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Abstract

The discovery of causal relationships is a core
part of scientific research. Accordingly, over
the past several decades, algorithms have
been developed to discover the causal struc-
ture for a system of variables from obser-
vational data. Learning ancestral graphs is
of particular interest due to their ability to
represent latent confounding implicitly with
bi-directed edges. The well-known FCI algo-
rithm provably recovers an ancestral graph
for a system of variables encoding the sound
and complete set of causal relationships iden-
tifiable from observational data.1 Additional
causal relationships become identifiable with
the incorporation of background knowledge;
however, it is not known for what types of
knowledge FCI remains complete. In this pa-
per, we define tiered background knowledge
and show that FCI is sound and complete
with the incorporation of this knowledge.

1 INTRODUCTION

Directed acyclic graphs (DAGs) have become widely
studied and applied in causal modeling and discovery
(Glymour and Cooper, 1999; Spirtes et al., 2000; Pearl,
2009); their simple directed structure provides an in-
terpretable representation for causality and facilitates
systematic learning procedures. Indeed, given an in-
finite amount of observational data from a system of
variables, there exist algorithms capable of learning

1The proof of FCI’s correctness assumes access to a con-
ditional independence oracle. Thus, FCI is correct in the
large sample limit using an asymptotically correct condi-
tional independence test.
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the set of DAGs equivalent to the true causal DAG
(Spirtes et al., 2000; Chickering, 2002; Colombo and
Maathuis, 2014).2 Accordingly, any edge in common
among the learned DAGs may be interpreted causally
in the large sample limit. This guarantee comes at
the cost of several assumptions, including the stan-
dard causal Markov and faithfulness assumptions, and
the assumption that there are no unmeasured common
causes—no latent confounding. The latter assumption
is generally referred to as causal sufficiency.

Causal DAG learning algorithms map the implica-
tions of a graphical separation criterion (d-separation)
on DAGs to conditional independence in the data.
The aforementioned causal Markov and faithfulness
assumptions ensure that separation in the true causal
graph implies conditional independence in the data
and vice versa. Unfortunately, this process is under-
determined in the sense that multiple DAGs may be
consistent with the patterns of conditional indepen-
dence in the data. Therefore, these algorithms learn
a set of equivalent DAGs and label any edge that
varies between two or more of the learned DAGs as
causally ambiguous. Fortunately, background knowl-
edge, such as specifying one variable as the cause of
another, can further refine the set of DAGs, thereby
increasing the number of identifiable causal relation-
ships. In addition, causal DAG learning algorithms
retain asymptotic correctness for general background
knowledge (Meek, 1995).

However, the causal sufficiency assumption, required
by causal DAG learning algorithms, is violated with
some regularity. The fast causal inference (FCI) al-
gorithm was developed to discover causal relation-
ships from observational data without this assump-
tion. When relaxing causal sufficiency, an alternative
representation is needed; FCI uses maximal ancestral
graphs (MAGs). MAGs are similar to DAGs, but ad-
ditionally include bi-directed edges that can represent
statistical associations due strictly to latent confound-
ing. FCI maps the implications of a graphical separa-

2DAGs are conditional independence structures; by
equivalent we mean in terms of conditional independence.



FCI with Tiered Background Knowledge

tion criterion (m-separation) on MAGs to conditional
independence in the data. Unfortunately, this process
is underdetermined in the same sense as causal DAG
learning. Therefore, FCI learns the set of equivalent
MAGs consistent with the data. FCI is sound and
complete in the sense that, given a conditional inde-
pendence oracle, it recovers the set of MAGs that en-
code only and all identifiable causal relationships from
observational data (Spirtes et al., 1999; Zhang, 2008).
This set is represented by a summary graph called a
partial ancestral graph (PAG). As with causal DAG
learning, background knowledge can increase the num-
ber of identifiable causal relationships for FCI, but it
is unknown for what types of knowledge FCI remains
complete. In this paper, we define tiered background
knowledge and show that FCI is sound and complete
with the incorporation of this knowledge.

1.1 Incorporating Background Knowledge
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Figure 1: An example of resolving unidentifiability in
causal DAG learning with background knowledge.

