with the same precision, e.g., 4-bit for both.
Therefore, in our proposed MSQ, the fixed-point and SP2
schemes with the 4-bit precision are applied in the DNN model
quantization, (1) for better FPGA resource allocation, and (2)
with negligible accuracy loss.

A. Motivation

The idea of proposed mixed scheme quantization (MSQ)
is to partition DNN weights in the same layer into two
categories, one is handled by fixed-point quantization, and
the other by SP2 quantization. These two schemes use the
same precision to facilitate hardware implementation. The
motivations to adopt MSQ are: First, let a weight matrix be
obtained by transforming the weight tensor of a layer into a 2D
GEMM matrix with rows and columns. Weights in different
rows of the matrix may present different distributions. For rows
with more Gaussian-like weight distributions (with smaller
variances), SP2 quantization is preferable; while for rows with
more Uniform-like weight distributions (with larger variances),



Algorithm 2: FPGA-Centric Mixed Scheme Quantiza-
tion(MSQ)

input : 32-bit floating-point DNN model M, with weights
W to be quantized.

target: Quantized model M̂
// Initialization:
U0 = 0; Z0 = W;
Partition rate PRSP2 from FPGA resource characterization;
Sf =Fixed-point; Sp =SP2;

foreach Epoch do
Calculate variance v(l)r for each r-th row of the layer l

weight matrix W(l);
Sort v(l)1:R to obtain the threshold θ(l) such that PRSP2

of the rows with variances less than θ(l);
if v(l)r < θ(l) then S← Sp;
else S← Sf ;
// Update Z, U:
Zt ← projS(W + U t−1);
U t ←W − Zt + U t−1;
foreach Batch do

input← projS(input);
loss←M(input);
loss← loss+

∑
1
2
‖W − Zt + U t‖2;

Backpropagate loss and update W;

Return M̂ ←M{projS(W)}.

fixed-point quantization should be used. Thus, the mixed
scheme is necessary at algorithm level—it can achieve similar
or even potentially higher accuracy than existing schemes.
Second, our approach also leads to a better utilization of
heterogeneous resources available in FPGA— weights based
on the two schemes can be managed by LUT and DSP
resources. Specifically, the operations involving SP2 quantized
weights should be implemented by LUTs; while those with
fixed-point quantized weights can leverage the DSPs, the more
limited resources on FPGA for DNN hardware accelerators.
Overall, our MSQ achieves a sweet design spot achieving both
high accuracy and processing throughput, thanks to the high
and optimized utilization of both LUTs and DSPs.

B. Algorithm

In MSQ, each row in a weight matrix should employ either
the SP2 or fixed-point scheme. To determine the scheme for
each row, the weight variances of all the rows are calculated.
We define a threshold θ for the variances, such that for the
rows with smaller variances than the threshold, the SP2 quan-
tization is employed; and otherwise, the fixed-point scheme is
applied. By setting the proper threshold θ, the desired partition
ratio of SP2 to fixed-point can be achieved with improved
FPGA resource utilization. Algorithm 2 provides the details.

The optimal ratio of SP2 to fixed-point is determined by the
available resources on FPGA devices and resource utilization
required to support the design. Generally, the utilization factor
of DSPs should be maintained at 100% to take full advantage
of the DSP resource for the fixed-point multiplications. When
only fixed-point quantization is applied, the LUT utilization is

low even though DSP utilization reaches the maximum. Incor-
porating the SP2 quantization can increase the LUT utilization,
and therefore enhancing the throughput. The exploration of the
optimal ratio of SP2 to fixed-point among the weight matrix
rows is elaborated in §VI.

C. Accuracy Results

1) Experiment Setup: We evaluate our MSQ in three ap-
plication domains i.e., image classification with convolutional
neural networks (CNNs); object detection and recognition with
YOLO-v3; machine translation, speech recognition, and senti-
ment classification with recurrent neural networks (RNNs). We
use no extra data augmentations in our quantization, other than
those already employed for training the 32-bit floating-point
baseline models. Our quantization training algorithm uses step
or cosine learning rate decay and `2 regularization, following
training algorithms of the baseline models. Our quantization
algorithms are implemented with the PyTorch framework on
NVIDIA TITAN RTX GPUs and GeForce RTX 2080Ti GPUs.

For image classification, we evaluate with the deep residual
net (ResNet-18) [52], which is a widely used model for
computer vision tasks, as well as the lightweight MobileNet-
v2 model [53]. We test on CIFAR10 [54], CIFAR100 [54],
and ImageNet ILSVRC-2012 [55] datasets. DNN models for
CIFAR10 and CIFAR100 datasets are trained from scratch and
quantized for 150 epochs. For ImageNet dataset, pre-trained
models in 32-bit floating-point are used and quantized for 90
epochs. The initial learning rate is 8e−3 for CIFAR10, 4e−3
for CIFAR100, 5e− 4 for ImageNet.

