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Abstract

A normalizing flow is an invertible mapping between an ar-
bitrary probability distribution and a standard normal distri-
bution; it can be used for density estimation and statistical
inference. Computing the flow follows the change of variables
formula and thus requires invertibility of the mapping and an
efficient way to compute the determinant of its Jacobian. To
satisfy these requirements, normalizing flows typically con-
sist of carefully chosen components. Continuous normalizing
flows (CNFs) are mappings obtained by solving a neural ordi-
nary differential equation (ODE). The neural ODE’s dynamics
can be chosen almost arbitrarily while ensuring invertibility.
Moreover, the log-determinant of the flow’s Jacobian can be
obtained by integrating the trace of the dynamics’ Jacobian
along the flow. Our proposed OT-Flow approach tackles two
critical computational challenges that limit a more widespread
use of CNFs. First, OT-Flow leverages optimal transport (OT)
theory to regularize the CNF and enforce straight trajectories
that are easier to integrate. Second, OT-Flow features exact
trace computation with time complexity equal to trace estima-
tors used in existing CNFs. On five high-dimensional density
estimation and generative modeling tasks, OT-Flow performs
competitively to state-of-the-art CNFs while on average requir-
ing one-fourth of the number of weights with an 8x speedup
in training time and 24x speedup in inference.

1 Introduction
A normalizing flow (Rezende and Mohamed 2015) is an
invertible mapping f : Rd → Rd between an arbitrary proba-
bility distribution and a standard normal distribution whose
densities we denote by ρ0 and ρ1, respectively. By the change
of variables formula, for all x ∈ Rd, the flow must sat-
isfy (Rezende and Mohamed 2015; Papamakarios et al. 2019)

log ρ0(x) = log ρ1(f(x)) + log | det∇f(x) | . (1)

Given ρ0, a normalizing flow is constructed by composing
invertible layers to form a neural network and training their
weights. Since computing the log-determinant in general
requires O(d3) floating point operations (FLOPS), effective
normalizing flows consist of layers whose Jacobians have
exploitable structure (e.g., diagonal, triangular, low-rank).
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Figure 1: Two flows with approximately equal loss (modifi-
cation of Fig. 1 in Grathwohl et al. 2019; Finlay et al. 2020).
While OT-Flow enforces straight trajectories, a generic CNF
can have curved trajectories.

Alternatively, in continuous normalizing flows (CNFs), f
is obtained by solving the neural ordinary differential equa-
tion (ODE) (Chen et al. 2018b; Grathwohl et al. 2019)
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for artificial time t ∈ [0, T ] and x ∈ Rd. The first component
maps a pointx to f(x) = z(x, T ) by following the trajectory
z : Rd × [0, T ] → Rd (Fig. 1). This mapping is invertible
and orientation-preserving under mild assumptions on the
dynamics v : Rd× [0, T ]→ Rd. The final state of the second
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Figure 2: Performance comparison of trace computation using exact approach presented in Sec. 3 and Hutchinson’s trace
estimator using automatic differentiation. (a-c): runtimes (in seconds) over dimensions 43, 63, and 784, corresponding to the
MINIBOONE, BSDS300, and MNIST data sets, respectively. (d): relative errors vs. number of Hutchinson vectors for different
dimensions. We present means with shaded 99% error bounds computed from twenty runs via bootstrapping (App. C).

component satisfies `(x, T ) = log det∇f(x), which can be
derived from the instantaneous change of variables formula
as in Chen et al. (2018b). Replacing the log determinant with
a trace reduces the FLOPS to O(d2) for exact computation
or O(d) for an unbiased but noisy estimate (Zhang, E, and
Wang 2018; Grathwohl et al. 2019; Finlay et al. 2020).

To train the dynamics, CNFs minimize the expected
negative log-likelihood given by the right-hand-side
in (1) (Rezende and Mohamed 2015; Papamakarios,
Pavlakou, and Murray 2017; Papamakarios et al. 2019; Grath-
wohl et al. 2019) via

min
θ

Eρ0(x) {C(x, T )} , for

C(x, T ) :=
1

2
‖z(x, T )‖2 − `(x, T ) +

d

2
log(2π),

(3)

where for a given θ, the trajectory z satisfies the neural
ODE (2). We note that the optimization problem (3) is equiv-
alent to minimizing the Kullback-Leibler (KL) divergence
between ρ1 and the transformation of ρ0 given by f (deriva-
tion in App. A or Papamakarios et al. 2019).