Figure 1 illustrates how background knowledge can re-
solve ambiguity in causal DAG learning. Data gener-
ated from the causal DAG on the left is consistent with
the DAGs on the right. However, if we know that A
causes B, shown by the blue A → B edges, then we
can rule out any DAG on the right that violates this
information, shown by the red A ← B edges. Chris
Meek extended the set of orientation rules for causal
DAG learning to cases with background knowledge and
proved sound and completeness (Meek, 1995). Using
these rules, an algorithm can asymptotically recover
the DAGs consistent with the patterns of conditional
independence in the data and any background knowl-
edge.

Figure 2 illustrates how background knowledge can re-
solve ambiguity in causal MAG learning. Data gener-
ated from a system represented by the causal MAG on
the left is consistent with the MAGs on the right. If
we know that A causes B, shown by the blue A → B
edges, then we can rule out any MAG on the right that
violates this information, shown by the red A ↔ B
edges. Unfortunately, it is unknown under what types
of background knowledge FCI remain sound and com-
plete. In fact, it is straightforward to show that FCI is
not complete with background knowledge that speci-
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Figure 2: An example of resolving unidentifiability in
causal MAG learning with background knowledge.

fies one variable as the cause of another.
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Figure 3: An example of the incompleteness of FCI
with background knowledge.

Figure 3 provides an example of the incompleteness of
FCI with background knowledge. In the example, FCI
is not complete with background knowledge that C
causes D, shown by the blue C → D edges. Data gen-
erated from a system represented by the causal MAG
in (a) is consistent with all of the MAGs represented by
the graph in (b), where circle edge marks represent un-
certainty.3 The graph in (b) is a PAG that summarizes
the set of MAGs learned by FCI with a conditional in-
dependence oracle and no background knowledge. If
we know that C causes D, then we can rule out any
MAG that violates this knowledge. Accordingly, FCI
with the background knowledge that C causes D re-
turns the PAG in (c).

However, the PAG in (c) admits the possibility that
the edge between A and B has an arrowhead directed
into B, shown by the red A◦→ B edge in the graph
in (d). If this is the case, then after applying FCI’s
orientation rules, B will be identified as a cause of
C, shown by the red B → C edge in the graph in

3In a PAG, X◦→ Y means that the set of graphs rep-
resented by the PAG contains a graph with X → Y and a
graph with X ↔ Y .



Bryan Andrews, Peter Spirtes, Gregory F. Cooper

(d). However, any graph represented by the graph in
(d) will violate the later discussed ancestral property
and therefore cannot represent a MAG. It follows that
B causes A; the PAG in (e) illustrates the sound and
complete set of MAGs with the background knowledge
that C causes D. Thus, FCI is not complete with
background knowledge that specifies one variable as
the cause of another.

1.2 Tiered Background Knowledge

In this paper, we show that FCI is sound and com-
plete with tiered background knowledge. By tiered
background knowledge, we mean any knowledge where
the variables may be partitioned into two or more mu-
tually exclusive and exhaustive subsets among which
there is a known causal order.

For example, consider a data set measuring gene ex-
pression in yeast. Furthermore, suppose the data set
was curated in multiple labs and that each lab was re-
sponsible for collecting both wild-type (observational)
data and gene-knockout (experimental) data. If we
add variables that measure the lab where the data
were collected and the set of active experiments for
each recorded instance, then it is reasonable to assume
that these variables causally precede the gene expres-
sion variables. Thus, this scenario admits two causal
tiers.

Definition tiered background knowledge: We say that
a MAG satisfies tiered background knowledge if the
variables may be partitioned into n > 1 disjoint sub-
sets (tiers) T = {T1, . . . ,Tn} and for all A ∈ Ti and
B ∈ Tj such that 1 ≤ i < j ≤ n

(i) A is an ancestor of B or

(ii) A and B are not adjacent.

In Figure 3, the PAG in (f) is the output of FCI with a
conditional independence oracle and the tiered back-
ground knowledge that tier T1 = {C} causally pre-
cedes tier T2 = {A,B,D}, the implications of which
are shown with blue edges. Tiered background knowl-
edge arises in many different situations including but
not limited to (i) instrumental variables, (ii) data from
multiple contexts and interventions, and (iii) temporal
data with contemporaneous confounding.