For object detection, we explore the implementation of a
fully convolutional neural network (FCNN) called YOLO-v3
[56] on MS COCO 2014 [57] dataset. The learning rate starts
from 1e− 2, and decays to 5e− 4 with cosine annealing. We
evaluate mean Average Precision (mAP) at an IoU threshold
value of 0.5 (mAP@0.5), as well as average mAP over the
IoU threshold range from 0.5 to 0.95 (mAP@(0.5 : 0.95)).

For RNNs, we evaluate three networks. The first one is an
LSTM network with 256 hidden neurons in two layers [58] on
Penn Tree Bank (PTB) [59] dataset for the machine translation
application with perplexity (PPL) as the evaluation metric
(lower PPL is better). The second is a network based on
GRU with 1024 hidden neurons in two layers [60] on TIMIT
acoustic-phonetic continuous speech corpus [61] dataset for
the speech recognition application. The evaluation metric is
Phoneme Error Rate (PER) and lower PER is better. Finally,
we use another LSTM network with three hidden layers each
having 512 neurons on IMDB [62] dataset for sentiment
classification. Our learning rate is 1e− 3 for all the RNNs.

2) Result Analysis: Tables II, III, and IV summarize quan-
tization results for the image classification. Table II compares
different quantization schemes including power-of-2 (P2),
fixed-point (Fixed), sum-of-power-of-2 (SP2), and our mixed
scheme quantization (MSQ). Two partitioning ratios are tested
for MSQ, the first one being PRSP2:Fixed = 1 : 1, and the
second one being PRSP2:Fixed = 2 : 1 that is the optimal



TABLE III
COMPARISONS WITH EXISTING WORKS WITH RESNET-18 MODEL ON

IMAGENET DATASET.

Methods Bit-width Top-1 (%) Top-5 (%)(W/A)
Baseline(FP) 32/32 69.76 89.08
Dorefa [38] 4/4 68.10 88.10
PACT [39] 4/4 69.20 89.00
DSQ [40] 4/4 69.56 N/A
QIL [41] 4/4 70.10 N/A
µL2Q [42] 4/32 65.92 86.72

LQ-NETS [44] 4/4 69.30 88.80
MSQ 4/4 70.27 89.42

TABLE IV
COMPARISONS WITH EXISTING WORKS WITH MOBILENET-V2 MODEL

ON IMAGENET DATASET.

Methods Bit-width Top-1 (%) Top-5 (%)(W/A)
Baseline(FP) 32/32 71.88 90.29
PACT [39] 4/4 61.40 N/A
DSQ [40] 4/4 64.80 N/A

MSQ 4/4 65.64 86.98

ratio from FPGA characterizations. On Top-1 accuracy, MSQ
has the minimum accuracy loss for most cases.

The accuracy increase of MSQ compared to sole SP2 or
Fixed results from several aspects. First, combining SP2 and
Fixed makes the quantized DNN weights fit the original
weight distribution better. In addition, model compression
could slightly increase accuracy when weight bit-width ≥ 4, as
the quantization resolution is high enough so that the inference
results of DNNs are not affected, and quantization noise can
potentially act as regularization that benefits generalization and
addresses overfitting.

Tables III, and IV compare our MSQ with existing DNN
quantization works including Dorefa [38], PACT [39], DSQ
[40], QIL [41], µL2Q [42], and LQ-NETS [44]. Those
works and our MSQ start with the same pre-trained models
with the same baseline accuracy. Here we use the optimal
PRSP2:Fixed = 2 : 1 in MSQ. Note that this optimal ratio is
from hardware characterization, not for increasing accuracy.
Table III shows that Dorefa, PACT, DSQ, µL2Q, and LQ-
NETS have up to 3.84% accuracy degradation, only QIL
reports lossless accuracy performance. Our MSQ increases
accuracy by 0.49% compared with the floating-point model.
Table IV shows that the lightweight model MobileNet-v2 is
much harder to quantize with 4-bits (for both weight and
activation), our MSQ achieves the highest accuracy of the
quantized models.

