
I/O Traces of HPC Applications

Chen Wang1
chenw5@illinois.edu

Kathryn Mohror2
kathryn@llnl.gov

Marc Snir1
snir@illinois.edu

I. INTRODUCTION

Understanding HPC application I/O behavior is an important
task for improving performance. To aid in improving this
understanding, we have created a publicly available dataset
of I/O traces of 14 HPC applications that includes records
of the layered I/O including HDF5, MPI-IO and POSIX.
We have made our dataset public so that it can be used
repeatedly by researchers to perform different analysis tasks
with the goal of optimizing I/O performance or designing
more efficient I/O libraries and file systems. In this work,
we give background information about our I/O trace dataset
along with some example analysis. Our traces are available at
https://doi.org/10.6075/J0Z899X4.

Fig. 1. Overlapping Accesses of NWChem

II. DATASET

The first release of our dataset includes I/O traces from
14 HPC applications spanning a variety of domains. Those
applications perform I/O using POSIX, MPI-I/O and other
higher level libraries such as HDF5, NetCDF, Silo and ADIOS.
We utilized the multi-level I/O tracing tool Recorder [1] to
generate the traces from those applications. The trace records
include entry/exit time stamps, function name, and all function
parameters, except the data buffer. The detailed traces enable
I/O researchers to perform useful analysis such as identifying
access patterns, detecting conflicting accesses, etc.

For example, Figure 1 shows the accesses of an in-
ternal database file in NWChem throughout the computa-
tion. The accesses exhibited both read-after-write and write-
after-write patterns, which suggest that local caches maybe
helpful. Figure 2 shows the count of unique write sizes
observed in FLASH with independent I/O. As can been
seen, there are a large number of small writes (e.g., 512

1University of Illinois at Urbana-Champaign
2Lawrence Livermore National Laboratory

Fig. 2. Write sizes of FLASH using independent I/O

Fig. 3. Most expensive functions of FLASH using collective I/O.

bytes) that could potentially hurt the performance. Using
collective I/O significantly reduces the number of small
writes (figure not shown due to space limit) but also intro-
duces additional communication cost as suggested in Fig-
ure 3. In the figure, MPI_File_write_at_all() and
MPI_File_write_at() spend in total of 30 seconds
whereas write() takes only about 7 seconds.

III. FUTURE WORK

The current traces of each application were generated from
one or a few configuration runs. We plan to include more
configurations (especially those used in real scenarios) and
also more applications in our future work.

REFERENCES

[1] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel I/O tracing and analysis,” in 2020 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 1–8, IEEE, 2020.

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. LLNL-ABS-815154.