Figure 4 illustrates an example of an instrumental vari-
able. Under assumptions, instrumental variables can
be applied to estimate cause-effect relationships of in-
terest (Angrist and Pischke, 2008). In Figure 4, sup-
pose we are interested in the relationship between A
and B and the following assumptions hold: (1) I is a
known cause of A, (2) I affects B only through A, and
(3) I and B are not confounded. The instrument I can

I A B

L

Tier 1 Tier 2

Figure 4: An example of an instrumental variable.

be placed within tiered background knowledge, where
tier T1 = {I} causally precedes tier T2 = {A,B}. In
this example, L is used to represent that A and B have
a latent common cause. FCI will derive a PAG that is
consistent with an instrumental-variable analysis, al-
though in general it will not be as informative as the
output of such an analysis.
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Figure 5: An example of context and interventions.

Figure 5 illustrates an example with multiple contexts
and interventions. Consider again the data set mea-
suring gene expression in yeast. In that example, each
lab where a subset of the data were collected repre-
sents a different context (C) and each gene-knockout
represents a different intervention (I).

Recent work has shown how to perform causal discov-
ery using data obtained from multiple contexts and un-
der experimental manipulation by explicitly represent-
ing the context and interventions as additional vari-
ables in the data set (Zhang et al., 2015; Magliacane
et al., 2016). In this paradigm, it is often assumed that
the context and interventions are exogenous with re-
spect to the other variables. The knowledge that con-
text C and intervention I are exogenous with respect
to A and B can be encoded with tiered background
knowledge, where tier T1 = {C, I} causally precedes
T2 = {A,B}. Again, L is used to represent that A and
B have a latent common cause.

Figure 6 illustrates an example of temporal data with
contemporaneous confounding. Applying FCI to time
series data has recently become an application of in-
terest (Entner and Hoyer, 2010; Malinsky and Spirtes,
2018). The knowledge provided by the temporal order-
ing can be encoded with tiered background knowledge
where tier T1 = {A1, B1} causally precedes tier T2 =
{A2, B2} which causally precedes tier T3 = {A3, B3}.
Here, each Li is used to represent that Ai and Bi have
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Figure 6: An example of a time series.

a contemporaneous confounder. However, if there was
an edge L1 → L2, then L1 would be a cross-lag con-
founder for A1 and B2; in this case, tiered background
knowledge would no longer be applicable (A1 and B2

would be adjacent, but A1 would not be an ancestor
of B2). Nevertheless, tiered background knowledge is
applicable in a wide range of scenarios.

Up to this point, we have refrained from mentioning
selection bias. As it turns out, FCI is sound and
complete in the presence of latent confounding and
selection (Zhang, 2008). To keep the current paper
tractable, we assume no selection bias and leave han-
dling selection to future research.

1.3 Outline

In Section 2, we introduce concepts specific to latent
variable modeling in order to facilitate the statement
and discussion of the proofs presented in this paper. In
Section 3, we state and illustrate the proof strategy for
showing that FCI is sound and complete with tiered
background knowledge; the details of the formal proofs
appear in the supplement. In Section 4, we state our
conclusions.

2 BACKGROUND

We assume the reader is familiar with fundamental
graphical modeling concepts, such as DAGs and d-
separation; a discussion of these concepts may be
found in (Koller and Friedman, 2009). In this sec-
tion, we introduce concepts specific to latent variable
modeling in order to facilitate the statement and dis-
cussion of the proofs presented in this paper. Because
we assume no selection bias, the definitions below are
stated with no latent selection variables. More details
on the concepts outlined in this section and on selec-
tion may be found in (Spirtes et al., 2000).

Definition mixed graph: A mixed graph is a vertex
edge graph that can contain two kinds of edges: di-
rected (→) and bi-directed (↔) with at most one edge
between any two variables.

Let G = (V ,E) be a mixed graph with variables V =
{X1, . . . , Xp}. We say that X1 is a parent of X2 and
that X2 is a child of X1 if the directed edge X1 → X2

is in G. Similarly, we say that X1 is a spouse of X2 if
the bi-directed edge X1 ↔ X2 is in G. More generally,
we say that X1 and X2 are adjacent if there is any
kind of edge between X1 and X2 in G.