On the even larger YOLO-v3 model for object detection,
we apply 4-bit quantization, which is equivalent to 8× com-
pression rate. We test on two image sizes i.e., 320×320 and
640×640. Our MSQ performs very well in preserving the mAP
values i.e., with negligible mAP degradation, and for the case
of 640×640 input size and mAP@0.5, MSQ can even increase
the mAP value. We notice a slightly higher mAP degradation

TABLE V
YOLO-V3 ON COCO 2014 DATASET WITH 4-BIT QUANTIZATION. (8×

COMPRESSION RATE)

Image Size Scheme mAP @0.5 : 0.95 mAP @0.5

320 Baseline(FP) 37.7 56.8
MSQ 35.8 53.9

640 Baseline(FP) 45.6 64.7
MSQ 44.1 64.8

TABLE VI
RNN ON MACHINE TRANSLATION, SPEECH RECOGNITION, AND

SENTIMENT CLASSIFICATION.

Scheme Bit Width Evaluation Metric Result(W/A)

LSTM on PTB
EQMBaseline(FP) 32/32 Perplexity 109

(PPL) lower better
EQM [63] 4/4 PPL 114

OurBaseline(FP) 32/32 PPL 110.89
Fixed 4/4 PPL 113.03
SP2 4/4 PPL 113.42

MSQ(half/half) 4/4 PPL 112.74
MSQ(optimal) 4/4 PPL 112.72

GRU on TIMIT
OurBaseline(FP) 32/32 Phoneme Error Rate 19.24%

(PER) lower better
Fixed 4/4 PER 20.14%
SP2 4/4 PER 20.09%

MSQ(half/half) 4/4 PER 19.58%
MSQ(optimal) 4/4 PER 19.53%

LSTM on IMDB
EQMBaseline(FP) 32/32 Accuracy 89.54%

EQM [63] 4/4 Accuracy 88.47%
OurBaseline(FP) 32/32 Accuracy 86.37%

Fixed 4/4 Accuracy 86.12%
SP2 4/4 Accuracy 86.02%

MSQ(half/half) 4/4 Accuracy 86.28%
MSQ(optimal) 4/4 Accuracy 86.31%

when the input size is small. This is because the smaller feature
maps are more sensitive to quantization error. There is no
existing quantization methods reporting about YOLO network
quantization. To provide an idea about the mAP degradation by
our MSQ, we can compare with the weight pruning method on
YOLO with also 8× compression rate [64], which decreases
the mAP@0.5 by ∼ 3.0 on a simpler dataset than COCO
2014. In general, at the same compression rate, and especially
when the dataset is simpler, weight pruning should have less
accuracy degradation than weight quantization. But our MSQ
can have comparable or even smaller mAP degradation. It
demonstrates our MSQ works very well on YOLO networks.

Table VI shows that our MSQ scheme outperforms the Fixed
and SP2 quantization for all the three RNN tasks. We also
compare our method with existing work EQM [63] on the PTB
and IMDB datasets. Because we do not have the same pre-
trained models as in EQM [63], we also need to report on their
pre-trained (32-bit floating-point) baseline models. On the PTB
dataset, EQM [63] increases perplexity (PPL) by 5.00 (the
lower the better), while our MSQ only increases by < 2.00.



For the IMDB dataset, EQM loses near 1% accuracy and MSQ
only loses 0.06% accuracy. Note that we have not found any
DNN quantization works investigating the TIMIT dataset, so
we could not compare with existing works on TIMIT.

V. FPGA IMPLEMENTATION: DESIGN AND OPTIMIZATION

Besides obtaining accuracy advantage, the proposed MSQ
assembling the fixed-point and SP2 quantization schemes
significantly promotes the efficiency of the FPGA deployment.
Specifically, the newly joined SP2 quantization provides two
apparent advantages in the hardware aspect: (i) the multipli-
cation arithmetic involving the SP2 quantized weights can be
implemented with simple logic shifter and adder, instead of the
conventional multiplier; and (ii) since the FPGA underlying
components include DSP and LUT, the rest LUTs can be lever-
aged for computations with SP2 weights while the DSPs are
simulatenously fully utilized for conventional multiplication.
Therefore, with the proposed MSQ as an ensemble of fixed-
point and SP2, the same device can possibly deliver higher
performance than existing designs, in which the throughput is
theoretically bounded by the DSP count.

This section addresses the hardware design challenges with
mixed number systems. Please note that the hardware ben-
efit from SP2 is orthogonal to prior research efforts (e.g.,
dataflow [65] and locality [66] optimization), and therefore
can be employed by any existing DNN accelerator.

A. FPGA Resource Characterization
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Fig. 2. Resource ratio of different FPGA devices. For each device, LUT,
FF, and BRAM numbers are all normalized with respect to DSP number.