CNFs are promising but come at considerably high costs.
They perform well in density estimation (Chen et al. 2018a;
Grathwohl et al. 2019; Papamakarios et al. 2019) and in-
ference (Ingraham et al. 2019; Papamakarios et al. 2019),
especially in physics and computational chemistry (Noé et al.
2019; Brehmer et al. 2020). CNFs are computationally ex-
pensive for two predominant reasons. First, even using state-
of-the-art ODE solvers, the computation of (2) can require
a substantial number of evaluations of v; this occurs, e.g.,
when the neural network parameters lead to a stiff ODE or
dynamics that change quickly in time (Ascher 2008). Second,
computing the trace term in (2) without building the Jaco-
bian matrix is challenging. Using automatic differentiation
(AD) to build the Jacobian requires separate vector-Jacobian
products for all d standard basis vectors, which amounts to
O(d2) FLOPS. Trace estimates, used in many CNFs (Zhang,
E, and Wang 2018; Grathwohl et al. 2019; Finlay et al. 2020),
reduce these costs but introduce additional noise (Fig. 2). Our
approach, OT-Flow, addresses these two challenges.

Modeling Contribution Since many flows exactly match
two densities while achieving equal loss C (Fig. 1), we can

choose a flow that reduces the number of time steps required
to solve (2). To this end, we phrase the CNF as an optimal
transport (OT) problem by adding a transport cost to (3).
From this reformulation, we exploit the existence of a poten-
tial function whose derivative defines the dynamics v. This
potential satisfies the Hamilton-Jacobi-Bellman (HJB) equa-
tion, which arises from the optimality conditions of the OT
problem. By including an additional cost, which penalizes
deviations from the HJB equations, we further reduce the
number of necessary time steps to solve (2) (Sec. 2). Ulti-
mately, encoding the underlying regularity of OT into the
network absolves it from learning unwanted dynamics, sub-
stantially reducing the number of parameters required to train
the CNF.

Numerical Contribution To train the flow with reduced
time steps, we opt for the discretize-then-optimize approach
and use AD for the backpropagation (Sec. 3). Moreover, we
analytically derive formulas to efficiently compute the exact
trace of the Jacobian in (2). We compute the exact Jacobian
trace with O(d) FLOPS, matching the time complexity of
estimating the trace with one Hutchinson vector as used in
state-of-the-art CNFs (Grathwohl et al. 2019; Finlay et al.
2020). We demonstrate the competitive runtimes of the trace
computation on several high-dimensional examples (Fig. 2).
Ultimately, our PyTorch implementation1 of OT-Flow pro-
duces results of similar quality to state-of-the-art CNFs at 8x
training and 24x inference speedups on average (Sec. 5).

2 Mathematical Formulation of OT-Flow
Motivated by the similarities between training CNFs and
solving OT problems (Benamou and Brenier 2000; Peyré and
Cuturi 2019), we regularize the minimization problem (3)
as follows. First, we formulate the CNF problem as an OT
problem by adding a transport cost. Second, from OT theory,
we leverage the fact that the optimal dynamics v are the
negative gradient of a potential function Φ, which satisfies the
HJB equations. Finally, we add an extra term to the learning
problem that penalizes violations of the HJB equations. This
reformulation encourages straight trajectories (Fig. 1).

1Code is available at https://github.com/EmoryMLIP/OT-Flow .
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Figure 3: The exact trace computation in OT-Flow leads to faster decay of validation loss and lower training loss variance
compared to an identical model using a randomized trace estimator (also used in FFJORD and RNODE) for two data sets.

Transport Cost We add the L2 transport cost

L(x, T ) =

∫ T

0

1

2
‖v
(
z(x, t), t

)
‖2 dt, (4)

to the objective in (3), which results in the regularized prob-
lem

min
θ

Eρ0(x)

{
C(x, T ) + L(x, T )

}
s.t. (2). (5)

This transport cost penalizes the squared arc-length of the
trajectories. In practice, this integral can be computed in the
ODE solver, similar to the trace accumulation in (2). The OT
problem (5) is the relaxed Benamou-Brenier formulation, i.e.,
the final time constraint is given here as the soft constraint
C(x, T ). This formulation has mathematical properties that
we exploit to reduce computational costs (Evans 1997; Villani
2008; Lin, Lensink, and Haber 2019; Finlay et al. 2020). In
particular, (5) is now equivalent to a convex optimization
problem (prior to the neural network parameterization), and
the trajectories matching the two densities ρ0 and ρ1 are
straight and non-intersecting (Gangbo and McCann 1996).
This reduces the number of time steps required to solve (2).
The OT formulation also guarantees a solution flow that is
smooth, invertible, and orientation-preserving (Ambrosio,
Gigli, and Savaré 2008).