If there is a sequence of distinct adjacent variables
〈Xi, Xi+1, . . . , Xi+k, 〉 for k ≥ 1 in G, then we say that
there is a path between Xi and Xi+k. A collider oc-
curs on a path when two edges are directed into the
same variable X1∗→ X2 ←∗X3 and that collider is an
unshielded collider if X1 and X3 are not adjacent.4 If
every edge along a path π is directed Xi+j → Xi+j+1

for 0 ≤ j < k then we say π is a directed path from
Xi to Xi+k. Furthermore, we say Xi is an ancestor of
Xi+k and Xi+k is a descendant of Xi. We additionally
define every variable as an ancestor and descendant of
itself.

Definition ancestral graph: A mixed graph G is an-
cestral if

(i) there are no directed cycles;

(ii) there are no almost directed cycles.

That is, if there is a directed path from X1 to X2, then
there is neither (i) a directed edge X1 ← X2 nor (ii) a
bi-directed edge X1 ↔ X2 in G.

Definition m-separation: In a mixed graph, a path π
between variables X and Y is active, or m-connecting,
relative to a set of variables Z (X,Y 6∈ Z) if

(i) every non-collider on π is not a member of Z;

(ii) every collider on π has a descendant in Z.

X and Y are said to be m-separated by Z if there is
no active path between any X ∈ X and any Y ∈ Y
relative to Z.

Definition maximal : An ancestral graph is said to be
maximal if for any two non-adjacent variables, there is
a set of variables that m-separates them.

Accordingly, a MAG is a mixed graph that is both
maximal and ancestral. The edges of a MAG may be
interpreted as follows

X → Y implies X is a cause of Y ;5

X ↔ Y implies neither X nor Y is a cause of
the other; X and Y are associated strictly due to
latent confounding.

4An asterisk edge mark denotes that we are agnostic to
that mark (it may be either a tail, arrowhead, or circle).

5This interpretation is not valid when allowing for se-
lection bias.
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By saying X is a cause of Y , we mean there is a
directed path from X to Y in the underlying causal
DAG. Furthermore, X → Y does not necessarily rule
out the possibility of a latent common cause between
X and Y . Algorithm 1 in (Triantafillou and Tsamardi-
nos, 2015) provides a nice intuition for the edges of a
MAG.

Let G = (V ,E) be a DAG where the variables may be
partitioned into two distinct subsets V = O∪L which
are the observed and latent variables, respectively. A
MAG H represents G over the observed variables O if
and only if

(i) The variables of H are O;

(ii) X and Y are adjacent in H if and only if X and Y
are d-connected in G conditional on every subset
of O;

(iii) X → Y in H if X and Y are adjacent in H and
X is an ancestor of Y in G;

(iv) X ↔ Y in H if X and Y are adjacent in H and
X is not an ancestor of Y and vice versa in G.

H represents the marginalization of G in the sense that
if X, Y , and Z are distinct subsets of O, then X and
Y are d-separated in G conditioned on Z if and only
if X and Y are m-separated in H conditioned on Z.

Definition Markov equivalence: Two MAGs G and H
over the same set of variables are Markov equivalent
if for any three disjoint sets of variables X,Y ,Z, it
holds that X and Y are m-separated by Z in H if and
only if X and Y are m-separated by Z in G. We use
[G] denote the Markov equivalence class of MAG G.

Definition partial ancestral graph: Let G be a MAG
and G ⊆ [G] be a set of MAGs Markov equivalent
to G.6 A PAG P for G is a vertex edge graph with
three kinds of possible edge marks and four kinds of
edges: {→,↔, ◦−◦, ◦→}, such that P has the same
adjacencies as G and every non-circle edge mark in
P occurs in every member of G. If every circle edge
mark in P corresponds to an edge mark that varies
among the members of G, P is called the maximally
informative (abbreviated as m.i.) PAG for G.