FPGA devices provide different types of resources, i.e.,
DSP, LUT, BRAM, and FF, for computation and storage,
and the resource amount ratios vary in different FPGA de-
vices. Figure 2 presents the resource ratios of Zynq series
devices (each device name starts with “XC” that is omit-
ted for simplicity), with each bar normalized by the DSP
count on the corresponding device. The ratio of LUT to
DSP attracts our attention, since this number directly decides
the building block for multiplications with fixed-point and
SP2 quantized weights, respectively. Apparently, the ratio of
LUT/DSP in XC7Z045/XC7Z020 devices are larger than that
in XCZU4CG/XCZU5CG devices. This also occurs in FPGA

devices of other types. Specifically, since the multiplications
with fixed-point and SP2 weights consume the DSP and LUT,
respectively, the LUT/DSP ratio decides the parallel PE counts
for these two operation types. For different devices, we select
different proper ratios of PE counts for fixed-point and SP2
according to the available resource amount. Importantly, the
PE ratio is used as the desired SP2/fixed-point ratio and sent
to Algorithm 2 to obtain the properly quantized models with
the novel MSQ scheme.

B. Architecture with Heterogeneous GEMM Engines

This section provides a design based on the versatile tensor
accelerator (VTA) [67]. The hardware framework contains four
modules as shown in Figure 3(a), where the Instruction

module loads the instructions and provides control signals
to other modules. Load and Store modules control the in-
put/output activation and weight data communication between
on-chip buffers and DRAM. The Compute module executes
the workloads, with the RegFile as the scratchpad memory
for partial sum accumulation and TensorALU computing the
element-wise operations (e.g., activation). The major computa-
tion components are the general purpose matrix multiplication
(GEMM) cores. Different from VTA, there are two heteroge-
neous GEMM cores, GEMMfixed for conventional multiplications,
and GEMMsp2 for SP2 operations. Besides conventional GEMM
acceleration framework, our GEMMfixed can be naturally com-
bined with advanced GEMM acceleration frameworks with
architectural optimizations on the fixed-point operations (and
uses DSP resources on FPGA). An example is Bit-Fusion [11],
which is orthogonal and can be combined with our MSQ.
Firstly, the fixed point operations executed on DSP in our
MSQ framework can be accelerated by Bit-Fusion. Secondly,
MSQ assigns a large portion (beyond 50%) of computations in
each layer to SP2 and leverages LUTs for computation, which
are previously not fully exploited by fixed-point acceleration
techniques like Bit-Fusion. A doubling performance can be
anticipated as fixed-point and SP2 are computed in parallel
on FPGA.

The detailed workflow of two GEMM cores is illustrated in
Figure 3(b). A tiled block of input activation data with a size
of Bat × Blkin is read from the input buffer to the register
array, where Bat is the batch size and Blkin is the input
channel count of the tile that will be computed in parallel.
Note that the input activation will be broadcasted to both
GEMM cores. As Figure 3(c) displays, the GEMMfixed core is
composed of multipliers implemented with DSPs on FPGA,
while the GEMMsp2 uses LUTs to realize shift and addition for
the novel SP2 based computations. Meanwhile, two weight
buffers provide the weight values in fixed-point and SP2
formats, respectively. The partial results will be accumulated
and stored in individual register filers, and the final results
are written to individual output buffers. Because the filters
are allocated to heterogeneous GEMM cores depending on their
weight representation format, two filter index buffers are set
to instruct the Store unit to write the output data to the
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proper global addresses. Figure 3(c) gives a detailed structure
to handle fixed-point and SP2 operations in two GEMM cores.

Two design parameters Blkout,fixed and Blkout,sp2 indi-
cate the parallel PE count in each GEMM core and size of
corresponding registers array, as illustrated in Figure 3(b).
Two factors are considered in selecting Blkout,fixed and
Blkout,sp2. One is that the ratio of Blkout,fixed to Blkout,sp2
should be equivalent to that of different weight types (fixed-
point/SP2). An imbalanced ratio may result in under-utilization
of the certain GEMM core. The other is that the on-chip
resources (DSP and LUT count) should yield a particular ratio
of design parameters, i.e., a proper number facilitates fully
utilization of FPGA resources, which is the key motivation
of this work. Specifically, we develop an FPGA-centric MSQ
quantization method as mentioned in §IV-B that automatically
trains quantized DNN models to achieve a particular ratio that
meets the resource allocation on FPGA devices. Additionally,
we incorporate the processing operations after the convolution
computations into the GEMM cores, including batch normal-
ization, activation (ReLU) and pooling, as these operations
consume few resources and incur negligible latency increase
compared with convolution computations.