Potential Model We further capitalize on OT theory by in-
corporating additional structure to guide our modeling. In par-
ticular, from the Pontryagin Maximum Principle (Evans 2013,
2010), there exists a potential function Φ: Rd × [0, T ]→ R
such that

v(x, t;θ) = −∇Φ(x, t;θ). (6)

Analogous to classical physics, samples move in a manner to
minimize their potential. In practice, we parameterize Φ with
a neural network instead of v. Moreover, optimal control
theory states that Φ satisfies the HJB equations (Evans 2013)

−∂tΦ(x, t) +
1

2
‖∇Φ(z(x, t), t)‖2 = 0

Φ(x, T ) = 1 + log
(
ρ0(x)

)
− log

(
ρ1(z(x, T ))

)
− `(z(x, T ), T ).

(7)

We derive the terminal condition in App. B. The existence of
this potential allows us to reformulate the CNF in terms of Φ
instead of v and add an additional regularization term which
penalizes the violations of (7) along the trajectories by

R(x, T ) =

∫ T

0

∣∣∣∣∂tΦ(z(x, t), t
)
− 1

2
‖∇Φ

(
z(x, t), t

)
‖2
∣∣∣∣ dt.

(8)
This HJB regularizer R(x, T ) favors plausible Φ without
affecting the solution of the optimization problem (5).

With implementation similar to L(x, T ), the HJB regular-
izer R requires little computation, but drastically simplifies
the cost of solving (2) in practice. We assess the effect of
training a toy Gaussian mixture problem with and without
the HJB regularizer (Fig. A1 in Appendix). For this demon-
stration, we train a few models using varied number of time
steps and regularizations. For unregularized models with
few time steps, we find that the L2 cost is not penalized at
enough points. Therefore, without an HJB regularizer, the
model achieves poor performance and unstraight character-
istics (Fig. A1). This issue can be remedied by adding more
time steps or the HJB regularizer (see examples in Yang
and Karniadakis 2020; Ruthotto et al. 2020; Lin et al. 2020).
Whereas additional time steps add significant computational
cost and memory, the HJB regularizer is inexpensive as we
already compute∇Φ for the flow.

OT-Flow Problem In summary, the regularized problem
solved in OT-Flow is

min
θ

Eρ0(x)

{
C(x, T ) + L(x, T ) +R(x, T )

}
,

subject to (2),
(9)

combining aspects from Zhang, E, and Wang (2018), Grath-
wohl et al. (2019), Yang and Karniadakis (2020), and Finlay
et al. (2020) (Tab. 1). The L2 and HJB terms add regularity
and are accumulated along the trajectories. As such, they
make use of the ODE solver and computed∇Φ (App. D).

3 Implementation of OT-Flow
We define our model, derive analytic formulas for fast and ex-
act trace computation, and describe our efficient ODE solver.



Model
Formulation Training Implementation Inference

ODEs (2) Φ L R ‖∇v‖2F ODE Solver Approach Trace Trace

FFJORD 3 7 7 7 7 Runge-Kutta (4)5 OTD Hutch w/ Rad exact w/ AD loop
RNODE 3 7 3 7 3 Runge-Kutta 4 OTD Hutch w/ Rad exact w/ AD loop
Monge-Ampère 3 3 7 7 7 Runge-Kutta 4 DTO Hutch w/ Gauss
Potential Flow 3 3 7 3 7 Runge-Kutta 1 DTO exact w/ AD loop
OT-Flow 3 3 3 3 7 Runge-Kutta 4 DTO efficient exact (Sec. 3)

Table 1: All methods share the underlying neural ODEs but differ in use of a potential Φ, regularizers (L, R, ‖∇v‖2F ), ODE
solver, approach (discretize-then-optimize DTO or optimize-then-discretize OTD), and trace computation (exact using automatic
differentiation AD, Hutchinson’s estimator with a single vector sampled from a Rademacher or Gaussian distribution).