3 METHOD

Let G = (V ,E) be the DAG that represents the true
underlying causal model and that the variables may
be partitioned into two distinct subsets V = O ∪ L

6A PAG is usually defined for a proper Markov equiv-
alence class rather than a subset. We define PAGs for
subsets to facilitate the use of background knowledge.

which are the observed and latent variables, respec-
tively. Furthermore, let H be the MAG that repre-
sents G over the observed variables O. Suppose that
we have been provided with tiered background knowl-
edge and that G ⊆ [H] is the set of MAGs Markov
equivalent to H which satisfy the provided knowledge.
In this section, we show that FCI using H as a condi-
tional independence oracle and incorporating the pro-
vided knowledge returns the m.i. PAG for G. That
is, FCI is sound and complete with tiered background
knowledge.

In general, our strategy is to add dummy variables to
the underlying causal MAG such that the edge orienta-
tions required by tiered background knowledge are en-
tailed by one or more applications of FCI’s orientation
rules. The dummy variables must be added such that
running FCI on the modified graph only changes the
orientations changed by incorporating our knowledge.
Since FCI is sound and complete and incorporating
tiered background knowledge into FCI is equivalent
to running FCI on a modified graph, FCI with tiered
background knowledge is sound and complete. For an
example, see Figure 7.

Assumptions: The true underlying causal model for
a system of variables is a DAG G with latent variables,
but no selection. The MAG H that represents G over
the observed variables satisfies the causal Markov and
faithfulness conditions.

3.1 Exogenous Background Knowledge

In order to facilitate the proofs presented in this paper,
we define two additional types of background knowl-
edge.

Definition exogenous background knowledge: Let G =
(O,E) be a MAG where the variables may be parti-
tioned into two distinct subsets O = A ∪B. We say
that G satisfies the exogenous background knowledge
that A is exogenous with respect to B, denoted ebkAB ,
if for all A ∈ A and B ∈ B

(i) A is an ancestor of B or

(ii) A and B are not adjacent.

Definition modified background knowledge: Let G =
(O,E) be a MAG where the variables may be parti-
tioned into two distinct subsets O = A ∪B. We say
that G satisfies modified background knowledge, de-
noted mbkAB , if G satisfies ebkAB and for all A,A′ ∈ A

(i) A and A′ are not adjacent.

The Markov equivalence class of a MAG G may be con-
strained with ebkAB , denoted [G] + ebkAB . This repre-
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sents the set of MAGs Markov equivalent to G that sat-
isfy ebkAB . Analogously, [G] +mbkAB represents the set
of MAGs Markov equivalent to G that satisfy mbkAB .

3.2 Proof Concepts

We define several graphical operations in order to fa-
cilitate the proofs. Note that if one of the operations
defined below is applied to [G], it may be interpreted as
applying that operation to every member of [G]. Fur-
thermore, [G] may be represented graphically as a m.i.
PAG; the two may be thought of synonymous. For
MAGs G and H, we define the following concepts.7

Definition Edges(G,S): Let S be a subset of the
variables in G. Edges(G,S) is the subset of edges in
G connecting two members of S.

Definition Ins(H,Edges(G,S)): Let S be a sub-
set of the variables in common between G and
H. Ins(H,Edges(G,S)) is the graph resulting
from inserting Edges(G,S) into H. That is,
Ins(H,Edges(G,S)) contains the union of the edges
in H and Edges(G,S).

Definition RmA
B(G): Let A, B, and W be three

disjoint sets of variables that partition the variables
in G. RmA

B(G) is the graph constructed by remov-
ing from G the variables in W and the edges con-
necting two members of A ∪W . That is, RmA

B(G)
contains the variables in A ∪ B and the edges in
Edges(G,A∪B)\Edges(G,A). For example, we may
derive the PAG in Figure 7(c) by applying RmA

B(·) to
the PAG in Figure 7(b).

Definition AddA
B(G): Let A, B, and W ′ be three

disjoint sets of variables that partition the variables
in G. AddA

B(G) is the graph constructed by adding
to RmA

B(G) the variables in W = {W1, W2} and the
directed edges W1 → A ← W2 for all A ∈ A. That
is, AddA

B(G) contains the variables in A∪B∪W and
the union of the edges in Edges(RmA

B(G),A∪B) and
{W → A | A ∈ A,W ∈ W }. For example, we may
derive the PAG in Figure 7(d) by applying AddA

B(·)
to the PAG in Figure 7(b).