VI. EVALUATION

A. Experiment Setup

To demonstrate the improvement of the proposed SP2 (and
MSQ) scheme in the hardware aspect, we implemented the
architecture with heterogeneous GEMM cores on the embedded
FPGA device, in which a high efficiency is usually in demand
under resource limitation. As Table VII shows, we imple-
mented the architecture on the Zynq XC7Z020 and XC7Z045
devices with different design parameters that result in different
throughput and resource utilization results. Note that for each
device, we set up different ratios between the PE array sizes
of the GEMMfixed and GEMMsp2 cores. Specifically, we progres-
sively increase the size of GEMMsp2 core (Blkout,sp2), till the
LUT utilization reaches 70%. For example, on XC7Z020 the
desired fixed/SP2 ratio is 1:1.5 and on XC7Z045 it is 1:2. For

TABLE VII
HARDWARE IMPLEMENTATION PARAMETERS WITH DIFFERENT

DEVICES AND SETTINGS. Bat, Blkin , AND Blkout,fixed ARE SET SUCH
THAT THE DSP UTILIZATION COULD REACH MAXIMUM. Blkout,sp2 IS

INCREASED UNTIL THE LUT UTILIZATION IS HIGH ENOUGH AND
OPTIMIZED.

Impl. Device Bat Blkin
Blkout Ratio Peak Thrpt.

Fixed SP2 (fixed/SP2) (GOPS)
D1-1

XC7Z020
1 16 16 0 1:0 52.8

D1-2 1 16 16 16 1:1 106
D1-3 1 16 16 24 1:1.5 132
D2-1

XC7Z045
4 16 16 0 1:0 208

D2-2 4 16 16 16 1:1 416
D2-3 4 16 16 32 1:2 624

all implementations, the quantization bit-width for the CNN
models is fixed to 4, and the working frequency is set to
100MHz.

B. Evaluation with FPGA

1) Resource Utilization: Figure 4 presents the resource
utilization with different implementations. Apparently, with
the size increase of GEMMsp2, more on-chip LUT can be
leveraged for a better peak throughput (GOPS). As Table VII
shows, on XC7Z020 device (D1-1,2,3), the peak throughput
was improved to 2.5× (from 52.8 to 132 GOPS) with the
extra GEMMsp2 core. The maximum size of the PE array for
SP2 is 1.5× of that for fixed point. This peak throughput
improvement is 3× on XC7Z045, from 208 to 624 GOPS.
Although the ratio of available LUT/DSP is the same between
the two devices, the optimal proportion of PE count for SP2
on XC7Z020 (1.5× of fixed-point) is a smaller than that on
XC7Z045 (2× of fixed-point). This is because a portion of
LUTs is consumed by Load and Store modules to accom-
modate the GEMMsp2 core. The proposed architecture design
is general for all devices through adjusting the Blkout,sp2 to
fully utilize the LUT resource and quantizing the models with
the corresponding fixed-point/SP2 ratio.
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2) Real-world Performance and Comparison: To present
the performance with real-world applications, we employed
different CNN and RNN models with the proper SP2/fixed-
point ratios on the two devices. The networks ResNet-18
and MobileNet-v2 are implemented based on the ImageNet
dataset. The performance results of each network under vari-
ous hardware configurations are displayed in Table VIII. For
some layers in CNNs like the first convolutional layer, the
peak throughput cannot be reached since the number of input
channels is less than Blkin so that the data cannot fill all of
the PEs. Generally, for CNN models, the overall PE utilization
reaches 52.4% to 70.1%, and the heterogeneous GEMMfixed and
GEMMsp2 cores improve the throughput by 2.1 × −2.5× with
the optimal design compared to utilizing the GEMMfixed core
only. Compared with the design with only 4-bit fixed-point
(fixed4/SP2 = 1 : 0) quantization, the optimal design with
the ratio of fixed4/SP2 = 1 : 1.5 on XC7Z020 decreases
the latency per image from 100.7ms to 47.1ms (2.13×) for
ResNet-18, and the optimal design with the ratio of fixed4/SP2
= 1 : 2 on XC7Z045 decreases the latency from 25.1ms to
10.1ms (2.49×) for ResNet-18. The latency improvement is
more significant when compared with the 8-bit fixed-point
design, as the optimal design on XC7Z020 achieves latency
decrease from 181.3ms to 47.1ms (3.83×), and the optimal
design on XC7Z045 achieves latency decrease from 45.2ms
to 10.1ms (4.48×). As for RNN models, the PE utilization
is 42.9% − 59.2%, and the performance is increased by
2.4×−4.1×.