Network We parameterize the potential as

Φ(s;θ) =w>N(s;θN ) +
1

2
s>(A>A)s+ b>s+ c,

where θ = (w,θN ,A, b, c).
(10)

Here, s = (x, t) ∈ Rd+1 are the input features correspond-
ing to space-time, N(s;θN ) : Rd+1 → Rm is a neural net-
work chosen to be a residual neural network (ResNet) (He
et al. 2016) in our experiments, and θ consists of all the
trainable weights: w ∈ Rm, θN ∈ Rp, A ∈ Rr×(d+1),
b ∈ Rd+1, c ∈ R. We set a rank r = min(10, d) to limit the
number of parameters of the symmetric matrixA>A. Here,
A, b, and c model quadratic potentials, i.e., linear dynam-
ics; N models the nonlinear dynamics. This formulation was
found to be effective in Ruthotto et al. (2020).

ResNet Our experiments use a simple two-layer ResNet.
When tuning the number of layers as a hyperparameter, we
found that wide networks promoted expressibility but deep
networks offered no noticeable improvement. For simplicity,
we present the two-layer derivation (for the derivation of a
ResNet of any depth, see App. E or Ruthotto et al. 2020).
The two-layer ResNet uses an opening layer to convert the
Rd+1 inputs to the Rm space, then one layer operating on
the features in hidden space Rm

u0 = σ(K0s+ b0)

N(s;θN ) = u1 = u0 + hσ(K1u0 + b1).
(11)

We use step-size h=1, dense matrices K0 ∈ Rm×(d+1)

and K1 ∈ Rm×m, and biases b0, b1 ∈ Rm. We select
the element-wise activation function σ(x) = log(exp(x) +
exp(−x)), which is the antiderivative of the hyperbolic tan-
gent, i.e., σ′(x) = tanh(x). Therefore, hyperbolic tangent
is the activation function of the flow∇Φ.

Gradient Computation The gradient of the potential is

∇sΦ(s;θ) = ∇sN(s;θN )w + (A>A)s+ b, (12)

where we simply take the first d components of ∇sΦ to
obtain the space derivative ∇Φ. The first term is computed

using chain rule (backpropagation)

z1 = w + hK>1 diag(σ′(K1u0 + b1))w,

z0 = K>0 diag(σ′(K0s+ b0))z1, where
∇sN(s;θN )w = z0.

(13)

Here, diag(q) ∈ Rm×m denotes a diagonal matrix with diag-
onal elements given by q ∈ Rm. Multiplication by diagonal
matrix is implemented as an element-wise product.

Trace Computation We compute the trace of the Hessian
of the potential model. We first note that

tr
(
∇2Φ(s;θ)

)
= tr

(
E>∇2

s

(
N(s;θN )w

)
E
)

+ tr
(
E>(A>A)E

)
,

(14)

where the columns of E ∈ R(d+1)×d are the first d standard
basis vectors in Rd+1. All matrix multiplications with E can
be implemented as constant-time indexing operations. The
trace of the A>A term is trivial. We compute the ResNet
term via

tr
(
E>∇2

s(N(s;θN )w)E
)

= t0 + h t1, where

t0 =
(
σ′′(K0s+ b0)� z1

)>(
(K0E)� (K0E)

)
1,

t1 =
(
σ′′(K1u0 + b1)�w

)>(
(K1J)� (K1J)

)
1,
(15)

where � is the element-wise product of equally sized vectors
or matrices, 1 ∈ Rd is a vector of all ones, and J = ∇su>0 =

K>0 σ
′(K0 s+ b0). For deeper ResNets, the Jacobian term

J = ∇su>i−1 ∈ Rm×(d+1) can be updated and over-written
at a computational cost of O(m2 · d) FLOPS (App. E).