Definition Fci(G): Fci(G) is the output of running
FCI using G as a conditional independence oracle.

Definition Fci(G + mbkAB): Let A and B be two
disjoint sets of variables that partition the variables in
G. Fci(G+mbkAB) is the output of running FCI using G
as a conditional independence oracle and incorporating
modified background knowledge mbkAB . For example,
the PAG in Figure 7(c) is the output of FCI withmbkAB
when the MAG in Figure 7(a) is used as a conditional

7MAGs are not necessarily closed under the defined op-
erations; lemmas in the supplement prove when they are.

independence oracle. The details of running FCI with
mbkAB are provided in Algorithm 2.

Definition G(S) (or [G](S)): Let S be a subset
of the variables in G. G(S) is the induced sub-
graph of G over the subset of variables S. That
is, G contains the variables in S and the edges in
Edges(G,S). For example, the dashed rectangle in
Figure 7(d) denotes the induced subgraph over the
variables {A1, A2, B1, B2, B3, B4}.

We may now formalize tiered background knowledge
in terms of exogenous background knowledge. Infor-
mally, tiered background knowledge is defined by a
partition of the variables T = {T1, . . . ,Tn} where T1

is the subset of variables in the first tier, T2 is the sub-
set of variables in the second tier, and so forth. The
tiers define a causal ordering over the variables where
a variable in Ti can cause a variable in Tj for for all
1 ≤ i < j ≤ n, but not the other way around.

Definition tiered background knowledge: Let G be
a MAG where the variables may be partitioned into
n > 1 disjoint subsets T = {T1, . . . ,Tn}. Let Ai =⋃i−1

j=1 Tj , Bi = Ti, and Oi = Ai ∪Bi. We say that G
satisfies the tiered background knowledge given by T ,
denoted tbkT , if G(Oi) satisfies ebkAi

Bi
for all 1 ≤ i ≤ n.

The Markov equivalence class of a MAG G may be
constrained with tbkT , denoted [G] + tbkT . This rep-
resents the set of MAGs Markov equivalent to G that
satisfy tbkT .

3.3 Theoretical Results

This section provides a summary of the main theo-
retical results, the details of which may be found in
the supplement. The numbering of the lemmas and
theorems follows the numbering in the supplement.

Lemma 8. Let G = (O,E) be a MAG and A and
B be two disjoint sets of variables that partition O.
If G satisfies ebkAB , then RmA

B([G] + ebkAB) ≡ Fci(G +
mbkAB).

This lemma shows that if G satisfies ebkAB , then run-
ning FCI using G as a conditional independence ora-
cle and incorporating modified background knowledge
mbkAB recovers the sound and complete set of edges
that connect two members of B. If we do not care
about the edges between the members of A—this may
be the case if A contains instrumental variables or A
contains context and intervention variables—then the
application of this lemma is interesting in its own right.

Figure 7 illustrates an example of the proof strategy
for Lemma 8. In the example, G has variables A =
{A1, A2} and B = {B1, B2, B3, B4} and is shown in
(a). [G] + ebkAB is the Markov equivalence class of G
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[RmA
B(G)] + ebkA

B

Fci(G + mbkA
B)

W1 W2

A1 A2

B1 B2

B3 B4

(d)

[AddA
B(G)]

Fci(AddA
B(G))

Figure 7: An illustration for Lemma 8.

constrained with ebkAB and is shown in (b). The proof
is completed by showing the following equivalences:

(i) RmA
B([G] + ebkAB) ≡ [RmA

B(G)] + ebkAB

illustrated in Figure 7(c).

(ii) [RmA
B(G)] + ebkAB ≡ [AddA

B(G)](A ∪B)

illustrated in Figure 7(c,d).

(iii) [AddA
B(G)](A ∪B) ≡ Fci(AddA

B(G))(A ∪B)

illustrated in Figure 7(d).