The optimal MSQ implementations of CNNs based on
ImageNet and previous designs are compared in Table IX,
from which it can be observed that our ResNet-18 imple-
mentations achieve the highest accuracy and enjoy comparable
hardware utilization efficiency represented by GOPS/DSP and
GOPS/kLUT with designs in [68], [69]. The work [70] ac-
quires higher utilization efficiency but much lower accuracy.
MobileNet-v2 has the most complicated structure among all
these networks, making it difficult to deploy on hardware
platforms, but our designs can still achieve high performance,

especially in terms of frame rate. We do not find implementa-
tions with ResNet-18 and MobileNet-v2 in other work, so we
compare it with other CNNs.

Our proposed solution is beneficial over low-precision GPU
for the following two reasons: (1) Current low-precision GPU
(Tensor-RT solution) relies on 8-bit, while we can go to 4-bit
and further assisted by SP2; (2) FPGA solution is dataflow-
based and energy-efficient in general [71]. Comparing with
a state-of-art energy-efficient GPU (NVIDIA Jetson AGX,
power consumption 10-15W) with Tensor-RT support, we use
ResNet-18 as example, measured under the same accuracy.
Our FPGA solution (XC7Z045) is slightly higher performant
(99FPS vs. 78FPS), but more than 3× higher energy efficiency
as the FPGA only consumes around 4W power.

VII. RELATED WORK

This section introduces the DNN weight quantization meth-
ods/algorithms for fixed-point and P2 quantization schemes,
and discusses DNN weight quantization on FPGA platforms.

A. DNN Quantization Methods

Zhou et al. [38] first explored the potential of fixed-point
quantization by introducing hyperbolic tangent transformation
to weights and activations, with scaling factors to minimize
quantization error. Choi et al. [39] improved this method
by adding a parameterized clipping threshold to activations.
As alternatives for solving the non-differentiable problem,
DSQ [40] developed an evolving training method to gradually
approaximate STE. QIL [41] parameterized the quantization
interval and trained it with task loss, avoiding access to the
original training data. µL2Q [42] introduced data distribution
loss during training to minimize quantization error. LQ-Net
[44] and LSQ [43] proposed a differentiable method to learn
the quantizer for each layer jointly with parameters. Miyashita
et al. [45] replaced fixed-point quantizer with logarithmic
representation to exploit bit shift operations to accelerate
inference. INQ [46] splits weights into groups and iteratively
quantize the model to low bit-width. Leng et al. [47] em-
ployed ADMM training technique to increase the accuracy of
extremely low bit-width DNNs.

In addition to these quantization methods for inference
acceleration, Zhu et al. [72] proposed a low-bit training frame-
work for the training acceleration. They used the direction
sensitive gradient clipping and the deviation counteractive
learning rate scaling to ensure a unified 8-bit (INT8) training
with minor accuracy degradation.

B. Weight Quantization in FPGA Implementations

Weight quantization has been widely applied to DNN
implementations on FPGAs [73]. Some work studies fixed-
point quantization. The work [68] utilizes greedy solution
to determine the radix position of each layer for quantiza-
tion. [70] investigates a hybrid quantization scheme that allows
different bit-widths for weights, providing more flexibility. For
Binarized Neural Networks (BNNs), multiplications can be
executed with XNOR gates [74]–[76]. A fully binarized neural



TABLE VIII
PERFORMANCE OF VARIOUS DNN APPLICATIONS ON HARDWARE UNDER DIFFERENT SETTINGS.

Device Ratio
(fixed/SP2)

Utilization Throughput (GOPS)

LUT DSP BRAM36 FF ResNet-18 MobileNet-v2 YOLO-v3 LSTM GRU LSTM
on ImageNet on ImageNet on COCO on PTB on TIMIT on IMDB

XC7Z020
1:0 12160 220 39 9403 36.0 33.0 36.6 26.1 22.6 25.0
1:1 22912 220 49 14523 74.4 65.7 74.1 52.9 49.2 58.7

1:1.5 (opt.) 28288 220 56 17083 77.0 71.8 84.0 77.2 77.2 59.7

XC7Z045
1:0 41830 900 160 31293 144.7 129.6 143.6 91.3 89.6 108.0
1:1 93440 900 194 65699 285.5 258.1 283.7 183.2 212.5 217.2

1:2 (opt.) 145049 900 225.5 111575 359.2 326.9 390.0 318.2 369.2 340.7

TABLE IX
COMPARISONS OF CNNS ON IMAGENET WITH PREVIOUS IMPLEMENTATIONS.

Implementation VGG AlexNet DiracDeltaNet ResNet-18 MobileNet-v2
[68] [70] [69] (Our opt.) (Our opt.)