The trace computation of the first layer uses O(m · d)
FLOPS, and each additional layer uses O(m2 · d) FLOPS
(App. E). Thus, our exact trace computation has similar com-
putational complexity as FFJORD’s and RNODE’s trace es-
timation. In clocktime, the analytic exact trace computation
is competitive with the Hutchinson’s estimator using AD,
while introducing no estimation error (Fig. 2). Our efficiency
in trace computation (15) stems from exploiting the identity
structure of matrix E and not building the full Hessian.
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Figure 4: Density estimation on 2-D toy problems. Top: samples from the unknown distribution. Middle: density estimate for
unknown ρ0 computed by inverse flowing from ρ1 via (2). Bottom: samples generated by inverse flow where y ∼ ρ1(y).

We find that using the exact trace instead of a trace esti-
mator improves convergence (Fig. 3). Specifically, we train
an OT-Flow model and a replicate model in which we only
change the trace computation, i.e., we replace the exact trace
computation with Hutchinson’s estimator using a single ran-
dom vector. The model using the exact trace (OT-Flow) con-
verges more quickly and to a lower validation loss, while its
training loss has less variance (Fig. 3).

Using Hutchinson’s estimator without sufficiently many
time steps fails to converge (Onken and Ruthotto 2020) be-
cause such an approach poorly approximates the time integra-
tion and the trace in the second component of (2). Whereas
FFJORD and RNODE estimate the trace but solve the time
integral well, OT-Flow trains with the exact trace and notably
fewer time steps (Tab. 2). At inference, all three solve the
trace and integration well.

ODE Solver For the forward propagation, we use Runge-
Kutta 4 with equidistant time steps to solve (2) as well as
the time integrals (4) and (8). The number of time steps is
a hyperparameter. For validation and testing, we use more
time steps than for training, which allows for higher preci-
sion and a check that our discrete OT-Flow still approximates
the continuous object. A large number of training time steps
prevents overfitting to a particular discretization of the con-
tinuous solution and lowers inverse error; too few time steps
results in high inverse error but low computational cost. We
tune the number of training time steps so that validation and
training loss are similar with low computational cost.

For the backpropagation, we use AD. This technique cor-
responds to the discretize-then-optimize (DTO) approach,
an effective method for ODE-constrained optimization prob-
lems (Collis and Heinkenschloss 2002; Abraham, Behr, and
Heinkenschloss 2004; Becker and Vexler 2007; Leugering
et al. 2014). In particular, DTO is efficient for solving neu-
ral ODEs (Li et al. 2017; Gholaminejad, Keutzer, and Biros

2019; Onken and Ruthotto 2020). Our implementation ex-
ploits the benefits of our proposed exact trace computation
combined with the efficiency of DTO.

4 Related Works
Finite Flows Normalizing flows (Tabak and Turner 2013;
Rezende and Mohamed 2015; Papamakarios et al. 2019;
Kobyzev, Prince, and Brubaker 2020) use a composition
of discrete transformations, where specific architectures are
chosen to allow for efficient inverse and Jacobian determinant
computations. NICE (Dinh, Krueger, and Bengio 2015), Real-
NVP (Dinh, Sohl-Dickstein, and Bengio 2017), IAF (Kingma
et al. 2016), and MAF (Papamakarios, Pavlakou, and Murray
2017) use either autoregressive or coupling flows where the
Jacobian is triangular, so the Jacobian determinant can be
tractably computed. GLOW (Kingma and Dhariwal 2018) ex-
pands upon RealNVP by introducing an additional invertible
convolution step. These flows are based on either coupling
layers or autoregressive transformations, whose tractable in-
vertibility allows for density evaluation and generative sam-
pling. Neural Spline Flows (Durkan et al. 2019) use splines
instead of the coupling layers used in GLOW and RealNVP.
Using monotonic neural networks, NAF (Huang et al. 2018)
require positivity of the weights. UMNN (Wehenkel and
Louppe 2019) circumvent this requirement by parameteriz-
ing the Jacobian and then integrating numerically.

Infinitesimal Flows Modeling flows with differential equa-
tions is a natural and common concept (Suykens, Verrelst,
and Vandewalle 1998; Welling and Teh 2011; Neal 2011; Sali-
mans, Kingma, and Welling 2015). In particular, CNFs (Chen
et al. 2018a,b; Grathwohl et al. 2019) model their flow via (2).