(iv) Fci(AddA
B(G))(A ∪B) ≡ Fci(G +mbkAB)

illustrated in Figure 7(c,d).

Lemma 12. Let G = (O,E) be a MAG and T =
{T1, . . . ,Tn} be a partitioning of O. Let Ai =⋃i−1

j=1 Tj , Bi = Ti, and Oi = Ai ∪ Bi. If G satis-

fies tbkT , then RmAi

Bi
(([G]+tbkT )(Oi)) ≡ Fci(G(Oi)+

mbkAi

Bi
) for all 1 ≤ i ≤ n.

This lemma extends the results of Lemma 8 by showing
that, if G satisfies tbkT , then for all 1 ≤ i ≤ n, running
FCI on Oi using G(Oi) as a conditional independence
oracle and incorporating modified background knowl-
edge mbkAi

Bi
recovers the sound and complete set of

edges that connect two members of Bi. Accordingly,
the proof strategy for Theorem 1 is to repeatedly apply
Lemma 12 until we recover the m.i. PAG for [G]+tbkT .

Figure 8 illustrates an example of the proof strategy
for Theorem 1. The meta graph in (a) shows the gen-
eral layout of a graph that satisfies tiered background
knowledge. The variables are partitioned into three
mutually exclusive and exhaustive subsets: T1, T2, and
T3, with a known causal order. Figure 8, (b), (c), and

T3

T2

T1

(a)

T3

T2

T1

(b)

A3 =T1∪T2

B3 =T3

A3

B3

T3

T2

T1

(c)

A2 =T1

B2 =T2

A2

B2

T3

T2

T1

(d)

A1 = ∅
B1 =T1

B1

Figure 8: An illustration for Theorem 1.

(d) depicts the first, second, and third applications of
Lemma 12, respectively. Each application recovers the
sound and complete set of edges involving a member
of Bi. Therefore, since every variable is a member of
Bi within some application of Lemma 12, we recover
the m.i. PAG for [G] + tbk.

Theorem 1. Let G = (O,E) be a MAG and T =
{T1, . . . ,Tn} be a partitioning of O. If G satisfies
tbkT , then FCI with tbkT is sound and complete in
the sense that, given a conditional independence ora-
cle, FCI with tbkT returns the m.i. PAG for [G]+tbkT .

Let Ai =
⋃i−1

j=1 Tj , Bi = Ti, and Oi = Ai ∪
Bi. Furthermore, let Pi = Fci(G(Oi) + mbkAi

Bi
)

be the result of running FCI on Oi using G(Oi) as
a conditional independence oracle and incorporating
modified background knowledge mbkAi

Bi
. By Lemma

12, Pi = RmAi

Bi
(([G] + tbkT )(Oi)) and, accordingly,

Edges(Pi,Oi)≡ Edges(RmAi

Bi
(([G]+tbkT )(Oi)),Oi).

The details of running FCI with tbkT are provided in
Algorithm 1. By construction, FCI with tbkT returns
a PAG P with the variables in O and the edges in⋃n

i=1 Edges(Pi,Oi).

Note that Edges(RmAi

Bi
(([G] + tbkT )(Oi)),Oi) is the

sound and complete set of edges involving a member of
Bi. Therefore, since every variable in O is a member
of Bi for some 1 ≤ i ≤ n,

⋃n
i=1 Edges(RmAi

Bi
(([G] +

tbkT )(Oi)),Oi) ≡ Edges([G]+tbk,O). It follows that

Edges(P,O) ≡
n⋃

i=1

Edges(Pi,Oi)

≡
n⋃

i=1

Edges(RmAi

Bi
(([G] + tbkT )(Oi)),Oi)

≡ Edges(G + tbkT ,O).

Therefore, FCI with tbkT is sound and complete in the
sense that, given a conditional independence oracle,
FCI with tbkT returns the m.i. PAG for [G]+tbkT .
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3.4 FCI with Tiered Background Knowledge

In order to formulate FCI, we first need to define the
following concept.

Definition possible d-separating set : X ∈ pds(Xi, Xj)
if and only if X 6∈ {Xi, Xj}, and there is a path π
between Xi and X in G such that for every subpath
〈Xk, Xl, Xm〉 of π either Xl is a collider on π or Xk

and Xm are adjacent.