Device XC7Z045 XC7Z045 XC7Z020 XC7Z045 XCZU3EG XC7Z020 XC7Z045 XC7Z020 XC7Z045
Bit-width (W/A) 16/16 8/8 8/8 8/8 1/4 4/4 4/4
Top-1 Accuracy 67.84% 67.72% 67.62% 54.6% 68.5% 70.27% 65.64%

Frequency (MHz) 150 150 214 200 250 100 100
LUT 182616 139385 29867 86262 24130 28288 145049 28288 145049
DSP 780 900 190 808 37 220 900 220 900

BRAM36 486 390.5 85.5 303 170 56 225.5 56 225.5
Throughput (GOPS) 187.8 292 84.3 493 47.09 77.0 359.2 71.8 326.9
Frame Rate (FPS) 6.06 9.42 2.72 340 96.5 21.3 99.1 120.7 549.3

GOPS/DSP 0.241 0.324 0.444 0.610 1.273 0.350 0.391 0.326 0.363
GOPS/kLUT 1.029 2.096 2.825 5.747 1.953 2.725 2.475 2.538 2.252

network accelerator is implemented in [76] through utilizing
odd-even padding to replace the zero padding values. Another
scheme called logarithmic quantization using power of 2 is
explored in [77]. In addition, weight quantization could be
employed with a two-stage arithmetic unit for low bit-width
CNNs [78], a fast matrix and Winograd algorithm [79], a
novel CNN architecture for software-hardware codesign [69],
a design flow of DNN implementations for more flexible
quantization schemes [80], and an OpenCL-based framework
Deep Learning Accelerator (DLA) to accomodate designs with
different bit-widths [81]. In addition, dynamic quantization
with bit fusion in [11] improves the bit-level flexibility by
matching various bit-widths for different DNN layers.

VIII. CONCLUSION

This paper investigates efficient DNN inference engine
on FPGA devices through DNN quantization, and proposes
the first solution that applies different quantization schemes
for different rows of the weight matrix. We propose a
hardware-friendly quantization scheme named SP2 suitable for
Gaussian-like weight distribution, in which the multiplication
arithmetic can be replaced with logic shifter and adder, thereby
enabling highly efficient implementations with the FPGA LUT
resources. In contrast, the fixed-point quantization is suitable
for Uniform-like weight distribution and can be implemented
efficiently by DSP. To fully explore the FPGA resources, intra-
layer, multi-scheme quantization framework with an ensemble
of the SP2 and fixed-point schemes. We evaluate our FPGA-
centric quantization framework across multiple application
domains with various DNNs such as convolutional neural

networks (CNN) and recurrent neural networks (RNN). With
optimal SP2/fixed-point ratios on two FPGA devices, i.e.,
Zynq XC7Z020 and XC7Z045, we achieve performance im-
provement of 2.1×−4.1× compared to solely exploiting DSPs
for all multiplication operations.

ACKNOWLEDGMENT

This work is partly supported by the National Science Foun-
dation CCF-1901378, CCF-1919117, CCF-1919289, CNS-
1909172 and DARPA-HR00112090055.

REFERENCES

[1] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence (AAAI), 2017.

[2] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR),
2017, pp. 2117–2125.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups,” IEEE Signal processing
magazine, vol. 29, no. 6, pp. 82–97, 2012.

[4] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke, “The
microsoft 2017 conversational speech recognition system,” in 2018 IEEE
international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2018, pp. 5934–5938.

[5] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning (ICML),
2008, pp. 160–167.

[6] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez,
“A survey on deep learning in medical image analysis,” Medical image
analysis, vol. 42, pp. 60–88, 2017.



[7] J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev,
S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, P. A.
Keane, and O. Ronneberger, “Clinically applicable deep learning for
diagnosis and referral in retinal disease,” Nature medicine, vol. 24, no. 9,
pp. 1342–1350, 2018.

[8] H. Mao, M. Song, T. Li, Y. Dai, and J. Shu, “Lergan: A zero-free, low
data movement and pim-based gan architecture,” in Proceedings of the
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 669–681.

[9] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and
B. Yuan, “Sc-dcnn: Highly-scalable deep convolutional neural network
using stochastic computing,” Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), vol. 51, no. 2, pp. 405–418, 2017.

[10] R. Cai, A. Ren, N. Liu, C. Ding, L. Wang, X. Qian, M. Pedram, and
Y. Wang, “Vibnn: Hardware acceleration of bayesian neural networks,”
in Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
ACM, 2018, pp. 476–488.

[11] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural networks,” in Proceedings of the 45th
Annual International Symposium on Computer Architecture (ISCA).
IEEE Press, 2018, pp. 764–775.