To alleviate the expensive training costs of CNFs,
FFJORD (Grathwohl et al. 2019) sacrifices the exact but
slow trace computation in (2) for a Hutchinson’s trace es-
timator with complexity O(d) (Hutchinson 1990). This es-



Data Set Model # Param
Training Testing

Time (h) # Iter Time
Iter (s) NFE Time (s) Inv Err MMD C

POWER
d = 6

OT-Flow 18K 3.1 22K 0.56 40 10.6 4.10e-6 4.68e-5 -0.30
RNODE 43K 25.0 32K 2.78 200 88.2 5.95e-6 5.64e-5 -0.39
FFJORD 43K 68.9 29K 8.63 583 72.4 7.60e-6 4.34e-5 -0.37

GAS
d = 8

OT-Flow 127K 6.1 52K 0.42 40 30.9 1.79e-4 2.47e-4 -9.20
RNODE 279K 36.3 59K 2.23 200 763.7 2.53e-5 8.03e-5 -11.10
FFJORD 279K 75.4 49K 5.54 475 892.4 1.78e-5 1.02e-4 -10.69

HEPMASS
d = 21

OT-Flow 72K 5.2 35K 0.53 48 47.9 2.98e-6 1.58e-5 17.32
RNODE 547K 46.5 40K 4.16 400 446.7 1.91e-5 1.58e-5 16.37
FFJORD 547K 99.4 47K 7.56 770 450.4 2.98e-5 1.58e-5 16.13

MINIBOONE
d = 43

OT-Flow 78K 0.8 7K 0.44 24 0.8 5.65e-6 2.84e-4 10.55
RNODE 821K 1.4 15K 0.33 16 33.0 4.42e-6 2.84e-4 10.65
FFJORD 821K 9.0 16K 2.01 115 31.5 4.80e-6 2.84e-4 10.57

BSDS300
d = 63

OT-Flow 297K 7.1 37K 0.70 56 432.7 5.54e-5 4.24e-4 -154.20
RNODE 6.7M 106.6 16K 23.4 200 15253.3 2.66e-6 1.64e-2 -129.75
FFJORD 6.7M 166.1 18K 33.6 345 20061.2 3.41e-6 6.52e-3 -133.94

Table 2: Density estimation on real data sets. We present the number of training iterations, the number of function evaluations for
the forward ODE solve (NFE), and the time per iteration. For BSDS300 training, FFJORD and RNODE were terminated when
validation loss C hit -140. All values are the average across three runs on a single NVIDIA TITAN X GPU with 12GB RAM.
We present the standard deviations computed from the three runs in Tab. A3 located in the Appendix.

timator helps FFJORD achieve training tractability by re-
ducing the trace cost from O(d2) to O(d) per time step.
However, during inference, FFJORD has O(d2) trace com-
putation cost since accurate CNF inference requires the exact
trace (Sec. 1,Tab. 1). FFJORD also uses the optimize-then-
discretize (OTD) approach and an adjoint-based backprop-
agation where the intermediate gradients are recomputed.
In contrast, our exact trace computation is competitive with
FFJORD’s trace approach during training and faster during
inference (Fig. 2). OT-Flow’s use of DTO has been shown
to converge quicker when training neural ODEs due to ac-
curate gradient computation, storing intermediate gradients,
and fewer time steps (Li et al. 2017; Gholaminejad, Keutzer,
and Biros 2019; Onken and Ruthotto 2020) (Sec 3).

Flows Influenced by Optimal Transport To encourage
straight trajectories, RNODE (Finlay et al. 2020) regular-
izes FFJORD with a transport cost L(x, T ). RNODE also
includes the Frobenius norm of the Jacobian ‖∇v‖2F to sta-
bilize training. They estimate the trace and the Frobenius
norm using a stochastic estimator and report 2.8x speedup.
Numerically, RNODE, FFJORD, and OT-Flow differ. Specifi-
cally, OT-Flow’s exact trace allows for stable training without
‖∇v‖2F (Fig. 3). In formulation, OT-Flow shares the L2 cost
with RNODE but follows a potential flow approach (Tab. 1).

Monge-Ampère Flows (Zhang, E, and Wang 2018) and
Potential Flow Generators (Yang and Karniadakis 2020) sim-
ilarly draw from OT theory but parameterize a potential func-
tion (Tab. 1). However, OT-Flow’s numerics differ substan-
tially due to our scalable exact trace computation (Tab. 1). OT
is also used in other generative models (Sanjabi et al. 2018;

Salimans et al. 2018; Lei et al. 2019; Lin, Lensink, and Haber
2019; Avraham, Zuo, and Drummond 2019; Tanaka 2019).