Algorithm 1 runs FCI with tiered background informa-
tion. As noted above, tiered background information
may be formalized in terms of exogenous background
knowledge. Accordingly, Algorithm 2 is called as a
subroutine where Algorithm 2 runs FCI with exoge-
nous background knowledge. The details of both algo-
rithms are provided below.

Algorithm 1: FciTiers(T )

Input: Disjoint sets (tiers) T = {T1, . . . ,Tn}
Output: PAG P

1 Form an unconnected graph P over
⋃n

i=1 Ti ;
2 for i = n to 1 do

3 Ai ←
⋃i−1

j=1 Tj ;

4 Bi ← Ti ;
5 Oi ← Ai ∪Bi ;
6 Pi = FciExogenous(Ai,Bi) ;
7 Add Edges(Pi,Oi) to P ;

8 end
9 return P

In each iteration of the main loop in Algorithm 1, there
are two sets of variables: Ai and Bi where Ai is ex-
ogenous with respect to Bi. Algorithm 2 runs with
Ai and Bi as input to obtain PAG Pi. The edges
Edges(Pi,Oi) are added to the final graph P. After
looping through every combination of Ai and Bi, P
contains the sound and complete set of edges.

Algorithm 2 is identical to the standard FCI algorithm
with the exception that adjacencies between the mem-
bers of A are forbidden and edges between any A ∈ A
and B ∈ B are oriented A→ B. Orientation rules (R0

-R4, R8 -R10) may be found in the supplement.

4 CONCLUSIONS

In causal structure discovery, multiple graphs are of-
ten consistent with the patterns of conditional inde-
pendence in the data. Generally, these patterns do
not precisely resolve all of the causal relationships
among the observed variables. Fortunately, the ad-
dition of background knowledge can often help resolve
unresolved causal relationships. However, it was not

Algorithm 2: FciExogenous(A,B)

Input: Disjoint sets A and B
Output: PAG P

1 Form an unconnected graph P over A ∪B ;
2 Add Xi → Xj to P for all Xi ∈ A and Xj ∈ B ;
3 Add Xi ◦−◦Xj to P for all Xi, Xj ∈ B ;
4 n← 0 ;
5 repeat
6 forall pairs of adjacent vertices (Xi, Xj) ∈ A ∪B

and subset S ⊆ adj(Xi) \ {Xj} s.t. |S| = n do
7 if Xi ⊥⊥ Xj |S then
8 Delete edge Xi ∗−∗Xj from P ;
9 sepset(Xi, Xj)← S ;

10 sepset(Xj , Xi)← S ;

11 end

12 end
13 n← n+ 1 ;

14 until n > |adj(Xi) \ {Xj}| for all pairs of adjacent
vertices (Xi, Xj) ∈ A ∪B;

15 Apply R0 to P;
16 forall pairs of adjacent vertices (Xi, Xj) ∈ A ∪B do
17 if there exists S ∈ pds(Xi, Xj) s.t. Xi ⊥⊥ Xj |S

then
18 Delete edge Xi ∗−∗Xj from P ;
19 sepset(Xi, Xj)← S ;
20 sepset(Xj , Xi)← S ;

21 end

22 end
23 forall pairs of adjacent vertices (Xi, Xj) ∈ B do
24 Replace edge Xi ∗−∗Xj with Xi ◦−◦Xj in P ;
25 end
26 Exhaustively apply R0 -R4, R8 -R10 to P ;
27 return P

known when FCI, a causal discovery algorithms that
can model latent confounding, is sound and complete
with background knowledge.

In this paper, we show that FCI is sound and com-
plete when given tiered background knowledge. Tiered
background knowledge arises in many different sit-
uations, including but not limited to instrumental
variables, data from multiple contexts and inter-
ventions, and temporal data with contemporaneous-
confounding.

The proof that FCI is complete provides algorithm de-
velopers with an assurance that this aspect of the algo-
rithm’s development is finished. It also provides users
with knowledge that the algorithm is able to find all
of the causal relationships that are identifiable from
tiered background knowledge and observational data,
under the typical assumptions.
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