[12] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, “Tie: energy-
efficient tensor train-based inference engine for deep neural network,” in
Proceedings of the 46th Annual International Symposium on Computer
Architecture (ISCA), 2019, pp. 264–278.

[13] R. Cai, A. Ren, O. Chen, N. Liu, C. Ding, X. Qian, J. Han, W. Luo,
N. Yoshikawa, and Y. Wang, “A stochastic-computing based deep
learning framework using adiabatic quantum-flux-parametron supercon-
ducting technology,” in Proceedings of the 46th Annual International
Symposium on Computer Architecture (ISCA), 2019, pp. 567–578.

[14] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang,
“Admm-nn: An algorithm-hardware co-design framework of dnns using
alternating direction methods of multipliers,” in Proceedings of the 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019, pp. 925–938.

[15] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA). ACM, 2015, pp. 161–170.

[16] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional neural
networks with software-programmable fpgas,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA). ACM, 2017, pp. 15–24.

[17] Z. Chen, A. Howe, H. T. Blair, and J. Cong, “Fpga-based lstm ac-
celeration for real-time eeg signal processing,” in Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA). ACM, 2018, pp. 288–288.

[18] R. Shi, Y. Ding, X. Wei, H. Liu, H. So, and C. Ding, “Ftdl: An
fpga-tailored architecture for deep learning systems,” in The 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), 2020, pp. 320–320.

[19] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
“Patdnn: Achieving real-time dnn execution on mobile devices with
pattern-based weight pruning,” in Proceedings of the 25th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020, pp. 907–922.

[20] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: An
automated end-to-end optimizing compiler for deep learning,” in 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 2018, pp. 578–594.

[21] https://github.com/alibaba/MNN.
[22] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch,” 2017.
[23] https://www.tensorflow.org/mobile/tflite/.
[24] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking

the value of network pruning,” International Conference on Learning
Representations (ICLR), 2019.

[25] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems (NeurIPS), 2016, pp. 2074–2082.

[26] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient
dnns,” in Advances in neural information processing systems (NeurIPS),
2016, pp. 1379–1387.

[27] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang,
and J. Zhu, “Discrimination-aware channel pruning for deep neural
networks,” in Advances in Neural Information Processing Systems
(NeurIPS), 2018, pp. 875–886.

[28] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 9194–9203.

[29] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via
geometric median for deep convolutional neural networks acceleration,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 4340–4349.

[30] X. Dong and Y. Yang, “Network pruning via transformable architec-
ture search,” in Advances in Neural Information Processing Systems
(NeurIPS), 2019, pp. 759–770.

[31] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems (NeurIPS), 2015,
pp. 3123–3131.

[32] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[33] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision (ECCV). Springer, 2016, pp.
525–542.

[34] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional
neural network,” in Advances in Neural Information Processing Systems
(NeurIPS), 2017, pp. 345–353.

[35] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[36] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
in International Conference on Learning Representations (ICLR), 2017.

[37] Z. He and D. Fan, “Simultaneously optimizing weight and quantizer
of ternary neural network using truncated gaussian approximation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 11 438–11 446.

[38] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[39] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “Pact: Parameterized clipping activation for
quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[40] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan,
“Differentiable soft quantization: Bridging full-precision and low-bit
neural networks,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2019, pp. 4852–4861.

[41] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang,
and C. Choi, “Learning to quantize deep networks by optimizing
quantization intervals with task loss,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 4350–4359.

[42] G. Cheng, L. Ye, L. Tao, Z. Xiaofan, H. Cong, C. Deming, and
C. Yao, “µl2q: An ultra-low loss quantization method for dnn,” The 2019
International Joint Conference on Neural Networks (IJCNN), 2019.

[43] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S.
Modha, “Learned step size quantization,” International Conference on
Learning Representations (ICLR), 2019.

[44] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization
for highly accurate and compact deep neural networks,” in Proceedings
of the European conference on computer vision (ECCV), 2018, pp. 365–
382.

[45] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” arXiv preprint
arXiv:1603.01025, 2016.

[46] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” in
International Conference on Learning Representations (ICLR), 2017.



[47] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural
network: Squeeze the last bit out with admm,” in Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI), 2018.

[48] C. Baskin, E. Schwartz, E. Zheltonozhskii, N. Liss, R. Giryes,
A. M. Bronstein, and A. Mendelson, “Uniq: Uniform noise injec-
tion for non-uniform quantization of neural networks,” arXiv preprint
arXiv:1804.10969, 2018.

[49] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning (ICML),
2015, pp. 1613–1622.
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