5 Numerical Experiments
We perform density estimation on seven two-dimensional toy
problems and five high-dimensional problems from real data
sets. We also show OT-Flow’s generative abilities on MNIST.

Metrics In density estimation, the goal is to approximate
ρ0 using observed samples X = {xi}Ni=1, where xi are
drawn from the distribution ρ0. In real applications, we lack
a ground-truth ρ0, rendering proper evaluation of the density
itself untenable. However, we can follow evaluation tech-
niques applied to generative models. Drawing random points
{yi}Mi=1 from ρ1, we invert the flow to generate synthetic
samples Q = {qi}Mi=1, where qi = f−1(yi). We compare
the known samples to the generated samples via maximum
mean discrepancy (MMD) (Gretton et al. 2012; Li, Swersky,
and Zemel 2015; Theis, van den Oord, and Bethge 2016;
Peyré and Cuturi 2019)

MMD(X,Q) =
1

N2

N∑
i=1

N∑
j=1

k(xi,xj)

+
1

M2

M∑
i=1

M∑
j=1

k(qi, qj)−
2

NM

N∑
i=1

M∑
j=1

k(xi, qj),

(16)

for Gaussian kernel k(xi, qj) = exp(− 1
2‖xi−qj‖

2). MMD
tests the difference between two distributions (ρ0 and our
estimate of ρ0) on the basis of samples drawn from each
(X and Q). A low MMD value means that the two sets
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y ∼ ρ1(y) f−1(y) f−1(y)

(a) MINIBOONE dimension 16 vs 17

Samples OT-Flow FFJORD
x ∼ ρ0(x) f(x) f(x)

y ∼ ρ1(y) f−1(y) f−1(y)

(b) MINIBOONE dimension 28 vs 29

Figure 5: MINIBOONE density estimation. Two-dimensional slices using the 3,648 43-dimensional testing samples x ∼ ρ0(x)
and 105 samples y from distribution ρ1 (more visuals in Fig. A7).

of samples are likely to have been drawn from the same
distribution (Gretton et al. 2012). Since MMD is not used
in the training, it provides an external, impartial metric to
evaluate our model on the hold-out test set (Tab. 2).

Many normalizing flows use C for evaluation. The loss C
is used to train the forward flow to match ρ1. Testing loss,
i.e., C evaluated on the testing set, should provide the same
quantification on a hold-out set. However, in some cases, the
testing loss can be low even when f(x) is poor and differs
substantially from ρ1 (Fig. A2, A3). Furthermore, because
the model’s inverse contains error, accurately mapping to ρ1
with the forward flow does not necessarily mean the inverse
flow accurately maps to ρ0.

Testing loss varies drastically with the integration compu-
tation (Theis, van den Oord, and Bethge 2016; Wehenkel and
Louppe 2019; Onken and Ruthotto 2020). It depends on `,
which is computed along the characteristics via time integra-
tion of the trace (App. G). Too few discretization points leads
to an inaccurate integration computation and greater inverse
error. Thus, a low inverse error implies an accurate integration
computation because the flow closely models the ODE. An
adaptive ODE solver alleviates this concern when provided
a sufficiently small tolerance (Grathwohl et al. 2019). Simi-
larly, we check that the flow models the continuous solution
of the ODE by computing the inverse error

Eρ0(x)‖f
−1 (f(x))− x‖2 (17)

on the testing set using a finer time discretization than used
in training. We evaluate the expectation values in (9) and (17)
using the discrete samplesX , which we assume are randomly
drawn from and representative of the initial distribution ρ0.

Toy Problems We train OT-Flow on several toy distribu-
tions that serve as standard benchmarks (Grathwohl et al.
2019; Wehenkel and Louppe 2019). Given random samples,
we train OT-Flow then use it to estimate the density ρ0 and
generate samples (Fig. 4). We present a thorough comparison
with a state-of-the-art CNF on one of these (Fig. A2) .

Density Estimation on Real Data Sets We compare our
model’s performance on real data sets (POWER, GAS, HEP-
MASS, MINIBOONE) from the University of California Irvine
(UCI) machine learning data repository and the BSDS300
data set containing natural image patches. The UCI data sets
describe observations from Fermilab neutrino experiments,
household power consumption, chemical sensors of ethylene
and carbon monoxide gas mixtures, and particle collisions in
high energy physics. Prepared by Papamakarios, Pavlakou,
and Murray (2017), the data sets are commonly used in nor-
malizing flows (Dinh, Sohl-Dickstein, and Bengio 2017;
Grathwohl et al. 2019; Huang et al. 2018; Wehenkel and
Louppe 2019). The data sets vary in dimensionality (Tab. 2).

For each data set, we compare OT-Flow with
FFJORD (Grathwohl et al. 2019) and RNODE (Fin-
lay et al. 2020) (current state-of-the-art) in speed and
performance. We compare speed both in training the models
and when running the model on the testing set. To compare
performance, we compute the MMD between the data set
and M=105 generated samples f−1(y) for each model;
for a fair comparison, we use the same y for FFJORD
and OT-Flow (Tab. 2). We show visuals of the samples
x ∼ ρ0(x), y ∼ ρ1(y), f(x), and f−1(y) generated by
OT-Flow and FFJORD (Fig. 5, App. H). We report the loss
C values (Tab. 2) to be comparable to other literature but
reiterate the inherent flaws in using C to compare models.

The results demonstrate the computational efficiency of
OT-Flow relative to the state-of-the-art (Tab. 2). With the
exception of the GAS data set, OT-Flow achieves comparable
MMD to the state-of-the-art with drastically reduced training
time. OT-Flow learns a slightly smoothed representation of
the GAS data set (Fig. A5). We attribute most of the training
speedup to the efficiency from using our exact trace instead
of the Hutchinson’s trace estimation (Fig. 2, Fig. 3). On
the testing set, our exact trace leads to faster testing time
than the state-of-the-art’s exact trace computation via AD
(Tab. 1,Tab. 2). To evaluate the testing data, we use more time



first 3 rows originals. last 3 rows are conditional generations.

(a) Originals

first 3 rows originals. last 3 rows are conditional generations.

(b) Generations

Figure 6: MNIST generation conditioned by class.

steps than for training, effectively re-discretizing the ODE
at different points. The inverse error shows that OT-Flow is
numerically invertible and suggests that it approximates the
true solution of the ODE. Ultimately, OT-Flow’s combination
of OT-influenced regularization, reduced parameterization,
DTO approach, and efficient exact trace computation results
in fast and accurate training and testing.

MNIST We demonstrate the generation quality of OT-
Flow using an encoder-decoder structure. Consider encoder
B : R784 → Rd and decoder D : Rd → R784 such that
D(B(x)) ≈ x. We train d-dimensional flows that map distri-
bution ρ0(B(x)) to ρ1. The encoder and decoder each use a
single dense layer and activation function (ReLU for B and
sigmoid for D). We train the encoder-decoder separate from
and prior to training the flows. The trained encoder-decoder,
due to its simplicity, renders digitsD(B(x)) that are a couple
pixels thicker than the supplied digit x.

We generate new images via two methods. First, using
d=64 and a flow conditioned on class, we sample a point
y ∼ ρ1(y) and map it back to the pixel space to create image
D(f−1(y)) (Fig. 6b). Second, using d=128 and an uncondi-
tioned flow, we interpolate between the latent representations
f(B(x1)), f(B(x2)) of original images x1,x2. For interpo-
lated latent vector y ∈ Rd, we invert the flow and decode
back to the pixel space to create image D(f−1(y)) (Fig. 7).

6 Discussion
We present OT-Flow, a fast and accurate approach for training
and performing inference with CNFs. Our approach tackles
two critical computational challenges in CNFs.

First, solving the neural ODEs in CNFs can require many
time steps resulting in high computational cost. Leverag-
ing OT theory, we include a transport cost and add an HJB
regularizer. These additions help carry properties from the
continuous problem to the discrete problem and allow OT-
Flow to use few time steps without sacrificing performance.
Second, computing the trace term in (2) is computationally
expensive. OT-Flow features exact trace computation at time
complexity and cost comparable to trace estimators used
in existing state-of-the-art CNFs (Fig. 2). The exact trace

Figure 7: MNIST interpolation in the latent space. Original
images are boxed in red.

provides better convergence than the estimator (Fig. 3). Our
analytic gradient and trace approach is not limited to the
ResNet architectures, but expanding to other architectures
requires further derivation.
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